diff options
author | Jens Axboe <axboe@kernel.dk> | 2019-04-22 18:47:36 +0300 |
---|---|---|
committer | Jens Axboe <axboe@kernel.dk> | 2019-04-22 18:47:36 +0300 |
commit | 5c61ee2cd5860e41c8ab98837761ffaa93eb4dfe (patch) | |
tree | 0c78e25f5020eeee47863092ccbb2a3f56bea8a9 /Documentation | |
parent | cdf3e3deb747d5e193dee617ed37c83060eb576f (diff) | |
parent | 085b7755808aa11f78ab9377257e1dad2e6fa4bb (diff) | |
download | linux-5c61ee2cd5860e41c8ab98837761ffaa93eb4dfe.tar.xz |
Merge tag 'v5.1-rc6' into for-5.2/block
Pull in v5.1-rc6 to resolve two conflicts. One is in BFQ, in just a
comment, and is trivial. The other one is a conflict due to a later fix
in the bio multi-page work, and needs a bit more care.
* tag 'v5.1-rc6': (770 commits)
Linux 5.1-rc6
block: make sure that bvec length can't be overflow
block: kill all_q_node in request_queue
x86/cpu/intel: Lower the "ENERGY_PERF_BIAS: Set to normal" message's log priority
coredump: fix race condition between mmget_not_zero()/get_task_mm() and core dumping
mm/kmemleak.c: fix unused-function warning
init: initialize jump labels before command line option parsing
kernel/watchdog_hld.c: hard lockup message should end with a newline
kcov: improve CONFIG_ARCH_HAS_KCOV help text
mm: fix inactive list balancing between NUMA nodes and cgroups
mm/hotplug: treat CMA pages as unmovable
proc: fixup proc-pid-vm test
proc: fix map_files test on F29
mm/vmstat.c: fix /proc/vmstat format for CONFIG_DEBUG_TLBFLUSH=y CONFIG_SMP=n
mm/memory_hotplug: do not unlock after failing to take the device_hotplug_lock
mm: swapoff: shmem_unuse() stop eviction without igrab()
mm: swapoff: take notice of completion sooner
mm: swapoff: remove too limiting SWAP_UNUSE_MAX_TRIES
mm: swapoff: shmem_find_swap_entries() filter out other types
slab: store tagged freelist for off-slab slabmgmt
...
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/accounting/psi.txt | 12 | ||||
-rw-r--r-- | Documentation/bpf/btf.rst | 8 | ||||
-rw-r--r-- | Documentation/devicetree/bindings/arm/cpus.yaml | 2 | ||||
-rw-r--r-- | Documentation/devicetree/bindings/hwmon/adc128d818.txt | 4 | ||||
-rw-r--r-- | Documentation/lzo.txt | 8 | ||||
-rw-r--r-- | Documentation/media/uapi/rc/rc-tables.rst | 4 | ||||
-rw-r--r-- | Documentation/networking/bpf_flow_dissector.rst | 126 | ||||
-rw-r--r-- | Documentation/networking/index.rst | 1 | ||||
-rw-r--r-- | Documentation/networking/rxrpc.txt | 16 |
9 files changed, 156 insertions, 25 deletions
diff --git a/Documentation/accounting/psi.txt b/Documentation/accounting/psi.txt index b8ca28b60215..7e71c9c1d8e9 100644 --- a/Documentation/accounting/psi.txt +++ b/Documentation/accounting/psi.txt @@ -56,12 +56,12 @@ situation from a state where some tasks are stalled but the CPU is still doing productive work. As such, time spent in this subset of the stall state is tracked separately and exported in the "full" averages. -The ratios are tracked as recent trends over ten, sixty, and three -hundred second windows, which gives insight into short term events as -well as medium and long term trends. The total absolute stall time is -tracked and exported as well, to allow detection of latency spikes -which wouldn't necessarily make a dent in the time averages, or to -average trends over custom time frames. +The ratios (in %) are tracked as recent trends over ten, sixty, and +three hundred second windows, which gives insight into short term events +as well as medium and long term trends. The total absolute stall time +(in us) is tracked and exported as well, to allow detection of latency +spikes which wouldn't necessarily make a dent in the time averages, +or to average trends over custom time frames. Cgroup2 interface ================= diff --git a/Documentation/bpf/btf.rst b/Documentation/bpf/btf.rst index 9a60a5d60e38..7313d354f20e 100644 --- a/Documentation/bpf/btf.rst +++ b/Documentation/bpf/btf.rst @@ -148,16 +148,16 @@ The ``btf_type.size * 8`` must be equal to or greater than ``BTF_INT_BITS()`` for the type. The maximum value of ``BTF_INT_BITS()`` is 128. The ``BTF_INT_OFFSET()`` specifies the starting bit offset to calculate values -for this int. For example, a bitfield struct member has: * btf member bit -offset 100 from the start of the structure, * btf member pointing to an int -type, * the int type has ``BTF_INT_OFFSET() = 2`` and ``BTF_INT_BITS() = 4`` +for this int. For example, a bitfield struct member has: + * btf member bit offset 100 from the start of the structure, + * btf member pointing to an int type, + * the int type has ``BTF_INT_OFFSET() = 2`` and ``BTF_INT_BITS() = 4`` Then in the struct memory layout, this member will occupy ``4`` bits starting from bits ``100 + 2 = 102``. Alternatively, the bitfield struct member can be the following to access the same bits as the above: - * btf member bit offset 102, * btf member pointing to an int type, * the int type has ``BTF_INT_OFFSET() = 0`` and ``BTF_INT_BITS() = 4`` diff --git a/Documentation/devicetree/bindings/arm/cpus.yaml b/Documentation/devicetree/bindings/arm/cpus.yaml index 365dcf384d73..82dd7582e945 100644 --- a/Documentation/devicetree/bindings/arm/cpus.yaml +++ b/Documentation/devicetree/bindings/arm/cpus.yaml @@ -228,7 +228,7 @@ patternProperties: - renesas,r9a06g032-smp - rockchip,rk3036-smp - rockchip,rk3066-smp - - socionext,milbeaut-m10v-smp + - socionext,milbeaut-m10v-smp - ste,dbx500-smp cpu-release-addr: diff --git a/Documentation/devicetree/bindings/hwmon/adc128d818.txt b/Documentation/devicetree/bindings/hwmon/adc128d818.txt index 08bab0e94d25..d0ae46d7bac3 100644 --- a/Documentation/devicetree/bindings/hwmon/adc128d818.txt +++ b/Documentation/devicetree/bindings/hwmon/adc128d818.txt @@ -26,7 +26,7 @@ Required node properties: Optional node properties: - - ti,mode: Operation mode (see above). + - ti,mode: Operation mode (u8) (see above). Example (operation mode 2): @@ -34,5 +34,5 @@ Example (operation mode 2): adc128d818@1d { compatible = "ti,adc128d818"; reg = <0x1d>; - ti,mode = <2>; + ti,mode = /bits/ 8 <2>; }; diff --git a/Documentation/lzo.txt b/Documentation/lzo.txt index f79934225d8d..ca983328976b 100644 --- a/Documentation/lzo.txt +++ b/Documentation/lzo.txt @@ -102,9 +102,11 @@ Byte sequences dictionary which is empty, and that it will always be invalid at this place. - 17 : bitstream version. If the first byte is 17, the next byte - gives the bitstream version (version 1 only). If the first byte - is not 17, the bitstream version is 0. + 17 : bitstream version. If the first byte is 17, and compressed + stream length is at least 5 bytes (length of shortest possible + versioned bitstream), the next byte gives the bitstream version + (version 1 only). + Otherwise, the bitstream version is 0. 18..21 : copy 0..3 literals state = (byte - 17) = 0..3 [ copy <state> literals ] diff --git a/Documentation/media/uapi/rc/rc-tables.rst b/Documentation/media/uapi/rc/rc-tables.rst index f460031d8531..177ac44fa0fa 100644 --- a/Documentation/media/uapi/rc/rc-tables.rst +++ b/Documentation/media/uapi/rc/rc-tables.rst @@ -623,7 +623,7 @@ the remote via /dev/input/event devices. - .. row 78 - - ``KEY_SCREEN`` + - ``KEY_ASPECT_RATIO`` - Select screen aspect ratio @@ -631,7 +631,7 @@ the remote via /dev/input/event devices. - .. row 79 - - ``KEY_ZOOM`` + - ``KEY_FULL_SCREEN`` - Put device into zoom/full screen mode diff --git a/Documentation/networking/bpf_flow_dissector.rst b/Documentation/networking/bpf_flow_dissector.rst new file mode 100644 index 000000000000..b375ae2ec2c4 --- /dev/null +++ b/Documentation/networking/bpf_flow_dissector.rst @@ -0,0 +1,126 @@ +.. SPDX-License-Identifier: GPL-2.0 + +================== +BPF Flow Dissector +================== + +Overview +======== + +Flow dissector is a routine that parses metadata out of the packets. It's +used in the various places in the networking subsystem (RFS, flow hash, etc). + +BPF flow dissector is an attempt to reimplement C-based flow dissector logic +in BPF to gain all the benefits of BPF verifier (namely, limits on the +number of instructions and tail calls). + +API +=== + +BPF flow dissector programs operate on an ``__sk_buff``. However, only the +limited set of fields is allowed: ``data``, ``data_end`` and ``flow_keys``. +``flow_keys`` is ``struct bpf_flow_keys`` and contains flow dissector input +and output arguments. + +The inputs are: + * ``nhoff`` - initial offset of the networking header + * ``thoff`` - initial offset of the transport header, initialized to nhoff + * ``n_proto`` - L3 protocol type, parsed out of L2 header + +Flow dissector BPF program should fill out the rest of the ``struct +bpf_flow_keys`` fields. Input arguments ``nhoff/thoff/n_proto`` should be +also adjusted accordingly. + +The return code of the BPF program is either BPF_OK to indicate successful +dissection, or BPF_DROP to indicate parsing error. + +__sk_buff->data +=============== + +In the VLAN-less case, this is what the initial state of the BPF flow +dissector looks like:: + + +------+------+------------+-----------+ + | DMAC | SMAC | ETHER_TYPE | L3_HEADER | + +------+------+------------+-----------+ + ^ + | + +-- flow dissector starts here + + +.. code:: c + + skb->data + flow_keys->nhoff point to the first byte of L3_HEADER + flow_keys->thoff = nhoff + flow_keys->n_proto = ETHER_TYPE + +In case of VLAN, flow dissector can be called with the two different states. + +Pre-VLAN parsing:: + + +------+------+------+-----+-----------+-----------+ + | DMAC | SMAC | TPID | TCI |ETHER_TYPE | L3_HEADER | + +------+------+------+-----+-----------+-----------+ + ^ + | + +-- flow dissector starts here + +.. code:: c + + skb->data + flow_keys->nhoff point the to first byte of TCI + flow_keys->thoff = nhoff + flow_keys->n_proto = TPID + +Please note that TPID can be 802.1AD and, hence, BPF program would +have to parse VLAN information twice for double tagged packets. + + +Post-VLAN parsing:: + + +------+------+------+-----+-----------+-----------+ + | DMAC | SMAC | TPID | TCI |ETHER_TYPE | L3_HEADER | + +------+------+------+-----+-----------+-----------+ + ^ + | + +-- flow dissector starts here + +.. code:: c + + skb->data + flow_keys->nhoff point the to first byte of L3_HEADER + flow_keys->thoff = nhoff + flow_keys->n_proto = ETHER_TYPE + +In this case VLAN information has been processed before the flow dissector +and BPF flow dissector is not required to handle it. + + +The takeaway here is as follows: BPF flow dissector program can be called with +the optional VLAN header and should gracefully handle both cases: when single +or double VLAN is present and when it is not present. The same program +can be called for both cases and would have to be written carefully to +handle both cases. + + +Reference Implementation +======================== + +See ``tools/testing/selftests/bpf/progs/bpf_flow.c`` for the reference +implementation and ``tools/testing/selftests/bpf/flow_dissector_load.[hc]`` +for the loader. bpftool can be used to load BPF flow dissector program as well. + +The reference implementation is organized as follows: + * ``jmp_table`` map that contains sub-programs for each supported L3 protocol + * ``_dissect`` routine - entry point; it does input ``n_proto`` parsing and + does ``bpf_tail_call`` to the appropriate L3 handler + +Since BPF at this point doesn't support looping (or any jumping back), +jmp_table is used instead to handle multiple levels of encapsulation (and +IPv6 options). + + +Current Limitations +=================== +BPF flow dissector doesn't support exporting all the metadata that in-kernel +C-based implementation can export. Notable example is single VLAN (802.1Q) +and double VLAN (802.1AD) tags. Please refer to the ``struct bpf_flow_keys`` +for a set of information that's currently can be exported from the BPF context. diff --git a/Documentation/networking/index.rst b/Documentation/networking/index.rst index 5449149be496..984e68f9e026 100644 --- a/Documentation/networking/index.rst +++ b/Documentation/networking/index.rst @@ -9,6 +9,7 @@ Contents: netdev-FAQ af_xdp batman-adv + bpf_flow_dissector can can_ucan_protocol device_drivers/freescale/dpaa2/index diff --git a/Documentation/networking/rxrpc.txt b/Documentation/networking/rxrpc.txt index 2df5894353d6..cd7303d7fa25 100644 --- a/Documentation/networking/rxrpc.txt +++ b/Documentation/networking/rxrpc.txt @@ -1009,16 +1009,18 @@ The kernel interface functions are as follows: (*) Check call still alive. - u32 rxrpc_kernel_check_life(struct socket *sock, - struct rxrpc_call *call); + bool rxrpc_kernel_check_life(struct socket *sock, + struct rxrpc_call *call, + u32 *_life); void rxrpc_kernel_probe_life(struct socket *sock, struct rxrpc_call *call); - The first function returns a number that is updated when ACKs are received - from the peer (notably including PING RESPONSE ACKs which we can elicit by - sending PING ACKs to see if the call still exists on the server). The - caller should compare the numbers of two calls to see if the call is still - alive after waiting for a suitable interval. + The first function passes back in *_life a number that is updated when + ACKs are received from the peer (notably including PING RESPONSE ACKs + which we can elicit by sending PING ACKs to see if the call still exists + on the server). The caller should compare the numbers of two calls to see + if the call is still alive after waiting for a suitable interval. It also + returns true as long as the call hasn't yet reached the completed state. This allows the caller to work out if the server is still contactable and if the call is still alive on the server while waiting for the server to |