diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-17 02:20:36 +0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-17 02:20:36 +0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /Documentation/driver-model/overview.txt | |
download | linux-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.xz |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'Documentation/driver-model/overview.txt')
-rw-r--r-- | Documentation/driver-model/overview.txt | 114 |
1 files changed, 114 insertions, 0 deletions
diff --git a/Documentation/driver-model/overview.txt b/Documentation/driver-model/overview.txt new file mode 100644 index 000000000000..44662735cf81 --- /dev/null +++ b/Documentation/driver-model/overview.txt @@ -0,0 +1,114 @@ +The Linux Kernel Device Model + +Patrick Mochel <mochel@osdl.org> + +26 August 2002 + + +Overview +~~~~~~~~ + +This driver model is a unification of all the current, disparate driver models +that are currently in the kernel. It is intended to augment the +bus-specific drivers for bridges and devices by consolidating a set of data +and operations into globally accessible data structures. + +Current driver models implement some sort of tree-like structure (sometimes +just a list) for the devices they control. But, there is no linkage between +the different bus types. + +A common data structure can provide this linkage with little overhead: when a +bus driver discovers a particular device, it can insert it into the global +tree as well as its local tree. In fact, the local tree becomes just a subset +of the global tree. + +Common data fields can also be moved out of the local bus models into the +global model. Some of the manipulations of these fields can also be +consolidated. Most likely, manipulation functions will become a set +of helper functions, which the bus drivers wrap around to include any +bus-specific items. + +The common device and bridge interface currently reflects the goals of the +modern PC: namely the ability to do seamless Plug and Play, power management, +and hot plug. (The model dictated by Intel and Microsoft (read: ACPI) ensures +us that any device in the system may fit any of these criteria.) + +In reality, not every bus will be able to support such operations. But, most +buses will support a majority of those operations, and all future buses will. +In other words, a bus that doesn't support an operation is the exception, +instead of the other way around. + + + +Downstream Access +~~~~~~~~~~~~~~~~~ + +Common data fields have been moved out of individual bus layers into a common +data structure. But, these fields must still be accessed by the bus layers, +and sometimes by the device-specific drivers. + +Other bus layers are encouraged to do what has been done for the PCI layer. +struct pci_dev now looks like this: + +struct pci_dev { + ... + + struct device device; +}; + +Note first that it is statically allocated. This means only one allocation on +device discovery. Note also that it is at the _end_ of struct pci_dev. This is +to make people think about what they're doing when switching between the bus +driver and the global driver; and to prevent against mindless casts between +the two. + +The PCI bus layer freely accesses the fields of struct device. It knows about +the structure of struct pci_dev, and it should know the structure of struct +device. PCI devices that have been converted generally do not touch the fields +of struct device. More precisely, device-specific drivers should not touch +fields of struct device unless there is a strong compelling reason to do so. + +This abstraction is prevention of unnecessary pain during transitional phases. +If the name of the field changes or is removed, then every downstream driver +will break. On the other hand, if only the bus layer (and not the device +layer) accesses struct device, it is only that layer that needs to change. + + +User Interface +~~~~~~~~~~~~~~ + +By virtue of having a complete hierarchical view of all the devices in the +system, exporting a complete hierarchical view to userspace becomes relatively +easy. This has been accomplished by implementing a special purpose virtual +file system named sysfs. It is hence possible for the user to mount the +whole sysfs filesystem anywhere in userspace. + +This can be done permanently by providing the following entry into the +/etc/fstab (under the provision that the mount point does exist, of course): + +none /sys sysfs defaults 0 0 + +Or by hand on the command line: + +# mount -t sysfs sysfs /sys + +Whenever a device is inserted into the tree, a directory is created for it. +This directory may be populated at each layer of discovery - the global layer, +the bus layer, or the device layer. + +The global layer currently creates two files - 'name' and 'power'. The +former only reports the name of the device. The latter reports the +current power state of the device. It will also be used to set the current +power state. + +The bus layer may also create files for the devices it finds while probing the +bus. For example, the PCI layer currently creates 'irq' and 'resource' files +for each PCI device. + +A device-specific driver may also export files in its directory to expose +device-specific data or tunable interfaces. + +More information about the sysfs directory layout can be found in +the other documents in this directory and in the file +Documentation/filesystems/sysfs.txt. + |