diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2013-11-04 18:40:55 +0400 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2013-11-04 18:40:55 +0400 |
commit | be408cd3e1fef73e9408b196a79b9934697fe3b1 (patch) | |
tree | 8923594afd1e556360986cd2bc417f5fe0a72118 /Documentation/networking | |
parent | 5e01dc7b26d9f24f39abace5da98ccbd6a5ceb52 (diff) | |
parent | c32b7dfbb1dfb3f0a68f250deff65103c8bb704a (diff) | |
download | linux-be408cd3e1fef73e9408b196a79b9934697fe3b1.tar.xz |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Pull networking fixes from David Miller:
"I'm sending a pull request of these lingering bug fixes for networking
before the normal merge window material because some of this stuff I'd
like to get to -stable ASAP"
1) cxgb3 stopped working on 32-bit machines, fix from Ben Hutchings.
2) Structures passed via netlink for netfilter logging are not fully
initialized. From Mathias Krause.
3) Properly unlink upper openvswitch device during notifications, from
Alexei Starovoitov.
4) Fix race conditions involving access to the IP compression scratch
buffer, from Michal Kubrecek.
5) We don't handle the expiration of MTU information contained in ipv6
routes sometimes, fix from Hannes Frederic Sowa.
6) With Fast Open we can miscompute the TCP SYN/ACK RTT, from Yuchung
Cheng.
7) Don't take TCP RTT sample when an ACK doesn't acknowledge new data,
also from Yuchung Cheng.
8) The decreased IPSEC garbage collection threshold causes problems for
some people, bump it back up. From Steffen Klassert.
9) Fix skb->truesize calculated by tcp_tso_segment(), from Eric
Dumazet.
10) flow_dissector doesn't validate packet lengths sufficiently, from
Jason Wang
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (41 commits)
net/mlx4_core: Fix call to __mlx4_unregister_mac
net: sctp: do not trigger BUG_ON in sctp_cmd_delete_tcb
net: flow_dissector: fail on evil iph->ihl
xfrm: Fix null pointer dereference when decoding sessions
can: kvaser_usb: fix usb endpoints detection
can: c_can: Fix RX message handling, handle lost message before EOB
doc:net: Fix typo in Documentation/networking
bgmac: don't update slot on skb alloc/dma mapping error
ibm emac: Fix locking for enable/disable eob irq
ibm emac: Don't call napi_complete if napi_reschedule failed
virtio-net: correctly handle cpu hotplug notifier during resuming
bridge: pass correct vlan id to multicast code
net: x25: Fix dead URLs in Kconfig
netfilter: xt_NFQUEUE: fix --queue-bypass regression
xen-netback: use jiffies_64 value to calculate credit timeout
cxgb3: Fix length calculation in write_ofld_wr() on 32-bit architectures
bnx2x: Disable VF access on PF removal
bnx2x: prevent FW assert on low mem during unload
tcp: gso: fix truesize tracking
xfrm: Increase the garbage collector threshold
...
Diffstat (limited to 'Documentation/networking')
-rw-r--r-- | Documentation/networking/dccp.txt | 4 | ||||
-rw-r--r-- | Documentation/networking/e100.txt | 2 | ||||
-rw-r--r-- | Documentation/networking/ieee802154.txt | 4 | ||||
-rw-r--r-- | Documentation/networking/l2tp.txt | 2 | ||||
-rw-r--r-- | Documentation/networking/netdev-FAQ.txt | 24 | ||||
-rw-r--r-- | Documentation/networking/netlink_mmap.txt | 6 | ||||
-rw-r--r-- | Documentation/networking/operstates.txt | 4 | ||||
-rw-r--r-- | Documentation/networking/rxrpc.txt | 2 | ||||
-rw-r--r-- | Documentation/networking/stmmac.txt | 8 | ||||
-rw-r--r-- | Documentation/networking/vortex.txt | 4 | ||||
-rw-r--r-- | Documentation/networking/x25-iface.txt | 2 |
11 files changed, 31 insertions, 31 deletions
diff --git a/Documentation/networking/dccp.txt b/Documentation/networking/dccp.txt index d718bc2ff1cf..bf5dbe3ab8c5 100644 --- a/Documentation/networking/dccp.txt +++ b/Documentation/networking/dccp.txt @@ -18,8 +18,8 @@ Introduction Datagram Congestion Control Protocol (DCCP) is an unreliable, connection oriented protocol designed to solve issues present in UDP and TCP, particularly for real-time and multimedia (streaming) traffic. -It divides into a base protocol (RFC 4340) and plugable congestion control -modules called CCIDs. Like plugable TCP congestion control, at least one CCID +It divides into a base protocol (RFC 4340) and pluggable congestion control +modules called CCIDs. Like pluggable TCP congestion control, at least one CCID needs to be enabled in order for the protocol to function