summaryrefslogtreecommitdiff
path: root/Documentation/README.DAC960
diff options
context:
space:
mode:
authorRandy Dunlap <randy.dunlap@oracle.com>2008-11-14 00:33:24 +0300
committerRandy Dunlap <randy.dunlap@oracle.com>2008-11-14 20:28:53 +0300
commit31c00fc15ebd35c1647775dbfc167a15d46657fd (patch)
tree6d8ff2a6607c94a791ccc56fd8eb625e4fdcc01a /Documentation/README.DAC960
parent3edac25f2e8ac8c2a84904c140e1aeb434e73e75 (diff)
downloadlinux-31c00fc15ebd35c1647775dbfc167a15d46657fd.tar.xz
Create/use more directory structure in the Documentation/ tree.
Create Documentation/blockdev/ sub-directory and populate it. Populate the Documentation/serial/ sub-directory. Move MSI-HOWTO.txt to Documentation/PCI/. Move ioctl-number.txt to Documentation/ioctl/. Update all relevant 00-INDEX files. Update all relevant Kconfig files and source files. Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Diffstat (limited to 'Documentation/README.DAC960')
-rw-r--r--Documentation/README.DAC960756
1 files changed, 0 insertions, 756 deletions
diff --git a/Documentation/README.DAC960 b/Documentation/README.DAC960
deleted file mode 100644
index 0e8f618ab534..000000000000
--- a/Documentation/README.DAC960
+++ /dev/null
@@ -1,756 +0,0 @@
- Linux Driver for Mylex DAC960/AcceleRAID/eXtremeRAID PCI RAID Controllers
-
- Version 2.2.11 for Linux 2.2.19
- Version 2.4.11 for Linux 2.4.12
-
- PRODUCTION RELEASE
-
- 11 October 2001
-
- Leonard N. Zubkoff
- Dandelion Digital
- lnz@dandelion.com
-
- Copyright 1998-2001 by Leonard N. Zubkoff <lnz@dandelion.com>
-
-
- INTRODUCTION
-
-Mylex, Inc. designs and manufactures a variety of high performance PCI RAID
-controllers. Mylex Corporation is located at 34551 Ardenwood Blvd., Fremont,
-California 94555, USA and can be reached at 510.796.6100 or on the World Wide
-Web at http://www.mylex.com. Mylex Technical Support can be reached by
-electronic mail at mylexsup@us.ibm.com, by voice at 510.608.2400, or by FAX at
-510.745.7715. Contact information for offices in Europe and Japan is available
-on their Web site.
-
-The latest information on Linux support for DAC960 PCI RAID Controllers, as
-well as the most recent release of this driver, will always be available from
-my Linux Home Page at URL "http://www.dandelion.com/Linux/". The Linux DAC960
-driver supports all current Mylex PCI RAID controllers including the new
-eXtremeRAID 2000/3000 and AcceleRAID 352/170/160 models which have an entirely
-new firmware interface from the older eXtremeRAID 1100, AcceleRAID 150/200/250,
-and DAC960PJ/PG/PU/PD/PL. See below for a complete controller list as well as
-minimum firmware version requirements. For simplicity, in most places this
-documentation refers to DAC960 generically rather than explicitly listing all
-the supported models.
-
-Driver bug reports should be sent via electronic mail to "lnz@dandelion.com".
-Please include with the bug report the complete configuration messages reported
-by the driver at startup, along with any subsequent system messages relevant to
-the controller's operation, and a detailed description of your system's
-hardware configuration. Driver bugs are actually quite rare; if you encounter
-problems with disks being marked offline, for example, please contact Mylex
-Technical Support as the problem is related to the hardware configuration
-rather than the Linux driver.
-
-Please consult the RAID controller documentation for detailed information
-regarding installation and configuration of the controllers. This document
-primarily provides information specific to the Linux support.
-
-
- DRIVER FEATURES
-
-The DAC960 RAID controllers are supported solely as high performance RAID
-controllers, not as interfaces to arbitrary SCSI devices. The Linux DAC960
-driver operates at the block device level, the same level as the SCSI and IDE
-drivers. Unlike other RAID controllers currently supported on Linux, the
-DAC960 driver is not dependent on the SCSI subsystem, and hence avoids all the
-complexity and unnecessary code that would be associated with an implementation
-as a SCSI driver. The DAC960 driver is designed for as high a performance as
-possible with no compromises or extra code for compatibility with lower
-performance devices. The DAC960 driver includes extensive error logging and
-online configuration management capabilities. Except for initial configuration
-of the controller and adding new disk drives, most everything can be handled
-from Linux while the system is operational.
-
-The DAC960 driver is architected to support up to 8 controllers per system.
