diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2016-12-14 03:39:21 +0300 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2016-12-14 03:39:21 +0300 |
commit | f4000cd99750065d5177555c0a805c97174d1b9f (patch) | |
tree | 88ab9f09e8fe1e97f34553f7964ee4598e7a0bfc /Documentation | |
parent | 2ec4584eb89b8933d1ee307f2fc9c42e745847d7 (diff) | |
parent | 75037120e62b58c536999eb23d70cfcb6d6c0bcc (diff) | |
download | linux-f4000cd99750065d5177555c0a805c97174d1b9f.tar.xz |
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- struct thread_info moved off-stack (also touching
include/linux/thread_info.h and include/linux/restart_block.h)
- cpus_have_cap() reworked to avoid __builtin_constant_p() for static
key use (also touching drivers/irqchip/irq-gic-v3.c)
- uprobes support (currently only for native 64-bit tasks)
- Emulation of kernel Privileged Access Never (PAN) using TTBR0_EL1
switching to a reserved page table
- CPU capacity information passing via DT or sysfs (used by the
scheduler)
- support for systems without FP/SIMD (IOW, kernel avoids touching
these registers; there is no soft-float ABI, nor kernel emulation for
AArch64 FP/SIMD)
- handling of hardware watchpoint with unaligned addresses, varied
lengths and offsets from base
- use of the page table contiguous hint for kernel mappings
- hugetlb fixes for sizes involving the contiguous hint
- remove unnecessary I-cache invalidation in flush_cache_range()
- CNTHCTL_EL2 access fix for CPUs with VHE support (ARMv8.1)
- boot-time checks for writable+executable kernel mappings
- simplify asm/opcodes.h and avoid including the 32-bit ARM counterpart
and make the arm64 kernel headers self-consistent (Xen headers patch
merged separately)
- Workaround for broken .inst support in certain binutils versions
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (60 commits)
arm64: Disable PAN on uaccess_enable()
arm64: Work around broken .inst when defective gas is detected
arm64: Add detection code for broken .inst support in binutils
arm64: Remove reference to asm/opcodes.h
arm64: Get rid of asm/opcodes.h
arm64: smp: Prevent raw_smp_processor_id() recursion
arm64: head.S: Fix CNTHCTL_EL2 access on VHE system
arm64: Remove I-cache invalidation from flush_cache_range()
arm64: Enable HIBERNATION in defconfig
arm64: Enable CONFIG_ARM64_SW_TTBR0_PAN
arm64: xen: Enable user access before a privcmd hvc call
arm64: Handle faults caused by inadvertent user access with PAN enabled
arm64: Disable TTBR0_EL1 during normal kernel execution
arm64: Introduce uaccess_{disable,enable} functionality based on TTBR0_EL1
arm64: Factor out TTBR0_EL1 post-update workaround into a specific asm macro
arm64: Factor out PAN enabling/disabling into separate uaccess_* macros
arm64: Update the synchronous external abort fault description
selftests: arm64: add test for unaligned/inexact watchpoint handling
arm64: Allow hw watchpoint of length 3,5,6 and 7
arm64: hw_breakpoint: Handle inexact watchpoint addresses
...