properly. In the Linux implementation, this is the TCP-like CCID2 (RFC 4341). Additional CCIDs, such as the TCP-friendly CCID3 (RFC 4342), are optional. diff --git a/Documentation/networking/e100.txt b/Documentation/networking/e100.txt index 13a32124bca0..f862cf3aff34 100644 --- a/Documentation/networking/e100.txt +++ b/Documentation/networking/e100.txt @@ -103,7 +103,7 @@ Additional Configurations PRO/100 Family of Adapters is e100. As an example, if you install the e100 driver for two PRO/100 adapters - (eth0 and eth1), add the following to a configuraton file in /etc/modprobe.d/ + (eth0 and eth1), add the following to a configuration file in /etc/modprobe.d/ alias eth0 e100 alias eth1 e100 diff --git a/Documentation/networking/ieee802154.txt b/Documentation/networking/ieee802154.txt index 09eb57329f11..22bbc7225f8e 100644 --- a/Documentation/networking/ieee802154.txt +++ b/Documentation/networking/ieee802154.txt @@ -4,7 +4,7 @@ Introduction ============ -The IEEE 802.15.4 working group focuses on standartization of bottom +The IEEE 802.15.4 working group focuses on standardization of bottom two layers: Medium Access Control (MAC) and Physical (PHY). And there are mainly two options available for upper layers: - ZigBee - proprietary protocol from ZigBee Alliance @@ -66,7 +66,7 @@ net_device, with .type = ARPHRD_IEEE802154. Data is exchanged with socket family code via plain sk_buffs. On skb reception skb->cb must contain additional info as described in the struct ieee802154_mac_cb. During packet transmission the skb->cb is used to provide additional data to device's header_ops->create -function. Be aware, that this data can be overriden later (when socket code +function. Be aware that this data can be overridden later (when socket code submits skb to qdisc), so if you need something from that cb later, you should store info in the skb->data on your own. diff --git a/Documentation/networking/l2tp.txt b/Documentation/networking/l2tp.txt index e63fc1f7bf87..c74434de2fa5 100644 --- a/Documentation/networking/l2tp.txt +++ b/Documentation/networking/l2tp.txt @@ -197,7 +197,7 @@ state information because the file format is subject to change. It is implemented to provide extra debug information to help diagnose problems.) Users should use the netlink API. -/proc/net/pppol2tp is also provided for backwards compaibility with +/proc/net/pppol2tp is also provided for backwards compatibility with the original pppol2tp driver. It lists information about L2TPv2 tunnels and sessions only. Its use is discouraged. diff --git a/Documentation/networking/netdev-FAQ.txt b/Documentation/networking/netdev-FAQ.txt index d9112f01c44a..0fe1c6e0dbcd 100644 --- a/Documentation/networking/netdev-FAQ.txt +++ b/Documentation/networking/netdev-FAQ.txt @@ -4,23 +4,23 @@ Information you need to know about netdev Q: What is netdev? -A: It is a mailing list for all network related linux stuff. This includes +A: It is a mailing list for all network-related Linux stuff. This includes anything found under net/ (i.e. core code like IPv6) and drivers/net - (i.e. hardware specific drivers) in the linux source tree. + (i.e. hardware specific drivers) in the Linux source tree. Note that some subsystems (e.g. wireless drivers) which have a high volume of traffic have their own specific mailing lists. - The netdev list is managed (like many other linux mailing lists) through + The netdev list is managed (like many other Linux mailing lists) through VGER ( http://vger.kernel.org/ ) and archives can be found below: http://marc.info/?l=linux-netdev http://www.spinics.net/lists/netdev/ - Aside from subsystems like that mentioned above, all network related linux - development (i.e. RFC, review, comments, etc) takes place on netdev. + Aside from subsystems like that mentioned above, all network-related Linux + development (i.e. RFC, review, comments, etc.) takes place on netdev. -Q: How do the changes posted to netdev make their way into linux? +Q: How do the changes posted to netdev make their way into Linux? A: There are always two trees (git repositories) in play. Both are driven by David Miller, the main network maintainer. There is the "net" tree, @@ -35,7 +35,7 @@ A: There are always two trees (git repositories) in play. Both are driven Q: How often do changes from these trees make it to the mainline Linus tree? A: To understand