diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2017-05-11 20:44:22 +0300 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2017-05-11 20:44:22 +0300 |
commit | 9786e34e0a6055dbd1b46e16dfa791ac2b3da289 (patch) | |
tree | 0151608bdb134bec3a59748f40c67324798a224e | |
parent | 791a9a666d1afe2603bcb2c6a4852d684e879252 (diff) | |
parent | a9402889f41cc2db7a9b162990bef271be098ff0 (diff) | |
download | linux-9786e34e0a6055dbd1b46e16dfa791ac2b3da289.tar.xz |
Merge tag 'for-linus-20170510' of git://git.infradead.org/linux-mtd
Pull MTD updates from Brian Norris:
"NAND, from Boris:
- some minor fixes/improvements on existing drivers (fsmc, gpio, ifc,
davinci, brcmnand, omap)
- a huge cleanup/rework of the denali driver accompanied with core
fixes/improvements to simplify the driver code
- a complete rewrite of the atmel driver to support new DT bindings
make future evolution easier
- the addition of per-vendor detection/initialization steps to avoid
extending the nand_ids table with more extended-id entries
SPI NOR, from Cyrille:
- fixes in the hisi, intel and Mediatek SPI controller drivers
- fixes to some SPI flash memories not supporting the Chip Erase
command.
- add support to some new memory parts (Winbond, Macronix, Micron,
ESMT).
- add new driver for the STM32 QSPI controller
And a few fixes for Gemini and Versatile platforms on physmap-of"
* tag 'for-linus-20170510' of git://git.infradead.org/linux-mtd: (100 commits)
MAINTAINERS: Update NAND subsystem git repositories
mtd: nand: gpio: update binding
mtd: nand: add ooblayout for old hamming layout
mtd: oxnas_nand: Allocating more than necessary in probe()
dt-bindings: mtd: Document the STM32 QSPI bindings
mtd: mtk-nor: set controller's address width according to nor flash
mtd: spi-nor: add driver for STM32 quad spi flash controller
mtd: nand: brcmnand: Check flash #WP pin status before nand erase/program
mtd: nand: davinci: add comment on NAND subpage write status on keystone
mtd: nand: omap2: Fix partition creation via cmdline mtdparts
mtd: nand: NULL terminate a of_device_id table
mtd: nand: Fix a couple error codes
mtd: nand: allow drivers to request minimum alignment for passed buffer
mtd: nand: allocate aligned buffers if NAND_OWN_BUFFERS is unset
mtd: nand: denali: allow to override revision number
mtd: nand: denali_dt: use pdev instead of ofdev for platform_device
mtd: nand: denali_dt: remove dma-mask DT property
mtd: nand: denali: support 64bit capable DMA engine
mtd: nand: denali_dt: enable HW_ECC_FIXUP for Altera SOCFPGA variant
mtd: nand: denali: support HW_ECC_FIXUP capability
...
53 files changed, 6173 insertions, 3834 deletions
diff --git a/Documentation/devicetree/bindings/mtd/atmel-nand.txt b/Documentation/devicetree/bindings/mtd/atmel-nand.txt index 3e7ee99d3949..f6bee57e453a 100644 --- a/Documentation/devicetree/bindings/mtd/atmel-nand.txt +++ b/Documentation/devicetree/bindings/mtd/atmel-nand.txt @@ -1,4 +1,109 @@ -Atmel NAND flash +Atmel NAND flash controller bindings + +The NAND flash controller node should be defined under the EBI bus (see +Documentation/devicetree/bindings/memory-controllers/atmel,ebi.txt). +One or several NAND devices can be defined under this NAND controller. +The NAND controller might be connected to an ECC engine. + +* NAND controller bindings: + +Required properties: +- compatible: should be one of the following + "atmel,at91rm9200-nand-controller" + "atmel,at91sam9260-nand-controller" + "atmel,at91sam9261-nand-controller" + "atmel,at91sam9g45-nand-controller" + "atmel,sama5d3-nand-controller" +- ranges: empty ranges property to forward EBI ranges definitions. +- #address-cells: should be set to 2. +- #size-cells: should be set to 1. +- atmel,nfc-io: phandle to the NFC IO block. Only required for sama5d3 + controllers. +- atmel,nfc-sram: phandle to the NFC SRAM block. Only required for sama5d3 + controllers. + +Optional properties: +- ecc-engine: phandle to the PMECC block. Only meaningful if the SoC embeds + a PMECC engine. + +* NAND device/chip bindings: + +Required properties: +- reg: describes the CS lines assigned to the NAND device. If the NAND device + exposes multiple CS lines (multi-dies chips), your reg property will + contain X tuples of 3 entries. + 1st entry: the CS line this NAND chip is connected to + 2nd entry: the base offset of the memory region assigned to this + device (always 0) + 3rd entry: the memory region size (always 0x800000) + +Optional properties: +- rb-gpios: the GPIO(s) used to check the Ready/Busy status of the NAND. +- cs-gpios: the GPIO(s) used to control the CS line. +- det-gpios: the GPIO used to detect if a Smartmedia Card is present. +- atmel,rb: an integer identifying the native Ready/Busy pin. Only meaningful + on sama5 SoCs. + +All generic properties described in +Documentation/devicetree/bindings/mtd/{common,nand}.txt also apply to the NAND +device node, and NAND partitions should be defined under the NAND node as +described in Documentation/devicetree/bindings/mtd/partition.txt. + +* ECC engine (PMECC) bindings: + +Required properties: +- compatible: should be one of the following + "atmel,at91sam9g45-pmecc" + "atmel,sama5d4-pmecc" + "atmel,sama5d2-pmecc" +- reg: should contain 2 register ranges. The first one is pointing to the PMECC + block, and the second one to the PMECC_ERRLOC block. + +Example: + + pmecc: ecc-engine@ffffc070 { + compatible = "atmel,at91sam9g45-pmecc"; + reg = <0xffffc070 0x490>, + <0xffffc500 0x100>; + }; + + ebi: ebi@10000000 { + compatible = "atmel,sama5d3-ebi"; + #address-cells = <2>; + #size-cells = <1>; + atmel,smc = <&hsmc>; + reg = <0x10000000 0x10000000 + 0x40000000 0x30000000>; + ranges = <0x0 0x0 0x10000000 0x10000000 + 0x1 0x0 0x40000000 0x10000000 + 0x2 0x0 0x50000000 0x10000000 + 0x3 0x0 0x60000000 0x10000000>; + clocks = <&mck>; + + nand_controller: nand-controller { + compatible = "atmel,sama5d3-nand-controller"; + atmel,nfc-sram = <&nfc_sram>; + atmel,nfc-io = <&nfc_io>; + ecc-engine = <&pmecc>; + #address-cells = <2>; + #size-cells = <1>; + ranges; + + nand@3 { + reg = <0x3 0x0 0x800000>; + atmel,rb = <0>; + + /* + * Put generic NAND/MTD properties and + * subnodes here. + */ + }; + }; + }; + +----------------------------------------------------------------------- + +Deprecated bindings (should not be used in new device trees): Required properties: - compatible: The possible values are: diff --git a/Documentation/devicetree/bindings/mtd/denali-nand.txt b/Documentation/devicetree/bindings/mtd/denali-nand.txt index b04d03a1d499..e593bbeb2115 100644 --- a/Documentation/devicetree/bindings/mtd/denali-nand.txt +++ b/Documentation/devicetree/bindings/mtd/denali-nand.txt @@ -1,11 +1,11 @@ * Denali NAND controller Required properties: - - compatible : should be "denali,denali-nand-dt" + - compatible : should be one of the following: + "altr,socfpga-denali-nand" - for Altera SOCFPGA - reg : should contain registers location and length for data and reg. - reg-names: Should contain the reg names "nand_data" and "denali_reg" - interrupts : The interrupt number. - - dm-mask : DMA bit mask The device tree may optionally contain sub-nodes describing partitions of the address space. See partition.txt for more detail. @@ -15,9 +15,8 @@ Examples: nand: nand@ff900000 { #address-cells = <1>; #size-cells = <1>; - compatible = "denali,denali-nand-dt"; + compatible = "altr,socfpga-denali-nand"; reg = <0xff900000 0x100000>, <0xffb80000 0x10000>; reg-names = "nand_data", "denali_reg"; interrupts = <0 144 4>; - dma-mask = <0xffffffff>; }; diff --git a/Documentation/devicetree/bindings/mtd/gpio-control-nand.txt b/Documentation/devicetree/bindings/mtd/gpio-control-nand.txt index af8915b41ccf..486a17d533d7 100644 --- a/Documentation/devicetree/bindings/mtd/gpio-control-nand.txt +++ b/Documentation/devicetree/bindings/mtd/gpio-control-nand.txt @@ -12,7 +12,7 @@ Required properties: - #address-cells, #size-cells : Must be present if the device has sub-nodes representing partitions. - gpios : Specifies the GPIO pins to control the NAND device. The order of - GPIO references is: RDY, nCE, ALE, CLE, and an optional nWP. + GPIO references is: RDY, nCE, ALE, CLE, and nWP. nCE and nWP are optional. Optional properties: - bank-width : Width (in bytes) of the device. If not present, the width @@ -36,7 +36,7 @@ gpio-nand@1,0 { #address-cells = <1>; #size-cells = <1>; gpios = <&banka 1 0>, /* RDY */ - <&banka 2 0>, /* nCE */ + <0>, /* nCE */ <&banka 3 0>, /* ALE */ <&banka 4 0>, /* CLE */ <0>; /* nWP */ diff --git a/Documentation/devicetree/bindings/mtd/stm32-quadspi.txt b/Documentation/devicetree/bindings/mtd/stm32-quadspi.txt new file mode 100644 index 000000000000..ddd18c135148 --- /dev/null +++ b/Documentation/devicetree/bindings/mtd/stm32-quadspi.txt @@ -0,0 +1,43 @@ +* STMicroelectronics Quad Serial Peripheral Interface(QuadSPI) + +Required properties: +- compatible: should be "st,stm32f469-qspi" +- reg: the first contains the register location and length. + the second contains the memory mapping address and length +- reg-names: should contain the reg names "qspi" "qspi_mm" +- interrupts: should contain the interrupt for the device +- clocks: the phandle of the clock needed by the QSPI controller +- A pinctrl must be defined to set pins in mode of operation for QSPI transfer + +Optional properties: +- resets: must contain the phandle to the reset controller. + +A spi flash must be a child of the nor_flash node and could have some +properties. Also see jedec,spi-nor.txt. + +Required properties: +- reg: chip-Select number (QSPI controller may connect 2 nor flashes) +- spi-max-frequency: max frequency of spi bus + +Optional property: +- spi-rx-bus-width: see ../spi/spi-bus.txt for the description + +Example: + +qspi: spi@a0001000 { + compatible = "st,stm32f469-qspi"; + reg = <0xa0001000 0x1000>, <0x90000000 0x10000000>; + reg-names = "qspi", "qspi_mm"; + interrupts = <91>; + resets = <&rcc STM32F4_AHB3_RESET(QSPI)>; + clocks = <&rcc 0 STM32F4_AHB3_CLOCK(QSPI)>; + pinctrl-names = "default"; + pinctrl-0 = <&pinctrl_qspi0>; + + flash@0 { + reg = <0>; + spi-rx-bus-width = <4>; + spi-max-frequency = <108000000>; + ... + }; +}; diff --git a/MAINTAINERS b/MAINTAINERS index ce3d04d67c6b..12a0b416aa06 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -2274,7 +2274,7 @@ M: Wenyou Yang <wenyou.yang@atmel.com> M: Josh Wu <rainyfeeling@outlook.com> L: linux-mtd@lists.infradead.org S: Supported -F: drivers/mtd/nand/atmel_nand* +F: drivers/mtd/nand/atmel/* ATMEL SDMMC DRIVER M: Ludovic Desroches <ludovic.desroches@microchip.com> @@ -8376,12 +8376,12 @@ M: Brian Norris <computersforpeace@gmail.com> M: Boris Brezillon <boris.brezillon@free-electrons.com> M: Marek Vasut <marek.vasut@gmail.com> M: Richard Weinberger <richard@nod.at> -M: Cyrille Pitchen <cyrille.pitchen@atmel.com> +M: Cyrille Pitchen <cyrille.pitchen@wedev4u.fr> L: linux-mtd@lists.infradead.org W: http://www.linux-mtd.infradead.org/ Q: http://patchwork.ozlabs.org/project/linux-mtd/list/ -T: git git://git.infradead.org/linux-mtd.git -T: git git://git.infradead.org/l2-mtd.git +T: git git://git.infradead.org/linux-mtd.git master +T: git git://git.infradead.org/l2-mtd.git master S: Maintained F: Documentation/devicetree/bindings/mtd/ F: drivers/mtd/ @@ -8756,7 +8756,8 @@ R: Richard Weinberger <richard@nod.at> L: linux-mtd@lists.infradead.org W: http://www.linux-mtd.infradead.org/ Q: http://patchwork.ozlabs.org/project/linux-mtd/list/ -T: git git://github.com/linux-nand/linux.git +T: git git://git.infradead.org/linux-mtd.git nand/fixes +T: git git://git.infradead.org/l2-mtd.git nand/next S: Maintained F: drivers/mtd/nand/ F: include/linux/mtd/nand*.h @@ -12113,7 +12114,7 @@ S: Maintained F: drivers/clk/spear/ SPI NOR SUBSYSTEM -M: Cyrille Pitchen <cyrille.pitchen@atmel.com> +M: Cyrille Pitchen <cyrille.pitchen@wedev4u.fr> M: Marek Vasut <marek.vasut@gmail.com> L: linux-mtd@lists.infradead.org W: http://www.linux-mtd.infradead.org/ diff --git a/arch/cris/arch-v32/drivers/Kconfig b/arch/cris/arch-v32/drivers/Kconfig index 2735eb7671a5..b7cd6b9209a9 100644 --- a/arch/cris/arch-v32/drivers/Kconfig +++ b/arch/cris/arch-v32/drivers/Kconfig @@ -136,7 +136,6 @@ config ETRAX_NANDFLASH bool "NAND flash support" depends on ETRAX_ARCH_V32 select MTD_NAND - select MTD_NAND_IDS help This option enables MTD mapping of NAND flash devices. Needed to use NAND flash memories. If unsure, say Y. diff --git a/drivers/memory/Kconfig b/drivers/memory/Kconfig index 3ecc429297a0..ffc350258041 100644 --- a/drivers/memory/Kconfig +++ b/drivers/memory/Kconfig @@ -116,7 +116,7 @@ config FSL_CORENET_CF config FSL_IFC bool - depends on FSL_SOC || ARCH_LAYERSCAPE + depends on FSL_SOC || ARCH_LAYERSCAPE || SOC_LS1021A config JZ4780_NEMC bool "Ingenic JZ4780 SoC NEMC driver" diff --git a/drivers/mtd/chips/cfi_cmdset_0002.c b/drivers/mtd/chips/cfi_cmdset_0002.c index 9dca881bb378..56aa6b75213d 100644 --- a/drivers/mtd/chips/cfi_cmdset_0002.c +++ b/drivers/mtd/chips/cfi_cmdset_0002.c @@ -323,7 +323,8 @@ static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd) * it should report a size of 8KBytes (0x0020*256). */ cfi->cfiq->EraseRegionInfo[0] = 0x002003ff; - pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name); + pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", + mtd->name); } static void fixup_s29gl064n_sectors(struct mtd_info *mtd) @@ -333,7 +334,8 @@ static void fixup_s29gl064n_sectors(struct mtd_info *mtd) if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) { cfi->cfiq->EraseRegionInfo[0] |= 0x0040; - pr_warning("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n", mtd->name); + pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n", + mtd->name); } } @@ -344,7 +346,8 @@ static void fixup_s29gl032n_sectors(struct mtd_info *mtd) if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) { cfi->cfiq->EraseRegionInfo[1] &= ~0x0040; - pr_warning("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n", mtd->name); + pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n", + mtd->name); } } @@ -358,7 +361,8 @@ static void fixup_s29ns512p_sectors(struct mtd_info *mtd) * which is not permitted by CFI. */ cfi->cfiq->EraseRegionInfo[0] = 0x020001ff; - pr_warning("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n", mtd->name); + pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n", + mtd->name); } /* Used to fix CFI-Tables of chips without Extended Query Tables */ diff --git a/drivers/mtd/maps/Makefile b/drivers/mtd/maps/Makefile index aef1846b4de2..5a09a72ab112 100644 --- a/drivers/mtd/maps/Makefile +++ b/drivers/mtd/maps/Makefile @@ -17,12 +17,10 @@ obj-$(CONFIG_MTD_CK804XROM) += ck804xrom.o obj-$(CONFIG_MTD_TSUNAMI) += tsunami_flash.o obj-$(CONFIG_MTD_PXA2XX) += pxa2xx-flash.o obj-$(CONFIG_MTD_PHYSMAP) += physmap.o -ifdef CONFIG_MTD_PHYSMAP_OF_VERSATILE -physmap_of-objs += physmap_of_versatile.o -endif -ifdef CONFIG_MTD_PHYSMAP_OF_GEMINI -physmap_of-objs += physmap_of_gemini.o -endif +physmap_of-objs-y += physmap_of_core.o +physmap_of-objs-$(CONFIG_MTD_PHYSMAP_OF_VERSATILE) += physmap_of_versatile.o +physmap_of-objs-$(CONFIG_MTD_PHYSMAP_OF_GEMINI) += physmap_of_gemini.o +physmap_of-objs := $(physmap_of-objs-y) obj-$(CONFIG_MTD_PHYSMAP_OF) += physmap_of.o obj-$(CONFIG_MTD_PISMO) += pismo.o obj-$(CONFIG_MTD_PMC_MSP_EVM) += pmcmsp-flash.o diff --git a/drivers/mtd/maps/physmap_of.c b/drivers/mtd/maps/physmap_of_core.c index 14e8909c9955..62fa6836f218 100644 --- a/drivers/mtd/maps/physmap_of.c +++ b/drivers/mtd/maps/physmap_of_core.c @@ -116,32 +116,22 @@ static const char * const part_probe_types_def[] = { static const char * const *of_get_probes(struct device_node *dp) { - const char *cp; - int cplen; - unsigned int l; - unsigned int count; const char **res; + int count; - cp = of_get_property(dp, "linux,part-probe", &cplen); - if (cp == NULL) + count = of_property_count_strings(dp, "linux,part-probe"); + if (count < 0) return part_probe_types_def; - count = 0; - for (l = 0; l != cplen; l++) - if (cp[l] == 0) - count++; - - res = kzalloc((count + 1)*sizeof(*res), GFP_KERNEL); + res = kzalloc((count + 1) * sizeof(*res), GFP_KERNEL); if (!res) return NULL; - count = 0; - while (cplen > 0) { - res[count] = cp; - l = strlen(cp) + 1; - cp += l; - cplen -= l; - count++; - } + + count = of_property_read_string_array(dp, "linux,part-probe", res, + count); + if (count < 0) + return NULL; + return res; } diff --git a/drivers/mtd/mtdswap.c b/drivers/mtd/mtdswap.c index c40e2c951758..f12879a3d4ff 100644 --- a/drivers/mtd/mtdswap.c +++ b/drivers/mtd/mtdswap.c @@ -1235,10 +1235,8 @@ static int mtdswap_show(struct seq_file *s, void *data) if (root->rb_node) { count[i] = d->trees[i].count; - min[i] = rb_entry(rb_first(root), struct swap_eb, - rb)->erase_count; - max[i] = rb_entry(rb_last(root), struct swap_eb, - rb)->erase_count; + min[i] = MTDSWAP_ECNT_MIN(root); + max[i] = MTDSWAP_ECNT_MAX(root); } else count[i] = 0; } diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index 6d4d5672d1d8..c3029528063b 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -13,7 +13,6 @@ config MTD_NAND_ECC_SMC menuconfig MTD_NAND tristate "NAND Device Support" depends on MTD - select MTD_NAND_IDS select MTD_NAND_ECC help This enables support for accessing all type of NAND flash @@ -60,17 +59,6 @@ config MTD_NAND_DENALI_DT Enable the driver for NAND flash on platforms using a Denali NAND controller as a DT device. -config MTD_NAND_DENALI_SCRATCH_REG_ADDR - hex "Denali NAND size scratch register address" - default "0xFF108018" - depends on MTD_NAND_DENALI_PCI - help - Some platforms place the NAND chip size in a scratch register - because (some versions of) the driver aren't able to automatically - determine the size of certain chips. Set the address of the - scratch register here to enable this feature. On Intel Moorestown - boards, the scratch register is at 0xFF108018. - config MTD_NAND_GPIO tristate "GPIO assisted NAND Flash driver" depends on GPIOLIB || COMPILE_TEST @@ -109,9 +97,6 @@ config MTD_NAND_OMAP_BCH config MTD_NAND_OMAP_BCH_BUILD def_tristate MTD_NAND_OMAP2 && MTD_NAND_OMAP_BCH -config MTD_NAND_IDS - tristate - config MTD_NAND_RICOH tristate "Ricoh xD card reader" default n @@ -321,11 +306,11 @@ config MTD_NAND_CS553X If you say "m", the module will be called cs553x_nand. config MTD_NAND_ATMEL - tristate "Support for NAND Flash / SmartMedia on AT91 and AVR32" - depends on ARCH_AT91 || AVR32 + tristate "Support for NAND Flash / SmartMedia on AT91" + depends on ARCH_AT91 help Enables support for NAND Flash / Smart Media Card interface - on Atmel AT91 and AVR32 processors. + on Atmel AT91 processors. config MTD_NAND_PXA3xx tristate "NAND support on PXA3xx and Armada 370/XP" @@ -443,7 +428,7 @@ config MTD_NAND_FSL_ELBC config MTD_NAND_FSL_IFC tristate "NAND support for Freescale IFC controller" - depends on FSL_SOC || ARCH_LAYERSCAPE + depends on FSL_SOC || ARCH_LAYERSCAPE || SOC_LS1021A select FSL_IFC select MEMORY help diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index 19a66e404d5b..ade5fc4c3819 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -5,7 +5,6 @@ obj-$(CONFIG_MTD_NAND) += nand.o obj-$(CONFIG_MTD_NAND_ECC) += nand_ecc.o obj-$(CONFIG_MTD_NAND_BCH) += nand_bch.o -obj-$(CONFIG_MTD_NAND_IDS) += nand_ids.o obj-$(CONFIG_MTD_SM_COMMON) += sm_common.o obj-$(CONFIG_MTD_NAND_CAFE) += cafe_nand.o @@ -25,7 +24,7 @@ obj-$(CONFIG_MTD_NAND_SHARPSL) += sharpsl.o obj-$(CONFIG_MTD_NAND_NANDSIM) += nandsim.o obj-$(CONFIG_MTD_NAND_CS553X) += cs553x_nand.o obj-$(CONFIG_MTD_NAND_NDFC) += ndfc.o -obj-$(CONFIG_MTD_NAND_ATMEL) += atmel_nand.o +obj-$(CONFIG_MTD_NAND_ATMEL) += atmel/ obj-$(CONFIG_MTD_NAND_GPIO) += gpio.o omap2_nand-objs := omap2.o obj-$(CONFIG_MTD_NAND_OMAP2) += omap2_nand.o @@ -61,4 +60,10 @@ obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/ obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o obj-$(CONFIG_MTD_NAND_MTK) += mtk_nand.o mtk_ecc.o -nand-objs := nand_base.o nand_bbt.o nand_timings.o +nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o +nand-objs += nand_amd.o +nand-objs += nand_hynix.o +nand-objs += nand_macronix.o +nand-objs += nand_micron.o +nand-objs += nand_samsung.o +nand-objs += nand_toshiba.o diff --git a/drivers/mtd/nand/atmel/Makefile b/drivers/mtd/nand/atmel/Makefile new file mode 100644 index 000000000000..288db4f38a8f --- /dev/null +++ b/drivers/mtd/nand/atmel/Makefile @@ -0,0 +1,4 @@ +obj-$(CONFIG_MTD_NAND_ATMEL) += atmel-nand-controller.o atmel-pmecc.o + +atmel-nand-controller-objs := nand-controller.o +atmel-pmecc-objs := pmecc.o diff --git a/drivers/mtd/nand/atmel/nand-controller.c b/drivers/mtd/nand/atmel/nand-controller.c new file mode 100644 index 000000000000..3b2446896147 --- /dev/null +++ b/drivers/mtd/nand/atmel/nand-controller.c @@ -0,0 +1,2197 @@ +/* + * Copyright 2017 ATMEL + * Copyright 2017 Free Electrons + * + * Author: Boris Brezillon <boris.brezillon@free-electrons.com> + * + * Derived from the atmel_nand.c driver which contained the following + * copyrights: + * + * Copyright 2003 Rick Bronson + * + * Derived from drivers/mtd/nand/autcpu12.c + * Copyright 2001 Thomas Gleixner (gleixner@autronix.de) + * + * Derived from drivers/mtd/spia.c + * Copyright 2000 Steven J. Hill (sjhill@cotw.com) + * + * + * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 + * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007 + * + * Derived from Das U-Boot source code + * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) + * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas + * + * Add Programmable Multibit ECC support for various AT91 SoC + * Copyright 2012 ATMEL, Hong Xu + * + * Add Nand Flash Controller support for SAMA5 SoC + * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * A few words about the naming convention in this file. This convention + * applies to structure and function names. + * + * Prefixes: + * + * - atmel_nand_: all generic structures/functions + * - atmel_smc_nand_: all structures/functions specific to the SMC interface + * (at91sam9 and avr32 SoCs) + * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface + * (sama5 SoCs and later) + * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block + * that is available in the HSMC block + * - <soc>_nand_: all SoC specific structures/functions + */ + +#include <linux/clk.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> +#include <linux/genalloc.h> +#include <linux/gpio.h> +#include <linux/gpio/consumer.h> +#include <linux/interrupt.h> +#include <linux/mfd/syscon.h> +#include <linux/mfd/syscon/atmel-matrix.h> +#include <linux/module.h> +#include <linux/mtd/nand.h> +#include <linux/of_address.h> +#include <linux/of_irq.h> +#include <linux/of_platform.h> +#include <linux/iopoll.h> +#include <linux/platform_device.h> +#include <linux/platform_data/atmel.h> +#include <linux/regmap.h> + +#include "pmecc.h" + +#define ATMEL_HSMC_NFC_CFG 0x0 +#define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24) +#define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24) +#define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20)) +#define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16) +#define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13) +#define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12) +#define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9) +#define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8) +#define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0) +#define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1) + +#define ATMEL_HSMC_NFC_CTRL 0x4 +#define ATMEL_HSMC_NFC_CTRL_EN BIT(0) +#define ATMEL_HSMC_NFC_CTRL_DIS BIT(1) + +#define ATMEL_HSMC_NFC_SR 0x8 +#define ATMEL_HSMC_NFC_IER 0xc +#define ATMEL_HSMC_NFC_IDR 0x10 +#define ATMEL_HSMC_NFC_IMR 0x14 +#define ATMEL_HSMC_NFC_SR_ENABLED BIT(1) +#define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4) +#define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5) +#define ATMEL_HSMC_NFC_SR_BUSY BIT(8) +#define ATMEL_HSMC_NFC_SR_WR BIT(11) +#define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12) +#define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16) +#define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17) +#define ATMEL_HSMC_NFC_SR_DTOE BIT(20) +#define ATMEL_HSMC_NFC_SR_UNDEF BIT(21) +#define ATMEL_HSMC_NFC_SR_AWB BIT(22) +#define ATMEL_HSMC_NFC_SR_NFCASE BIT(23) +#define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \ + ATMEL_HSMC_NFC_SR_UNDEF | \ + ATMEL_HSMC_NFC_SR_AWB | \ + ATMEL_HSMC_NFC_SR_NFCASE) +#define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24) + +#define ATMEL_HSMC_NFC_ADDR 0x18 +#define ATMEL_HSMC_NFC_BANK 0x1c + +#define ATMEL_NFC_MAX_RB_ID 7 + +#define ATMEL_NFC_SRAM_SIZE 0x2400 + +#define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2)) +#define ATMEL_NFC_VCMD2 BIT(18) +#define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19) +#define ATMEL_NFC_CSID(cs) ((cs) << 22) +#define ATMEL_NFC_DATAEN BIT(25) +#define ATMEL_NFC_NFCWR BIT(26) + +#define ATMEL_NFC_MAX_ADDR_CYCLES 5 + +#define ATMEL_NAND_ALE_OFFSET BIT(21) +#define ATMEL_NAND_CLE_OFFSET BIT(22) + +#define DEFAULT_TIMEOUT_MS 1000 +#define MIN_DMA_LEN 128 + +enum atmel_nand_rb_type { + ATMEL_NAND_NO_RB, + ATMEL_NAND_NATIVE_RB, + ATMEL_NAND_GPIO_RB, +}; + +struct atmel_nand_rb { + enum atmel_nand_rb_type type; + union { + struct gpio_desc *gpio; + int id; + }; +}; + +struct atmel_nand_cs { + int id; + struct atmel_nand_rb rb; + struct gpio_desc *csgpio; + struct { + void __iomem *virt; + dma_addr_t dma; + } io; +}; + +struct atmel_nand { + struct list_head node; + struct device *dev; + struct nand_chip base; + struct atmel_nand_cs *activecs; + struct atmel_pmecc_user *pmecc; + struct gpio_desc *cdgpio; + int numcs; + struct atmel_nand_cs cs[]; +}; + +static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip) +{ + return container_of(chip, struct atmel_nand, base); +} + +enum atmel_nfc_data_xfer { + ATMEL_NFC_NO_DATA, + ATMEL_NFC_READ_DATA, + ATMEL_NFC_WRITE_DATA, +}; + +struct atmel_nfc_op { + u8 cs; + u8 ncmds; + u8 cmds[2]; + u8 naddrs; + u8 addrs[5]; + enum atmel_nfc_data_xfer data; + u32 wait; + u32 errors; +}; + +struct atmel_nand_controller; +struct atmel_nand_controller_caps; + +struct atmel_nand_controller_ops { + int (*probe)(struct platform_device *pdev, + const struct atmel_nand_controller_caps *caps); + int (*remove)(struct atmel_nand_controller *nc); + void (*nand_init)(struct atmel_nand_controller *nc, + struct atmel_nand *nand); + int (*ecc_init)(struct atmel_nand *nand); +}; + +struct atmel_nand_controller_caps { + bool has_dma; + bool legacy_of_bindings; + u32 ale_offs; + u32 cle_offs; + const struct atmel_nand_controller_ops *ops; +}; + +struct atmel_nand_controller { + struct nand_hw_control base; + const struct atmel_nand_controller_caps *caps; + struct device *dev; + struct regmap *smc; + struct dma_chan *dmac; + struct atmel_pmecc *pmecc; + struct list_head chips; + struct clk *mck; +}; + +static inline struct atmel_nand_controller * +to_nand_controller(struct nand_hw_control *ctl) +{ + return container_of(ctl, struct atmel_nand_controller, base); +} + +struct atmel_smc_nand_controller { + struct atmel_nand_controller base; + struct regmap *matrix; + unsigned int ebi_csa_offs; +}; + +static inline struct atmel_smc_nand_controller * +to_smc_nand_controller(struct nand_hw_control *ctl) +{ + return container_of(to_nand_controller(ctl), + struct atmel_smc_nand_controller, base); +} + +struct atmel_hsmc_nand_controller { + struct atmel_nand_controller base; + struct { + struct gen_pool *pool; + void __iomem *virt; + dma_addr_t dma; + } sram; + struct regmap *io; + struct atmel_nfc_op op; + struct completion complete; + int irq; + + /* Only used when instantiating from legacy DT bindings. */ + struct clk *clk; +}; + +static inline struct atmel_hsmc_nand_controller * +to_hsmc_nand_controller(struct nand_hw_control *ctl) +{ + return container_of(to_nand_controller(ctl), + struct atmel_hsmc_nand_controller, base); +} + +static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status) +{ + op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS; + op->wait ^= status & op->wait; + + return !op->wait || op->errors; +} + +static irqreturn_t atmel_nfc_interrupt(int irq, void *data) +{ + struct atmel_hsmc_nand_controller *nc = data; + u32 sr, rcvd; + bool done; + + regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr); + + rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS); + done = atmel_nfc_op_done(&nc->op, sr); + + if (rcvd) + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd); + + if (done) + complete(&nc->complete); + + return rcvd ? IRQ_HANDLED : IRQ_NONE; +} + +static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll, + unsigned int timeout_ms) +{ + int ret; + + if (!timeout_ms) + timeout_ms = DEFAULT_TIMEOUT_MS; + + if (poll) { + u32 status; + + ret = regmap_read_poll_timeout(nc->base.smc, + ATMEL_HSMC_NFC_SR, status, + atmel_nfc_op_done(&nc->op, + status), + 0, timeout_ms * 1000); + } else { + init_completion(&nc->complete); + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER, + nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS); + ret = wait_for_completion_timeout(&nc->complete, + msecs_to_jiffies(timeout_ms)); + if (!ret) + ret = -ETIMEDOUT; + else + ret = 0; + + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff); + } + + if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) { + dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n"); + ret = -ETIMEDOUT; + } + + if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) { + dev_err(nc->base.dev, "Access to an undefined area\n"); + ret = -EIO; + } + + if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) { + dev_err(nc->base.dev, "Access while busy\n"); + ret = -EIO; + } + + if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) { + dev_err(nc->base.dev, "Wrong access size\n"); + ret = -EIO; + } + + return ret; +} + +static void atmel_nand_dma_transfer_finished(void *data) +{ + struct completion *finished = data; + + complete(finished); +} + +static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc, + void *buf, dma_addr_t dev_dma, size_t len, + enum dma_data_direction dir) +{ + DECLARE_COMPLETION_ONSTACK(finished); + dma_addr_t src_dma, dst_dma, buf_dma; + struct dma_async_tx_descriptor *tx; + dma_cookie_t cookie; + + buf_dma = dma_map_single(nc->dev, buf, len, dir); + if (dma_mapping_error(nc->dev, dev_dma)) { + dev_err(nc->dev, + "Failed to prepare a buffer for DMA access\n"); + goto err; + } + + if (dir == DMA_FROM_DEVICE) { + src_dma = dev_dma; + dst_dma = buf_dma; + } else { + src_dma = buf_dma; + dst_dma = dev_dma; + } + + tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len, + DMA_CTRL_ACK | DMA_PREP_INTERRUPT); + if (!tx) { + dev_err(nc->dev, "Failed to prepare DMA memcpy\n"); + goto err_unmap; + } + + tx->callback = atmel_nand_dma_transfer_finished; + tx->callback_param = &finished; + + cookie = dmaengine_submit(tx); + if (dma_submit_error(cookie)) { + dev_err(nc->dev, "Failed to do DMA tx_submit\n"); + goto err_unmap; + } + + dma_async_issue_pending(nc->dmac); + wait_for_completion(&finished); + + return 0; + +err_unmap: + dma_unmap_single(nc->dev, buf_dma, len, dir); + +err: + dev_dbg(nc->dev, "Fall back to CPU I/O\n"); + + return -EIO; +} + +static u8 atmel_nand_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct atmel_nand *nand = to_atmel_nand(chip); + + return ioread8(nand->activecs->io.virt); +} + +static u16 atmel_nand_read_word(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct atmel_nand *nand = to_atmel_nand(chip); + + return ioread16(nand->activecs->io.virt); +} + +static void atmel_nand_write_byte(struct mtd_info *mtd, u8 byte) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct atmel_nand *nand = to_atmel_nand(chip); + + if (chip->options & NAND_BUSWIDTH_16) + iowrite16(byte | (byte << 8), nand->activecs->io.virt); + else + iowrite8(byte, nand->activecs->io.virt); +} + +static void atmel_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_nand_controller *nc; + + nc = to_nand_controller(chip->controller); + + /* + * If the controller supports DMA, the buffer address is DMA-able and + * len is long enough to make DMA transfers profitable, let's trigger + * a DMA transfer. If it fails, fallback to PIO mode. + */ + if (nc->dmac && virt_addr_valid(buf) && + len >= MIN_DMA_LEN && + !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len, + DMA_FROM_DEVICE)) + return; + + if (chip->options & NAND_BUSWIDTH_16) + ioread16_rep(nand->activecs->io.virt, buf, len / 2); + else + ioread8_rep(nand->activecs->io.virt, buf, len); +} + +static void atmel_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_nand_controller *nc; + + nc = to_nand_controller(chip->controller); + + /* + * If the controller supports DMA, the buffer address is DMA-able and + * len is long enough to make DMA transfers profitable, let's trigger + * a DMA transfer. If it fails, fallback to PIO mode. + */ + if (nc->dmac && virt_addr_valid(buf) && + len >= MIN_DMA_LEN && + !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma, + len, DMA_TO_DEVICE)) + return; + + if (chip->options & NAND_BUSWIDTH_16) + iowrite16_rep(nand->activecs->io.virt, buf, len / 2); + else + iowrite8_rep(nand->activecs->io.virt, buf, len); +} + +static int atmel_nand_dev_ready(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct atmel_nand *nand = to_atmel_nand(chip); + + return gpiod_get_value(nand->activecs->rb.gpio); +} + +static void atmel_nand_select_chip(struct mtd_info *mtd, int cs) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct atmel_nand *nand = to_atmel_nand(chip); + + if (cs < 0 || cs >= nand->numcs) { + nand->activecs = NULL; + chip->dev_ready = NULL; + return; + } + + nand->activecs = &nand->cs[cs]; + + if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB) + chip->dev_ready = atmel_nand_dev_ready; +} + +static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_hsmc_nand_controller *nc; + u32 status; + + nc = to_hsmc_nand_controller(chip->controller); + + regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status); + + return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id); +} + +static void atmel_hsmc_nand_select_chip(struct mtd_info *mtd, int cs) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_hsmc_nand_controller *nc; + + nc = to_hsmc_nand_controller(chip->controller); + + atmel_nand_select_chip(mtd, cs); + + if (!nand->activecs) { + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL, + ATMEL_HSMC_NFC_CTRL_DIS); + return; + } + + if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB) + chip->dev_ready = atmel_hsmc_nand_dev_ready; + + regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG, + ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK | + ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK | + ATMEL_HSMC_NFC_CFG_RSPARE | + ATMEL_HSMC_NFC_CFG_WSPARE, + ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) | + ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) | + ATMEL_HSMC_NFC_CFG_RSPARE); + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL, + ATMEL_HSMC_NFC_CTRL_EN); +} + +static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll) +{ + u8 *addrs = nc->op.addrs; + unsigned int op = 0; + u32 addr, val; + int i, ret; + + nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE; + + for (i = 0; i < nc->op.ncmds; i++) + op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]); + + if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES) + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++); + + op |= ATMEL_NFC_CSID(nc->op.cs) | + ATMEL_NFC_ACYCLE(nc->op.naddrs); + + if (nc->op.ncmds > 1) + op |= ATMEL_NFC_VCMD2; + + addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) | + (addrs[3] << 24); + + if (nc->op.data != ATMEL_NFC_NO_DATA) { + op |= ATMEL_NFC_DATAEN; + nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE; + + if (nc->op.data == ATMEL_NFC_WRITE_DATA) + op |= ATMEL_NFC_NFCWR; + } + + /* Clear all flags. */ + regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val); + + /* Send the command. */ + regmap_write(nc->io, op, addr); + + ret = atmel_nfc_wait(nc, poll, 0); + if (ret) + dev_err(nc->base.dev, + "Failed to send NAND command (err = %d)!", + ret); + + /* Reset the op state. */ + memset(&nc->op, 0, sizeof(nc->op)); + + return ret; +} + +static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat, + unsigned int ctrl) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_hsmc_nand_controller *nc; + + nc = to_hsmc_nand_controller(chip->controller); + + if (ctrl & NAND_ALE) { + if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES) + return; + + nc->op.addrs[nc->op.naddrs++] = dat; + } else if (ctrl & NAND_CLE) { + if (nc->op.ncmds > 1) + return; + + nc->op.cmds[nc->op.ncmds++] = dat; + } + + if (dat == NAND_CMD_NONE) { + nc->op.cs = nand->activecs->id; + atmel_nfc_exec_op(nc, true); + } +} + +static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_nand_controller *nc; + + nc = to_nand_controller(chip->controller); + + if ((ctrl & NAND_CTRL_CHANGE) && nand->activecs->csgpio) { + if (ctrl & NAND_NCE) + gpiod_set_value(nand->activecs->csgpio, 0); + else + gpiod_set_value(nand->activecs->csgpio, 1); + } + + if (ctrl & NAND_ALE) + writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs); + else if (ctrl & NAND_CLE) + writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs); +} + +static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf, + bool oob_required) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_hsmc_nand_controller *nc; + int ret = -EIO; + + nc = to_hsmc_nand_controller(chip->controller); + + if (nc->base.dmac) + ret = atmel_nand_dma_transfer(&nc->base, (void *)buf, + nc->sram.dma, mtd->writesize, + DMA_TO_DEVICE); + + /* Falling back to CPU copy. */ + if (ret) + memcpy_toio(nc->sram.virt, buf, mtd->writesize); + + if (oob_required) + memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi, + mtd->oobsize); +} + +static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf, + bool oob_required) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_hsmc_nand_controller *nc; + int ret = -EIO; + + nc = to_hsmc_nand_controller(chip->controller); + + if (nc->base.dmac) + ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma, + mtd->writesize, DMA_FROM_DEVICE); + + /* Falling back to CPU copy. */ + if (ret) + memcpy_fromio(buf, nc->sram.virt, mtd->writesize); + + if (oob_required) + memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize, + mtd->oobsize); +} + +static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_hsmc_nand_controller *nc; + + nc = to_hsmc_nand_controller(chip->controller); + + if (column >= 0) { + nc->op.addrs[nc->op.naddrs++] = column; + + /* + * 2 address cycles for the column offset on large page NANDs. + */ + if (mtd->writesize > 512) + nc->op.addrs[nc->op.naddrs++] = column >> 8; + } + + if (page >= 0) { + nc->op.addrs[nc->op.naddrs++] = page; + nc->op.addrs[nc->op.naddrs++] = page >> 8; + + if ((mtd->writesize > 512 && chip->chipsize > SZ_128M) || + (mtd->writesize <= 512 && chip->chipsize > SZ_32M)) + nc->op.addrs[nc->op.naddrs++] = page >> 16; + } +} + +static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw) +{ + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_nand_controller *nc; + int ret; + + nc = to_nand_controller(chip->controller); + + if (raw) + return 0; + + ret = atmel_pmecc_enable(nand->pmecc, op); + if (ret) + dev_err(nc->dev, + "Failed to enable ECC engine (err = %d)\n", ret); + + return ret; +} + +static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw) +{ + struct atmel_nand *nand = to_atmel_nand(chip); + + if (!raw) + atmel_pmecc_disable(nand->pmecc); +} + +static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw) +{ + struct atmel_nand *nand = to_atmel_nand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_nand_controller *nc; + struct mtd_oob_region oobregion; + void *eccbuf; + int ret, i; + + nc = to_nand_controller(chip->controller); + + if (raw) + return 0; + + ret = atmel_pmecc_wait_rdy(nand->pmecc); + if (ret) { + dev_err(nc->dev, + "Failed to transfer NAND page data (err = %d)\n", + ret); + return ret; + } + + mtd_ooblayout_ecc(mtd, 0, &oobregion); + eccbuf = chip->oob_poi + oobregion.offset; + + for (i = 0; i < chip->ecc.steps; i++) { + atmel_pmecc_get_generated_eccbytes(nand->pmecc, i, + eccbuf); + eccbuf += chip->ecc.bytes; + } + + return 0; +} + +static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf, + bool raw) +{ + struct atmel_nand *nand = to_atmel_nand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_nand_controller *nc; + struct mtd_oob_region oobregion; + int ret, i, max_bitflips = 0; + void *databuf, *eccbuf; + + nc = to_nand_controller(chip->controller); + + if (raw) + return 0; + + ret = atmel_pmecc_wait_rdy(nand->pmecc); + if (ret) { + dev_err(nc->dev, + "Failed to read NAND page data (err = %d)\n", + ret); + return ret; + } + + mtd_ooblayout_ecc(mtd, 0, &oobregion); + eccbuf = chip->oob_poi + oobregion.offset; + databuf = buf; + + for (i = 0; i < chip->ecc.steps; i++) { + ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf, + eccbuf); + if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc)) + ret = nand_check_erased_ecc_chunk(databuf, + chip->ecc.size, + eccbuf, + chip->ecc.bytes, + NULL, 0, + chip->ecc.strength); + + if (ret >= 0) + max_bitflips = max(ret, max_bitflips); + else + mtd->ecc_stats.failed++; + + databuf += chip->ecc.size; + eccbuf += chip->ecc.bytes; + } + + return max_bitflips; +} + +static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf, + bool oob_required, int page, bool raw) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_nand *nand = to_atmel_nand(chip); + int ret; + + ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw); + if (ret) + return ret; + + atmel_nand_write_buf(mtd, buf, mtd->writesize); + + ret = atmel_nand_pmecc_generate_eccbytes(chip, raw); + if (ret) { + atmel_pmecc_disable(nand->pmecc); + return ret; + } + + atmel_nand_pmecc_disable(chip, raw); + + atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; +} + +static int atmel_nand_pmecc_write_page(struct mtd_info *mtd, + struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false); +} + +static int atmel_nand_pmecc_write_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, + const u8 *buf, int oob_required, + int page) +{ + return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true); +} + +static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf, + bool oob_required, int page, bool raw) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw); + if (ret) + return ret; + + atmel_nand_read_buf(mtd, buf, mtd->writesize); + atmel_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize); + + ret = atmel_nand_pmecc_correct_data(chip, buf, raw); + + atmel_nand_pmecc_disable(chip, raw); + + return ret; +} + +static int atmel_nand_pmecc_read_page(struct mtd_info *mtd, + struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false); +} + +static int atmel_nand_pmecc_read_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true); +} + +static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip, + const u8 *buf, bool oob_required, + int page, bool raw) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_hsmc_nand_controller *nc; + int ret; + + nc = to_hsmc_nand_controller(chip->controller); + + atmel_nfc_copy_to_sram(chip, buf, false); + + nc->op.cmds[0] = NAND_CMD_SEQIN; + nc->op.ncmds = 1; + atmel_nfc_set_op_addr(chip, page, 0x0); + nc->op.cs = nand->activecs->id; + nc->op.data = ATMEL_NFC_WRITE_DATA; + + ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw); + if (ret) + return ret; + + ret = atmel_nfc_exec_op(nc, false); + if (ret) { + atmel_nand_pmecc_disable(chip, raw); + dev_err(nc->base.dev, + "Failed to transfer NAND page data (err = %d)\n", + ret); + return ret; + } + + ret = atmel_nand_pmecc_generate_eccbytes(chip, raw); + + atmel_nand_pmecc_disable(chip, raw); + + if (ret) + return ret; + + atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize); + + nc->op.cmds[0] = NAND_CMD_PAGEPROG; + nc->op.ncmds = 1; + nc->op.cs = nand->activecs->id; + ret = atmel_nfc_exec_op(nc, false); + if (ret) + dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n", + ret); + + return ret; +} + +static