-Each DAC960 parallel SCSI controller can support up to 15 disk drives per
-channel, for a maximum of 60 drives on a four channel controller; the fibre
-channel eXtremeRAID 3000 controller supports up to 125 disk drives per loop for
-a total of 250 drives. The drives installed on a controller are divided into
-one or more "Drive Groups", and then each Drive Group is subdivided further
-into 1 to 32 "Logical Drives". Each Logical Drive has a specific RAID Level
-and caching policy associated with it, and it appears to Linux as a single
-block device. Logical Drives are further subdivided into up to 7 partitions
-through the normal Linux and PC disk partitioning schemes. Logical Drives are
-also known as "System Drives", and Drive Groups are also called "Packs". Both
-terms are in use in the Mylex documentation; I have chosen to standardize on
-the more generic "Logical Drive" and "Drive Group".
-
-DAC960 RAID disk devices are named in the style of the obsolete Device File
-System (DEVFS). The device corresponding to Logical Drive D on Controller C
-is referred to as /dev/rd/cCdD, and the partitions are called /dev/rd/cCdDp1
-through /dev/rd/cCdDp7. For example, partition 3 of Logical Drive 5 on
-Controller 2 is referred to as /dev/rd/c2d5p3. Note that unlike with SCSI
-disks the device names will not change in the event of a disk drive failure.
-The DAC960 driver is assigned major numbers 48 - 55 with one major number per
-controller. The 8 bits of minor number are divided into 5 bits for the Logical
-Drive and 3 bits for the partition.
-
-
- SUPPORTED DAC960/AcceleRAID/eXtremeRAID PCI RAID CONTROLLERS
-
-The following list comprises the supported DAC960, AcceleRAID, and eXtremeRAID
-PCI RAID Controllers as of the date of this document. It is recommended that
-anyone purchasing a Mylex PCI RAID Controller not in the following table
-contact the author beforehand to verify that it is or will be supported.
-
-eXtremeRAID 3000
- 1 Wide Ultra-2/LVD SCSI channel
- 2 External Fibre FC-AL channels
- 233MHz StrongARM SA 110 Processor
- 64 Bit 33MHz PCI (backward compatible with 32 Bit PCI slots)
- 32MB/64MB ECC SDRAM Memory
-
-eXtremeRAID 2000
- 4 Wide Ultra-160 LVD SCSI channels
- 233MHz StrongARM SA 110 Processor
- 64 Bit 33MHz PCI (backward compatible with 32 Bit PCI slots)
- 32MB/64MB ECC SDRAM Memory
-
-AcceleRAID 352
- 2 Wide Ultra-160 LVD SCSI channels
- 100MHz Intel i960RN RISC Processor
- 64 Bit 33MHz PCI (backward compatible with 32 Bit PCI slots)
- 32MB/64MB ECC SDRAM Memory
-
-AcceleRAID 170
- 1 Wide Ultra-160 LVD SCSI channel
- 100MHz Intel i960RM RISC Processor
- 16MB/32MB/64MB ECC SDRAM Memory
-
-AcceleRAID 160 (AcceleRAID 170LP)
- 1 Wide Ultra-160 LVD SCSI channel
- 100MHz Intel i960RS RISC Processor
- Built in 16M ECC SDRAM Memory
- PCI Low Profile Form Factor - fit for 2U height
-
-eXtremeRAID 1100 (DAC1164P)
- 3 Wide Ultra-2/LVD SCSI channels
- 233MHz StrongARM SA 110 Processor
- 64 Bit 33MHz PCI (backward compatible with 32 Bit PCI slots)
- 16MB/32MB/64MB Parity SDRAM Memory with Battery Backup
-
-AcceleRAID 250 (DAC960PTL1)
- Uses onboard Symbios SCSI chips on certain motherboards
- Also includes one onboard Wide Ultra-2/LVD SCSI Channel
- 66MHz Intel i960RD RISC Processor
- 4MB/8MB/16MB/32MB/64MB/128MB ECC EDO Memory
-
-AcceleRAID 200 (DAC960PTL0)
- Uses onboard Symbios SCSI chips on certain motherboards
- Includes no onboard SCSI Channels
- 66MHz Intel i960RD RISC Processor
- 4MB/8MB/16MB/32MB/64MB/128MB ECC EDO Memory
-
-AcceleRAID 150 (DAC960PRL)
- Uses onboard Symbios SCSI chips on certain motherboards
- Also includes one onboard Wide Ultra-2/LVD SCSI Channel
- 33MHz Intel i960RP RISC Processor
- 4MB Parity EDO Memory
-
-DAC960PJ 1/2/3 Wide Ultra SCSI-3 Channels
- 66MHz Intel i960RD RISC Processor
- 4MB/8MB/16MB/32MB/64MB/128MB ECC EDO Memory
-
-DAC960PG 1/2/3 Wide Ultra SCSI-3 Channels
- 33MHz Intel i960RP RISC Processor
- 4MB/8MB ECC EDO Memory
-
-DAC960PU 1/2/3 Wide Ultra SCSI-3 Channels
- Intel i960CF RISC Processor
- 4MB/8MB EDRAM or 2MB/4MB/8MB/16MB/32MB DRAM Memory
-
-DAC960PD 1/2/3 Wide Fast SCSI-2 Channels
- Intel i960CF RISC Processor
- 4MB/8MB EDRAM or 2MB/4MB/8MB/16MB/32MB DRAM Memory
-
-DAC960PL 1/2/3 Wide Fast SCSI-2 Channels
- Intel i960 RISC Processor
- 2MB/4MB/8MB/16MB/32MB DRAM Memory
-
-DAC960P 1/2/3 Wide Fast SCSI-2 Channels
- Intel i960 RISC Processor
- 2MB/4MB/8MB/16MB/32MB DRAM Memory
-
-For the eXtremeRAID 2000/3000 and AcceleRAID 352/170/160, firmware version
-6.00-01 or above is required.