this, you need to know a bit of background information - on the cadence of linux development. Each new release starts off with + on the cadence of Linux development. Each new release starts off with a two week "merge window" where the main maintainers feed their new stuff to Linus for merging into the mainline tree. After the two weeks, the merge window is closed, and it is called/tagged "-rc1". No new @@ -46,7 +46,7 @@ A: To understand this, you need to know a bit of background information things are in a state of churn), and a week after the last vX.Y-rcN was done, the official "vX.Y" is released. - Relating that to netdev: At the beginning of the 2 week merge window, + Relating that to netdev: At the beginning of the 2-week merge window, the net-next tree will be closed - no new changes/features. The accumulated new content of the past ~10 weeks will be passed onto mainline/Linus via a pull request for vX.Y -- at the same time, @@ -59,16 +59,16 @@ A: To understand this, you need to know a bit of background information IMPORTANT: Do not send new net-next content to netdev during the period during which net-next tree is closed. - Shortly after the two weeks have passed, (and vX.Y-rc1 is released) the + Shortly after the two weeks have passed (and vX.Y-rc1 is released), the tree for net-next reopens to collect content for the next (vX.Y+1) release. If you aren't subscribed to netdev and/or are simply unsure if net-next has re-opened yet, simply check the net-next git repository link above for - any new networking related commits. + any new networking-related commits. The "net" tree continues to collect fixes for the vX.Y content, and is fed back to Linus at regular (~weekly) intervals. Meaning that the - focus for "net" is on stablilization and bugfixes. + focus for "net" is on stabilization and bugfixes. Finally, the vX.Y gets released, and the whole cycle starts over. @@ -217,7 +217,7 @@ A: Attention to detail. Re-read your own work as if you were the to why it happens, and then if necessary, explain why the fix proposed is the best way to get things done. Don't mangle whitespace, and as is common, don't mis-indent function arguments that span multiple lines. - If it is your 1st patch, mail it to yourself so you can test apply + If it is your first patch, mail it to yourself so you can test apply it to an unpatched tree to confirm infrastructure didn't mangle it. Finally, go back and read Documentation/SubmittingPatches to be diff --git a/Documentation/networking/netlink_mmap.txt b/Documentation/networking/netlink_mmap.txt index 533378839546..b26122973525 100644 --- a/Documentation/networking/netlink_mmap.txt +++ b/Documentation/networking/netlink_mmap.txt @@ -45,7 +45,7 @@ processing. Conversion of the reception path involves calling poll() on the file descriptor, once the socket is readable the frames from the ring are -processsed in order until no more messages are available, as indicated by +processed in order until no more messages are available, as indicated by a status word in the frame header. On kernel side, in order to make use of memory mapped I/O on receive, the @@ -56,7 +56,7 @@ Dumps of kernel databases automatically support memory mapped I/O. Conversion of the transmit path involves changing message construction to use memory from the TX ring instead of (usually) a buffer declared on the -stack and setting up the frame header approriately. Optionally poll() can +stack and setting up the frame header appropriately. Optionally poll() can be used to wait for free frames in the TX ring. Structured and definitions for using memory mapped I/O are contained in @@ -231,7 +231,7 @@ Ring setup: if (setsockopt(fd, NETLINK_TX_RING, &req, sizeof(req)) < 0) exit(1) - /* Calculate size of each invididual ring */ + /* Calculate size of each individual ring */ ring_size = req.nm_block_nr * req.nm_block_size; /* Map RX/TX rings. The TX ring is located after the RX ring */ diff --git a/Documentation/networking/operstates.txt b/Documentation/networking/operstates.txt index 97694572338b..355c6d8ef8ad 100644 --- a/Documentation/networking/operstates.txt +++ b/Documentation/networking/operstates.txt @@ -89,8 +89,8 @@ packets. The name 'carrier' and the inversion are historical, think of it as lower layer. Note that for certain kind of soft-devices, which are not managing any -real