int atmel_hsmc_nand_pmecc_write_page(struct mtd_info *mtd, + struct nand_chip *chip, + const u8 *buf, int oob_required, + int page) +{ + return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page, + false); +} + +static int atmel_hsmc_nand_pmecc_write_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, + const u8 *buf, + int oob_required, int page) +{ + return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page, + true); +} + +static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf, + bool oob_required, int page, + bool raw) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_hsmc_nand_controller *nc; + int ret; + + nc = to_hsmc_nand_controller(chip->controller); + + /* + * Optimized read page accessors only work when the NAND R/B pin is + * connected to a native SoC R/B pin. If that's not the case, fallback + * to the non-optimized one. + */ + if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) { + chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page); + + return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, + raw); + } + + nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0; + + if (mtd->writesize > 512) + nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART; + + atmel_nfc_set_op_addr(chip, page, 0x0); + nc->op.cs = nand->activecs->id; + nc->op.data = ATMEL_NFC_READ_DATA; + + ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw); + if (ret) + return ret; + + ret = atmel_nfc_exec_op(nc, false); + if (ret) { + atmel_nand_pmecc_disable(chip, raw); + dev_err(nc->base.dev, + "Failed to load NAND page data (err = %d)\n", + ret); + return ret; + } + + atmel_nfc_copy_from_sram(chip, buf, true); + + ret = atmel_nand_pmecc_correct_data(chip, buf, raw); + + atmel_nand_pmecc_disable(chip, raw); + + return ret; +} + +static int atmel_hsmc_nand_pmecc_read_page(struct mtd_info *mtd, + struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page, + false); +} + +static int atmel_hsmc_nand_pmecc_read_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, + u8 *buf, int oob_required, + int page) +{ + return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page, + true); +} + +static int atmel_nand_pmecc_init(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_nand_controller *nc; + struct atmel_pmecc_user_req req; + + nc = to_nand_controller(chip->controller); + + if (!nc->pmecc) { + dev_err(nc->dev, "HW ECC not supported\n"); + return -ENOTSUPP; + } + + if (nc->caps->legacy_of_bindings) { + u32 val; + + if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap", + &val)) + chip->ecc.strength = val; + + if (!of_property_read_u32(nc->dev->of_node, + "atmel,pmecc-sector-size", + &val)) + chip->ecc.size = val; + } + + if (chip->ecc.options & NAND_ECC_MAXIMIZE) + req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH; + else if (chip->ecc.strength) + req.ecc.strength = chip->ecc.strength; + else if (chip->ecc_strength_ds) + req.ecc.strength = chip->ecc_strength_ds; + else + req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH; + + if (chip->ecc.size) + req.ecc.sectorsize = chip->ecc.size; + else if (chip->ecc_step_ds) + req.ecc.sectorsize = chip->ecc_step_ds; + else + req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO; + + req.pagesize = mtd->writesize; + req.oobsize = mtd->oobsize; + + if (mtd->writesize <= 512) { + req.ecc.bytes = 4; + req.ecc.ooboffset = 0; + } else { + req.ecc.bytes = mtd->oobsize - 2; + req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO; + } + + nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req); + if (IS_ERR(nand->pmecc)) + return PTR_ERR(nand->pmecc); + + chip->ecc.algo = NAND_ECC_BCH; + chip->ecc.size = req.ecc.sectorsize; + chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors; + chip->ecc.strength = req.ecc.strength; + + chip->options |= NAND_NO_SUBPAGE_WRITE; + + mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); + + return 0; +} + +static int atmel_nand_ecc_init(struct atmel_nand *nand) +{ + struct nand_chip *chip = &nand->base; + struct atmel_nand_controller *nc; + int ret; + + nc = to_nand_controller(chip->controller); + + switch (chip->ecc.mode) { + case NAND_ECC_NONE: + case NAND_ECC_SOFT: + /* + * Nothing to do, the core will initialize everything for us. + */ + break; + + case NAND_ECC_HW: + ret = atmel_nand_pmecc_init(chip); + if (ret) + return ret; + + chip->ecc.read_page = atmel_nand_pmecc_read_page; + chip->ecc.write_page = atmel_nand_pmecc_write_page; + chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw; + chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw; + break; + + default: + /* Other modes are not supported. */ + dev_err(nc->dev, "Unsupported ECC mode: %d\n", + chip->ecc.mode); + return -ENOTSUPP; + } + + return 0; +} + +static int atmel_hsmc_nand_ecc_init(struct atmel_nand *nand) +{ + struct nand_chip *chip = &nand->base; + int ret; + + ret = atmel_nand_ecc_init(nand); + if (ret) + return ret; + + if (chip->ecc.mode != NAND_ECC_HW) + return 0; + + /* Adjust the ECC operations for the HSMC IP. */ + chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page; + chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page; + chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw; + chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw; + chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS; + + return 0; +} + +static void atmel_nand_init(struct atmel_nand_controller *nc, + struct atmel_nand *nand) +{ + struct nand_chip *chip = &nand->base; + struct mtd_info *mtd = nand_to_mtd(chip); + + mtd->dev.parent = nc->dev; + nand->base.controller = &nc->base; + + chip->cmd_ctrl = atmel_nand_cmd_ctrl; + chip->read_byte = atmel_nand_read_byte; + chip->read_word = atmel_nand_read_word; + chip->write_byte = atmel_nand_write_byte; + chip->read_buf = atmel_nand_read_buf; + chip->write_buf = atmel_nand_write_buf; + chip->select_chip = atmel_nand_select_chip; + + /* Some NANDs require a longer delay than the default one (20us). */ + chip->chip_delay = 40; + + /* + * Use a bounce buffer when the buffer passed by the MTD user is not + * suitable for DMA. + */ + if (nc->dmac) + chip->options |= NAND_USE_BOUNCE_BUFFER; + + /* Default to HW ECC if pmecc is available. */ + if (nc->pmecc) + chip->ecc.mode = NAND_ECC_HW; +} + +static void atmel_smc_nand_init(struct atmel_nand_controller *nc, + struct atmel_nand *nand) +{ + struct nand_chip *chip = &nand->base; + struct atmel_smc_nand_controller *smc_nc; + int i; + + atmel_nand_init(nc, nand); + + smc_nc = to_smc_nand_controller(chip->controller); + if (!smc_nc->matrix) + return; + + /* Attach the CS to the NAND Flash logic. */ + for (i = 0; i < nand->numcs; i++) + regmap_update_bits(smc_nc->matrix, smc_nc->ebi_csa_offs, + BIT(nand->cs[i].id), BIT(nand->cs[i].id)); +} + +static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc, + struct atmel_nand *nand) +{ + struct nand_chip *chip = &nand->base; + + atmel_nand_init(nc, nand); + + /* Overload some methods for the HSMC controller. */ + chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl; + chip->select_chip = atmel_hsmc_nand_select_chip; +} + +static int atmel_nand_detect(struct atmel_nand *nand) +{ + struct nand_chip *chip = &nand->base; + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_nand_controller *nc; + int ret; + + nc = to_nand_controller(chip->controller); + + ret = nand_scan_ident(mtd, nand->numcs, NULL); + if (ret) + dev_err(nc->dev, "nand_scan_ident() failed: %d\n", ret); + + return ret; +} + +static int atmel_nand_unregister(struct atmel_nand *nand) +{ + struct nand_chip *chip = &nand->base; + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + ret = mtd_device_unregister(mtd); + if (ret) + return ret; + + nand_cleanup(chip); + list_del(&nand->node); + + return 0; +} + +static int atmel_nand_register(struct atmel_nand *nand) +{ + struct nand_chip *chip = &nand->base; + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_nand_controller *nc; + int ret; + + nc = to_nand_controller(chip->controller); + + if (nc->caps->legacy_of_bindings || !nc->dev->of_node) { + /* + * We keep the MTD name unchanged to avoid breaking platforms + * where the MTD cmdline parser is used and the bootloader + * has not been updated to use the new naming scheme. + */ + mtd->name = "atmel_nand"; + } else if (!mtd->name) { + /* + * If the new bindings are used and the bootloader has not been + * updated to pass a new mtdparts parameter on the cmdline, you + * should define the following property in your nand node: + * + * label = "atmel_nand"; + * + * This way, mtd->name will be set by the core when + * nand_set_flash_node() is called. + */ + mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL, + "%s:nand.%d", dev_name(nc->dev), + nand->cs[0].id); + if (!mtd->name) { + dev_err(nc->dev, "Failed to allocate mtd->name\n"); + return -ENOMEM; + } + } + + ret = nand_scan_tail(mtd); + if (ret) { + dev_err(nc->dev, "nand_scan_tail() failed: %d\n", ret); + return ret; + } + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(nc->dev, "Failed to register mtd device: %d\n", ret); + nand_cleanup(chip); + return ret; + } + + list_add_tail(&nand->node, &nc->chips); + + return 0; +} + +static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc, + struct device_node *np, + int reg_cells) +{ + struct atmel_nand *nand; + struct gpio_desc *gpio; + int numcs, ret, i; + + numcs = of_property_count_elems_of_size(np, "reg", + reg_cells * sizeof(u32)); + if (numcs < 1) { + dev_err(nc->dev, "Missing or invalid reg property\n"); + return ERR_PTR(-EINVAL); + } + + nand = devm_kzalloc(nc->dev, + sizeof(*nand) + (numcs * sizeof(*nand->cs)), + GFP_KERNEL); + if (!nand) { + dev_err(nc->dev, "Failed to allocate NAND object\n"); + return ERR_PTR(-ENOMEM); + } + + nand->numcs = numcs; + + gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "det", 0, + &np->fwnode, GPIOD_IN, + "nand-det"); + if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { + dev_err(nc->dev, + "Failed to get detect gpio (err = %ld)\n", + PTR_ERR(gpio)); + return ERR_CAST(gpio); + } + + if (!IS_ERR(gpio)) + nand->cdgpio = gpio; + + for (i = 0; i < numcs; i++) { + struct resource res; + u32 val; + + ret = of_address_to_resource(np, 0, &res); + if (ret) { + dev_err(nc->dev, "Invalid reg property (err = %d)\n", + ret); + return ERR_PTR(ret); + } + + ret = of_property_read_u32_index(np, "reg", i * reg_cells, + &val); + if (ret) { + dev_err(nc->dev, "Invalid reg property (err = %d)\n", + ret); + return ERR_PTR(ret); + } + + nand->cs[i].id = val; + + nand->cs[i].io.dma = res.start; + nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res); + if (IS_ERR(nand->cs[i].io.virt)) + return ERR_CAST(nand->cs[i].io.virt); + + if (!of_property_read_u32(np, "atmel,rb", &val)) { + if (val > ATMEL_NFC_MAX_RB_ID) + return ERR_PTR(-EINVAL); + + nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB; + nand->cs[i].rb.id = val; + } else { + gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, + "rb", i, &np->fwnode, + GPIOD_IN, "nand-rb"); + if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { + dev_err(nc->dev, + "Failed to get R/B gpio (err = %ld)\n", + PTR_ERR(gpio)); + return ERR_CAST(gpio); + } + + if (!IS_ERR(gpio)) { + nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB; + nand->cs[i].rb.gpio = gpio; + } + } + + gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "cs", + i, &np->fwnode, + GPIOD_OUT_HIGH, + "nand-cs"); + if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { + dev_err(nc->dev, + "Failed to get CS gpio (err = %ld)\n", + PTR_ERR(gpio)); + return ERR_CAST(gpio); + } + + if (!IS_ERR(gpio)) + nand->cs[i].csgpio = gpio; + } + + nand_set_flash_node(&nand->base, np); + + return nand; +} + +static int +atmel_nand_controller_add_nand(struct atmel_nand_controller *nc, + struct atmel_nand *nand) +{ + int ret; + + /* No card inserted, skip this NAND. */ + if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) { + dev_info(nc->dev, "No SmartMedia card inserted.\n"); + return 0; + } + + nc->caps->ops->nand_init(nc, nand); + + ret = atmel_nand_detect(nand); + if (ret) + return ret; + + ret = nc->caps->ops->ecc_init(nand); + if (ret) + return ret; + + return atmel_nand_register(nand); +} + +static int +atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc) +{ + struct atmel_nand *nand, *tmp; + int ret; + + list_for_each_entry_safe(nand, tmp, &nc->chips, node) { + ret = atmel_nand_unregister(nand); + if (ret) + return ret; + } + + return 0; +} + +static int +atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc) +{ + struct device *dev = nc->dev; + struct platform_device *pdev = to_platform_device(dev); + struct atmel_nand *nand; + struct gpio_desc *gpio; + struct resource *res; + + /* + * Legacy bindings only allow connecting a single NAND with a unique CS + * line to the controller. + */ + nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs), + GFP_KERNEL); + if (!nand) + return -ENOMEM; + + nand->numcs = 1; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + nand->cs[0].io.virt = devm_ioremap_resource(dev, res); + if (IS_ERR(nand->cs[0].io.virt)) + return PTR_ERR(nand->cs[0].io.virt); + + nand->cs[0].io.dma = res->start; + + /* + * The old driver was hardcoding the CS id to 3 for all sama5 + * controllers. Since this id is only meaningful for the sama5 + * controller we can safely assign this id to 3 no matter the + * controller. + * If one wants to connect a NAND to a different CS line, he will + * have to use the new bindings. + */ + nand->cs[0].id = 3; + + /* R/B GPIO. */ + gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN); + if (IS_ERR(gpio)) { + dev_err(dev, "Failed to get R/B gpio (err = %ld)\n", + PTR_ERR(gpio)); + return PTR_ERR(gpio); + } + + if (gpio) { + nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB; + nand->cs[0].rb.gpio = gpio; + } + + /* CS GPIO. */ + gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH); + if (IS_ERR(gpio)) { + dev_err(dev, "Failed to get CS gpio (err = %ld)\n", + PTR_ERR(gpio)); + return PTR_ERR(gpio); + } + + nand->cs[0].csgpio = gpio; + + /* Card detect GPIO. */ + gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN); + if (IS_ERR(gpio)) { + dev_err(dev, + "Failed to get detect gpio (err = %ld)\n", + PTR_ERR(gpio)); + return PTR_ERR(gpio); + } + + nand->cdgpio = gpio; + + nand_set_flash_node(&nand->base, nc->dev->of_node); + + return atmel_nand_controller_add_nand(nc, nand); +} + +static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc) +{ + struct device_node *np, *nand_np; + struct device *dev = nc->dev; + int ret, reg_cells; + u32 val; + + /* We do not retrieve the SMC syscon when parsing old DTs. */ + if (nc->caps->legacy_of_bindings) + return atmel_nand_controller_legacy_add_nands(nc); + + np = dev->of_node; + + ret = of_property_read_u32(np, "#address-cells", &val); + if (ret) { + dev_err(dev, "missing #address-cells property\n"); + return ret; + } + + reg_cells = val; + + ret = of_property_read_u32(np, "#size-cells", &val); + if (ret) { + dev_err(dev, "missing #address-cells property\n"); + return ret; + } + + reg_cells += val; + + for_each_child_of_node(np, nand_np) { + struct atmel_nand *nand; + + nand = atmel_nand_create(nc, nand_np, reg_cells); + if (IS_ERR(nand)) { + ret = PTR_ERR(nand); + goto err; + } + + ret = atmel_nand_controller_add_nand(nc, nand); + if (ret) + goto err; + } + + return 0; + +err: + atmel_nand_controller_remove_nands(nc); + + return ret; +} + +static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc) +{ + if (nc->dmac) + dma_release_channel(nc->dmac); + + clk_put(nc->mck); +} + +static const struct of_device_id atmel_matrix_of_ids[] = { + { + .compatible = "atmel,at91sam9260-matrix", + .data = (void *)AT91SAM9260_MATRIX_EBICSA, + }, + { + .compatible = "atmel,at91sam9261-matrix", + .data = (void *)AT91SAM9261_MATRIX_EBICSA, + }, + { + .compatible = "atmel,at91sam9263-matrix", + .data = (void *)AT91SAM9263_MATRIX_EBI0CSA, + }, + { + .compatible = "atmel,at91sam9rl-matrix", + .data = (void *)AT91SAM9RL_MATRIX_EBICSA, + }, + { + .compatible = "atmel,at91sam9g45-matrix", + .data = (void *)AT91SAM9G45_MATRIX_EBICSA, + }, + { + .compatible = "atmel,at91sam9n12-matrix", + .data = (void *)AT91SAM9N12_MATRIX_EBICSA, + }, + { + .compatible = "atmel,at91sam9x5-matrix", + .data = (void *)AT91SAM9X5_MATRIX_EBICSA, + }, + { /* sentinel */ }, +}; + +static int atmel_nand_controller_init(struct atmel_nand_controller *nc, + struct platform_device *pdev, + const struct atmel_nand_controller_caps *caps) +{ + struct device *dev = &pdev->dev; + struct device_node *np = dev->of_node; + int ret; + + nand_hw_control_init(&nc->base); + INIT_LIST_HEAD(&nc->chips); + nc->dev = dev; + nc->caps = caps; + + platform_set_drvdata(pdev, nc); + + nc->pmecc = devm_atmel_pmecc_get(dev); + if (IS_ERR(nc->pmecc)) { + ret = PTR_ERR(nc->pmecc); + if (ret != -EPROBE_DEFER) + dev_err(dev, "Could not get PMECC object (err = %d)\n", + ret); + return ret; + } + + if (nc->caps->has_dma) { + dma_cap_mask_t mask; + + dma_cap_zero(mask); + dma_cap_set(DMA_MEMCPY, mask); + + nc->dmac = dma_request_channel(mask, NULL, NULL); + if (!nc->dmac) + dev_err(nc->dev, "Failed to request DMA channel\n"); + } + + /* We do not retrieve the SMC syscon when parsing old DTs. */ + if (nc->caps->legacy_of_bindings) + return 0; + + np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0); + if (!np) { + dev_err(dev, "Missing or invalid atmel,smc property\n"); + return -EINVAL; + } + + nc->smc = syscon_node_to_regmap(np); + of_node_put(np); + if (IS_ERR(nc->smc)) { + ret = PTR_ERR(nc->smc); + dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret); + return ret; + } + + return 0; +} + +static int +atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc) +{ + struct device *dev = nc->base.dev; + const struct of_device_id *match; + struct device_node *np; + int ret; + + /* We do not retrieve the matrix syscon when parsing old DTs. */ + if (nc->base.caps->legacy_of_bindings) + return 0; + + np = of_parse_phandle(dev->parent->of_node, "atmel,matrix", 0); + if (!np) + return 0; + + match = of_match_node(atmel_matrix_of_ids, np); + if (!match) { + of_node_put(np); + return 0; + } + + nc->matrix = syscon_node_to_regmap(np); + of_node_put(np); + if (IS_ERR(nc->matrix)) { + ret = PTR_ERR(nc->matrix); + dev_err(dev, "Could not get Matrix regmap (err = %d)\n", ret); + return ret; + } + + nc->ebi_csa_offs = (unsigned int)match->data; + + /* + * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1 + * add 4 to ->ebi_csa_offs. + */ + if (of_device_is_compatible(dev->parent->of_node, + "atmel,at91sam9263-ebi1")) + nc->ebi_csa_offs += 4; + + return 0; +} + +static int +atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc) +{ + struct regmap_config regmap_conf = { + .reg_bits = 32, + .val_bits = 32, + .reg_stride = 4, + }; + + struct device *dev = nc->base.dev; + struct device_node *nand_np, *nfc_np; + void __iomem *iomem; + struct resource res; + int ret; + + nand_np = dev->of_node; + nfc_np = of_find_compatible_node(dev->of_node, NULL, + "atmel,sama5d3-nfc"); + + nc->clk = of_clk_get(nfc_np, 0); + if (IS_ERR(nc->clk)) { + ret = PTR_ERR(nc->clk); + dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n", + ret); + goto out; + } + + ret = clk_prepare_enable(nc->clk); + if (ret) { + dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n", + ret); + goto out; + } + + nc->irq = of_irq_get(nand_np, 0); + if (nc->irq < 0) { + ret = nc->irq; + if (ret != -EPROBE_DEFER) + dev_err(dev, "Failed to get IRQ number (err = %d)\n", + ret); + goto out; + } + + ret = of_address_to_resource(nfc_np, 0, &res); + if (ret) { + dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n", + ret); + goto out; + } + + iomem = devm_ioremap_resource(dev, &res); + if (IS_ERR(iomem)) { + ret = PTR_ERR(iomem); + goto out; + } + + regmap_conf.name = "nfc-io"; + regmap_conf.max_register = resource_size(&res) - 4; + nc->io = devm_regmap_init_mmio(dev, iomem, ®map_conf); + if (IS_ERR(nc->io)) { + ret = PTR_ERR(nc->io); + dev_err(dev, "Could not create NFC IO regmap (err = %d)\n", + ret); + goto out; + } + + ret = of_address_to_resource(nfc_np, 1, &res); + if (ret) { + dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n", + ret); + goto out; + } + + iomem = devm_ioremap_resource(dev, &res); + if (IS_ERR(iomem)) { + ret = PTR_ERR(iomem); + goto out; + } + + regmap_conf.name = "smc"; + regmap_conf.max_register = resource_size(&res) - 4; + nc->base.smc = devm_regmap_init_mmio(dev, iomem, ®map_conf); + if (IS_ERR(nc->base.smc)) { + ret = PTR_ERR(nc->base.smc); + dev_err(dev, "Could not create NFC IO regmap (err = %d)\n", + ret); + goto out; + } + + ret = of_address_to_resource(nfc_np, 2, &res); + if (ret) { + dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n", + ret); + goto out; + } + + nc->sram.virt = devm_ioremap_resource(dev, &res); + if (IS_ERR(nc->sram.virt)) { + ret = PTR_ERR(nc->sram.virt); + goto out; + } + + nc->sram.dma = res.start; + +out: + of_node_put(nfc_np); + + return ret; +} + +static int +atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc) +{ + struct device *dev = nc->base.dev; + struct device_node *np; + int ret; + + np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0); + if (!np) { + dev_err(dev, "Missing or invalid atmel,smc property\n"); + return -EINVAL; + } + + nc->irq = of_irq_get(np, 0); + of_node_put(np); + if (nc->irq < 0) { + if (nc->irq != -EPROBE_DEFER) + dev_err(dev, "Failed to get IRQ number (err = %d)\n", + nc->irq); + return nc->irq; + } + + np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0); + if (!np) { + dev_err(dev, "Missing or invalid atmel,nfc-io property\n"); + return -EINVAL; + } + + nc->io = syscon_node_to_regmap(np); + of_node_put(np); + if (IS_ERR(nc->io)) { + ret = PTR_ERR(nc->io); + dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret); + return ret; + } + + nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node, + "atmel,nfc-sram", 0); + if (!nc->sram.pool) { + dev_err(nc->base.dev, "Missing SRAM\n"); + return -ENOMEM; + } + + nc->sram.virt = gen_pool_dma_alloc(nc->sram.pool, + ATMEL_NFC_SRAM_SIZE, + &nc->sram.dma); + if (!nc->sram.virt) { + dev_err(nc->base.dev, + "Could not allocate memory from the NFC SRAM pool\n"); + return -ENOMEM; + } + + return 0; +} + +static int +atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc) +{ + struct atmel_hsmc_nand_controller *hsmc_nc; + int ret; + + ret = atmel_nand_controller_remove_nands(nc); + if (ret) + return ret; + + hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base); + if (hsmc_nc->sram.pool) + gen_pool_free(hsmc_nc->sram.pool, + (unsigned long)hsmc_nc->sram.virt, + ATMEL_NFC_SRAM_SIZE); + + if (hsmc_nc->clk) { + clk_disable_unprepare(hsmc_nc->clk); + clk_put(hsmc_nc->clk); + } + + atmel_nand_controller_cleanup(nc); + + return 0; +} + +static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev, + const struct atmel_nand_controller_caps *caps) +{ + struct device *dev = &pdev->dev; + struct atmel_hsmc_nand_controller *nc; + int ret; + + nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL); + if (!nc) + return -ENOMEM; + + ret = atmel_nand_controller_init(&nc->base, pdev, caps); + if (ret) + return ret; + + if (caps->legacy_of_bindings) + ret = atmel_hsmc_nand_controller_legacy_init(nc); + else + ret = atmel_hsmc_nand_controller_init(nc); + + if (ret) + return ret; + + /* Make sure all irqs are masked before registering our IRQ handler. */ + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff); + ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt, + IRQF_SHARED, "nfc", nc); + if (ret) { + dev_err(dev, + "Could not get register NFC interrupt handler (err = %d)\n", + ret); + goto err; + } + + /* Initial NFC configuration. */ + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG, + ATMEL_HSMC_NFC_CFG_DTO_MAX); + + ret = atmel_nand_controller_add_nands(&nc->base); + if (ret) + goto err; + + return 0; + +err: + atmel_hsmc_nand_controller_remove(&nc->base); + + return ret; +} + +static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = { + .probe = atmel_hsmc_nand_controller_probe, + .remove = atmel_hsmc_nand_controller_remove, + .ecc_init = atmel_hsmc_nand_ecc_init, + .nand_init = atmel_hsmc_nand_init, +}; + +static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = { + .has_dma = true, + .ale_offs = BIT(21), + .cle_offs = BIT(22), + .ops = &atmel_hsmc_nc_ops, +}; + +/* Only used to parse old bindings. */ +static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = { + .has_dma = true, + .ale_offs = BIT(21), + .cle_offs = BIT(22), + .ops = &atmel_hsmc_nc_ops, + .legacy_of_bindings = true, +}; + +static int atmel_smc_nand_controller_probe(struct platform_device *pdev, + const struct atmel_nand_controller_caps *caps) +{ + struct device *dev = &pdev->dev; + struct atmel_smc_nand_controller *nc; + int ret; + + nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL); + if (!nc) + return -ENOMEM; + + ret = atmel_nand_controller_init(&nc->base, pdev, caps); + if (ret) + return ret; + + ret = atmel_smc_nand_controller_init(nc); + if (ret) + return ret; + + return atmel_nand_controller_add_nands(&nc->base); +} + +static int +atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc) +{ + int ret; + + ret = atmel_nand_controller_remove_nands(nc); + if (ret) + return ret; + + atmel_nand_controller_cleanup(nc); + + return 0; +} + +static const struct atmel_nand_controller_ops atmel_smc_nc_ops = { + .probe = atmel_smc_nand_controller_probe, + .remove = atmel_smc_nand_controller_remove, + .ecc_init = atmel_nand_ecc_init, + .nand_init = atmel_smc_nand_init, +}; + +static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = { + .ale_offs = BIT(21), + .cle_offs = BIT(22), + .ops = &atmel_smc_nc_ops, +}; + +static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = { + .ale_offs = BIT(22), + .cle_offs = BIT(21), + .ops = &atmel_smc_nc_ops, +}; + +static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = { + .has_dma = true, + .ale_offs = BIT(21), + .cle_offs = BIT(22), + .ops = &atmel_smc_nc_ops, +}; + +/* Only used to parse old bindings. */ +static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = { + .ale_offs = BIT(21), + .cle_offs = BIT(22), + .ops = &atmel_smc_nc_ops, + .legacy_of_bindings = true, +}; + +static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = { + .ale_offs = BIT(22), + .cle_offs = BIT(21), + .ops = &atmel_smc_nc_ops, + .legacy_of_bindings = true, +}; + +static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = { + .has_dma = true, + .ale_offs = BIT(21), + .cle_offs = BIT(22), + .ops = &atmel_smc_nc_ops, + .legacy_of_bindings = true, +}; + +static const struct of_device_id atmel_nand_controller_of_ids[] = { + { + .compatible = "atmel,at91rm9200-nand-controller", + .data = &atmel_rm9200_nc_caps, + }, + { + .compatible = "atmel,at91sam9260-nand-controller", + .data = &atmel_rm9200_nc_caps, + }, + { + .compatible = "atmel,at91sam9261-nand-controller", + .data = &atmel_sam9261_nc_caps, + }, + { + .compatible = "atmel,at91sam9g45-nand-controller", + .data = &atmel_sam9g45_nc_caps, + }, + { + .compatible = "atmel,sama5d3-nand-controller", + .data = &atmel_sama5_nc_caps, + }, + /* Support for old/deprecated bindings: */ + { + .compatible = "atmel,at91rm9200-nand", + .data = &atmel_rm9200_nand_caps, + }, + { + .compatible = "atmel,sama5d4-nand", + .data = &atmel_rm9200_nand_caps, + }, + { + .compatible = "atmel,sama5d2-nand", + .data = &atmel_rm9200_nand_caps, + }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids); + +static int atmel_nand_controller_probe(struct platform_device *pdev) +{ + const struct atmel_nand_controller_caps *caps; + + if (pdev->id_entry) + caps = (void *)pdev->id_entry->driver_data; + else + caps = of_device_get_match_data(&pdev->dev); + + if (!caps) { + dev_err(&pdev->dev, "Could not retrieve NFC caps\n"); + return -EINVAL; + } + + if (caps->legacy_of_bindings) { + u32 ale_offs = 21; + + /* + * If we are parsing legacy DT props and the DT contains a + * valid NFC node, forward the request to the sama5 logic. + */ + if (of_find_compatible_node(pdev->dev.of_node, NULL, + "atmel,sama5d3-nfc")) + caps = &atmel_sama5_nand_caps; + + /* + * Even if the compatible says we are dealing with an + * at91rm9200 controller, the atmel,nand-has-dma specify that + * this controller supports DMA, which means we are in fact + * dealing with an at91sam9g45+ controller. + */ + if (!caps->has_dma && + of_property_read_bool(pdev->dev.of_node, + "atmel,nand-has-dma")) + caps = &atmel_sam9g45_nand_caps; + + /* + * All SoCs except the at91sam9261 are assigning ALE to A21 and + * CLE to A22. If atmel,nand-addr-offset != 21 this means we're + * actually dealing with an at91sam9261 controller. + */ + of_property_read_u32(pdev->dev.of_node, + "atmel,nand-addr-offset", &ale_offs); + if (ale_offs != 21) + caps = &atmel_sam9261_nand_caps; + } + + return caps->ops->probe(pdev, caps); +} + +static int atmel_nand_controller_remove(struct platform_device *pdev) +{ + struct atmel_nand_controller *nc = platform_get_drvdata(pdev); + + return nc->caps->ops->remove(nc); +} + +static struct platform_driver atmel_nand_controller_driver = { + .driver = { + .name = "atmel-nand-controller", + .of_match_table = of_match_ptr(atmel_nand_controller_of_ids), + }, + .probe = atmel_nand_controller_probe, + .remove = atmel_nand_controller_remove, +}; +module_platform_driver(atmel_nand_controller_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>"); +MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs"); +MODULE_ALIAS("platform:atmel-nand-controller"); diff --git a/drivers/mtd/nand/atmel/pmecc.c