-
-For the eXtremeRAID 1100, firmware version 5.06-0-52 or above is required.
-
-For the AcceleRAID 250, 200, and 150, firmware version 4.06-0-57 or above is
-required.
-
-For the DAC960PJ and DAC960PG, firmware version 4.06-0-00 or above is required.
-
-For the DAC960PU, DAC960PD, DAC960PL, and DAC960P, either firmware version
-3.51-0-04 or above is required (for dual Flash ROM controllers), or firmware
-version 2.73-0-00 or above is required (for single Flash ROM controllers)
-
-Please note that not all SCSI disk drives are suitable for use with DAC960
-controllers, and only particular firmware versions of any given model may
-actually function correctly. Similarly, not all motherboards have a BIOS that
-properly initializes the AcceleRAID 250, AcceleRAID 200, AcceleRAID 150,
-DAC960PJ, and DAC960PG because the Intel i960RD/RP is a multi-function device.
-If in doubt, contact Mylex RAID Technical Support (mylexsup@us.ibm.com) to
-verify compatibility. Mylex makes available a hard disk compatibility list at
-http://www.mylex.com/support/hdcomp/hd-lists.html.
-
-
- DRIVER INSTALLATION
-
-This distribution was prepared for Linux kernel version 2.2.19 or 2.4.12.
-
-To install the DAC960 RAID driver, you may use the following commands,
-replacing "/usr/src" with wherever you keep your Linux kernel source tree:
-
- cd /usr/src
- tar -xvzf DAC960-2.2.11.tar.gz (or DAC960-2.4.11.tar.gz)
- mv README.DAC960 linux/Documentation
- mv DAC960.[ch] linux/drivers/block
- patch -p0 < DAC960.patch (if DAC960.patch is included)
- cd linux
- make config
- make bzImage (or zImage)
-
-Then install "arch/i386/boot/bzImage" or "arch/i386/boot/zImage" as your
-standard kernel, run lilo if appropriate, and reboot.
-
-To create the necessary devices in /dev, the "make_rd" script included in
-"DAC960-Utilities.tar.gz" from http://www.dandelion.com/Linux/ may be used.
-LILO 21 and FDISK v2.9 include DAC960 support; also included in this archive
-are patches to LILO 20 and FDISK v2.8 that add DAC960 support, along with
-statically linked executables of LILO and FDISK. This modified version of LILO
-will allow booting from a DAC960 controller and/or mounting the root file
-system from a DAC960.
-
-Red Hat Linux 6.0 and SuSE Linux 6.1 include support for Mylex PCI RAID
-controllers. Installing directly onto a DAC960 may be problematic from other
-Linux distributions until their installation utilities are updated.
-
-
- INSTALLATION NOTES
-
-Before installing Linux or adding DAC960 logical drives to an existing Linux
-system, the controller must first be configured to provide one or more logical
-drives using the BIOS Configuration Utility or DACCF. Please note that since
-there are only at most 6 usable partitions on each logical drive, systems
-requiring more partitions should subdivide a drive group into multiple logical
-drives, each of which can have up to 6 usable partitions. Also, note that with
-large disk arrays it is advisable to enable the 8GB BIOS Geometry (255/63)
-rather than accepting the default 2GB BIOS Geometry (128/32); failing to so do
-will cause the logical drive geometry to have more than 65535 cylinders which
-will make it impossible for FDISK to be used properly. The 8GB BIOS Geometry
-can be enabled by configuring the DAC960 BIOS, which is accessible via Alt-M
-during the BIOS initialization sequence.
-
-For maximum performance and the most efficient E2FSCK performance, it is
-recommended that EXT2 file systems be built with a 4KB block size and 16 block
-stride to match the DAC960 controller's 64KB default stripe size. The command
-"mke2fs -b 4096 -R stride=16 <device>" is appropriate. Unless there will be a
-large number of small files on the file systems, it is also beneficial to add
-the "-i 16384" option to increase the bytes per inode parameter thereby
-reducing the file system metadata. Finally, on systems that will only be run
-with Linux 2.2 or later kernels it is beneficial to enable sparse superblocks
-with the "-s 1" option.
-
-
- DAC960 ANNOUNCEMENTS MAILING LIST
-
-The DAC960 Announcements Mailing List provides a forum for informing Linux
-users of new driver releases and other announcements regarding Linux support
-for DAC960 PCI RAID Controllers. To join the mailing list, send a message to
-"dac960-announce-request@dandelion.com" with the line "subscribe" in the
-message body.
