summaryrefslogtreecommitdiff
path: root/Documentation/DocBook
diff options
context:
space:
mode:
authorMauro Carvalho Chehab <mchehab@s-opensource.com>2017-05-14 17:41:53 +0300
committerMauro Carvalho Chehab <mchehab@s-opensource.com>2017-05-16 14:44:19 +0300
commit415008af321999f502c281cae617037b3738d127 (patch)
treed56f3a3b56f0707b4234c0890b89c72e917f196a /Documentation/DocBook
parentbffac837f3a385e08e9252e9089dc98741743f25 (diff)
downloadlinux-415008af321999f502c281cae617037b3738d127.tar.xz
docs-rst: convert lsm from DocBook to ReST
This file is outdated. Still, as it is the only one left at DocBook dir, convert it, and store it, with a .txt extension, under Documentation/lsm.txt. This way, we can get rid of DocBook from the building system, without needing to wait for someone to take care of it. Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
Diffstat (limited to 'Documentation/DocBook')
-rw-r--r--Documentation/DocBook/Makefile275
-rw-r--r--Documentation/DocBook/lsm.tmpl265
2 files changed, 0 insertions, 540 deletions
diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile
index efba7f980895..8b137891791f 100644
--- a/Documentation/DocBook/Makefile
+++ b/Documentation/DocBook/Makefile
@@ -1,276 +1 @@
-###
-# This makefile is used to generate the kernel documentation,
-# primarily based on in-line comments in various source files.
-# See Documentation/kernel-doc-nano-HOWTO.txt for instruction in how
-# to document the SRC - and how to read it.
-# To add a new book the only step required is to add the book to the
-# list of DOCBOOKS.
-DOCBOOKS := lsm.xml
-
-ifeq ($(DOCBOOKS),)
-
-# Skip DocBook build if the user explicitly requested no DOCBOOKS.
-.DEFAULT:
- @echo " SKIP DocBook $@ target (DOCBOOKS=\"\" specified)."
-else
-ifneq ($(SPHINXDIRS),)
-
-# Skip DocBook build if the user explicitly requested a sphinx dir
-.DEFAULT:
- @echo " SKIP DocBook $@ target (SPHINXDIRS specified)."
-else
-
-
-###
-# The build process is as follows (targets):
-# (xmldocs) [by docproc]
-# file.tmpl --> file.xml +--> file.ps (psdocs) [by db2ps or xmlto]
-# +--> file.pdf (pdfdocs) [by db2pdf or xmlto]
-# +--> DIR=file (htmldocs) [by xmlto]
-# +--> man/ (mandocs) [by xmlto]
-
-
-# for PDF and PS output you can choose between xmlto and docbook-utils tools
-PDF_METHOD = $(prefer-db2x)
-PS_METHOD = $(prefer-db2x)
-
-
-targets += $(DOCBOOKS)
-BOOKS := $(addprefix $(obj)/,$(DOCBOOKS))
-xmldocs: $(BOOKS)
-sgmldocs: xmldocs
-
-PS := $(patsubst %.xml, %.ps, $(BOOKS))
-psdocs: $(PS)
-
-PDF := $(patsubst %.xml, %.pdf, $(BOOKS))
-pdfdocs: $(PDF)
-
-HTML := $(sort $(patsubst %.xml, %.html, $(BOOKS)))
-htmldocs: $(HTML)
- $(call cmd,build_main_index)
-
-MAN := $(patsubst %.xml, %.9, $(BOOKS))
-mandocs: $(MAN)
- find $(obj)/man -name '*.9' | xargs gzip -nf
-
-# Default location for installed man pages
-export INSTALL_MAN_PATH = $(objtree)/usr
-
-installmandocs: mandocs
- mkdir -p $(INSTALL_MAN_PATH)/man/man9/
- find $(obj)/man -name '*.9.gz' -printf '%h %f\n' | \
- sort -k 2 -k 1 | uniq -f 1 | sed -e 's: :/:' | \
- xargs install -m 644 -t $(INSTALL_MAN_PATH)/man/man9/
-
-# no-op for the DocBook toolchain
-epubdocs:
-latexdocs:
-linkcheckdocs:
-
-###
-#External programs used
-KERNELDOCXMLREF = $(srctree)/scripts/kernel-doc-xml-ref
-KERNELDOC = $(srctree)/scripts/kernel-doc
-DOCPROC = $(objtree)/scripts/docproc
-CHECK_LC_CTYPE = $(objtree)/scripts/check-lc_ctype
-
-# Use a fixed encoding - UTF-8 if the C library has support built-in
-# or ASCII if not
-LC_CTYPE := $(call try-run, LC_CTYPE=C.UTF-8 $(CHECK_LC_CTYPE),C.UTF-8,C)
-export LC_CTYPE
-
-XMLTOFLAGS = -m $(srctree)/$(src)/stylesheet.xsl
-XMLTOFLAGS += --skip-validation
-
-###
-# DOCPROC is used for two purposes:
-# 1) To generate a dependency list for a .tmpl file
-# 2) To preprocess a .tmpl file and call kernel-doc with
-# appropriate parameters.