hardware, there is possible to set this bit from userpsace. -One should use TVL IFLA_CARRIER to do so. +real hardware, it is possible to set this bit from userspace. One +should use TVL IFLA_CARRIER to do so. netif_carrier_ok() can be used to query that bit. diff --git a/Documentation/networking/rxrpc.txt b/Documentation/networking/rxrpc.txt index 60d05eb77c64..b89bc82eed46 100644 --- a/Documentation/networking/rxrpc.txt +++ b/Documentation/networking/rxrpc.txt @@ -144,7 +144,7 @@ An overview of the RxRPC protocol: (*) Calls use ACK packets to handle reliability. Data packets are also explicitly sequenced per call. - (*) There are two types of positive acknowledgement: hard-ACKs and soft-ACKs. + (*) There are two types of positive acknowledgment: hard-ACKs and soft-ACKs. A hard-ACK indicates to the far side that all the data received to a point has been received and processed; a soft-ACK indicates that the data has been received but may yet be discarded and re-requested. The sender may diff --git a/Documentation/networking/stmmac.txt b/Documentation/networking/stmmac.txt index 457b8bbafb08..cdd916da838d 100644 --- a/Documentation/networking/stmmac.txt +++ b/Documentation/networking/stmmac.txt @@ -160,7 +160,7 @@ Where: o pmt: core has the embedded power module (optional). o force_sf_dma_mode: force DMA to use the Store and Forward mode instead of the Threshold. - o force_thresh_dma_mode: force DMA to use the Shreshold mode other than + o force_thresh_dma_mode: force DMA to use the Threshold mode other than the Store and Forward mode. o riwt_off: force to disable the RX watchdog feature and switch to NAPI mode. o fix_mac_speed: this callback is used for modifying some syscfg registers @@ -175,7 +175,7 @@ Where: registers. o custom_cfg/custom_data: this is a custom configuration that can be passed while initializing the resources. - o bsp_priv: another private poiter. + o bsp_priv: another private pointer. For MDIO bus The we have: @@ -271,7 +271,7 @@ reset procedure etc). o dwmac1000_dma.c: dma functions for the GMAC chip; o dwmac1000.h: specific header file for the GMAC; o dwmac100_core: MAC 100 core and dma code; - o dwmac100_dma.c: dma funtions for the MAC chip; + o dwmac100_dma.c: dma functions for the MAC chip; o dwmac1000.h: specific header file for the MAC; o dwmac_lib.c: generic DMA functions shared among chips; o enh_desc.c: functions for handling enhanced descriptors; @@ -364,4 +364,4 @@ Auto-negotiated Link Parter Ability. 10) TODO: o XGMAC is not supported. o Complete the TBI & RTBI support. - o extened VLAN support for 3.70a SYNP GMAC. + o extend VLAN support for 3.70a SYNP GMAC. diff --git a/Documentation/networking/vortex.txt b/Documentation/networking/vortex.txt index 9a8041dcbb53..97282da82b75 100644 --- a/Documentation/networking/vortex.txt +++ b/Documentation/networking/vortex.txt @@ -68,7 +68,7 @@ Module parameters There are several parameters which may be provided to the driver when its module is loaded. These are usually placed in /etc/modprobe.d/*.conf -configuretion files. Example: +configuration files. Example: options 3c59x debug=3 rx_copybreak=300 @@ -178,7 +178,7 @@ max_interrupt_work=N The driver's interrupt service routine can handle many receive and transmit packets in a single invocation. It does this in a loop. - The value of max_interrupt_work governs how mnay times the interrupt + The value of max_interrupt_work governs how many times the interrupt service routine will loop. The default value is 32 loops. If this is exceeded the interrupt service routine gives up and generates a warning message "eth0: Too much work in interrupt". diff --git a/Documentation/networking/x25-iface.txt b/Documentation/networking/x25-iface.txt index 78f662ee0622..7f213b556e85 100644 --- a/Documentation/networking/x25-iface.txt +++ b/Documentation/networking/x25-iface.txt @@ -105,7 +105,7 @@ reduced by the following measures or a combination thereof: later. The lapb module interface was modified to support this. Its data_indication() method should now transparently pass the - netif_rx() return value to the (lapb mopdule) caller. + netif_rx() return value to the (lapb module) caller. (2) Drivers for kernel versions 2.2.x should always check the global variable netdev_dropping when a new frame is received. The driver should only call netif_rx() if netdev_dropping is zero. Otherwise |