-
-
- CONTROLLER CONFIGURATION AND STATUS MONITORING
-
-The DAC960 RAID controllers running firmware 4.06 or above include a Background
-Initialization facility so that system downtime is minimized both for initial
-installation and subsequent configuration of additional storage. The BIOS
-Configuration Utility (accessible via Alt-R during the BIOS initialization
-sequence) is used to quickly configure the controller, and then the logical
-drives that have been created are available for immediate use even while they
-are still being initialized by the controller. The primary need for online
-configuration and status monitoring is then to avoid system downtime when disk
-drives fail and must be replaced. Mylex's online monitoring and configuration
-utilities are being ported to Linux and will become available at some point in
-the future. Note that with a SAF-TE (SCSI Accessed Fault-Tolerant Enclosure)
-enclosure, the controller is able to rebuild failed drives automatically as
-soon as a drive replacement is made available.
-
-The primary interfaces for controller configuration and status monitoring are
-special files created in the /proc/rd/... hierarchy along with the normal
-system console logging mechanism. Whenever the system is operating, the DAC960
-driver queries each controller for status information every 10 seconds, and
-checks for additional conditions every 60 seconds. The initial status of each
-controller is always available for controller N in /proc/rd/cN/initial_status,
-and the current status as of the last status monitoring query is available in
-/proc/rd/cN/current_status. In addition, status changes are also logged by the
-driver to the system console and will appear in the log files maintained by
-syslog. The progress of asynchronous rebuild or consistency check operations
-is also available in /proc/rd/cN/current_status, and progress messages are
-logged to the system console at most every 60 seconds.
-
-Starting with the 2.2.3/2.0.3 versions of the driver, the status information
-available in /proc/rd/cN/initial_status and /proc/rd/cN/current_status has been
-augmented to include the vendor, model, revision, and serial number (if
-available) for each physical device found connected to the controller:
-
-***** DAC960 RAID Driver Version 2.2.3 of 19 August 1999 *****
-Copyright 1998-1999 by Leonard N. Zubkoff <lnz@dandelion.com>
-Configuring Mylex DAC960PRL PCI RAID Controller
- Firmware Version: 4.07-0-07, Channels: 1, Memory Size: 16MB
- PCI Bus: 1, Device: 4, Function: 1, I/O Address: Unassigned
- PCI Address: 0xFE300000 mapped at 0xA0800000, IRQ Channel: 21
- Controller Queue Depth: 128, Maximum Blocks per Command: 128
- Driver Queue Depth: 127, Maximum Scatter/Gather Segments: 33
- Stripe Size: 64KB, Segment Size: 8KB, BIOS Geometry: 255/63
- SAF-TE Enclosure Management Enabled
- Physical Devices:
- 0:0 Vendor: IBM Model: DRVS09D Revision: 0270
- Serial Number: 68016775HA
- Disk Status: Online, 17928192 blocks
- 0:1 Vendor: IBM Model: DRVS09D Revision: 0270
- Serial Number: 68004E53HA
- Disk Status: Online, 17928192 blocks
- 0:2 Vendor: IBM Model: DRVS09D Revision: 0270
- Serial Number: 13013935HA
- Disk Status: Online, 17928192 blocks
- 0:3 Vendor: IBM Model: DRVS09D Revision: 0270
- Serial Number: 13016897HA
- Disk Status: Online, 17928192 blocks
- 0:4 Vendor: IBM Model: DRVS09D Revision: 0270
- Serial Number: 68019905HA
- Disk Status: Online, 17928192 blocks
- 0:5 Vendor: IBM Model: DRVS09D Revision: 0270
- Serial Number: 68012753HA
- Disk Status: Online, 17928192 blocks
- 0:6 Vendor: ESG-SHV Model: SCA HSBP M6 Revision: 0.61
- Logical Drives:
- /dev/rd/c0d0: RAID-5, Online, 89640960 blocks, Write Thru
- No Rebuild or Consistency Check in Progress
-
-To simplify the monitoring process for custom software, the special file
-/proc/rd/status returns "OK" when all DAC960 controllers in the system are
-operating normally and no failures have occurred, or "ALERT" if any logical
-drives are offline or critical or any non-standby physical drives are dead.
-
-Configuration commands for controller N are available via the special file
-/proc/rd/cN/user_command. A human readable command can be written to this
-special file to initiate a configuration operation, and the results of the
-operation can then be read back from the special file in addition to being
-logged to the system console. The shell command sequence
-
- echo "<configuration-command>" > /proc/rd/c0/user_command
- cat /proc/rd/c0/user_command
-
-is typically used to execute configuration commands. The configuration
-commands are:
-
- flush-cache
-
- The "flush-cache" command flushes the controller's cache. The system
- automatically flushes the cache at shutdown or if the driver module is
- unloaded, so this command is only needed to be certain a write back cache
- is flushed to disk before the system is powered off by a command to a UPS.
- Note that the flush-cache command also stops an asynchronous rebuild or
- consistency check, so it should not be used except when the system is being
- halted.