-# The following rules are used to generate the .xml documentation
-# required to generate the final targets. (ps, pdf, html).
-quiet_cmd_docproc = DOCPROC $@
- cmd_docproc = SRCTREE=$(srctree)/ $(DOCPROC) doc $< >$@
-define rule_docproc
- set -e; \
- $(if $($(quiet)cmd_$(1)),echo ' $($(quiet)cmd_$(1))';) \
- $(cmd_$(1)); \
- ( \
- echo 'cmd_$@ := $(cmd_$(1))'; \
- echo $@: `SRCTREE=$(srctree) $(DOCPROC) depend $<`; \
- ) > $(dir $@).$(notdir $@).cmd
-endef
-
-%.xml: %.tmpl $(KERNELDOC) $(DOCPROC) $(KERNELDOCXMLREF) FORCE
- $(call if_changed_rule,docproc)
-
-# Tell kbuild to always build the programs
-always := $(hostprogs-y)
-
-notfoundtemplate = echo "*** You have to install docbook-utils or xmlto ***"; \
- exit 1
-db2xtemplate = db2TYPE -o $(dir $@) $<
-xmltotemplate = xmlto TYPE $(XMLTOFLAGS) -o $(dir $@) $<
-
-# determine which methods are available
-ifeq ($(shell which db2ps >/dev/null 2>&1 && echo found),found)
- use-db2x = db2x
- prefer-db2x = db2x
-else
- use-db2x = notfound
- prefer-db2x = $(use-xmlto)
-endif
-ifeq ($(shell which xmlto >/dev/null 2>&1 && echo found),found)
- use-xmlto = xmlto
- prefer-xmlto = xmlto
-else
- use-xmlto = notfound
- prefer-xmlto = $(use-db2x)
-endif
-
-# the commands, generated from the chosen template
-quiet_cmd_db2ps = PS $@
- cmd_db2ps = $(subst TYPE,ps, $($(PS_METHOD)template))
-%.ps : %.xml
- $(call cmd,db2ps)
-
-quiet_cmd_db2pdf = PDF $@
- cmd_db2pdf = $(subst TYPE,pdf, $($(PDF_METHOD)template))
-%.pdf : %.xml
- $(call cmd,db2pdf)
-
-
-index = index.html
-main_idx = $(obj)/$(index)
-quiet_cmd_build_main_index = HTML $(main_idx)
- cmd_build_main_index = rm -rf $(main_idx); \
- echo '<h1>Linux Kernel HTML Documentation</h1>' >> $(main_idx) && \
- echo '<h2>Kernel Version: $(KERNELVERSION)</h2>' >> $(main_idx) && \
- cat $(HTML) >> $(main_idx)
-
-quiet_cmd_db2html = HTML $@
- cmd_db2html = xmlto html $(XMLTOFLAGS) -o $(patsubst %.html,%,$@) $< && \