b/drivers/mtd/nand/atmel/pmecc.c new file mode 100644 index 000000000000..55a8ee5306ea --- /dev/null +++ b/drivers/mtd/nand/atmel/pmecc.c @@ -0,0 +1,1020 @@ +/* + * Copyright 2017 ATMEL + * Copyright 2017 Free Electrons + * + * Author: Boris Brezillon <boris.brezillon@free-electrons.com> + * + * Derived from the atmel_nand.c driver which contained the following + * copyrights: + * + * Copyright 2003 Rick Bronson + * + * Derived from drivers/mtd/nand/autcpu12.c + * Copyright 2001 Thomas Gleixner (gleixner@autronix.de) + * + * Derived from drivers/mtd/spia.c + * Copyright 2000 Steven J. Hill (sjhill@cotw.com) + * + * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 + * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007 + * + * Derived from Das U-Boot source code + * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) + * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas + * + * Add Programmable Multibit ECC support for various AT91 SoC + * Copyright 2012 ATMEL, Hong Xu + * + * Add Nand Flash Controller support for SAMA5 SoC + * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * The PMECC is an hardware assisted BCH engine, which means part of the + * ECC algorithm is left to the software. The hardware/software repartition + * is explained in the "PMECC Controller Functional Description" chapter in + * Atmel datasheets, and some of the functions in this file are directly + * implementing the algorithms described in the "Software Implementation" + * sub-section. + * + * TODO: it seems that the software BCH implementation in lib/bch.c is already + * providing some of the logic we are implementing here. It would be smart + * to expose the needed lib/bch.c helpers/functions and re-use them here. + */ + +#include <linux/genalloc.h> +#include <linux/iopoll.h> +#include <linux/module.h> +#include <linux/mtd/nand.h> +#include <linux/of_irq.h> +#include <linux/of_platform.h> +#include <linux/platform_device.h> +#include <linux/slab.h> + +#include "pmecc.h" + +/* Galois field dimension */ +#define PMECC_GF_DIMENSION_13 13 +#define PMECC_GF_DIMENSION_14 14 + +/* Primitive Polynomial used by PMECC */ +#define PMECC_GF_13_PRIMITIVE_POLY 0x201b +#define PMECC_GF_14_PRIMITIVE_POLY 0x4443 + +#define PMECC_LOOKUP_TABLE_SIZE_512 0x2000 +#define PMECC_LOOKUP_TABLE_SIZE_1024 0x4000 + +/* Time out value for reading PMECC status register */ +#define PMECC_MAX_TIMEOUT_MS 100 + +/* PMECC Register Definitions */ +#define ATMEL_PMECC_CFG 0x0 +#define PMECC_CFG_BCH_STRENGTH(x) (x) +#define PMECC_CFG_BCH_STRENGTH_MASK GENMASK(2, 0) +#define PMECC_CFG_SECTOR512 (0 << 4) +#define PMECC_CFG_SECTOR1024 (1 << 4) +#define PMECC_CFG_NSECTORS(x) ((fls(x) - 1) << 8) +#define PMECC_CFG_READ_OP (0 << 12) +#define PMECC_CFG_WRITE_OP (1 << 12) +#define PMECC_CFG_SPARE_ENABLE BIT(16) +#define PMECC_CFG_AUTO_ENABLE BIT(20) + +#define ATMEL_PMECC_SAREA 0x4 +#define ATMEL_PMECC_SADDR 0x8 +#define ATMEL_PMECC_EADDR 0xc + +#define ATMEL_PMECC_CLK 0x10 +#define PMECC_CLK_133MHZ (2 << 0) + +#define ATMEL_PMECC_CTRL 0x14 +#define PMECC_CTRL_RST BIT(0) +#define PMECC_CTRL_DATA BIT(1) +#define PMECC_CTRL_USER BIT(2) +#define PMECC_CTRL_ENABLE BIT(4) +#define PMECC_CTRL_DISABLE BIT(5) + +#define ATMEL_PMECC_SR 0x18 +#define PMECC_SR_BUSY BIT(0) +#define PMECC_SR_ENABLE BIT(4) + +#define ATMEL_PMECC_IER 0x1c +#define ATMEL_PMECC_IDR 0x20 +#define ATMEL_PMECC_IMR 0x24 +#define ATMEL_PMECC_ISR 0x28 +#define PMECC_ERROR_INT BIT(0) + +#define ATMEL_PMECC_ECC(sector, n) \ + ((((sector) + 1) * 0x40) + (n)) + +#define ATMEL_PMECC_REM(sector, n) \ + ((((sector) + 1) * 0x40) + ((n) * 4) + 0x200) + +/* PMERRLOC Register Definitions */ +#define ATMEL_PMERRLOC_ELCFG 0x0 +#define PMERRLOC_ELCFG_SECTOR_512 (0 << 0) +#define PMERRLOC_ELCFG_SECTOR_1024 (1 << 0) +#define PMERRLOC_ELCFG_NUM_ERRORS(n) ((n) << 16) + +#define ATMEL_PMERRLOC_ELPRIM 0x4 +#define ATMEL_PMERRLOC_ELEN 0x8 +#define ATMEL_PMERRLOC_ELDIS 0xc +#define PMERRLOC_DISABLE BIT(0) + +#define ATMEL_PMERRLOC_ELSR 0x10 +#define PMERRLOC_ELSR_BUSY BIT(0) + +#define ATMEL_PMERRLOC_ELIER 0x14 +#define ATMEL_PMERRLOC_ELIDR 0x18 +#define ATMEL_PMERRLOC_ELIMR 0x1c +#define ATMEL_PMERRLOC_ELISR 0x20 +#define PMERRLOC_ERR_NUM_MASK GENMASK(12, 8) +#define PMERRLOC_CALC_DONE BIT(0) + +#define ATMEL_PMERRLOC_SIGMA(x) (((x) * 0x4) + 0x28) + +#define ATMEL_PMERRLOC_EL(offs, x) (((x) * 0x4) + (offs)) + +struct atmel_pmecc_gf_tables { + u16 *alpha_to; + u16 *index_of; +}; + +struct atmel_pmecc_caps { + const int *strengths; + int nstrengths; + int el_offset; + bool correct_erased_chunks; +}; + +struct atmel_pmecc { + struct device *dev; + const struct atmel_pmecc_caps *caps; + + struct { + void __iomem *base; + void __iomem *errloc; + } regs; + + struct mutex lock; +}; + +struct atmel_pmecc_user_conf_cache { + u32 cfg; + u32 sarea; + u32 saddr; + u32 eaddr; +}; + +struct atmel_pmecc_user { + struct atmel_pmecc_user_conf_cache cache; + struct atmel_pmecc *pmecc; + const struct atmel_pmecc_gf_tables *gf_tables; + int eccbytes; + s16 *partial_syn; + s16 *si; + s16 *lmu; + s16 *smu; + s32 *mu; + s32 *dmu; + s32 *delta; + u32 isr; +}; + +static DEFINE_MUTEX(pmecc_gf_tables_lock); +static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_512; +static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_1024; + +static inline int deg(unsigned int poly) +{ + /* polynomial degree is the most-significant bit index */ + return fls(poly) - 1; +} + +static int atmel_pmecc_build_gf_tables(int mm, unsigned int poly, + struct atmel_pmecc_gf_tables *gf_tables) +{ + unsigned int i, x = 1; + const unsigned int k = BIT(deg(poly)); + unsigned int nn = BIT(mm) - 1; + + /* primitive polynomial must be of degree m */ + if (k != (1u << mm)) + return -EINVAL; + + for (i = 0; i < nn; i++) { + gf_tables->alpha_to[i] = x; + gf_tables->index_of[x] = i; + if (i && (x == 1)) + /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ + return -EINVAL; + x <<= 1; + if (x & k) + x ^= poly; + } + gf_tables->alpha_to[nn] = 1; + gf_tables->index_of[0] = 0; + + return 0; +} + +static const struct atmel_pmecc_gf_tables * +atmel_pmecc_create_gf_tables(const struct atmel_pmecc_user_req *req) +{ + struct atmel_pmecc_gf_tables *gf_tables; + unsigned int poly, degree, table_size; + int ret; + + if (req->ecc.sectorsize == 512) { + degree = PMECC_GF_DIMENSION_13; + poly = PMECC_GF_13_PRIMITIVE_POLY; + table_size = PMECC_LOOKUP_TABLE_SIZE_512; + } else { + degree = PMECC_GF_DIMENSION_14; + poly = PMECC_GF_14_PRIMITIVE_POLY; + table_size = PMECC_LOOKUP_TABLE_SIZE_1024; + } + + gf_tables = kzalloc(sizeof(*gf_tables) + + (2 * table_size * sizeof(u16)), + GFP_KERNEL); + if (!gf_tables) + return ERR_PTR(-ENOMEM); + + gf_tables->alpha_to = (void *)(gf_tables + 1); + gf_tables->index_of = gf_tables->alpha_to + table_size; + + ret = atmel_pmecc_build_gf_tables(degree, poly, gf_tables); + if (ret) { + kfree(gf_tables); + return ERR_PTR(ret); + } + + return gf_tables; +} + +static const struct atmel_pmecc_gf_tables * +atmel_pmecc_get_gf_tables(const struct atmel_pmecc_user_req *req) +{ + const struct atmel_pmecc_gf_tables **gf_tables, *ret; + + mutex_lock(&pmecc_gf_tables_lock); + if (req->ecc.sectorsize == 512) + gf_tables = &pmecc_gf_tables_512; + else + gf_tables = &pmecc_gf_tables_1024; + + ret = *gf_tables; + + if (!ret) { + ret = atmel_pmecc_create_gf_tables(req); + if (!IS_ERR(ret)) + *gf_tables = ret; + } + mutex_unlock(&pmecc_gf_tables_lock); + + return ret; +} + +static int atmel_pmecc_prepare_user_req(struct atmel_pmecc *pmecc, + struct atmel_pmecc_user_req *req) +{ + int i, max_eccbytes, eccbytes = 0, eccstrength = 0; + + if (req->pagesize <= 0 || req->oobsize <= 0 || req->ecc.bytes <= 0) + return -EINVAL; + + if (req->ecc.ooboffset >= 0 && + req->ecc.ooboffset + req->ecc.bytes > req->oobsize) + return -EINVAL; + + if (req->ecc.sectorsize == ATMEL_PMECC_SECTOR_SIZE_AUTO) { + if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH) + return -EINVAL; + + if (req->pagesize > 512) + req->ecc.sectorsize = 1024; + else + req->ecc.sectorsize = 512; + } + + if (req->ecc.sectorsize != 512 && req->ecc.sectorsize != 1024) + return -EINVAL; + + if (req->pagesize % req->ecc.sectorsize) + return -EINVAL; + + req->ecc.nsectors = req->pagesize / req->ecc.sectorsize; + + max_eccbytes = req->ecc.bytes; + + for (i = 0; i < pmecc->caps->nstrengths; i++) { + int nbytes, strength = pmecc->caps->strengths[i]; + + if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH && + strength < req->ecc.strength) + continue; + + nbytes = DIV_ROUND_UP(strength * fls(8 * req->ecc.sectorsize), + 8); + nbytes *= req->ecc.nsectors; + + if (nbytes > max_eccbytes) + break; + + eccstrength = strength; + eccbytes = nbytes; + + if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH) + break; + } + + if (!eccstrength) + return -EINVAL; + + req->ecc.bytes = eccbytes; + req->ecc.strength = eccstrength; + + if (req->ecc.ooboffset < 0) + req->ecc.ooboffset = req->oobsize - eccbytes; + + return 0; +} + +struct atmel_pmecc_user * +atmel_pmecc_create_user(struct atmel_pmecc *pmecc, + struct atmel_pmecc_user_req *req) +{ + struct atmel_pmecc_user *user; + const struct atmel_pmecc_gf_tables *gf_tables; + int strength, size, ret; + + ret = atmel_pmecc_prepare_user_req(pmecc, req); + if (ret) + return ERR_PTR(ret); + + size = sizeof(*user); + size = ALIGN(size, sizeof(u16)); + /* Reserve space for partial_syn, si and smu */ + size += ((2 * req->ecc.strength) + 1) * sizeof(u16) * + (2 + req->ecc.strength + 2); + /* Reserve space for lmu. */ + size += (req->ecc.strength + 1) * sizeof(u16); + /* Reserve space for mu, dmu and delta. */ + size = ALIGN(size, sizeof(s32)); + size += (req->ecc.strength + 1) * sizeof(s32); + + user = kzalloc(size, GFP_KERNEL); + if (!user) + return ERR_PTR(-ENOMEM); + + user->pmecc = pmecc; + + user->partial_syn = (s16 *)PTR_ALIGN(user + 1, sizeof(u16)); + user->si = user->partial_syn + ((2 * req->ecc.strength) + 1); + user->lmu = user->si + ((2 * req->ecc.strength) + 1); + user->smu = user->lmu + (req->ecc.strength + 1); + user->mu = (s32 *)PTR_ALIGN(user->smu + + (((2 * req->ecc.strength) + 1) * + (req->ecc.strength + 2)), + sizeof(s32)); + user->dmu = user->mu + req->ecc.strength + 1; + user->delta = user->dmu + req->ecc.strength + 1; + + gf_tables = atmel_pmecc_get_gf_tables(req); + if (IS_ERR(gf_tables)) { + kfree(user); + return ERR_CAST(gf_tables); + } + + user->gf_tables = gf_tables; + + user->eccbytes = req->ecc.bytes / req->ecc.nsectors; + + for (strength = 0; strength < pmecc->caps->nstrengths; strength++) { + if (pmecc->caps->strengths[strength] == req->ecc.strength) + break; + } + + user->cache.cfg = PMECC_CFG_BCH_STRENGTH(strength) | + PMECC_CFG_NSECTORS(req->ecc.nsectors); + + if (req->ecc.sectorsize == 1024) + user->cache.cfg |= PMECC_CFG_SECTOR1024; + + user->cache.sarea = req->oobsize - 1; + user->cache.saddr = req->ecc.ooboffset; + user->cache.eaddr = req->ecc.ooboffset + req->ecc.bytes - 1; + + return user; +} +EXPORT_SYMBOL_GPL(atmel_pmecc_create_user); + +void atmel_pmecc_destroy_user(struct atmel_pmecc_user *user) +{ + kfree(user); +} +EXPORT_SYMBOL_GPL(atmel_pmecc_destroy_user); + +static int get_strength(struct atmel_pmecc_user *user) +{ + const int *strengths = user->pmecc->caps->strengths; + + return strengths[user->cache.cfg & PMECC_CFG_BCH_STRENGTH_MASK]; +} + +static int get_sectorsize(struct atmel_pmecc_user *user) +{ + return user->cache.cfg & PMECC_LOOKUP_TABLE_SIZE_1024 ? 1024 : 512; +} + +static void atmel_pmecc_gen_syndrome(struct atmel_pmecc_user *user, int sector) +{ + int strength = get_strength(user); + u32 value; + int i; + + /* Fill odd syndromes */ + for (i = 0; i < strength; i++) { + value = readl_relaxed(user->pmecc->regs.base + + ATMEL_PMECC_REM(sector, i / 2)); + if (i & 1) + value >>= 16; + + user->partial_syn[(2 * i) + 1] = value; + } +} + +static void atmel_pmecc_substitute(struct atmel_pmecc_user *user) +{ + int degree = get_sectorsize(user) == 512 ? 13 : 14; + int cw_len = BIT(degree) - 1; + int strength = get_strength(user); + s16 *alpha_to = user->gf_tables->alpha_to; + s16 *index_of = user->gf_tables->index_of; + s16 *partial_syn = user->partial_syn; + s16 *si; + int i, j; + + /* + * si[] is a table that holds the current syndrome value, + * an element of that table belongs to the field + */ + si = user->si; + + memset(&si[1], 0, sizeof(s16) * ((2 * strength) - 1)); + + /* Computation 2t syndromes based on S(x) */ + /* Odd syndromes */ + for (i = 1; i < 2 * strength; i += 2) { + for (j = 0; j < degree; j++) { + if (partial_syn[i] & BIT(j)) + si[i] = alpha_to[i * j] ^ si[i]; + } + } + /* Even syndrome = (Odd syndrome) ** 2 */ + for (i = 2, j = 1; j <= strength; i = ++j << 1) { + if (si[j] == 0) { + si[i] = 0; + } else { + s16 tmp; + + tmp = index_of[si[j]]; + tmp = (tmp * 2) % cw_len; + si[i] = alpha_to[tmp]; + } + } +} + +static void atmel_pmecc_get_sigma(struct atmel_pmecc_user *user) +{ + s16 *lmu = user->lmu; + s16 *si = user->si; + s32 *mu = user->mu; + s32 *dmu = user->dmu; + s32 *delta = user->delta; + int degree = get_sectorsize(user) == 512 ? 13 : 14; + int cw_len = BIT(degree) - 1; + int strength = get_strength(user); + int num = 2 * strength + 1; + s16 *index_of = user->gf_tables->index_of; + s16 *alpha_to = user->gf_tables->alpha_to; + int i, j, k; + u32 dmu_0_count, tmp; + s16 *smu = user->smu; + + /* index of largest delta */ + int ro; + int largest; + int diff; + + dmu_0_count = 0; + + /* First Row */ + + /* Mu */ + mu[0] = -1; + + memset(smu, 0, sizeof(s16) * num); + smu[0] = 1; + + /* discrepancy set to 1 */ + dmu[0] = 1; + /* polynom order set to 0 */ + lmu[0] = 0; + delta[0] = (mu[0] * 2 - lmu[0]) >> 1; + + /* Second Row */ + + /* Mu */ + mu[1] = 0; + /* Sigma(x) set to 1 */ + memset(&smu[num], 0, sizeof(s16) * num); + smu[num] = 1; + + /* discrepancy set to S1 */ + dmu[1] = si[1]; + + /* polynom order set to 0 */ + lmu[1] = 0; + + delta[1] = (mu[1] * 2 - lmu[1]) >> 1; + + /* Init the Sigma(x) last row */ + memset(&smu[(strength + 1) * num], 0, sizeof(s16) * num); + + for (i = 1; i <= strength; i++) { + mu[i + 1] = i << 1; + /* Begin Computing Sigma (Mu+1) and L(mu) */ + /* check if discrepancy is set to 0 */ + if (dmu[i] == 0) { + dmu_0_count++; + + tmp = ((strength - (lmu[i] >> 1) - 1) / 2); + if ((strength - (lmu[i] >> 1) - 1) & 0x1) + tmp += 2; + else + tmp += 1; + + if (dmu_0_count == tmp) { + for (j = 0; j <= (lmu[i] >> 1) + 1; j++) + smu[(strength + 1) * num + j] = + smu[i * num + j]; + + lmu[strength + 1] = lmu[i]; + return; + } + + /* copy polynom */ + for (j = 0; j <= lmu[i] >> 1; j++) + smu[(i + 1) * num + j] = smu[i * num + j]; + + /* copy previous polynom order to the next */ + lmu[i + 1] = lmu[i]; + } else { + ro = 0; + largest = -1; + /* find largest delta with dmu != 0 */ + for (j = 0; j < i; j++) { + if ((dmu[j]) && (delta[j] > largest)) { + largest = delta[j]; + ro = j; + } + } + + /* compute difference */ + diff = (mu[i] - mu[ro]); + + /* Compute degree of the new smu polynomial */ + if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff)) + lmu[i + 1] = lmu[i]; + else + lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2; + + /* Init smu[i+1] with 0 */ + for (k = 0; k < num; k++) + smu[(i + 1) * num + k] = 0; + + /* Compute smu[i+1] */ + for (k = 0; k <= lmu[ro] >> 1; k++) { + s16 a, b, c; + + if (!