-
- kill <channel>:<target-id>
-
- The "kill" command marks the physical drive <channel>:<target-id> as DEAD.
- This command is provided primarily for testing, and should not be used
- during normal system operation.
-
- make-online <channel>:<target-id>
-
- The "make-online" command changes the physical drive <channel>:<target-id>
- from status DEAD to status ONLINE. In cases where multiple physical drives
- have been killed simultaneously, this command may be used to bring all but
- one of them back online, after which a rebuild to the final drive is
- necessary.
-
- Warning: make-online should only be used on a dead physical drive that is
- an active part of a drive group, never on a standby drive. The command
- should never be used on a dead drive that is part of a critical logical
- drive; rebuild should be used if only a single drive is dead.
-
- make-standby <channel>:<target-id>
-
- The "make-standby" command changes physical drive <channel>:<target-id>
- from status DEAD to status STANDBY. It should only be used in cases where
- a dead drive was replaced after an automatic rebuild was performed onto a
- standby drive. It cannot be used to add a standby drive to the controller
- configuration if one was not created initially; the BIOS Configuration
- Utility must be used for that currently.
-
- rebuild <channel>:<target-id>
-
- The "rebuild" command initiates an asynchronous rebuild onto physical drive
- <channel>:<target-id>. It should only be used when a dead drive has been
- replaced.
-
- check-consistency <logical-drive-number>
-
- The "check-consistency" command initiates an asynchronous consistency check
- of <logical-drive-number> with automatic restoration. It can be used
- whenever it is desired to verify the consistency of the redundancy
- information.
-
- cancel-rebuild
- cancel-consistency-check
-
- The "cancel-rebuild" and "cancel-consistency-check" commands cancel any
- rebuild or consistency check operations previously initiated.
-
-
- EXAMPLE I - DRIVE FAILURE WITHOUT A STANDBY DRIVE
-
-The following annotated logs demonstrate the controller configuration and and
-online status monitoring capabilities of the Linux DAC960 Driver. The test
-configuration comprises 6 1GB Quantum Atlas I disk drives on two channels of a
-DAC960PJ controller. The physical drives are configured into a single drive
-group without a standby drive, and the drive group has been configured into two
-logical drives, one RAID-5 and one RAID-6. Note that these logs are from an
-earlier version of the driver and the messages have changed somewhat with newer
-releases, but the functionality remains similar. First, here is the current
-status of the RAID configuration:
-
-gwynedd:/u/lnz# cat /proc/rd/c0/current_status
-***** DAC960 RAID Driver Version 2.0.0 of 23 March 1999 *****
-Copyright 1998-1999 by Leonard N. Zubkoff <lnz@dandelion.com>
-Configuring Mylex DAC960PJ PCI RAID Controller
- Firmware Version: 4.06-0-08, Channels: 3, Memory Size: 8MB
- PCI Bus: 0, Device: 19, Function: 1, I/O Address: Unassigned
- PCI Address: 0xFD4FC000 mapped at 0x8807000, IRQ Channel: 9
- Controller Queue Depth: 128, Maximum Blocks per Command: 128
- Driver Queue Depth: 127, Maximum Scatter/Gather Segments: 33
- Stripe Size: 64KB, Segment Size: 8KB, BIOS Geometry: 255/63
- Physical Devices:
- 0:1 - Disk: Online, 2201600 blocks
- 0:2 - Disk: Online, 2201600 blocks
- 0:3 - Disk: Online, 2201600 blocks
- 1:1 - Disk: Online, 2201600 blocks
- 1:2 - Disk: Online, 2201600 blocks
- 1:3 - Disk: Online, 2201600 blocks
- Logical Drives:
- /dev/rd/c0d0: RAID-5, Online, 5498880 blocks, Write Thru
- /dev/rd/c0d1: RAID-6, Online, 3305472 blocks, Write Thru
- No Rebuild or Consistency Check in Progress
-
-gwynedd:/u/lnz# cat /proc/rd/status
-OK
-
-The above messages indicate that everything is healthy, and /proc/rd/status
-returns "OK" indicating that there are no problems with any DAC960 controller
-in the system. For demonstration purposes, while I/O is active Physical Drive
-1:1 is now disconnected, simulating a drive failure. The failure is noted by
-the driver within 10 seconds of the controller's having detected it, and the
-driver logs the following console status messages indicating that Logical
-Drives 0 and 1 are now CRITICAL as a result of Physical Drive 1:1 being DEAD:
-
-DAC960#0: Physical Drive 1:2 Error Log: Sense Key = 6, ASC = 29, ASCQ = 02
-DAC960#0: Physical Drive 1:3 Error Log: Sense Key = 6, ASC = 29, ASCQ = 02
-DAC960#0: Physical Drive 1:1 killed because of timeout on SCSI command
-DAC960#0: Physical Drive 1:1 is now DEAD
-DAC960#0: Logical Drive 0 (/dev/rd/c0d0) is now CRITICAL
-DAC960#0: Logical Drive 1 (/dev/rd/c0d1) is now CRITICAL
-
-The Sense Keys logged here are just Check Condition / Unit Attention conditions
-arising from a SCSI bus reset that is forced by the controller during its error
-recovery procedures. Concurrently with the above, the driver status available
-from /proc/rd also reflects the drive failure. The status message in
-/proc/rd/status has changed from "OK" to "ALERT":
-
-gwynedd:/u/lnz# cat /proc/rd/status
-ALERT
-
-and /proc/rd/c0/current_status has been updated:
-
-gwynedd:/u/lnz# cat /proc/rd/c0/current_status
- ...