- echo '<a HREF="$(patsubst %.html,%,$(notdir $@))/index.html"> \
- $(patsubst %.html,%,$(notdir $@))</a><p>' > $@
-
-###
-# Rules to create an aux XML and .db, and use them to re-process the DocBook XML
-# to fill internal hyperlinks
- gen_aux_xml = :
- quiet_gen_aux_xml = echo ' XMLREF $@'
-silent_gen_aux_xml = :
-%.aux.xml: %.xml
- @$($(quiet)gen_aux_xml)
- @rm -rf $@
- @(cat $< | egrep "^<refentry id" | egrep -o "\".*\"" | cut -f 2 -d \" > $<.db)
- @$(KERNELDOCXMLREF) -db $<.db $< > $@
-.PRECIOUS: %.aux.xml
-
-%.html: %.aux.xml
- @(which xmlto > /dev/null 2>&1) || \
- (echo "*** You need to install xmlto ***"; \
- exit 1)
- @rm -rf $@ $(patsubst %.html,%,$@)
- $(call cmd,db2html)
- @if [ ! -z "$(PNG-$(basename $(notdir $@)))" ]; then \
- cp $(PNG-$(basename $(notdir $@))) $(patsubst %.html,%,$@); fi
-
-quiet_cmd_db2man = MAN $@
- cmd_db2man = if grep -q refentry $<; then xmlto man $(XMLTOFLAGS) -o $(obj)/man/$(*F) $< ; fi
-%.9 : %.xml
- @(which xmlto > /dev/null 2>&1) || \
- (echo "*** You need to install xmlto ***"; \
- exit 1)
- $(Q)mkdir -p $(obj)/man/$(*F)
- $(call cmd,db2man)
- @touch $@
-
-###
-# Rules to generate postscripts and PNG images from .fig format files
-quiet_cmd_fig2eps = FIG2EPS $@
- cmd_fig2eps = fig2dev -Leps $< $@
-
-%.eps: %.fig
- @(which fig2dev > /dev/null 2>&1) || \
- (echo "*** You need to install transfig ***"; \
- exit 1)
- $(call cmd,fig2eps)
-
-quiet_cmd_fig2png = FIG2PNG $@
- cmd_fig2png = fig2dev -Lpng $< $@
-
-%.png: %.fig
- @(which fig2dev > /dev/null 2>&1) || \
- (echo "*** You need to install transfig ***"; \
- exit 1)
- $(call cmd,fig2png)
-
-###
-# Rule to convert a .c file to inline XML documentation
- gen_xml = :
- quiet_gen_xml = echo ' GEN $@'
-silent_gen_xml = :
-%.xml: %.c
- @$($(quiet)gen_xml)
- @( \
- echo "<programlisting>"; \
- expand --tabs=8 < $< | \
- sed -e "s/&/\\&amp;/g" \
- -e "s/</\\&lt;/g" \
- -e "s/>/\\&gt;/g"; \
- echo "</programlisting>") > $@
-
-endif # DOCBOOKS=""
-endif # SPHINDIR=...