(smu[ro * num + k] && dmu[i])) + continue; + + a = index_of[dmu[i]]; + b = index_of[dmu[ro]]; + c = index_of[smu[ro * num + k]]; + tmp = a + (cw_len - b) + c; + a = alpha_to[tmp % cw_len]; + smu[(i + 1) * num + (k + diff)] = a; + } + + for (k = 0; k <= lmu[i] >> 1; k++) + smu[(i + 1) * num + k] ^= smu[i * num + k]; + } + + /* End Computing Sigma (Mu+1) and L(mu) */ + /* In either case compute delta */ + delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1; + + /* Do not compute discrepancy for the last iteration */ + if (i >= strength) + continue; + + for (k = 0; k <= (lmu[i + 1] >> 1); k++) { + tmp = 2 * (i - 1); + if (k == 0) { + dmu[i + 1] = si[tmp + 3]; + } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) { + s16 a, b, c; + + a = index_of[smu[(i + 1) * num + k]]; + b = si[2 * (i - 1) + 3 - k]; + c = index_of[b]; + tmp = a + c; + tmp %= cw_len; + dmu[i + 1] = alpha_to[tmp] ^ dmu[i + 1]; + } + } + } +} + +static int atmel_pmecc_err_location(struct atmel_pmecc_user *user) +{ + int sector_size = get_sectorsize(user); + int degree = sector_size == 512 ? 13 : 14; + struct atmel_pmecc *pmecc = user->pmecc; + int strength = get_strength(user); + int ret, roots_nbr, i, err_nbr = 0; + int num = (2 * strength) + 1; + s16 *smu = user->smu; + u32 val; + + writel(PMERRLOC_DISABLE, pmecc->regs.errloc + ATMEL_PMERRLOC_ELDIS); + + for (i = 0; i <= user->lmu[strength + 1] >> 1; i++) { + writel_relaxed(smu[(strength + 1) * num + i], + pmecc->regs.errloc + ATMEL_PMERRLOC_SIGMA(i)); + err_nbr++; + } + + val = (err_nbr - 1) << 16; + if (sector_size == 1024) + val |= 1; + + writel(val, pmecc->regs.errloc + ATMEL_PMERRLOC_ELCFG); + writel((sector_size * 8) + (degree * strength), + pmecc->regs.errloc + ATMEL_PMERRLOC_ELEN); + + ret = readl_relaxed_poll_timeout(pmecc->regs.errloc + + ATMEL_PMERRLOC_ELISR, + val, val & PMERRLOC_CALC_DONE, 0, + PMECC_MAX_TIMEOUT_MS * 1000); + if (ret) { + dev_err(pmecc->dev, + "PMECC: Timeout to calculate error location.\n"); + return ret; + } + + roots_nbr = (val & PMERRLOC_ERR_NUM_MASK) >> 8; + /* Number of roots == degree of smu hence <= cap */ + if (roots_nbr == user->lmu[strength + 1] >> 1) + return err_nbr - 1; + + /* + * Number of roots does not match the degree of smu + * unable to correct error. + */ + return -EBADMSG; +} + +int atmel_pmecc_correct_sector(struct atmel_pmecc_user *user, int sector, + void *data, void *ecc) +{ + struct atmel_pmecc *pmecc = user->pmecc; + int sectorsize = get_sectorsize(user); + int eccbytes = user->eccbytes; + int i, nerrors; + + if (!(user->isr & BIT(sector))) + return 0; + + atmel_pmecc_gen_syndrome(user, sector); + atmel_pmecc_substitute(user); + atmel_pmecc_get_sigma(user); + + nerrors = atmel_pmecc_err_location(user); + if (nerrors < 0) + return nerrors; + + for (i = 0; i < nerrors; i++) { + const char *area; + int byte, bit; + u32 errpos; + u8 *ptr; + + errpos = readl_relaxed(pmecc->regs.errloc + + ATMEL_PMERRLOC_EL(pmecc->caps->el_offset, i)); + errpos--; + + byte = errpos / 8; + bit = errpos % 8; + + if (byte < sectorsize) { + ptr = data + byte; + area = "data"; + } else if (byte < sectorsize + eccbytes) { + ptr = ecc + byte - sectorsize; + area = "ECC"; + } else { + dev_dbg(pmecc->dev, + "Invalid errpos value (%d, max is %d)\n", + errpos, (sectorsize + eccbytes) * 8); + return -EINVAL; + } + + dev_dbg(pmecc->dev, + "Bit flip in %s area, byte %d: 0x%02x -> 0x%02x\n", + area, byte, *ptr, (unsigned int)(*ptr ^ BIT(bit))); + + *ptr ^= BIT(bit); + } + + return nerrors; +} +EXPORT_SYMBOL_GPL(atmel_pmecc_correct_sector); + +bool atmel_pmecc_correct_erased_chunks(struct atmel_pmecc_user *user) +{ + return user->pmecc->caps->correct_erased_chunks; +} +EXPORT_SYMBOL_GPL(atmel_pmecc_correct_erased_chunks); + +void atmel_pmecc_get_generated_eccbytes(struct atmel_pmecc_user *user, + int sector, void *ecc) +{ + struct atmel_pmecc *pmecc = user->pmecc; + u8 *ptr = ecc; + int i; + + for (i = 0; i < user->eccbytes; i++) + ptr[i] = readb_relaxed(pmecc->regs.base + + ATMEL_PMECC_ECC(sector, i)); +} +EXPORT_SYMBOL_GPL(atmel_pmecc_get_generated_eccbytes); + +int atmel_pmecc_enable(struct atmel_pmecc_user *user, int op) +{ + struct atmel_pmecc *pmecc = user->pmecc; + u32 cfg; + + if (op != NAND_ECC_READ && op != NAND_ECC_WRITE) { + dev_err(pmecc->dev, "Bad ECC operation!"); + return -EINVAL; + } + + mutex_lock(&user->pmecc->lock); + + cfg = user->cache.cfg; + if (op == NAND_ECC_WRITE) + cfg |= PMECC_CFG_WRITE_OP; + else + cfg |= PMECC_CFG_AUTO_ENABLE; + + writel(cfg, pmecc->regs.base + ATMEL_PMECC_CFG); + writel(user->cache.sarea, pmecc->regs.base + ATMEL_PMECC_SAREA); + writel(user->cache.saddr, pmecc->regs.base + ATMEL_PMECC_SADDR); + writel(user->cache.eaddr, pmecc->regs.base + ATMEL_PMECC_EADDR); + + writel(PMECC_CTRL_ENABLE, pmecc->regs.base + ATMEL_PMECC_CTRL); + writel(PMECC_CTRL_DATA, pmecc->regs.base + ATMEL_PMECC_CTRL); + + return 0; +} +EXPORT_SYMBOL_GPL(atmel_pmecc_enable); + +void atmel_pmecc_disable(struct atmel_pmecc_user *user) +{ + struct atmel_pmecc *pmecc = user->pmecc; + + writel(PMECC_CTRL_RST, pmecc->regs.base + ATMEL_PMECC_CTRL); + writel(PMECC_CTRL_DISABLE, pmecc->regs.base + ATMEL_PMECC_CTRL); + mutex_unlock(&user->pmecc->lock); +} +EXPORT_SYMBOL_GPL(atmel_pmecc_disable); + +int atmel_pmecc_wait_rdy(struct atmel_pmecc_user *user) +{ + struct atmel_pmecc *pmecc = user->pmecc; + u32 status; + int ret; + + ret = readl_relaxed_poll_timeout(pmecc->regs.base + + ATMEL_PMECC_SR, + status, !(status & PMECC_SR_BUSY), 0, + PMECC_MAX_TIMEOUT_MS * 1000); + if (ret) { + dev_err(pmecc->dev, + "Timeout while waiting for PMECC ready.\n"); + return ret; + } + + user->isr = readl_relaxed(pmecc->regs.base + ATMEL_PMECC_ISR); + + return 0; +} +EXPORT_SYMBOL_GPL(atmel_pmecc_wait_rdy); + +static struct atmel_pmecc *atmel_pmecc_create(struct platform_device *pdev, + const struct atmel_pmecc_caps *caps, + int pmecc_res_idx, int errloc_res_idx) +{ + struct device *dev = &pdev->dev; + struct atmel_pmecc *pmecc; + struct resource *res; + + pmecc = devm_kzalloc(dev, sizeof(*pmecc), GFP_KERNEL); + if (!pmecc) + return ERR_PTR(-ENOMEM); + + pmecc->caps = caps; + pmecc->dev = dev; + mutex_init(&pmecc->lock); + + res = platform_get_resource(pdev, IORESOURCE_MEM, pmecc_res_idx); + pmecc->regs.base = devm_ioremap_resource(dev, res); + if (IS_ERR(pmecc->regs.base)) + return ERR_CAST(pmecc->regs.base); + + res = platform_get_resource(pdev, IORESOURCE_MEM, errloc_res_idx); + pmecc->regs.errloc = devm_ioremap_resource(dev, res); + if (IS_ERR(pmecc->regs.errloc)) + return ERR_CAST(pmecc->regs.errloc); + + /* Disable all interrupts before registering the PMECC handler. */ + writel(0xffffffff, pmecc->regs.base + ATMEL_PMECC_IDR); + + /* Reset the ECC engine */ + writel(PMECC_CTRL_RST, pmecc->regs.base + ATMEL_PMECC_CTRL); + writel(PMECC_CTRL_DISABLE, pmecc->regs.base + ATMEL_PMECC_CTRL); + + return pmecc; +} + +static void devm_atmel_pmecc_put(struct device *dev, void *res) +{ + struct atmel_pmecc **pmecc = res; + + put_device((*pmecc)->dev); +} + +static struct atmel_pmecc *atmel_pmecc_get_by_node(struct device *userdev, + struct device_node *np) +{ + struct platform_device *pdev; + struct atmel_pmecc *pmecc, **ptr; + + pdev = of_find_device_by_node(np); + if (!pdev || !platform_get_drvdata(pdev)) + return ERR_PTR(-EPROBE_DEFER); + + ptr = devres_alloc(devm_atmel_pmecc_put, sizeof(*ptr), GFP_KERNEL); + if (!ptr) + return ERR_PTR(-ENOMEM); + + get_device(&pdev->dev); + pmecc = platform_get_drvdata(pdev); + + *ptr = pmecc; + + devres_add(userdev, ptr); + + return pmecc; +} + +static const int atmel_pmecc_strengths[] = { 2, 4, 8, 12, 24, 32 }; + +static struct atmel_pmecc_caps at91sam9g45_caps = { + .strengths = atmel_pmecc_strengths, + .nstrengths = 5, + .el_offset = 0x8c, +}; + +static struct atmel_pmecc_caps sama5d4_caps = { + .strengths = atmel_pmecc_strengths, + .nstrengths = 5, + .el_offset = 0x8c, + .correct_erased_chunks = true, +}; + +static struct atmel_pmecc_caps sama5d2_caps = { + .strengths = atmel_pmecc_strengths, + .nstrengths = 6, + .el_offset = 0xac, + .correct_erased_chunks = true, +}; + +static const struct of_device_id atmel_pmecc_legacy_match[] = { + { .compatible = "atmel,sama5d4-nand", &sama5d4_caps }, + { .compatible = "atmel,sama5d2-nand", &sama5d2_caps }, + { /* sentinel */ } +}; + +struct atmel_pmecc *devm_atmel_pmecc_get(struct device *userdev) +{ + struct atmel_pmecc *pmecc; + struct device_node *np; + + if (!userdev) + return ERR_PTR(-EINVAL); + + if (!userdev->of_node) + return NULL; + + np = of_parse_phandle(userdev->of_node, "ecc-engine", 0); + if (np) { + pmecc = atmel_pmecc_get_by_node(userdev, np); + of_node_put(np); + } else { + /* + * Support old DT bindings: in this case the PMECC iomem + * resources are directly defined in the user pdev at position + * 1 and 2. Extract all relevant information from there. + */ + struct platform_device *pdev = to_platform_device(userdev); + const struct atmel_pmecc_caps *caps; + + /* No PMECC engine available. */ + if (!of_property_read_bool(userdev->of_node, + "atmel,has-pmecc")) + return NULL; + + caps = &at91sam9g45_caps; + + /* + * Try to find the NFC subnode and extract the associated caps + * from there. + */ + np = of_find_compatible_node(userdev->of_node, NULL, + "atmel,sama5d3-nfc"); + if (np) { + const struct of_device_id *match; + + match = of_match_node(atmel_pmecc_legacy_match, np); + if (match && match->data) + caps = match->data; + + of_node_put(np); + } + + pmecc = atmel_pmecc_create(pdev, caps, 1, 2); + } + + return pmecc; +} +EXPORT_SYMBOL(devm_atmel_pmecc_get); + +static const struct of_device_id atmel_pmecc_match[] = { + { .compatible = "atmel,at91sam9g45-pmecc", &at91sam9g45_caps }, + { .compatible = "atmel,sama5d4-pmecc", &sama5d4_caps }, + { .compatible = "atmel,sama5d2-pmecc", &sama5d2_caps }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, atmel_pmecc_match); + +static int atmel_pmecc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + const struct atmel_pmecc_caps *caps; + struct atmel_pmecc *pmecc; + + caps = of_device_get_match_data(&pdev->dev); + if (!caps) { + dev_err(dev, "Invalid caps\n"); + return -EINVAL; + } + + pmecc = atmel_pmecc_create(pdev, caps, 0, 1); + if (IS_ERR(pmecc)) + return PTR_ERR(pmecc); + + platform_set_drvdata(pdev, pmecc); + + return 0; +} + +static struct platform_driver atmel_pmecc_driver = { + .driver = { + .name = "atmel-pmecc", + .of_match_table = of_match_ptr(atmel_pmecc_match), + }, + .probe = atmel_pmecc_probe, +}; +module_platform_driver(atmel_pmecc_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>"); +MODULE_DESCRIPTION("PMECC engine driver"); +MODULE_ALIAS("platform:atmel_pmecc"); diff --git a/drivers/mtd/nand/atmel/pmecc.h b/drivers/mtd/nand/atmel/pmecc.h new file mode 100644 index 000000000000..a8ddbfca2ea5 --- /dev/null +++ b/drivers/mtd/nand/atmel/pmecc.h @@ -0,0 +1,73 @@ +/* + * © Copyright 2016 ATMEL + * © Copyright 2016 Free Electrons + * + * Author: Boris Brezillon <boris.brezillon@free-electrons.com> + * + * Derived from the atmel_nand.c driver which contained the following + * copyrights: + * + * Copyright © 2003 Rick Bronson + * + * Derived from drivers/mtd/nand/autcpu12.c + * Copyright © 2001 Thomas Gleixner (gleixner@autronix.de) + * + * Derived from drivers/mtd/spia.c + * Copyright © 2000 Steven J. Hill (sjhill@cotw.com) + * + * + * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 + * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007 + * + * Derived from Das U-Boot source code + * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) + * © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas + * + * Add Programmable Multibit ECC support for various AT91 SoC + * © Copyright 2012 ATMEL, Hong Xu + * + * Add Nand Flash Controller support for SAMA5 SoC + * © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#ifndef ATMEL_PMECC_H +#define ATMEL_PMECC_H + +#define ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH 0 +#define ATMEL_PMECC_SECTOR_SIZE_AUTO 0 +#define ATMEL_PMECC_OOBOFFSET_AUTO -1 + +struct atmel_pmecc_user_req { + int pagesize; + int oobsize; + struct { + int strength; + int bytes; + int sectorsize; + int nsectors; + int ooboffset; + } ecc; +}; + +struct atmel_pmecc *devm_atmel_pmecc_get(struct device *dev); + +struct atmel_pmecc_user * +atmel_pmecc_create_user(struct atmel_pmecc *pmecc, + struct atmel_pmecc_user_req *req); +void atmel_pmecc_destroy_user(struct atmel_pmecc_user *user); + +int atmel_pmecc_enable(struct atmel_pmecc_user *user, int op); +void atmel_pmecc_disable(struct atmel_pmecc_user *user); +int atmel_pmecc_wait_rdy(struct atmel_pmecc_user *user); +int atmel_pmecc_correct_sector(struct atmel_pmecc_user *user, int sector, + void *data, void *ecc); +bool atmel_pmecc_correct_erased_chunks(struct atmel_pmecc_user *user); +void atmel_pmecc_get_generated_eccbytes(struct atmel_pmecc_user *user, + int sector, void *ecc); + +#endif /* ATMEL_PMECC_H */ diff --git a/drivers/mtd/nand/atmel_nand.c b/drivers/mtd/nand/atmel_nand.c deleted file mode 100644 index 9ebd5ecefea6..000000000000 --- a/drivers/mtd/nand/atmel_nand.c +++ /dev/null @@ -1,2479 +0,0 @@ -/* - * Copyright © 2003 Rick Bronson - * - * Derived from drivers/mtd/nand/autcpu12.c - * Copyright © 2001 Thomas Gleixner (gleixner@autronix.de) - * - * Derived from drivers/mtd/spia.c - * Copyright © 2000 Steven J. Hill (sjhill@cotw.com) - * - * - * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 - * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007 - * - * Derived from Das U-Boot source code - * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) - * © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas - * - * Add Programmable Multibit ECC support for various AT91 SoC - * © Copyright 2012 ATMEL, Hong Xu - * - * Add Nand Flash Controller support for SAMA5 SoC - * © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - */ - -#include <linux/clk.h> -#include <linux/dma-mapping.h> -#include <linux/slab.h> -#include <linux/module.h> -#include <linux/moduleparam.h> -#include <linux/platform_device.h> -#include <linux/of.h> -#include <linux/of_device.h> -#include <linux/of_gpio.