- Physical Devices:
- 0:1 - Disk: Online, 2201600 blocks
- 0:2 - Disk: Online, 2201600 blocks
- 0:3 - Disk: Online, 2201600 blocks
- 1:1 - Disk: Dead, 2201600 blocks
- 1:2 - Disk: Online, 2201600 blocks
- 1:3 - Disk: Online, 2201600 blocks
- Logical Drives:
- /dev/rd/c0d0: RAID-5, Critical, 5498880 blocks, Write Thru
- /dev/rd/c0d1: RAID-6, Critical, 3305472 blocks, Write Thru
- No Rebuild or Consistency Check in Progress
-
-Since there are no standby drives configured, the system can continue to access
-the logical drives in a performance degraded mode until the failed drive is
-replaced and a rebuild operation completed to restore the redundancy of the
-logical drives. Once Physical Drive 1:1 is replaced with a properly
-functioning drive, or if the physical drive was killed without having failed
-(e.g., due to electrical problems on the SCSI bus), the user can instruct the
-controller to initiate a rebuild operation onto the newly replaced drive:
-
-gwynedd:/u/lnz# echo "rebuild 1:1" > /proc/rd/c0/user_command
-gwynedd:/u/lnz# cat /proc/rd/c0/user_command
-Rebuild of Physical Drive 1:1 Initiated
-
-The echo command instructs the controller to initiate an asynchronous rebuild
-operation onto Physical Drive 1:1, and the status message that results from the
-operation is then available for reading from /proc/rd/c0/user_command, as well
-as being logged to the console by the driver.
-
-Within 10 seconds of this command the driver logs the initiation of the
-asynchronous rebuild operation:
-
-DAC960#0: Rebuild of Physical Drive 1:1 Initiated
-DAC960#0: Physical Drive 1:1 Error Log: Sense Key = 6, ASC = 29, ASCQ = 01
-DAC960#0: Physical Drive 1:1 is now WRITE-ONLY
-DAC960#0: Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 1% completed
-
-and /proc/rd/c0/current_status is updated:
-
-gwynedd:/u/lnz# cat /proc/rd/c0/current_status
- ...
- Physical Devices:
- 0:1 - Disk: Online, 2201600 blocks
- 0:2 - Disk: Online, 2201600 blocks
- 0:3 - Disk: Online, 2201600 blocks
- 1:1 - Disk: Write-Only, 2201600 blocks
- 1:2 - Disk: Online, 2201600 blocks
- 1:3 - Disk: Online, 2201600 blocks
- Logical Drives:
- /dev/rd/c0d0: RAID-5, Critical, 5498880 blocks, Write Thru
- /dev/rd/c0d1: RAID-6, Critical, 3305472 blocks, Write Thru
- Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 6% completed
-
-As the rebuild progresses, the current status in /proc/rd/c0/current_status is
-updated every 10 seconds:
-
-gwynedd:/u/lnz# cat /proc/rd/c0/current_status
- ...
- Physical Devices:
- 0:1 - Disk: Online, 2201600 blocks
- 0:2 - Disk: Online, 2201600 blocks
- 0:3 - Disk: Online, 2201600 blocks
- 1:1 - Disk: Write-Only, 2201600 blocks
- 1:2 - Disk: Online, 2201600 blocks
- 1:3 - Disk: Online, 2201600 blocks
- Logical Drives:
- /dev/rd/c0d0: RAID-5, Critical, 5498880 blocks, Write Thru
- /dev/rd/c0d1: RAID-6, Critical, 3305472 blocks, Write Thru
- Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 15% completed
-
-and every minute a progress message is logged to the console by the driver:
-
-DAC960#0: Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 32% completed
-DAC960#0: Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 63% completed
-DAC960#0: Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 94% completed
-DAC960#0: Rebuild in Progress: Logical Drive 1 (/dev/rd/c0d1) 94% completed
-
-Finally, the rebuild completes successfully. The driver logs the status of the
-logical and physical drives and the rebuild completion:
-
-DAC960#0: Rebuild Completed Successfully
-DAC960#0: Physical Drive 1:1 is now ONLINE
-DAC960#0: Logical Drive 0 (/dev/rd/c0d0) is now ONLINE
-DAC960#0: Logical Drive 1 (/dev/rd/c0d1) is now ONLINE
-
-/proc/rd/c0/current_status is updated:
-
-gwynedd:/u/lnz# cat /proc/rd/c0/current_status
- ...
- Physical Devices:
- 0:1 - Disk: Online, 2201600 blocks
- 0:2 - Disk: Online, 2201600 blocks
- 0:3 - Disk: Online, 2201600 blocks
- 1:1 - Disk: Online, 2201600 blocks
- 1:2 - Disk: Online, 2201600 blocks
- 1:3 - Disk: Online, 2201600 blocks
- Logical Drives:
- /dev/rd/c0d0: RAID-5, Online, 5498880 blocks, Write Thru
- /dev/rd/c0d1: RAID-6, Online, 3305472 blocks, Write Thru
- Rebuild Completed Successfully
-
-and /proc/rd/status indicates that everything is healthy once again:
-
-gwynedd:/u/lnz# cat /proc/rd/status
-OK
-
-
- EXAMPLE II - DRIVE FAILURE WITH A STANDBY DRIVE
-
-The following annotated logs demonstrate the controller configuration and and
-online status monitoring capabilities of the Linux DAC960 Driver. The test
-configuration comprises 6 1GB Quantum Atlas I disk drives on two channels of a
-DAC960PJ controller. The physical drives are configured into a single drive
-group with a standby drive, and the drive group has been configured into two
-logical drives, one RAID-5 and one RAID-6. Note that these logs are from an
-earlier version of the driver and the messages have changed somewhat with newer
-releases, but the functionality remains similar. First, here is the current
-status of the RAID configuration:
-
-gwynedd:/u/lnz# cat /proc/rd/c0/current_status
-***** DAC960 RAID Driver Version 2.0.0 of 23 March 1999 *****
-Copyright 1998-1999 by Leonard N. Zubkoff <lnz@dandelion.com>
-Configuring Mylex DAC960PJ PCI RAID Controller
- Firmware Version: 4.06-0-08, Channels: 3, Memory Size: 8MB
- PCI Bus: 0, Device: 19, Function: 1, I/O Address: Unassigned
- PCI Address: 0xFD4FC000 mapped at 0x8807000, IRQ Channel: 9
- Controller Queue Depth: 128, Maximum Blocks per Command: 128
- Driver Queue Depth: 127, Maximum Scatter/Gather Segments: 33
- Stripe Size: 64KB, Segment Size: 8KB, BIOS Geometry: 255/63
- Physical Devices:
- 0:1 - Disk: Online, 2201600 blocks
- 0:2 - Disk: Online, 2201600 blocks
- 0:3 - Disk: Online, 2201600 blocks
- 1:1 - Disk: Online, 2201600 blocks
- 1:2 - Disk: Online, 2201600 blocks
- 1:3 - Disk: Standby, 2201600 blocks
- Logical Drives:
- /dev/rd/c0d0: RAID-5, Online, 4399104 blocks, Write Thru
- /dev/rd/c0d1: RAID-6, Online, 2754560 blocks, Write Thru
- No Rebuild or Consistency Check in Progress
-
-gwynedd:/u/lnz# cat /proc/rd/status
-OK
-
-The above messages indicate that everything is healthy, and /proc/rd/status
-returns "OK" indicating that there are no problems with any DAC960 controller
-in the system. For demonstration purposes, while I/O is active Physical Drive
-1:2 is now disconnected, simulating a drive failure. The failure is noted by
-the driver within 10 seconds of the controller's having detected it, and the
-driver logs the following console status messages:
-
-DAC960#0: Physical Drive 1:1 Error Log: Sense Key = 6, ASC = 29, ASCQ = 02
-DAC960#0: Physical Drive 1:3 Error Log: Sense Key = 6, ASC = 29, ASCQ = 02
-DAC960#0: Physical Drive 1:2 killed because of timeout on SCSI command
-DAC960#0: Physical Drive 1:2 is now DEAD
-DAC960#0: Physical Drive 1:2 killed because it was removed
-DAC960#0: Logical Drive 0 (/dev/rd/c0d0) is now CRITICAL
-DAC960#0: Logical Drive 1 (/dev/rd/c0d1) is now CRITICAL
-
-Since a standby drive is configured, the controller automatically begins
-rebuilding onto the standby drive:
-
-DAC960#0: Physical Drive 1:3 is now WRITE-ONLY
-DAC960#0: Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 4% completed
-
-Concurrently with the above, the driver status available from /proc/rd also
-reflects the drive failure and automatic rebuild. The status message in
-/proc/rd/status has changed from "OK" to "ALERT":
-
-gwynedd:/u/lnz# cat /proc/rd/status
-ALERT
-
-and /proc/rd/c0/current_status has been updated:
-
-gwynedd:/u/lnz# cat /proc/rd/c0/current_status
- ...
- Physical Devices:
- 0:1 - Disk: Online, 2201600 blocks
- 0:2 - Disk: Online, 2201600 blocks
- 0:3 - Disk: Online, 2201600 blocks
- 1:1 - Disk: Online, 2201600 blocks
- 1:2 - Disk: Dead, 2201600 blocks
- 1:3 - Disk: Write-Only, 2201600 blocks
- Logical Drives:
- /dev/rd/c0d0: RAID-5, Critical, 4399104 blocks, Write Thru
- /dev/rd/c0d1: RAID-6, Critical, 2754560 blocks, Write Thru
- Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 4% completed
-
-As the rebuild progresses, the current status in /proc/rd/c0/current_status is
-updated every 10 seconds:
-
-gwynedd:/u/lnz# cat /proc/rd/c0/current_status
- ...