-
-###
-# Help targets as used by the top-level makefile
-dochelp:
- @echo ' Linux kernel internal documentation in different formats (DocBook):'
- @echo ' htmldocs - HTML'
- @echo ' pdfdocs - PDF'
- @echo ' psdocs - Postscript'
- @echo ' xmldocs - XML DocBook'
- @echo ' mandocs - man pages'
- @echo ' installmandocs - install man pages generated by mandocs to INSTALL_MAN_PATH'; \
- echo ' (default: $(INSTALL_MAN_PATH))'; \
- echo ''
- @echo ' cleandocs - clean all generated DocBook files'
- @echo
- @echo ' make DOCBOOKS="s1.xml s2.xml" [target] Generate only docs s1.xml s2.xml'
- @echo ' valid values for DOCBOOKS are: $(DOCBOOKS)'
- @echo
- @echo " make DOCBOOKS=\"\" [target] Don't generate docs from Docbook"
- @echo ' This is useful to generate only the ReST docs (Sphinx)'
-
-
-###
-# Temporary files left by various tools
-clean-files := $(DOCBOOKS) \
- $(patsubst %.xml, %.dvi, $(DOCBOOKS)) \
- $(patsubst %.xml, %.aux, $(DOCBOOKS)) \
- $(patsubst %.xml, %.tex, $(DOCBOOKS)) \
- $(patsubst %.xml, %.log, $(DOCBOOKS)) \
- $(patsubst %.xml, %.out, $(DOCBOOKS)) \
- $(patsubst %.xml, %.ps, $(DOCBOOKS)) \
- $(patsubst %.xml, %.pdf, $(DOCBOOKS)) \
- $(patsubst %.xml, %.html, $(DOCBOOKS)) \
- $(patsubst %.xml, %.9, $(DOCBOOKS)) \
- $(patsubst %.xml, %.aux.xml, $(DOCBOOKS)) \
- $(patsubst %.xml, %.xml.db, $(DOCBOOKS)) \
- $(patsubst %.xml, %.xml, $(DOCBOOKS)) \
- $(patsubst %.xml, .%.xml.cmd, $(DOCBOOKS)) \
- $(index)
-
-clean-dirs := $(patsubst %.xml,%,$(DOCBOOKS)) man
-
-cleandocs:
- $(Q)rm -f $(call objectify, $(clean-files))
- $(Q)rm -rf $(call objectify, $(clean-dirs))
-
-# Declare the contents of the .PHONY variable as phony. We keep that
-# information in a variable so we can use it in if_changed and friends.
-
-.PHONY: $(PHONY)
diff --git a/Documentation/DocBook/lsm.tmpl b/Documentation/DocBook/lsm.tmpl
deleted file mode 100644
index fe7664ce9667..000000000000
--- a/Documentation/DocBook/lsm.tmpl
+++ /dev/null
@@ -1,265 +0,0 @@
-<?xml version="1.0" encoding="UTF-8"?>
-<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
- "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
-
-<article class="whitepaper" id="LinuxSecurityModule" lang="en">
- <articleinfo>
- <title>Linux Security Modules: General Security Hooks for Linux</title>
- <authorgroup>
- <author>
- <firstname>Stephen</firstname>
- <surname>Smalley</surname>
- <affiliation>
- <orgname>NAI Labs</orgname>
- <address><email>ssmalley@nai.com</email></address>
- </affiliation>
- </author>
- <author>
- <firstname>Timothy</firstname>
- <surname>Fraser</surname>
- <affiliation>
- <orgname>NAI Labs</orgname>
- <address><email>tfraser@nai.com</email></address>
- </affiliation>
- </author>
- <author>
- <firstname>Chris</firstname>
- <surname>Vance</surname>
- <affiliation>
- <orgname>NAI Labs</orgname>
- <address><email>cvance@nai.com</email></address>
- </affiliation>
- </author>
- </authorgroup>
- </articleinfo>
-
-<sect1 id="Introduction"><title>Introduction</title>
-
-<para>
-In March 2001, the National Security Agency (NSA) gave a presentation
-about Security-Enhanced Linux (SELinux) at the 2.5 Linux Kernel
-Summit. SELinux is an implementation of flexible and fine-grained
-nondiscretionary access controls in the Linux kernel, originally
-implemented as its own particular kernel patch. Several other
-security projects (e.g. RSBAC, Medusa) have also developed flexible
-access control architectures for the Linux kernel, and various
-projects have developed particular access control models for Linux
-(e.g. LIDS, DTE, SubDomain). Each project has developed and
-maintained its own kernel patch to support its security needs.
-</para>
-
-<para>
-In response to the NSA presentation, Linus Torvalds made a set of
-remarks that described a security framework he would be willing to
-consider for inclusion in the mainstream Linux kernel. He described a
-general framework that would provide a set of security hooks to
-control operations on kernel objects and a set of opaque security
-fields in kernel data structures for maintaining security attributes.
-This framework could then be used by loadable kernel modules to
-implement any desired model of security. Linus also suggested the
-possibility of migrating the Linux capabilities code into such a
-module.
