diff options
author | Yanteng Si <siyanteng01@gmail.com> | 2022-03-28 12:59:45 +0300 |
---|---|---|
committer | Jonathan Corbet <corbet@lwn.net> | 2022-04-05 19:08:05 +0300 |
commit | 457d2de7ee647aa1ed77a066cfbe314253ccffe2 (patch) | |
tree | 4d472d1b5d364079aa846a1276457fab12ed2379 /Documentation/translations/zh_CN/vm | |
parent | 19a05e35dd92e49b287ec2f66c609338e93b1e57 (diff) | |
download | linux-457d2de7ee647aa1ed77a066cfbe314253ccffe2.tar.xz |
docs/zh_CN: add vm memory-model translation
Translate .../vm/memory-model.rst into Chinese.
Signed-off-by: Yanteng Si <siyanteng@loongson.cn>
Reviewed-by: Alex Shi <alexs@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Diffstat (limited to 'Documentation/translations/zh_CN/vm')
-rw-r--r-- | Documentation/translations/zh_CN/vm/index.rst | 3 | ||||
-rw-r--r-- | Documentation/translations/zh_CN/vm/memory-model.rst | 135 |
2 files changed, 137 insertions, 1 deletions
diff --git a/Documentation/translations/zh_CN/vm/index.rst b/Documentation/translations/zh_CN/vm/index.rst index c5b3d5ba21f1..c1f517da81f4 100644 --- a/Documentation/translations/zh_CN/vm/index.rst +++ b/Documentation/translations/zh_CN/vm/index.rst @@ -29,13 +29,14 @@ TODO:待引用文档集被翻译完毕后请及时修改此处) ksm frontswap hwpoison + memory-model TODOLIST: * arch_pgtable_helpers * free_page_reporting * hmm * hugetlbfs_reserv -* memory-model + * mmu_notifier * numa * overcommit-accounting diff --git a/Documentation/translations/zh_CN/vm/memory-model.rst b/Documentation/translations/zh_CN/vm/memory-model.rst new file mode 100644 index 000000000000..013e30c88d72 --- /dev/null +++ b/Documentation/translations/zh_CN/vm/memory-model.rst @@ -0,0 +1,135 @@ +.. SPDX-License-Identifier: GPL-2.0 + +:Original: Documentation/vm/memory-model.rst + +:翻译: + + 司延腾 Yanteng Si <siyanteng@loongson.cn> + +:校译: + + +============ +物理内存模型 +============ + +系统中的物理内存可以用不同的方式进行寻址。最简单的情况是,物理内存从地址0开 +始,跨越一个连续的范围,直到最大的地址。然而,这个范围可能包含CPU无法访问的 +小孔隙。那么,在完全不同的地址可能有几个连续的范围。而且,别忘了NUMA,即不 +同的内存库连接到不同的CPU。 + +Linux使用两种内存模型中的一种对这种多样性进行抽象。FLATMEM和SPARSEM。每 +个架构都定义了它所支持的内存模型,默认的内存模型是什么,以及是否有可能手动 +覆盖该默认值。 + +所有的内存模型都使用排列在一个或多个数组中的 `struct page` 来跟踪物理页 +帧的状态。 + +无论选择哪种内存模型,物理页框号(PFN)和相应的 `struct page` 之间都存 +在一对一的映射关系。 + +每个内存模型都定义了 :c:func:`pfn_to_page` 和 :c:func:`page_to_pfn` +帮助函数,允许从PFN到 `struct page` 的转换,反之亦然。 + +FLATMEM +======= + +最简单的内存模型是FLATMEM。这个模型适用于非NUMA系统的连续或大部分连续的 +物理内存。 + +在FLATMEM内存模型中,有一个全局的 `mem_map` 数组来映射整个物理内存。对 +于大多数架构,孔隙在 `mem_map` 数组中都有条目。与孔洞相对应的 `struct page` +对象从未被完全初始化。 + +为了分配 `mem_map` 数组,架构特定的设置代码应该调用free_area_init()函数。 +然而,在调用memblock_free_all()函数之前,映射数组是不能使用的,该函数 +将所有的内存交给页分配器。 + +一个架构可能会释放 `mem_map` 数组中不包括实际物理页的部分。在这种情况下,特 +定架构的 :c:func:`pfn_valid` 实现应该考虑到 `mem_map` 中的孔隙。 + +使用FLATMEM,PFN和 `struct page` 之间的转换是直接的。 `PFN - ARCH_PFN_OFFSET` +是 `mem_map` 数组的一个索引。 + +`ARCH_PFN_OFFSET` 定义了物理内存起始地址不同于0的系统的第一个页框号。 + +SPARSEMEM +========= + +SPARSEMEM是Linux中最通用的内存模型,它是唯一支持若干高级功能的内存模型, +如物理内存的热插拔、非易失性内存设备的替代内存图和较大系统的内存图的延迟 +初始化。 + +SPARSEMEM模型将物理内存显示为一个部分的集合。一个区段用mem_section结构 +体表示,它包含 `section_mem_map` ,从逻辑上讲,它是一个指向 `struct page` +阵列的指针。然而,它被存储在一些其他的magic中,以帮助分区管理。区段的大小 +和最大区段数是使用 `SECTION_SIZE_BITS` 和 `MAX_PHYSMEM_BITS` 常量 +来指定的,这两个常量是由每个支持SPARSEMEM的架构定义的。 `MAX_PHYSMEM_BITS` +是一个架构所支持的物理地址的实际宽度,而 `SECTION_SIZE_BITS` 是一个任 +意的值。 + +最大的段数表示为 `NR_MEM_SECTIONS` ,定义为 + +.. math:: + + NR\_MEM\_SECTIONS = 2 ^ {(MAX\_PHYSMEM\_BITS - SECTION\_SIZE\_BITS)} + +`mem_section` 对象被安排在一个叫做 `mem_sections` 的二维数组中。这个数组的 +大小和位置取决于 `CONFIG_SPARSEM_EXTREME` 和可能的最大段数: + +* 当 `CONFIG_SPARSEMEM_EXTREME` 被禁用时, `mem_sections` 数组是静态的,有 + `NR_MEM_SECTIONS` 行。每一行持有一个 `mem_section` 对象。 +* 当 `CONFIG_SPARSEMEM_EXTREME` 被启用时, `mem_sections` 数组被动态分配。 + 每一行包含价值 `PAGE_SIZE` 的 `mem_section` 对象,行数的计算是为了适应所有的 + 内存区。 + +架构设置代码应该调用sparse_init()来初始化内存区和内存映射。 + +通过SPARSEMEM,有两种可能的方式将PFN转换为相应的 `struct page` --"classic sparse"和 + "sparse vmemmap"。选择是在构建时进行的,它由 `CONFIG_SPARSEMEM_VMEMMAP` 的 + 值决定。 + +Classic sparse在page->flags中编码了一个页面的段号,并使用PFN的高位来访问映射该页 +框的段。在一个区段内,PFN是指向页数组的索引。 + +Sparse vmemmapvmemmap使用虚拟映射的内存映射来优化pfn_to_page和page_to_pfn操 +作。有一个全局的 `struct page *vmemmap` 指针,指向一个虚拟连续的 `struct page` +对象阵列。PFN是该数组的一个索引,`struct page` 从 `vmemmap` 的偏移量是该页的PFN。 + +为了使用vmemmap,一个架构必须保留一个虚拟地址的范围,以映射包含内存映射的物理页,并 +确保 `vmemmap`指向该范围。此外,架构应该实现 :c:func:`vmemmap_populate` 方法, +它将分配物理内存并为虚拟内存映射创建页表。如果一个架构对vmemmap映射没有任何特殊要求, +它可以使用通用内存管理提供的默认 :c:func:`vmemmap_populate_basepages`。 + +虚拟映射的内存映射允许将持久性内存设备的 `struct page` 对象存储在这些设备上预先分 +配的存储中。这种存储用vmem_altmap结构表示,最终通过一长串的函数调用传递给 +vmemmap_populate()。vmemmap_populate()实现可以使用 `vmem_altmap` 和 +:c:func:`vmemmap_alloc_block_buf` 助手来分配持久性内存设备上的内存映射。 + +ZONE_DEVICE +=========== +`ZONE_DEVICE` 设施建立在 `SPARSEM_VMEMMAP` 之上,为设备驱动识别的物理地址范 +围提供 `struct page` `mem_map` 服务。 `ZONE_DEVICE` 的 "设备" 方面与以下 +事实有关:这些地址范围的页面对象从未被在线标记过,而且必须对设备进行引用,而不仅仅 +是页面,以保持内存被“锁定”以便使用。 `ZONE_DEVICE` ,通过 :c:func:`devm_memremap_pages` , +为给定的pfns范围执行足够的内存热插拔来开启 :c:func:`pfn_to_page`, +:c:func:`page_to_pfn`, ,和 :c:func:`get_user_pages` 服务。由于页面引 +用计数永远不会低于1,所以页面永远不会被追踪为空闲内存,页面的 `struct list_head lru` +空间被重新利用,用于向映射该内存的主机设备/驱动程序进行反向引用。 + +虽然 `SPARSEMEM` 将内存作为一个区段的集合,可以选择收集并合成内存块,但 +`ZONE_DEVICE` 用户需要更小的颗粒度来填充 `mem_map` 。鉴于 `ZONE_DEVICE` +内存从未被在线标记,因此它的内存范围从未通过sysfs内存热插拔api暴露在内存块边界 +上。这个实现依赖于这种缺乏用户接口的约束,允许子段大小的内存范围被指定给 +:c:func:`arch_add_memory` ,即内存热插拔的上半部分。子段支持允许2MB作为 +:c:func:`devm_memremap_pages` 的跨架构通用对齐颗粒度。 + +`ZONE_DEVICE` 的用户是: + +* pmem: 通过DAX映射将平台持久性内存作为直接I/O目标使用。 + +* hmm: 用 `->page_fault()` 和 `->page_free()` 事件回调扩展 `ZONE_DEVICE` , + 以允许设备驱动程序协调与设备内存相关的内存管理事件,通常是GPU内存。参见/vm/hmm.rst。 + +* p2pdma: 创建 `struct page` 对象,允许PCI/E拓扑结构中的peer设备协调它们之间的 + 直接DMA操作,即绕过主机内存。 |