summaryrefslogtreecommitdiff
path: root/Documentation/lguest
diff options
context:
space:
mode:
authorRusty Russell <rusty@rustcorp.com.au>2007-10-22 05:29:56 +0400
committerRusty Russell <rusty@rustcorp.com.au>2007-10-23 09:49:57 +0400
commit5bbf89fc260830f3f58b331d946a16b39ad1ca2d (patch)
tree7b5401eefe9239cd84bf843fd8d8e8bcc79f26cd /Documentation/lguest
parent814a0e5cdfbd384f4bf7a8443f9c3b885f413d58 (diff)
downloadlinux-5bbf89fc260830f3f58b331d946a16b39ad1ca2d.tar.xz
Loading bzImage directly.
Now arch/i386/boot/compressed/head.S understands the hardware_platform field, we can directly execute bzImages. No more horrific unpacking code. Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Diffstat (limited to 'Documentation/lguest')
-rw-r--r--Documentation/lguest/lguest.c93
1 files changed, 29 insertions, 64 deletions
diff --git a/Documentation/lguest/lguest.c b/Documentation/lguest/lguest.c
index 004c5c6aba6a..3949620e42fa 100644
--- a/Documentation/lguest/lguest.c
+++ b/Documentation/lguest/lguest.c
@@ -326,74 +326,39 @@ static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
return ehdr->e_entry;
}
-/*L:160 Unfortunately the entire ELF image isn't compressed: the segments
- * which need loading are extracted and compressed raw. This denies us the
- * information we need to make a fully-general loader. */
-static unsigned long unpack_bzimage(int fd)
-{
- gzFile f;
- int ret, len = 0;
- /* A bzImage always gets loaded at physical address 1M. This is
- * actually configurable as CONFIG_PHYSICAL_START, but as the comment
- * there says, "Don't change this unless you know what you are doing".
- * Indeed. */
- void *img = from_guest_phys(0x100000);
-
- /* gzdopen takes our file descriptor (carefully placed at the start of
- * the GZIP header we found) and returns a gzFile. */
- f = gzdopen(fd, "rb");
- /* We read it into memory in 64k chunks until we hit the end. */
- while ((ret = gzread(f, img + len, 65536)) > 0)
- len += ret;
- if (ret < 0)
- err(1, "reading image from bzImage");
-
- verbose("Unpacked size %i addr %p\n", len, img);
-
- /* The entry point for a bzImage is always the first byte */
- return (unsigned long)img;
-}
-
/*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
- * supposed to jump into it and it will unpack itself. We can't do that
- * because the Guest can't run the unpacking code, and adding features to
- * lguest kills puppies, so we don't want to.
+ * supposed to jump into it and it will unpack itself. We used to have to
+ * perform some hairy magic because the unpacking code scared me.
*
- * The bzImage is formed by putting the decompressing code in front of the
- * compressed kernel code. So we can simple scan through it looking for the
- * first "gzip" header, and start decompressing from there. */
+ * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
+ * a small patch to jump over the tricky bits in the Guest, so now we just read
+ * the funky header so we know where in the file to load, and away we go! */
static unsigned long load_bzimage(int fd)
{
- unsigned char c;
- int state = 0;
-
- /* GZIP header is 0x1F 0x8B <method> <flags>... <compressed-by>. */
- while (read(fd, &c, 1) == 1) {
- switch (state) {
- case 0:
- if (c == 0x1F)
- state++;
- break;
- case 1:
- if (c == 0x8B)
- state++;
- else
- state = 0;
- break;
- case 2 ... 8:
- state++;
- break;
- case 9:
- /* Seek back to the start of the gzip header. */
- lseek(fd, -10, SEEK_CUR);
- /* One final check: "compressed under UNIX". */
- if (c != 0x03)
- state = -1;
- else
- return unpack_bzimage(fd);
- }
- }
- errx(1, "Could not find kernel in bzImage");
+ u8 hdr[1024];
+ int r;
+ /* Modern bzImages get loaded at 1M. */
+ void *p = from_guest_phys(0x100000);
+
+ /* Go back to the start of the file and read the header. It should be
+ * a Linux boot header (see Documentation/i386/boot.txt) */
+ lseek(fd, 0, SEEK_SET);
+ read(fd, hdr, sizeof(hdr));
+
+ /* At offset 0x202, we expect the magic "HdrS" */
+ if (memcmp(hdr + 0x202, "HdrS", 4) != 0)
+ errx(1, "This doesn't look like a bzImage to me");
+
+ /* The byte at 0x1F1 tells us how many extra sectors of
+ * header: skip over them all. */
+ lseek(fd, (unsigned long)(hdr[0x1F1]+1) * 512, SEEK_SET);
+
+ /* Now read everything into memory. in nice big chunks. */
+ while ((r = read(fd, p, 65536)) > 0)
+ p += r;
+
+ /* Finally, 0x214 tells us where to start the kernel. */
+ return *(unsigned long *)&hdr[0x214];
}
/*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels