summaryrefslogtreecommitdiff
path: root/Documentation/scheduler/sched-pelt.c
diff options
context:
space:
mode:
authorVineeth Pillai <vineeth@bitbyteword.org>2023-05-30 16:55:25 +0300
committerPeter Zijlstra <peterz@infradead.org>2023-06-16 23:08:11 +0300
commit6a9d623aad89539eca71eb264db6b9d538620ad5 (patch)
tree5109d426a4bd106d0f5633f207f003ba41743c6b /Documentation/scheduler/sched-pelt.c
parentef73d6a4ef0b35524125c3cfc6deafc26a0c966a (diff)
downloadlinux-6a9d623aad89539eca71eb264db6b9d538620ad5.tar.xz
sched/deadline: Fix bandwidth reclaim equation in GRUB
According to the GRUB[1] rule, the runtime is depreciated as: "dq = -max{u, (1 - Uinact - Uextra)} dt" (1) To guarantee that deadline tasks doesn't starve lower class tasks, we do not allocate the full bandwidth of the cpu to deadline tasks. Maximum bandwidth usable by deadline tasks is denoted by "Umax". Considering Umax, equation (1) becomes: "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt" (2) Current implementation has a minor bug in equation (2), which this patch fixes. The reclamation logic is verified by a sample program which creates multiple deadline threads and observing their utilization. The tests were run on an isolated cpu(isolcpus=3) on a 4 cpu system. Tests on 6.3.0 ============== RUN 1: runtime=7ms, deadline=period=10ms, RT capacity = 95% TID[693]: RECLAIM=1, (r=7ms, d=10ms, p=10ms), Util: 93.33 TID[693]: RECLAIM=1, (r=7ms, d=10ms, p=10ms), Util: 93.35 RUN 2: runtime=1ms, deadline=period=100ms, RT capacity = 95% TID[708]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 16.69 TID[708]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 16.69 RUN 3: 2 tasks Task 1: runtime=1ms, deadline=period=10ms Task 2: runtime=1ms, deadline=period=100ms TID[631]: RECLAIM=1, (r=1ms, d=10ms, p=10ms), Util: 62.67 TID[632]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 6.37 TID[631]: RECLAIM=1, (r=1ms, d=10ms, p=10ms), Util: 62.38 TID[632]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 6.23 As seen above, the reclamation doesn't reclaim the maximum allowed bandwidth and as the bandwidth of tasks gets smaller, the reclaimed bandwidth also comes down. Tests with this patch applied ============================= RUN 1: runtime=7ms, deadline=period=10ms, RT capacity = 95% TID[608]: RECLAIM=1, (r=7ms, d=10ms, p=10ms), Util: 95.19 TID[608]: RECLAIM=1, (r=7ms, d=10ms, p=10ms), Util: 95.16 RUN 2: runtime=1ms, deadline=period=100ms, RT capacity = 95% TID[616]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 95.27 TID[616]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 95.21 RUN 3: 2 tasks Task 1: runtime=1ms, deadline=period=10ms Task 2: runtime=1ms, deadline=period=100ms TID[620]: RECLAIM=1, (r=1ms, d=10ms, p=10ms), Util: 86.64 TID[621]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 8.66 TID[620]: RECLAIM=1, (r=1ms, d=10ms, p=10ms), Util: 86.45 TID[621]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 8.73 Running tasks on all cpus allowing for migration also showed that the utilization is reclaimed to the maximum. Running 10 tasks on 3 cpus SCHED_FLAG_RECLAIM - top shows: %Cpu0 : 94.6 us, 0.0 sy, 0.0 ni, 5.4 id, 0.0 wa %Cpu1 : 95.2 us, 0.0 sy, 0.0 ni, 4.8 id, 0.0 wa %Cpu2 : 95.8 us, 0.0 sy, 0.0 ni, 4.2 id, 0.0 wa [1]: Abeni, Luca & Lipari, Giuseppe & Parri, Andrea & Sun, Youcheng. (2015). Parallel and sequential reclaiming in multicore real-time global scheduling. Signed-off-by: Vineeth Pillai (Google) <vineeth@bitbyteword.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Daniel Bristot de Oliveira <bristot@kernel.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/20230530135526.2385378-1-vineeth@bitbyteword.org
Diffstat (limited to 'Documentation/scheduler/sched-pelt.c')
0 files changed, 0 insertions, 0 deletions