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/devicetree/bindings/arm/cpu-capacity.txt | 236 | ||||
-rw-r--r-- | Documentation/devicetree/bindings/arm/cpus.txt | 10 |
2 files changed, 246 insertions, 0 deletions
diff --git a/Documentation/devicetree/bindings/arm/cpu-capacity.txt b/Documentation/devicetree/bindings/arm/cpu-capacity.txt new file mode 100644 index 000000000000..7809fbe0cdb7 --- /dev/null +++ b/Documentation/devicetree/bindings/arm/cpu-capacity.txt @@ -0,0 +1,236 @@ +========================================== +ARM CPUs capacity bindings +========================================== + +========================================== +1 - Introduction +========================================== + +ARM systems may be configured to have cpus with different power/performance +characteristics within the same chip. In this case, additional information has +to be made available to the kernel for it to be aware of such differences and +take decisions accordingly. + +========================================== +2 - CPU capacity definition +========================================== + +CPU capacity is a number that provides the scheduler information about CPUs +heterogeneity. Such heterogeneity can come from micro-architectural differences +(e.g., ARM big.LITTLE systems) or maximum frequency at which CPUs can run +(e.g., SMP systems with multiple frequency domains). Heterogeneity in this +context is about differing performance characteristics; this binding tries to +capture a first-order approximation of the relative performance of CPUs. + +CPU capacities are obtained by running a suitable benchmark. This binding makes +no guarantees on the validity or suitability of any particular benchmark, the +final capacity should, however, be: + +* A "single-threaded" or CPU affine benchmark +* Divided by the running frequency of the CPU executing the benchmark +* Not subject to dynamic frequency scaling of the CPU + +For the time being we however advise usage of the Dhrystone benchmark. What +above thus becomes: + +CPU capacities are obtained by running the Dhrystone benchmark on each CPU at +max frequency (with caches enabled). The obtained DMIPS score is then divided +by the frequency (in MHz) at which the benchmark has been run, so that +DMIPS/MHz are obtained. Such values are then normalized w.r.t. the highest +score obtained in the system. + +========================================== +3 - capacity-dmips-mhz +========================================== + +capacity-dmips-mhz is an optional cpu node [1] property: u32 value +representing CPU capacity expressed in normalized DMIPS/MHz. At boot time, the +maximum frequency available to the cpu is then used to calculate the capacity +value internally used by the kernel. + +capacity-dmips-mhz property is all-or-nothing: if it is specified for a cpu +node, it has to be specified for every other cpu nodes, or the system will +fall back to the default capacity value for every CPU. If cpufreq is not +available, final capacities are calculated by directly using capacity-dmips- +mhz values (normalized w.r.t. the highest value found while parsing the DT). + +=========================================== +4 - Examples +=========================================== + +Example 1 (ARM 64-bit, 6-cpu system, two clusters): +capacities-dmips-mhz are scaled w.r.t. 1024 (cpu@0 and cpu@1) +supposing cluster0@max-freq=1100 and custer1@max-freq=850, +final capacities are 1024 for cluster0 and 446 for cluster1 + +cpus { + #address-cells = <2>; + #size-cells = <0>; + + cpu-map { + cluster0 { + core0 { + cpu = <&A57_0>; + }; + core1 { + cpu = <&A57_1>; + }; + }; + + cluster1 { + core0 { + cpu = <&A53_0>; + }; + core1 { + cpu = <&A53_1>; + }; + core2 { + cpu = <&A53_2>; + }; + core3 { + cpu = <&A53_3>; + }; + }; + }; + + idle-states { + entry-method = "arm,psci"; + + CPU_SLEEP_0: cpu-sleep-0 { + compatible = "arm,idle-state"; + arm,psci-suspend-param = <0x0010000>; + local-timer-stop; + entry-latency-us = <100>; + exit-latency-us = <250>; + min-residency-us = <150>; + }; + + CLUSTER_SLEEP_0: cluster-sleep-0 { + compatible = "arm,idle-state"; + arm,psci-suspend-param = <0x1010000>; + local-timer-stop; + entry-latency-us = <800>; + exit-latency-us = <700>; + min-residency-us = <2500>; + }; + }; + + A57_0: cpu@0 { + compatible = "arm,cortex-a57","arm,armv8"; + reg = <0x0 0x0>; + device_type = "cpu"; + enable-method = "psci"; + next-level-cache = <&A57_L2>; + clocks = <&scpi_dvfs 0>; + cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>; + capacity-dmips-mhz = <1024>; + }; + + A57_1: cpu@1 { + compatible = "arm,cortex-a57","arm,armv8"; + reg = <0x0 0x1>; + device_type = "cpu"; + enable-method = "psci"; + next-level-cache = <&A57_L2>; + clocks = <&scpi_dvfs 0>; + cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>; + capacity-dmips-mhz = <1024>; + }; + + A53_0: cpu@100 { + compatible = "arm,cortex-a53","arm,armv8"; + reg = <0x0 0x100>; + device_type = "cpu"; + enable-method = "psci"; + next-level-cache = <&A53_L2>; + clocks = <&scpi_dvfs 1>; + cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>; + capacity-dmips-mhz = <578>; + }; + + A53_1: cpu@101 { + compatible = "arm,cortex-a53","arm,armv8"; + reg = <0x0 0x101>; + device_type = "cpu"; + enable-method = "psci"; + next-level-cache = <&A53_L2>; + clocks = <&scpi_dvfs 1>; + cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>; + capacity-dmips-mhz = <578>; + }; + + A53_2: cpu@102 { + compatible = "arm,cortex-a53","arm,armv8"; + reg = <0x0 0x102>; + device_type = "cpu"; + enable-method = "psci"; + next-level-cache = <&A53_L2>; + clocks = <&scpi_dvfs 1>; + cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>; + capacity-dmips-mhz = <578>; + }; + + A53_3: cpu@103 { + compatible = "arm,cortex-a53","arm,armv8"; + reg = <0x0 0x103>; + device_type = "cpu"; + enable-method = "psci"; + next-level-cache = <&A53_L2>; + clocks = <&scpi_dvfs 1>; + cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>; + capacity-dmips-mhz = <578>; + }; + + A57_L2: l2-cache0 { + compatible = "cache"; + }; + + A53_L2: l2-cache1 { + compatible = "cache"; + }; +}; + +Example 2 (ARM 32-bit, 4-cpu system, two clusters, + cpus 0,1@1GHz, cpus 2,3@500MHz): +capacities-dmips-mhz are scaled w.r.t. 2 (cpu@0 and cpu@1), this means that first +cpu@0 and cpu@1 are twice fast than cpu@2 and cpu@3 (at the same frequency) + +cpus { + #address-cells = <1>; + #size-cells = <0>; + + cpu0: cpu@0 { + device_type = "cpu"; + compatible = "arm,cortex-a15"; + reg = <0>; + capacity-dmips-mhz = <2>; + }; + + cpu1: cpu@1 { + device_type = "cpu"; + compatible = "arm,cortex-a15"; + reg = <1>; + capacity-dmips-mhz = <2>; + }; + + cpu2: cpu@2 { + device_type = "cpu"; + compatible = "arm,cortex-a15"; + reg = <0x100>; + capacity-dmips-mhz = <1>; + }; + + cpu3: cpu@3 { + device_type = "cpu"; + compatible = "arm,cortex-a15"; + reg = <0x101>; + capacity-dmips-mhz = <1>; + }; +}; + +=========================================== +5 - References +=========================================== + +[1] ARM Linux Kernel documentation - CPUs bindings + Documentation/devicetree/bindings/arm/cpus.txt diff --git a/Documentation/devicetree/bindings/arm/cpus.txt b/Documentation/devicetree/bindings/arm/cpus.txt index e6782d50cbcd..c1dcf4cade2e 100644 --- a/Documentation/devicetree/bindings/arm/cpus.txt +++ b/Documentation/devicetree/bindings/arm/cpus.txt @@ -241,6 +241,14 @@ nodes to be present and contain the properties described below. # List of phandles to idle state nodes supported by this cpu [3]. + - capacity-dmips-mhz + Usage: Optional + Value type: <u32> + Definition: + # u32 value representing CPU capacity [3] in + DMIPS/MHz, relative to highest capacity-dmips-mhz + in the system. + - rockchip,pmu Usage: optional for systems that have an "enable-method" property value of "rockchip,rk3066-smp" @@ -464,3 +472,5 @@ cpus { [2] arm/msm/qcom,kpss-acc.txt [3] ARM Linux kernel documentation - idle states bindings Documentation/devicetree/bindings/arm/idle-states.txt +[3] ARM Linux kernel documentation - cpu capacity bindings + Documentation/devicetree/bindings/arm/cpu-capacity.txt |