diff options
author | Takashi Iwai <tiwai@suse.de> | 2016-11-10 18:25:42 +0300 |
---|---|---|
committer | Takashi Iwai <tiwai@suse.de> | 2016-11-11 00:33:20 +0300 |
commit | 72e69166714bfa7bfafb7a06a8499de472299ab9 (patch) | |
tree | 26632b39ac52c7f53409e3dc5935f15482434efc /Documentation/sound/alsa | |
parent | ecef1481d516e004a38d9472c403205dcdd1491e (diff) | |
download | linux-72e69166714bfa7bfafb7a06a8499de472299ab9.tar.xz |
ALSA: doc: ReSTize Audigy-mixer.txt
Another simple conversion from a plain text file.
Put to cards subdirectory.
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Diffstat (limited to 'Documentation/sound/alsa')
-rw-r--r-- | Documentation/sound/alsa/Audigy-mixer.txt | 345 |
1 files changed, 0 insertions, 345 deletions
diff --git a/Documentation/sound/alsa/Audigy-mixer.txt b/Documentation/sound/alsa/Audigy-mixer.txt deleted file mode 100644 index 7f10dc6ff28c..000000000000 --- a/Documentation/sound/alsa/Audigy-mixer.txt +++ /dev/null @@ -1,345 +0,0 @@ - - Sound Blaster Audigy mixer / default DSP code - =========================================== - -This is based on SB-Live-mixer.txt. - -The EMU10K2 chips have a DSP part which can be programmed to support -various ways of sample processing, which is described here. -(This article does not deal with the overall functionality of the -EMU10K2 chips. See the manuals section for further details.) - -The ALSA driver programs this portion of chip by default code -(can be altered later) which offers the following functionality: - - -1) Digital mixer controls -------------------------- - -These controls are built using the DSP instructions. They offer extended -functionality. Only the default build-in code in the ALSA driver is described -here. Note that the controls work as attenuators: the maximum value is the -neutral position leaving the signal unchanged. Note that if the same destination -is mentioned in multiple controls, the signal is accumulated and can be wrapped -(set to maximal or minimal value without checking of overflow). - - -Explanation of used abbreviations: - -DAC - digital to analog converter -ADC - analog to digital converter -I2S - one-way three wire serial bus for digital sound by Philips Semiconductors - (this standard is used for connecting standalone DAC and ADC converters) -LFE - low frequency effects (subwoofer signal) -AC97 - a chip containing an analog mixer, DAC and ADC converters -IEC958 - S/PDIF -FX-bus - the EMU10K2 chip has an effect bus containing 64 accumulators. - Each of the synthesizer voices can feed its output to these accumulators - and the DSP microcontroller can operate with the resulting sum. - -name='PCM Front Playback Volume',index=0 - -This control is used to attenuate samples for left and right front PCM FX-bus -accumulators. ALSA uses accumulators 8 and 9 for left and right front PCM -samples for 5.1 playback. The result samples are forwarded to the front DAC PCM -slots of the Philips DAC. - -name='PCM Surround Playback Volume',index=0 - -This control is used to attenuate samples for left and right surround PCM FX-bus -accumulators. ALSA uses accumulators 2 and 3 for left and right surround PCM -samples for 5.1 playback. The result samples are forwarded to the surround DAC PCM -slots of the Philips DAC. - -name='PCM Center Playback Volume',index=0 - -This control is used to attenuate samples for center PCM FX-bus accumulator. -ALSA uses accumulator 6 for center PCM sample for 5.1 playback. The result sample -is forwarded to the center DAC PCM slot of the Philips DAC. - -name='PCM LFE Playback Volume',index=0 - -This control is used to attenuate sample for LFE PCM FX-bus accumulator. -ALSA uses accumulator 7 for LFE PCM sample for 5.1 playback. The result sample -is forwarded to the LFE DAC PCM slot of the Philips DAC. - -name='PCM Playback Volume',index=0 - -This control is used to attenuate samples for left and right PCM FX-bus -accumulators. ALSA uses accumulators 0 and 1 for left and right PCM samples for -stereo playback. The result samples are forwarded to the front DAC PCM slots -of the Philips DAC. - -name='PCM Capture Volume',index=0 - -This control is used to attenuate samples for left and right PCM FX-bus -accumulator. ALSA uses accumulators 0 and 1 for left and right PCM. -The result is forwarded to the ADC capture FIFO (thus to the standard capture -PCM device). - -name='Music Playback Volume',index=0 - -This control is used to attenuate samples for left and right MIDI FX-bus -accumulators. ALSA uses accumulators 4 and 5 for left and right MIDI samples. -The result samples are forwarded to the front DAC PCM slots of the AC97 codec. - -name='Music Capture Volume',index=0 - -These controls are used to attenuate samples for left and right MIDI FX-bus -accumulator. ALSA uses accumulators 4 and 5 for left and right PCM. -The result is forwarded to the ADC capture FIFO (thus to the standard capture -PCM device). - -name='Mic