diff options
author | Josh Poimboeuf <jpoimboe@redhat.com> | 2017-07-25 02:36:57 +0300 |
---|---|---|
committer | Ingo Molnar <mingo@kernel.org> | 2017-07-26 14:18:20 +0300 |
commit | ee9f8fce99640811b2b8e79d0d1dbe8bab69ba67 (patch) | |
tree | be03fe86edb9ebd70b4d29ca2bc8a4d972ff6644 /Documentation/x86/orc-unwinder.txt | |
parent | 1ee6f00d1164955b7bdadd36fc0f2736754784d9 (diff) | |
download | linux-ee9f8fce99640811b2b8e79d0d1dbe8bab69ba67.tar.xz |
x86/unwind: Add the ORC unwinder
Add the new ORC unwinder which is enabled by CONFIG_ORC_UNWINDER=y.
It plugs into the existing x86 unwinder framework.
It relies on objtool to generate the needed .orc_unwind and
.orc_unwind_ip sections.
For more details on why ORC is used instead of DWARF, see
Documentation/x86/orc-unwinder.txt - but the short version is
that it's a simplified, fundamentally more robust debugninfo
data structure, which also allows up to two orders of magnitude
faster lookups than the DWARF unwinder - which matters to
profiling workloads like perf.
Thanks to Andy Lutomirski for the performance improvement ideas:
splitting the ORC unwind table into two parallel arrays and creating a
fast lookup table to search a subset of the unwind table.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/0a6cbfb40f8da99b7a45a1a8302dc6aef16ec812.1500938583.git.jpoimboe@redhat.com
[ Extended the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'Documentation/x86/orc-unwinder.txt')
-rw-r--r-- | Documentation/x86/orc-unwinder.txt | 179 |
1 files changed, 179 insertions, 0 deletions
diff --git a/Documentation/x86/orc-unwinder.txt b/Documentation/x86/orc-unwinder.txt new file mode 100644 index 000000000000..af0c9a4c65a6 --- /dev/null +++ b/Documentation/x86/orc-unwinder.txt @@ -0,0 +1,179 @@ +ORC unwinder +============ + +Overview +-------- + +The kernel CONFIG_ORC_UNWINDER option enables the ORC unwinder, which is +similar in concept to a DWARF unwinder. The difference is that the +format of the ORC data is much simpler than DWARF, which in turn allows +the ORC unwinder to be much simpler and faster. + +The ORC data consists of unwind tables which are generated by objtool. +They contain out-of-band data which is used by the in-kernel ORC +unwinder. Objtool generates the ORC data by first doing compile-time +stack metadata validation (CONFIG_STACK_VALIDATION). After analyzing +all the code paths of a .o file, it determines information about the +stack state at each instruction address in the file and outputs that +information to the .orc_unwind and .orc_unwind_ip sections. + +The per-object ORC sections are combined at link time and are sorted and +post-processed at boot time. The unwinder uses the resulting data to +correlate instruction addresses with their stack states at run time. + + +ORC vs frame pointers +--------------------- + +With frame pointers enabled, GCC adds instrumentation code to every +function in the kernel. The kernel's .text size increases by about +3.2%, resulting in a broad kernel-wide slowdown. Measurements by Mel +Gorman [1] have shown a slowdown of 5-10% for some workloads. + +In contrast, the ORC unwinder has no effect on text size or runtime +performance, because the debuginfo is out of band. So if you disable +frame pointers and enable the ORC unwinder, you get a nice performance +improvement across the board, and still have reliable stack traces. + +Ingo Molnar says: + + "Note that it's not just a performance improvement, but also an + instruction cache locality improvement: 3.2% .text savings almost + directly transform into a similarly sized reduction in cache + footprint. That can transform to even higher speedups for workloads + whose cache locality is borderline." + +Another benefit of ORC compared to frame pointers is that it can +reliably unwind across interrupts and exceptions. Frame pointer based +unwinds can sometimes skip the caller of the interrupted function, if it +was a leaf function or if the interrupt hit before the frame pointer was +saved. + +The main disadvantage of the ORC unwinder compared to frame pointers is +that it needs more memory to store the ORC unwind tables: roughly 2-4MB +depending on the kernel config. + + +ORC vs DWARF +------------ + +ORC debuginfo's advantage over DWARF itself is that it's much simpler. +It gets rid of the complex DWARF CFI state machine and also gets rid of +the tracking of unnecessary registers. This allows the unwinder to be +much simpler, meaning fewer bugs, which is especially important for +mission critical oops code. + +The simpler debuginfo format also enables the unwinder to be much faster +than DWARF, which is important for perf and lockdep. In a basic +performance test by Jiri Slaby [2], the ORC unwinder was about 20x +faster than an out-of-tree DWARF unwinder. (Note: That measurement was +taken before some performance tweaks were added, which doubled +performance, so the speedup over DWARF may be closer to 40x.) + +The ORC data format does have a few downsides compared to DWARF. ORC +unwind tables take up ~50% more RAM (+1.3MB on an x86 defconfig kernel) +than DWARF-based eh_frame tables. + +Another potential downside is that, as GCC evolves, it's conceivable +that the ORC data may end up being *too* simple to describe the state of +the stack for certain optimizations. But IMO this is unlikely because +GCC saves the frame pointer for any unusual stack adjustments it does, +so I suspect we'll really only ever need to keep track of the stack +pointer and the frame pointer between call frames. But even if we do +end up having to track all the registers DWARF tracks, at least we will +still be able to control the format, e.g. no complex state machines. + + +ORC unwind table generation +--------------------------- + +The ORC data is generated by objtool. With the existing compile-time +stack metadata validation feature, objtool already follows all code +paths, and so it already has all the information it needs to be able to +generate ORC data from scratch. So it's an easy step to go from stack +validation to ORC data generation. + +It should be possible to instead generate the ORC data with a simple +tool which converts DWARF to ORC data. However, such a solution would +be incomplete due to the kernel's extensive use of asm, inline asm, and +special sections like exception tables. + +That could be rectified by manually annotating those special code paths +using GNU assembler .cfi annotations in .S files, and homegrown +annotations for inline asm in .c files. But asm annotations were tried +in the past and were found to be unmaintainable. They were often +incorrect/incomplete and made the code harder to read and keep updated. +And based on looking at glibc code, annotating inline asm in .c files +might be even worse. + +Objtool still needs a few annotations, but only in code which does +unusual things to the stack like entry code. And even then, far fewer +annotations are needed than what DWARF would need, so they're much more +maintainable than DWARF CFI annotations. + +So the advantages of using objtool to generate ORC data are that it +gives more accurate debuginfo, with very few annotations. It also +insulates the kernel from toolchain bugs which can be very painful to +deal with in the kernel since we often have to workaround issues in +older versions of the toolchain for years. + +The downside is that the unwinder now becomes dependent on objtool's +ability to reverse engineer GCC code flow. If GCC optimizations become +too complicated for objtool to follow, the ORC data generation might +stop working or become incomplete. (It's worth noting that livepatch +already has such a dependency on objtool's ability to follow GCC code +flow.) + +If newer versions of GCC come up with some optimizations which break +objtool, we may need to revisit the current implementation. Some +possible solutions would be asking GCC to make the optimizations more +palatable, or having objtool use DWARF as an additional input, or +creating a GCC plugin to assist objtool with its analysis. But for now, +objtool follows GCC code quite well. + + +Unwinder implementation details +------------------------------- + +Objtool generates the ORC data by integrating with the compile-time +stack metadata validation feature, which is described in detail in +tools/objtool/Documentation/stack-validation.txt. After analyzing all +the code paths of a .o file, it creates an array of orc_entry structs, +and a parallel array of instruction addresses associated with those +structs, and writes them to the .orc_unwind and .orc_unwind_ip sections +respectively. + +The ORC data is split into the two arrays for performance reasons, to +make the searchable part of the data (.orc_unwind_ip) more compact. The +arrays are sorted in parallel at boot time. + +Performance is further improved by the use of a fast lookup table which +is created at runtime. The fast lookup table associates a given address +with a range of indices for the .orc_unwind table, so that only a small +subset of the table needs to be searched. + + +Etymology +--------- + +Orcs, fearsome creatures of medieval folklore, are the Dwarves' natural +enemies. Similarly, the ORC unwinder was created in opposition to the +complexity and slowness of DWARF. + +"Although Orcs rarely consider multiple solutions to a problem, they do +excel at getting things done because they are creatures of action, not +thought." [3] Similarly, unlike the esoteric DWARF unwinder, the +veracious ORC unwinder wastes no time or siloconic effort decoding +variable-length zero-extended unsigned-integer byte-coded +state-machine-based debug information entries. + +Similar to how Orcs frequently unravel the well-intentioned plans of +their adversaries, the ORC unwinder frequently unravels stacks with +brutal, unyielding efficiency. + +ORC stands for Oops Rewind Capability. + + +[1] https://lkml.kernel.org/r/20170602104048.jkkzssljsompjdwy@suse.de +[2] https://lkml.kernel.org/r/d2ca5435-6386-29b8-db87-7f227c2b713a@suse.cz +[3] http://dustin.wikidot.com/half-orcs-and-orcs |