-</para>
-
-<para>
-The Linux Security Modules (LSM) project was started by WireX to
-develop such a framework. LSM is a joint development effort by
-several security projects, including Immunix, SELinux, SGI and Janus,
-and several individuals, including Greg Kroah-Hartman and James
-Morris, to develop a Linux kernel patch that implements this
-framework. The patch is currently tracking the 2.4 series and is
-targeted for integration into the 2.5 development series. This
-technical report provides an overview of the framework and the example
-capabilities security module provided by the LSM kernel patch.
-</para>
-
-</sect1>
-
-<sect1 id="framework"><title>LSM Framework</title>
-
-<para>
-The LSM kernel patch provides a general kernel framework to support
-security modules. In particular, the LSM framework is primarily
-focused on supporting access control modules, although future
-development is likely to address other security needs such as
-auditing. By itself, the framework does not provide any additional
-security; it merely provides the infrastructure to support security
-modules. The LSM kernel patch also moves most of the capabilities
-logic into an optional security module, with the system defaulting
-to the traditional superuser logic. This capabilities module
-is discussed further in <xref linkend="cap"/>.
-</para>
-
-<para>
-The LSM kernel patch adds security fields to kernel data structures
-and inserts calls to hook functions at critical points in the kernel
-code to manage the security fields and to perform access control. It
-also adds functions for registering and unregistering security
-modules, and adds a general <function>security</function> system call
-to support new system calls for security-aware applications.
-</para>
-
-<para>
-The LSM security fields are simply <type>void*</type> pointers. For
-process and program execution security information, security fields
-were added to <structname>struct task_struct</structname> and
-<structname>struct linux_binprm</structname>. For filesystem security
-information, a security field was added to
-<structname>struct super_block</structname>. For pipe, file, and socket
-security information, security fields were added to
-<structname>struct inode</structname> and
-<structname>struct file</structname>. For packet and network device security
-information, security fields were added to
-<structname>struct sk_buff</structname> and
-<structname>struct net_device</structname>. For System V IPC security
-information, security fields were added to
-<structname>struct kern_ipc_perm</structname> and
-<structname>struct msg_msg</structname>; additionally, the definitions
-for <structname>struct msg_msg</structname>, <structname>struct
-msg_queue</structname>, and <structname>struct
-shmid_kernel</structname> were moved to header files
-(<filename>include/linux/msg.h</filename> and
-<filename>include/linux/shm.h</filename> as appropriate) to allow
-the security modules to use these definitions.
-</para>
-
-<para>
-Each LSM hook is a function pointer in a global table,
-security_ops. This table is a
-<structname>security_operations</structname> structure as defined by
-<filename>include/linux/security.h</filename>. Detailed documentation
-for each hook is included in this header file. At present, this
-structure consists of a collection of substructures that group related
-hooks based on the kernel object (e.g. task, inode, file, sk_buff,
-etc) as well as some top-level hook function pointers for system
-operations. This structure is likely to be flattened in the future
-for performance. The placement of the hook calls in the kernel code
-is described by the "called:" lines in the per-hook documentation in
-the header file. The hook calls can also be easily found in the
-kernel code by looking for the string "security_ops->".
-
-</para>
-
-<para>
-Linus mentioned per-process security hooks in his original remarks as a
-possible alternative to global security hooks. However, if LSM were
-to start from the perspective of per-process hooks, then the base
-framework would have to deal with how to handle operations that
-involve multiple processes (e.g. kill), since each process might have
-its own hook for controlling the operation. This would require a
-general mechanism for composing hooks in the base framework.
-Additionally, LSM would still need global hooks for operations that
-have no process context (e.g. network input operations).
-Consequently, LSM provides global security hooks, but a security
-module is free to implement per-process hooks (where that makes sense)
-by storing a security_ops table in each process' security field and
-then invoking these per-process hooks from the global hooks.
-The problem of composition is thus deferred to the module.
-</para>
-
-<para>
-The global security_ops table is initialized to a set of hook
-functions provided by a dummy security module that provides
-traditional superuser logic. A <function>register_security</function>
-function (in <filename>security/security.c</filename>) is provided to
-allow a security module to set security_ops to refer to its own hook
-functions, and an <function>unregister_security</function> function is
-provided to revert security_ops to the dummy module hooks. This
-mechanism is used to set the primary security module, which is
-responsible for making the final decision for each hook.
