diff options
author | Jason A. Donenfeld <Jason@zx2c4.com> | 2019-08-17 02:01:19 +0300 |
---|---|---|
committer | Greg Kroah-Hartman <gregkh@linuxfoundation.org> | 2019-08-25 11:51:42 +0300 |
commit | 175a407ce432088d827b822b8a47afd8360a8dbe (patch) | |
tree | b2cc02b579d78178fa60b482aef1af42539a5302 /Documentation | |
parent | 53e054b3cd1bd3dde2212c3e279ab4a3eefac6bb (diff) | |
download | linux-175a407ce432088d827b822b8a47afd8360a8dbe.tar.xz |
siphash: implement HalfSipHash1-3 for hash tables
commit 1ae2324f732c9c4e2fa4ebd885fa1001b70d52e1 upstream.
HalfSipHash, or hsiphash, is a shortened version of SipHash, which
generates 32-bit outputs using a weaker 64-bit key. It has *much* lower
security margins, and shouldn't be used for anything too sensitive, but
it could be used as a hashtable key function replacement, if the output
is never exposed, and if the security requirement is not too high.
The goal is to make this something that performance-critical jhash users
would be willing to use.
On 64-bit machines, HalfSipHash1-3 is slower than SipHash1-3, so we alias
SipHash1-3 to HalfSipHash1-3 on those systems.
64-bit x86_64:
[ 0.509409] test_siphash: SipHash2-4 cycles: 4049181
[ 0.510650] test_siphash: SipHash1-3 cycles: 2512884
[ 0.512205] test_siphash: HalfSipHash1-3 cycles: 3429920
[ 0.512904] test_siphash: JenkinsHash cycles: 978267
So, we map hsiphash() -> SipHash1-3
32-bit x86:
[ 0.509868] test_siphash: SipHash2-4 cycles: 14812892
[ 0.513601] test_siphash: SipHash1-3 cycles: 9510710
[ 0.515263] test_siphash: HalfSipHash1-3 cycles: 3856157
[ 0.515952] test_siphash: JenkinsHash cycles: 1148567
So, we map hsiphash() -> HalfSipHash1-3
hsiphash() is roughly 3 times slower than jhash(), but comes with a
considerable security improvement.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
[bwh: Backported to 4.9 to avoid regression for WireGuard with only half
the siphash API present]
Signed-off-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/siphash.txt | 75 |
1 files changed, 75 insertions, 0 deletions
diff --git a/Documentation/siphash.txt b/Documentation/siphash.txt index e8e6ddbbaab4..908d348ff777 100644 --- a/Documentation/siphash.txt +++ b/Documentation/siphash.txt @@ -98,3 +98,78 @@ u64 h = siphash(&combined, offsetofend(typeof(combined), dport), &secret); Read the SipHash paper if you're interested in learning more: https://131002.net/siphash/siphash.pdf + + +~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~ + +HalfSipHash - SipHash's insecure younger cousin +----------------------------------------------- +Written by Jason A. Donenfeld <jason@zx2c4.com> + +On the off-chance that SipHash is not fast enough for your needs, you might be +able to justify using HalfSipHash, a terrifying but potentially useful +possibility. HalfSipHash cuts SipHash's rounds down from "2-4" to "1-3" and, +even scarier, uses an easily brute-forcable 64-bit key (with a 32-bit output) +instead of SipHash's 128-bit key. However, this may appeal to some +high-performance `jhash` users. + +Danger! + +Do not ever use HalfSipHash except for as a hashtable key function, and only +then when you can be absolutely certain that the outputs will never be +transmitted out of the kernel. This is only remotely useful over `jhash` as a +means of mitigating hashtable flooding denial of service attacks. + +1. Generating a key + +Keys should always be generated from a cryptographically secure source of +random numbers, either using get_random_bytes or get_random_once: + +hsiphash_key_t key; +get_random_bytes(&key, sizeof(key)); + +If you're not deriving your key from here, you're doing it wrong. + +2. Using the functions + +There are two variants of the function, one that takes a list of integers, and +one that takes a buffer: + +u32 hsiphash(const void *data, size_t len, const hsiphash_key_t *key); + +And: + +u32 hsiphash_1u32(u32, const hsiphash_key_t *key); +u32 hsiphash_2u32(u32, u32, const hsiphash_key_t *key); +u32 hsiphash_3u32(u32, u32, u32, const hsiphash_key_t *key); +u32 hsiphash_4u32(u32, u32, u32, u32, const hsiphash_key_t *key); + +If you pass the generic hsiphash function something of a constant length, it +will constant fold at compile-time and automatically choose one of the +optimized functions. + +3. Hashtable key function usage: + +struct some_hashtable { + DECLARE_HASHTABLE(hashtable, 8); + hsiphash_key_t key; +}; + +void init_hashtable(struct some_hashtable *table) +{ + get_random_bytes(&table->key, sizeof(table->key)); +} + +static inline hlist_head *some_hashtable_bucket(struct some_hashtable *table, struct interesting_input *input) +{ + return &table->hashtable[hsiphash(input, sizeof(*input), &table->key) & (HASH_SIZE(table->hashtable) - 1)]; +} + +You may then iterate like usual over the returned hash bucket. + +4. Performance + +HalfSipHash is roughly 3 times slower than JenkinsHash. For many replacements, +this will not be a problem, as the hashtable lookup isn't the bottleneck. And +in general, this is probably a good sacrifice to make for the security and DoS +resistance of HalfSipHash. |