diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2019-05-11 17:54:43 +0300 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2019-05-11 17:54:43 +0300 |
commit | 8148c17b179d8acad190551fe0fb90d8f5193990 (patch) | |
tree | e3f64bc75a87056b219243e10d52eac7fa1fff8b /Documentation/gpio/sysfs.rst | |
parent | 6fe567df04a27468b306ae5c53fa7a1cd3acc5e1 (diff) | |
parent | 0fbee1df2078fa1f61e2da14f51ceb357c79ae69 (diff) | |
download | linux-8148c17b179d8acad190551fe0fb90d8f5193990.tar.xz |
Merge tag 'gpio-v5.2-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux-gpio
Pull gpio updates from Linus Walleij:
"This is the bulk of the GPIO changes for the v5.2 kernel cycle. A bit
later than usual because I was ironing out my own mistakes. I'm
holding some stuff back for the next kernel as a result, and this
should be a healthy and well tested batch.
Core changes:
- The gpiolib MMIO driver has been enhanced to handle two direction
registers, i.e. one register to set lines as input and one register
to set lines as output. It turns out some silicon engineer thinks
the ability to configure a line as input and output at the same
time makes sense, this can be debated but includes a lot of analog
electronics reasoning, and the registers are there and need to be
handled consistently. Unsurprisingly, we enforce the lines to be
either inputs or outputs in such schemes.
- Send in the proper argument value to .set_config() dispatched to
the pin control subsystem. Nobody used it before, now someone does,
so fix it to work as expected.
- The ACPI gpiolib portions can now handle pin bias setting (pull up
or pull down). This has been in the ACPI spec for years and we
finally have it properly integrated with Linux GPIOs. It was based
on an observation from Andy Schevchenko that Thomas Petazzoni's
changes to the core for biasing the PCA950x GPIO expander actually
happen to fit hand-in-glove with what the ACPI core needed. Such
nice synergies happen sometimes.
New drivers:
- A new driver for the Mellanox BlueField GPIO controller. This is
using 64bit MMIO registers and can configure lines as inputs and
outputs at the same time and after improving the MMIO library we
handle it just fine. Interesting.
- A new IXP4xx proper gpiochip driver with hierarchical interrupts
should be coming in from the ARM SoC tree as well.
Driver enhancements:
- The PCA053x driver handles the CAT9554 GPIO expander.
- The PCA053x driver handles the NXP PCAL6416 GPIO expander.
- Wake-up support on PCA053x GPIO lines.
- OMAP now does a nice asynchronous IRQ handling on wake-ups by
letting everything wake up on edges, and this makes runtime PM work
as expected too.
Misc:
- Several cleanups such as devres fixes.
- Get rid of some languager comstructs that cause problems when
compiling with LLVMs clang.
- Documentation review and update"
* tag 'gpio-v5.2-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux-gpio: (85 commits)
gpio: Update documentation
docs: gpio: convert docs to ReST and rename to *.rst
gpio: sch: Remove write-only core_base
gpio: pxa: Make two symbols static
gpiolib: acpi: Respect pin bias setting
gpiolib: acpi: Add acpi_gpio_update_gpiod_lookup_flags() helper
gpiolib: acpi: Set pin value, based on bias, more accurately
gpiolib: acpi: Change type of dflags
gpiolib: Introduce GPIO_LOOKUP_FLAGS_DEFAULT
gpiolib: Make use of enum gpio_lookup_flags consistent
gpiolib: Indent entry values of enum gpio_lookup_flags
gpio: pca953x: add support for pca6416
dt-bindings: gpio: pca953x: document the nxp,pca6416
gpio: pca953x: add pcal6416 to the of_device_id table
gpio: gpio-omap: Remove conditional pm_runtime handling for GPIO interrupts
gpio: gpio-omap: configure edge detection for level IRQs for idle wakeup
tracing: stop making gpio tracing configurable
gpio: pca953x: Configure wake-up path when wake-up is enabled
gpio: of: Optimize quirk checks
gpio: mmio: Drop bgpio_dir_inverted
...