-</para>
-
-<para>
-LSM also provides a simple mechanism for stacking additional security
-modules with the primary security module. It defines
-<function>register_security</function> and
-<function>unregister_security</function> hooks in the
-<structname>security_operations</structname> structure and provides
-<function>mod_reg_security</function> and
-<function>mod_unreg_security</function> functions that invoke these
-hooks after performing some sanity checking. A security module can
-call these functions in order to stack with other modules. However,
-the actual details of how this stacking is handled are deferred to the
-module, which can implement these hooks in any way it wishes
-(including always returning an error if it does not wish to support
-stacking). In this manner, LSM again defers the problem of
-composition to the module.
-</para>
-
-<para>
-Although the LSM hooks are organized into substructures based on
-kernel object, all of the hooks can be viewed as falling into two
-major categories: hooks that are used to manage the security fields
-and hooks that are used to perform access control. Examples of the
-first category of hooks include the
-<function>alloc_security</function> and
-<function>free_security</function> hooks defined for each kernel data
-structure that has a security field. These hooks are used to allocate
-and free security structures for kernel objects. The first category
-of hooks also includes hooks that set information in the security
-field after allocation, such as the <function>post_lookup</function>
-hook in <structname>struct inode_security_ops</structname>. This hook
-is used to set security information for inodes after successful lookup
-operations. An example of the second category of hooks is the
-<function>permission</function> hook in
-<structname>struct inode_security_ops</structname>. This hook checks
-permission when accessing an inode.
-</para>
-
-</sect1>
-
-<sect1 id="cap"><title>LSM Capabilities Module</title>
-
-<para>
-The LSM kernel patch moves most of the existing POSIX.1e capabilities
-logic into an optional security module stored in the file
-<filename>security/capability.c</filename>. This change allows
-users who do not want to use capabilities to omit this code entirely
-from their kernel, instead using the dummy module for traditional
-superuser logic or any other module that they desire. This change
-also allows the developers of the capabilities logic to maintain and
-enhance their code more freely, without needing to integrate patches
-back into the base kernel.
-</para>
-
-<para>
-In addition to moving the capabilities logic, the LSM kernel patch
-could move the capability-related fields from the kernel data
-structures into the new security fields managed by the security
-modules. However, at present, the LSM kernel patch leaves the
-capability fields in the kernel data structures. In his original
-remarks, Linus suggested that this might be preferable so that other
-security modules can be easily stacked with the capabilities module
-without needing to chain multiple security structures on the security field.
-It also avoids imposing extra overhead on the capabilities module
-to manage the security fields. However, the LSM framework could
-certainly support such a move if it is determined to be desirable,
-with only a few additional changes described below.
-</para>
-
-<para>
-At present, the capabilities logic for computing process capabilities
-on <function>execve</function> and <function>set*uid</function>,
-checking capabilities for a particular process, saving and checking
-capabilities for netlink messages, and handling the
-<function>capget</function> and <function>capset</function> system
-calls have been moved into the capabilities module. There are still a
-few locations in the base kernel where capability-related fields are
-directly examined or modified, but the current version of the LSM
-patch does allow a security module to completely replace the
-assignment and testing of capabilities. These few locations would
-need to be changed if the capability-related fields were moved into
-the security field. The following is a list of known locations that
-still perform such direct examination or modification of
-capability-related fields:
-<itemizedlist>
-<listitem><para><filename>fs/open.c</filename>:<function>sys_access</function></para></listitem>
-<listitem><para><filename>fs/lockd/host.c</filename>:<function>nlm_bind_host</function></para></listitem>
-<listitem><para><filename>fs/nfsd/auth.c</filename>:<function>nfsd_setuser</function></para></listitem>
-<listitem><para><filename>fs/proc/array.c</filename>:<function>task_cap</function></para></listitem>
-</itemizedlist>
-</para>
-
-</sect1>
-
-</article>