- Physical Devices:
- 0:1 - Disk: Online, 2201600 blocks
- 0:2 - Disk: Online, 2201600 blocks
- 0:3 - Disk: Online, 2201600 blocks
- 1:1 - Disk: Online, 2201600 blocks
- 1:2 - Disk: Dead, 2201600 blocks
- 1:3 - Disk: Write-Only, 2201600 blocks
- Logical Drives:
- /dev/rd/c0d0: RAID-5, Critical, 4399104 blocks, Write Thru
- /dev/rd/c0d1: RAID-6, Critical, 2754560 blocks, Write Thru
- Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 40% completed
-
-and every minute a progress message is logged on the console by the driver:
-
-DAC960#0: Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 40% completed
-DAC960#0: Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 76% completed
-DAC960#0: Rebuild in Progress: Logical Drive 1 (/dev/rd/c0d1) 66% completed
-DAC960#0: Rebuild in Progress: Logical Drive 1 (/dev/rd/c0d1) 84% completed
-
-Finally, the rebuild completes successfully. The driver logs the status of the
-logical and physical drives and the rebuild completion:
-
-DAC960#0: Rebuild Completed Successfully
-DAC960#0: Physical Drive 1:3 is now ONLINE
-DAC960#0: Logical Drive 0 (/dev/rd/c0d0) is now ONLINE
-DAC960#0: Logical Drive 1 (/dev/rd/c0d1) is now ONLINE
-
-/proc/rd/c0/current_status is updated:
-
-***** DAC960 RAID Driver Version 2.0.0 of 23 March 1999 *****
-Copyright 1998-1999 by Leonard N. Zubkoff <lnz@dandelion.com>
-Configuring Mylex DAC960PJ PCI RAID Controller
- Firmware Version: 4.06-0-08, Channels: 3, Memory Size: 8MB
- PCI Bus: 0, Device: 19, Function: 1, I/O Address: Unassigned
- PCI Address: 0xFD4FC000 mapped at 0x8807000, IRQ Channel: 9
- Controller Queue Depth: 128, Maximum Blocks per Command: 128
- Driver Queue Depth: 127, Maximum Scatter/Gather Segments: 33
- Stripe Size: 64KB, Segment Size: 8KB, BIOS Geometry: 255/63
- Physical Devices:
- 0:1 - Disk: Online, 2201600 blocks
- 0:2 - Disk: Online, 2201600 blocks
- 0:3 - Disk: Online, 2201600 blocks
- 1:1 - Disk: Online, 2201600 blocks
- 1:2 - Disk: Dead, 2201600 blocks
- 1:3 - Disk: Online, 2201600 blocks
- Logical Drives:
- /dev/rd/c0d0: RAID-5, Online, 4399104 blocks, Write Thru
- /dev/rd/c0d1: RAID-6, Online, 2754560 blocks, Write Thru
- Rebuild Completed Successfully
-
-and /proc/rd/status indicates that everything is healthy once again:
-
-gwynedd:/u/lnz# cat /proc/rd/status
-OK
-
-Note that the absence of a viable standby drive does not create an "ALERT"
-status. Once dead Physical Drive 1:2 has been replaced, the controller must be
-told that this has occurred and that the newly replaced drive should become the
-new standby drive:
-
-gwynedd:/u/lnz# echo "make-standby 1:2" > /proc/rd/c0/user_command
-gwynedd:/u/lnz# cat /proc/rd/c0/user_command
-Make Standby of Physical Drive 1:2 Succeeded
-
-The echo command instructs the controller to make Physical Drive 1:2 into a
-standby drive, and the status message that results from the operation is then
-available for reading from /proc/rd/c0/user_command, as well as being logged to
-the console by the driver. Within 60 seconds of this command the driver logs:
-
-DAC960#0: Physical Drive 1:2 Error Log: Sense Key = 6, ASC = 29, ASCQ = 01
-DAC960#0: Physical Drive 1:2 is now STANDBY
-DAC960#0: Make Standby of Physical Drive 1:2 Succeeded
-
-and /proc/rd/c0/current_status is updated:
-
-gwynedd:/u/lnz# cat /proc/rd/c0/current_status
- ...
- Physical Devices:
- 0:1 - Disk: Online, 2201600 blocks
- 0:2 - Disk: Online, 2201600 blocks
- 0:3 - Disk: Online, 2201600 blocks
- 1:1 - Disk: Online, 2201600 blocks
- 1:2 - Disk: Standby, 2201600 blocks
- 1:3 - Disk: Online, 2201600 blocks
- Logical Drives:
- /dev/rd/c0d0: RAID-5, Online, 4399104 blocks, Write Thru
- /dev/rd/c0d1: RAID-6, Online, 2754560 blocks, Write Thru
- Rebuild Completed Successfully