Diffstat (limited to 'Documentation/gpio/sysfs.rst')
-rw-r--r-- | Documentation/gpio/sysfs.rst | 167 |
1 files changed, 167 insertions, 0 deletions
diff --git a/Documentation/gpio/sysfs.rst b/Documentation/gpio/sysfs.rst new file mode 100644 index 000000000000..ec09ffd983e7 --- /dev/null +++ b/Documentation/gpio/sysfs.rst @@ -0,0 +1,167 @@ +GPIO Sysfs Interface for Userspace +================================== + +.. warning:: + + THIS ABI IS DEPRECATED, THE ABI DOCUMENTATION HAS BEEN MOVED TO + Documentation/ABI/obsolete/sysfs-gpio AND NEW USERSPACE CONSUMERS + ARE SUPPOSED TO USE THE CHARACTER DEVICE ABI. THIS OLD SYSFS ABI WILL + NOT BE DEVELOPED (NO NEW FEATURES), IT WILL JUST BE MAINTAINED. + +Refer to the examples in tools/gpio/* for an introduction to the new +character device ABI. Also see the userspace header in +include/uapi/linux/gpio.h + +The deprecated sysfs ABI +------------------------ +Platforms which use the "gpiolib" implementors framework may choose to +configure a sysfs user interface to GPIOs. This is different from the +debugfs interface, since it provides control over GPIO direction and +value instead of just showing a gpio state summary. Plus, it could be +present on production systems without debugging support. + +Given appropriate hardware documentation for the system, userspace could +know for example that GPIO #23 controls the write protect line used to +protect boot loader segments in flash memory. System upgrade procedures +may need to temporarily remove that protection, first importing a GPIO, +then changing its output state, then updating the code before re-enabling +the write protection. In normal use, GPIO #23 would never be touched, +and the kernel would have no need to know about it. + +Again depending on appropriate hardware documentation, on some systems +userspace GPIO can be used to determine system configuration data that +standard kernels won't know about. And for some tasks, simple userspace +GPIO drivers could be all that the system really needs. + +DO NOT ABUSE SYSFS TO CONTROL HARDWARE THAT HAS PROPER KERNEL DRIVERS. +PLEASE READ THE DOCUMENT AT Documentation/driver-api/gpio/drivers-on-gpio.rst +TO AVOID REINVENTING KERNEL WHEELS IN USERSPACE. I MEAN IT. REALLY. + +Paths in Sysfs +-------------- +There are three kinds of entries in /sys/class/gpio: + + - Control interfaces used to get userspace control over GPIOs; + + - GPIOs themselves; and + + - GPIO controllers ("gpio_chip" instances). + +That's in addition to standard files including the "device" symlink. + +The control interfaces are write-only: + + /sys/class/gpio/ + + "export" ... + Userspace may ask the kernel to export control of + a GPIO to userspace by writing its number to this file. + + Example: "echo 19 > export" will create a "gpio19" node + for GPIO #19, if that's not requested by kernel code. + + "unexport" ... + Reverses the effect of exporting to userspace. + + Example: "echo 19 > unexport" will remove a "gpio19" + node exported using the "export" file. + +GPIO signals have paths like /sys/class/gpio/gpio42/ (for GPIO #42) +and have the following read/write attributes: + + /sys/class/gpio/gpioN/ + + "direction" ... + reads as either "in" or "out". This value may + normally be written. Writing as "out" defaults to + initializing the value as low. To ensure glitch free + operation, values "low" and "high" may be written to + configure the GPIO as an output with that initial value. + + Note that this attribute *will not exist* if the kernel + doesn't support changing the direction of a GPIO, or + it was exported by kernel code that didn't explicitly + allow userspace to reconfigure this GPIO's direction. + + "value" ... + reads as either 0 (low) or 1 (high). If the GPIO + is configured as an output, this value may be written; + any nonzero value is treated as high. + + If the pin can be configured as interrupt-generating interrupt + and if it has been configured to generate interrupts (see the + description of "edge"), you can poll(2) on that file and + poll(2) will return whenever the interrupt was triggered. If + you use poll(2), set the events POLLPRI and POLLERR. If you + use select(2), set the file descriptor in exceptfds. After + poll(2) returns, either lseek(2) to the beginning of the sysfs + file and read the new value or close the file and re-open it + to read the value. + + "edge" ... + reads as either "none", "rising", "falling", or + "both". Write these strings to select the signal edge(s) + that will make poll(2) on the "value" file return. + + This file exists only if the pin can be configured as an + interrupt generating input pin. + + "active_low" ... + reads as either 0 (false) or 1 (true). Write + any nonzero value to invert the value attribute both + for reading and writing. Existing and subsequent + poll(2) support configuration via the edge attribute + for "rising" and "falling" edges will follow this + setting. + +GPIO controllers have paths like /sys/class/gpio/gpiochip42/ (for the +controller implementing GPIOs starting at #42) and have the following +read-only attributes: + + /sys/class/gpio/gpiochipN/ + + "base" ... + same as N, the first GPIO managed by this chip + + "label" ... + provided for diagnostics (not always unique) + + "ngpio" ... + how many GPIOs this manages (N to N + ngpio - 1) + +Board documentation should in most cases cover what GPIOs are used for +what purposes. However, those numbers are not always stable; GPIOs on +a daughtercard might be different depending on the base board being used, +or other cards in the stack. In such cases, you may need to use the +gpiochip nodes (possibly in conjunction with schematics) to determine +the correct GPIO number to use for a given signal. + + +Exporting from Kernel code +-------------------------- +Kernel code can explicitly manage exports of GPIOs which have already been +requested using gpio_request():: + + /* export the GPIO to userspace */ + int gpiod_export(struct gpio_desc *desc, bool direction_may_change); + + /* reverse gpio_export() */ + void gpiod_unexport(struct gpio_desc *desc); + + /* create a sysfs link to an exported GPIO node */ + int gpiod_export_link(struct device *dev, const char *name, + struct gpio_desc *desc); + +After a kernel driver requests a GPIO, it may only be made available in +the sysfs interface by gpiod_export(). The driver can control whether the +signal direction may change. This helps drivers prevent userspace code +from accidentally clobbering important system state. + +This explicit exporting can help with debugging (by making some kinds +of experiments easier), or can provide an always-there interface that's +suitable for documenting as part of a board support package. + +After the GPIO has been exported, gpiod_export_link() allows creating +symlinks from elsewhere in sysfs to the GPIO sysfs node. Drivers can +use this to provide the interface under their own device in sysfs with +a descriptive name. |