Playback Volume',index=0 - -This control is used to attenuate samples for left and right Mic input. -For Mic input is used AC97 codec. The result samples are forwarded to -the front DAC PCM slots of the Philips DAC. Samples are forwarded to Mic -capture FIFO (device 1 - 16bit/8KHz mono) too without volume control. - -name='Mic Capture Volume',index=0 - -This control is used to attenuate samples for left and right Mic input. -The result is forwarded to the ADC capture FIFO (thus to the standard capture -PCM device). - -name='Audigy CD Playback Volume',index=0 - -This control is used to attenuate samples from left and right IEC958 TTL -digital inputs (usually used by a CDROM drive). The result samples are -forwarded to the front DAC PCM slots of the Philips DAC. - -name='Audigy CD Capture Volume',index=0 - -This control is used to attenuate samples from left and right IEC958 TTL -digital inputs (usually used by a CDROM drive). The result samples are -forwarded to the ADC capture FIFO (thus to the standard capture PCM device). - -name='IEC958 Optical Playback Volume',index=0 - -This control is used to attenuate samples from left and right IEC958 optical -digital input. The result samples are forwarded to the front DAC PCM slots -of the Philips DAC. - -name='IEC958 Optical Capture Volume',index=0 - -This control is used to attenuate samples from left and right IEC958 optical -digital inputs. The result samples are forwarded to the ADC capture FIFO -(thus to the standard capture PCM device). - -name='Line2 Playback Volume',index=0 - -This control is used to attenuate samples from left and right I2S ADC -inputs (on the AudigyDrive). The result samples are forwarded to the front -DAC PCM slots of the Philips DAC. - -name='Line2 Capture Volume',index=1 - -This control is used to attenuate samples from left and right I2S ADC -inputs (on the AudigyDrive). The result samples are forwarded to the ADC -capture FIFO (thus to the standard capture PCM device). - -name='Analog Mix Playback Volume',index=0 - -This control is used to attenuate samples from left and right I2S ADC -inputs from Philips ADC. The result samples are forwarded to the front -DAC PCM slots of the Philips DAC. This contains mix from analog sources -like CD, Line In, Aux, .... - -name='Analog Mix Capture Volume',index=1 - -This control is used to attenuate samples from left and right I2S ADC -inputs Philips ADC. The result samples are forwarded to the ADC -capture FIFO (thus to the standard capture PCM device). - -name='Aux2 Playback Volume',index=0 - -This control is used to attenuate samples from left and right I2S ADC -inputs (on the AudigyDrive). The result samples are forwarded to the front -DAC PCM slots of the Philips DAC. - -name='Aux2 Capture Volume',index=1 - -This control is used to attenuate samples from left and right I2S ADC -inputs (on the AudigyDrive). The result samples are forwarded to the ADC -capture FIFO (thus to the standard capture PCM device). - -name='Front Playback Volume',index=0 - -All stereo signals are mixed together and mirrored to surround, center and LFE. -This control is used to attenuate samples for left and right front speakers of -this mix. - -name='Surround Playback Volume',index=0 - -All stereo signals are mixed together and mirrored to surround, center and LFE. -This control is used to attenuate samples for left and right surround speakers of -this mix. - -name='Center Playback Volume',index=0 - -All stereo signals are mixed together and mirrored to surround, center and LFE. -This control is used to attenuate sample for center speaker of this mix. - -name='LFE Playback Volume',index=0 - -All stereo signals are mixed together and mirrored to surround, center and LFE. -This control is used to attenuate sample for LFE speaker of this mix. - -name='Tone Control - Switch',index=0 - -This control turns the tone control on or off. The samples for front, rear -and center / LFE outputs are affected. - -name='Tone Control - Bass',index=0 - -This control sets the bass intensity. There is no neutral value!! -When the tone control code is activated, the samples are always modified. -The closest value to pure signal is 20. - -name='Tone Control - Treble',index=0 - -This control sets the treble intensity. There is no neutral value!! -When the tone control code is activated, the samples are always modified. -The closest value to pure signal is 20. - -name='Master Playback Volume',index=0 - -This control is used to attenuate samples for front, surround, center and -LFE outputs. - -name='IEC958 Optical Raw Playback Switch',index=0 - -If this switch is on, then the samples for the IEC958 (S/PDIF) digital -output are taken only from the raw FX8010 PCM, otherwise standard front -PCM samples are taken. - - -2) PCM stream related controls ------------------------------- - -name='EMU10K1 PCM Volume',index 0-31 - -Channel volume attenuation in range 0-0xffff. The maximum value (no -attenuation) is default. The channel mapping for three values is -as follows: - - 0 - mono, default 0xffff (no attenuation) - 1 - left, default 0xffff (no attenuation) - 2 - right, default 0xffff (no attenuation) - -name='EMU10K1 PCM Send Routing',index 0-31 - -This control specifies the destination - FX-bus accumulators. There 24 -values with this mapping: - - 0 - mono, A destination (FX-bus 0-63), default 0 - 1 - mono, B destination (FX-bus 0-63), default 1 - 2 - mono, C destination (FX-bus 0-63), default 2 - 3 - mono, D destination (FX-bus 0-63), default 3 - 4 - mono, E destination (FX-bus 0-63), default 0 - 5 - mono, F destination (FX-bus 0-63), default 0 - 6 - mono, G destination (FX-bus 0-63), default 0 - 7 - mono, H destination (FX-bus 0-63), default 0 - 8 - left, A destination (FX-bus 0-63), default 0 - 9 - left, B destination (FX-bus 0-63), default 1 - 10 - left, C destination (FX-bus 0-63), default 2 - 11 - left, D destination (FX-bus 0-63), default 3 - 12 - left, E destination (FX-bus 0-63), default 0 - 13 - left, F destination (FX-bus 0-63), default 0 - 14 - left, G destination (FX-bus 0-63), default 0 - 15 - left, H destination (FX-bus 0-63), default 0 - 16 - right, A destination (FX-bus 0-63), default 0 - 17 - right, B destination (FX-bus 0-63), default 1 - 18 - right, C destination (FX-bus 0-63), default 2 - 19 - right, D destination (FX-bus 0-63), default 3 - 20 - right, E destination (FX-bus 0-63), default 0 - 21 - right, F destination (FX-bus 0-63), default 0 - 22 - right, G destination (FX-bus 0-63), default 0 - 23 - right, H destination (FX-bus 0-63), default 0 - -Don't forget that it's illegal to assign a channel to the same FX-bus accumulator -more than once (it means 0=0 && 1=0 is an invalid combination). - -name='EMU10K1 PCM Send Volume',index 0-31 - -It specifies the attenuation (amount) for given destination in range 0-255. -The channel mapping is following: - - 0 - mono, A destination attn, default 255 (no attenuation) - 1 - mono, B destination attn, default 255 (no attenuation) - 2 - mono, C destination attn, default 0 (mute) - 3 - mono, D destination attn, default 0 (mute) - 4 - mono, E destination attn, default 0 (mute) - 5 - mono, F destination attn, default 0 (mute) - 6 - mono, G destination attn, default 0 (mute) - 7 - mono, H destination attn, default 0 (mute) - 8 - left, A destination attn, default 255 (no attenuation) - 9 - left, B destination attn, default 0 (mute) - 10 - left, C destination attn, default 0 (mute) - 11 - left, D destination attn, default 0 (mute) - 12 - left, E destination attn, default 0 (mute) - 13 - left, F destination attn, default 0 (mute) - 14 - left, G destination attn, default 0 (mute) - 15 - left, H destination attn, default 0 (mute) - 16 - right, A destination attn, default 0 (mute) - 17 - right, B destination attn, default 255 (no attenuation) - 18 - right, C destination attn, default 0 (mute) - 19 - right, D destination attn, default 0 (mute) - 20 - right, E destination attn, default 0 (mute) - 21 - right, F destination attn, default 0 (mute) - 22 - right, G destination attn, default 0 (mute) - 23 - right, H destination attn, default 0 (mute) - - - -4) MANUALS/PATENTS: -------------------- - -ftp://opensource.creative.com/pub/doc -------------------------------------- - - Files: - LM4545.pdf AC97 Codec - - m2049.pdf The EMU10K1 Digital Audio Processor - - hog63.ps FX8010 - A DSP Chip Architecture for Audio Effects - - -WIPO Patents ------------- - Patent numbers: - WO 9901813 (A1) Audio Effects Processor with multiple asynchronous (Jan. 14, 1999) - streams - - WO 9901814 (A1) Processor with Instruction Set for Audio Effects (Jan. 14, 1999) - - WO 9901953 (A1) Audio Effects Processor having Decoupled Instruction - Execution and Audio Data Sequencing (Jan. 14, 1999) - - -US Patents (http://www.uspto.gov/) ----------------------------------- - - US 5925841 Digital Sampling Instrument employing cache memory (Jul. 20, 1999) - - US 5928342 Audio Effects Processor integrated on a single chip (Jul. 27, 1999) - with a multiport memory onto which multiple asynchronous - digital sound samples can be concurrently loaded - - US 5930158 Processor with Instruction Set for Audio Effects (Jul. 27, 1999) - - US 6032235 Memory initialization circuit (Tram) (Feb. 29, 2000) - - US 6138207 Interpolation looping of audio samples in cache connected to (Oct. 24, 2000) - system bus with prioritization and modification of bus transfers - in accordance with loop ends and minimum block sizes - - US 6151670 Method for conserving memory storage using a (Nov. 21, 2000) - pool of short term memory registers - - US 6195715 Interrupt control for multiple programs communicating with (Feb. 27, 2001) - a common interrupt by associating programs to GP registers, - defining interrupt register, polling GP registers, and invoking - callback routine associated with defined interrupt register |