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/partitions.h> - -#include <linux/delay.h> -#include <linux/dmaengine.h> -#include <linux/gpio.h> -#include <linux/interrupt.h> -#include <linux/io.h> -#include <linux/platform_data/atmel.h> - -static int use_dma = 1; -module_param(use_dma, int, 0); - -static int on_flash_bbt = 0; -module_param(on_flash_bbt, int, 0); - -/* Register access macros */ -#define ecc_readl(add, reg) \ - __raw_readl(add + ATMEL_ECC_##reg) -#define ecc_writel(add, reg, value) \ - __raw_writel((value), add + ATMEL_ECC_##reg) - -#include "atmel_nand_ecc.h" /* Hardware ECC registers */ -#include "atmel_nand_nfc.h" /* Nand Flash Controller definition */ - -struct atmel_nand_caps { - bool pmecc_correct_erase_page; - uint8_t pmecc_max_correction; -}; - -/* - * oob layout for large page size - * bad block info is on bytes 0 and 1 - * the bytes have to be consecutives to avoid - * several NAND_CMD_RNDOUT during read - * - * oob layout for small page size - * bad block info is on bytes 4 and 5 - * the bytes have to be consecutives to avoid - * several NAND_CMD_RNDOUT during read - */ -static int atmel_ooblayout_ecc_sp(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section) - return -ERANGE; - - oobregion->length = 4; - oobregion->offset = 0; - - return 0; -} - -static int atmel_ooblayout_free_sp(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section) - return -ERANGE; - - oobregion->offset = 6; - oobregion->length = mtd->oobsize - oobregion->offset; - - return 0; -} - -static const struct mtd_ooblayout_ops atmel_ooblayout_sp_ops = { - .ecc = atmel_ooblayout_ecc_sp, - .free = atmel_ooblayout_free_sp, -}; - -struct atmel_nfc { - void __iomem *base_cmd_regs; - void __iomem *hsmc_regs; - void *sram_bank0; - dma_addr_t sram_bank0_phys; - bool use_nfc_sram; - bool write_by_sram; - - struct clk *clk; - - bool is_initialized; - struct completion comp_ready; - struct completion comp_cmd_done; - struct completion comp_xfer_done; - - /* Point to the sram bank which include readed data via NFC */ - void *data_in_sram; - bool will_write_sram; -}; -static struct atmel_nfc nand_nfc; - -struct atmel_nand_host { - struct nand_chip nand_chip; - void __iomem *io_base; - dma_addr_t io_phys; - struct atmel_nand_data board; - struct device *dev; - void __iomem *ecc; - - struct completion comp; - struct dma_chan *dma_chan; - - struct atmel_nfc *nfc; - - const struct atmel_nand_caps *caps; - bool has_pmecc; - u8 pmecc_corr_cap; - u16 pmecc_sector_size; - bool has_no_lookup_table; - u32 pmecc_lookup_table_offset; - u32 pmecc_lookup_table_offset_512; - u32 pmecc_lookup_table_offset_1024; - - int pmecc_degree; /* Degree of remainders */ - int pmecc_cw_len; /* Length of codeword */ - - void __iomem *pmerrloc_base; - void __iomem *pmerrloc_el_base; - void __iomem *pmecc_rom_base; - - /* lookup table for alpha_to and index_of */ - void __iomem *pmecc_alpha_to; - void __iomem *pmecc_index_of; - - /* data for pmecc computation */ - int16_t *pmecc_partial_syn; - int16_t *pmecc_si; - int16_t *pmecc_smu; /* Sigma table */ - int16_t *pmecc_lmu; /* polynomal order */ - int *pmecc_mu; - int *pmecc_dmu; - int *pmecc_delta; -}; - -/* - * Enable NAND. - */ -static void atmel_nand_enable(struct atmel_nand_host *host) -{ - if (gpio_is_valid(host->board.enable_pin)) - gpio_set_value(host->board.enable_pin, 0); -} - -/* - * Disable NAND. - */ -static void atmel_nand_disable(struct atmel_nand_host *host) -{ - if (gpio_is_valid(host->board.enable_pin)) - gpio_set_value(host->board.enable_pin, 1); -} - -/* - * Hardware specific access to control-lines - */ -static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct atmel_nand_host *host = nand_get_controller_data(nand_chip); - - if (ctrl & NAND_CTRL_CHANGE) { - if (ctrl & NAND_NCE) - atmel_nand_enable(host); - else - atmel_nand_disable(host); - } - if (cmd == NAND_CMD_NONE) - return; - - if (ctrl & NAND_CLE) - writeb(cmd, host->io_base + (1 << host->board.cle)); - else - writeb(cmd, host->io_base + (1 << host->board.ale)); -} - -/* - * Read the Device Ready pin. - */ -static int atmel_nand_device_ready(struct mtd_info *mtd) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct atmel_nand_host *host = nand_get_controller_data(nand_chip); - - return gpio_get_value(host->board.rdy_pin) ^ - !!host->board.rdy_pin_active_low; -} - -/* Set up for hardware ready pin and enable pin. */ -static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct atmel_nand_host *host = nand_get_controller_data(chip); - int res = 0; - - if (gpio_is_valid(host->board.rdy_pin)) { - res = devm_gpio_request(host->dev, - host->board.rdy_pin, "nand_rdy"); - if (res < 0) { - dev_err(host->dev, - "can't request rdy gpio %d\n", - host->board.rdy_pin); - return res; - } - - res = gpio_direction_input(host->board.rdy_pin); - if (res < 0) { - dev_err(host->dev, - "can't request input direction rdy gpio %d\n", - host->board.rdy_pin); - return res; - } - - chip->dev_ready = atmel_nand_device_ready; - } - - if (gpio_is_valid(host->board.enable_pin)) { - res = devm_gpio_request(host->dev, - host->board.enable_pin, "nand_enable"); - if (res < 0) { - dev_err(host->dev, - "can't request enable gpio %d\n", - host->board.enable_pin); - return res; - } - - res = gpio_direction_output(host->board.enable_pin, 1); - if (res < 0) { - dev_err(host->dev, - "can't request output direction enable gpio %d\n", - host->board.enable_pin); - return res; - } - } - - return res; -} - -/* - * Minimal-overhead PIO for data access. - */ -static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct atmel_nand_host *host = nand_get_controller_data(nand_chip); - - if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) { - memcpy(buf, host->nfc->data_in_sram, len); - host->nfc->data_in_sram += len; - } else { - __raw_readsb(nand_chip->IO_ADDR_R, buf, len); - } -} - -static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct atmel_nand_host *host = nand_get_controller_data(nand_chip); - - if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) { - memcpy(buf, host->nfc->data_in_sram, len); - host->nfc->data_in_sram += len; - } else { - __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2); - } -} - -static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - - __raw_writesb(nand_chip->IO_ADDR_W, buf, len); -} - -static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - - __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2); -} - -static void dma_complete_func(void *completion) -{ - complete(completion); -} - -static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank) -{ - /* NFC only has two banks. Must be 0 or 1 */ - if (bank > 1) - return -EINVAL; - - if (bank) { - struct mtd_info *mtd = nand_to_mtd(&host->nand_chip); - - /* Only for a 2k-page or lower flash, NFC can handle 2 banks */ - if (mtd->writesize > 2048) - return -EINVAL; - nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1); - } else { - nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0); - } - - return 0; -} - -static uint nfc_get_sram_off(struct atmel_nand_host *host) -{ - if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1) - return NFC_SRAM_BANK1_OFFSET; - else - return 0; -} - -static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host) -{ - if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1) - return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET; - else - return host->nfc->sram_bank0_phys; -} - -static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len, - int is_read) -{ - struct dma_device *dma_dev; - enum dma_ctrl_flags flags; - dma_addr_t dma_src_addr, dma_dst_addr, phys_addr; - struct dma_async_tx_descriptor *tx = NULL; - dma_cookie_t cookie; - struct nand_chip *chip = mtd_to_nand(mtd); - struct atmel_nand_host *host = nand_get_controller_data(chip); - void *p = buf; - int err = -EIO; - enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE; - struct atmel_nfc *nfc = host->nfc; - - if (buf >= high_memory) - goto err_buf; - - dma_dev = host->dma_chan->device; - - flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; - - phys_addr = dma_map_single(dma_dev->dev, p, len, dir); - if (dma_mapping_error(dma_dev->dev, phys_addr)) { - dev_err(host->dev, "Failed to dma_map_single\n"); - goto err_buf; - } - - if (is_read) { - if (nfc && nfc->data_in_sram) - dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram - - (nfc->sram_bank0 + nfc_get_sram_off(host))); - else - dma_src_addr = host->io_phys; - - dma_dst_addr = phys_addr; - } else { - dma_src_addr = phys_addr; - - if (nfc && nfc->write_by_sram) - dma_dst_addr = nfc_sram_phys(host); - else - dma_dst_addr = host->io_phys; - } - - tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr, - dma_src_addr, len, flags); - if (!tx) { - dev_err(host->dev, "Failed to prepare DMA memcpy\n"); - goto err_dma; - } - - init_completion(&host->comp); - tx->callback = dma_complete_func; - tx->callback_param = &host->comp; - - cookie = tx->tx_submit(tx); - if (dma_submit_error(cookie)) { - dev_err(host->dev, "Failed to do DMA tx_submit\n"); - goto err_dma; - } - - dma_async_issue_pending(host->dma_chan); - wait_for_completion(&host->comp); - - if (is_read && nfc && nfc->data_in_sram) - /* After read data from SRAM, need to increase the position */ - nfc->data_in_sram += len; - - err = 0; - -err_dma: - dma_unmap_single(dma_dev->dev, phys_addr, len, dir); -err_buf: - if (err != 0) - dev_dbg(host->dev, "Fall back to CPU I/O\n"); - return err; -} - -static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if (use_dma && len > mtd->oobsize) - /* only use DMA for bigger than oob size: better performances */ - if (atmel_nand_dma_op(mtd, buf, len, 1) == 0) - return; - - if (chip->options & NAND_BUSWIDTH_16) - atmel_read_buf16(mtd, buf, len); - else - atmel_read_buf8(mtd, buf, len); -} - -static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if (use_dma && len > mtd->oobsize) - /* only use DMA for bigger than oob size: better performances */ - if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0) - return; - - if (chip->options & NAND_BUSWIDTH_16) - atmel_write_buf16(mtd, buf, len); - else - atmel_write_buf8(mtd, buf, len); -} - -/* - * Return number of ecc bytes per sector according to sector size and - * correction capability - * - * Following table shows what at91 PMECC supported: - * Correction Capability Sector_512_bytes Sector_1024_bytes - * ===================== ================ ================= - * 2-bits 4-bytes 4-bytes - * 4-bits 7-bytes 7-bytes - * 8-bits 13-bytes 14-bytes - * 12-bits 20-bytes 21-bytes - * 24-bits 39-bytes 42-bytes - * 32-bits 52-bytes 56-bytes - */ -static int pmecc_get_ecc_bytes(int cap, int sector_size) -{ - int m = 12 + sector_size / 512; - return (m * cap + 7) / 8; -} - -static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host) -{ - int table_size; - - table_size = host->pmecc_sector_size == 512 ? - PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024; - - return host->pmecc_rom_base + host->pmecc_lookup_table_offset + - table_size * sizeof(int16_t); -} - -static int pmecc_data_alloc(struct atmel_nand_host *host) -{ - const int cap = host->pmecc_corr_cap; - int size; - - size = (2 * cap + 1) * sizeof(int16_t); - host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL); - host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL); - host->pmecc_lmu = devm_kzalloc(host->dev, - (cap + 1) * sizeof(int16_t), GFP_KERNEL); - host->pmecc_smu = devm_kzalloc(host->dev, - (cap + 2) * size, GFP_KERNEL); - - size = (cap + 1) * sizeof(int); - host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL); - host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL); - host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL); - - if (!host->pmecc_partial_syn || - !host->pmecc_si || - !host->pmecc_lmu || - !host->pmecc_smu || - !host->pmecc_mu || - !host->pmecc_dmu || - !host->pmecc_delta) - return -ENOMEM; - - return 0; -} - -static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct atmel_nand_host *host = nand_get_controller_data(nand_chip); - int i; - uint32_t value; - - /* Fill odd syndromes */ - for (i = 0; i < host->pmecc_corr_cap; i++) { - value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2); - if (i & 1) - value >>= 16; - value &= 0xffff; - host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value; - } -} - -static void pmecc_substitute(struct mtd_info *mtd) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct atmel_nand_host *host = nand_get_controller_data(nand_chip); - int16_t __iomem *alpha_to = host->pmecc_alpha_to; - int16_t __iomem *index_of = host->pmecc_index_of; - int16_t *partial_syn = host->pmecc_partial_syn; - const int cap = host->pmecc_corr_cap; - int16_t *si; - int i, j; - - /* si[] is a table that holds the current syndrome value, - * an element of that table belongs to the field - */ - si = host->pmecc_si; - - memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1)); - - /* Computation 2t syndromes based on S(x) */ - /* Odd syndromes */ - for (i = 1; i < 2 * cap; i += 2) { - for (j = 0; j < host->pmecc_degree; j++) { - if (partial_syn[i] & ((unsigned short)0x1 << j)) - si[i] = readw_relaxed(alpha_to + i * j) ^ si[i]; - } - } - /* Even syndrome = (Odd syndrome) ** 2 */ - for (i = 2, j = 1; j <= cap; i = ++j << 1) { - if (si[j] == 0) { - si[i] = 0; - } else { - int16_t tmp; - - tmp = readw_relaxed(index_of + si[j]); - tmp = (tmp * 2) % host->pmecc_cw_len; - si[i] = readw_relaxed(alpha_to + tmp); - } - } - - return; -} - -static void pmecc_get_sigma(struct mtd_info *mtd) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct atmel_nand_host *host = nand_get_controller_data(nand_chip); - - int16_t *lmu = host->pmecc_lmu; - int16_t *si = host->pmecc_si; - int *mu = host->pmecc_mu; - int *dmu = host->pmecc_dmu; /* Discrepancy */ - int *delta = host->pmecc_delta; /* Delta order */ - int cw_len = host->pmecc_cw_len; - const int16_t cap = host->pmecc_corr_cap; - const int num = 2 * cap + 1; - int16_t __iomem *index_of = host->pmecc_index_of; - int16_t __iomem *alpha_to = host->pmecc_alpha_to; - int i, j, k; - uint32_t dmu_0_count, tmp; - int16_t *smu = host->pmecc_smu; - - /* index of largest delta */ - int ro; - int largest; - int diff; - - dmu_0_count = 0; - - /* First Row */ - - /* Mu */ - mu[0] = -1; - - memset(smu, 0, sizeof(int16_t) * num); - smu[0] = 1; - - /* discrepancy set to 1 */ - dmu[0] = 1; - /* polynom order set to 0 */ - lmu[0] = 0; - delta[0] = (mu[0] * 2 - lmu[0]) >> 1; - - /* Second Row */ - - /* Mu */ - mu[1] = 0; - /* Sigma(x) set to 1 */ - memset(&smu[num], 0, sizeof(int16_t) * num); - smu[num] = 1; - - /* discrepancy set to S1 */ - dmu[1] = si[1]; - - /* polynom order set to 0 */ - lmu[1] = 0; - - delta[1] = (mu[1] * 2 - lmu[1]) >> 1; - - /* Init the Sigma(x) last row */ - memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num); - - for (i = 1; i <= cap; i++) { - mu[i + 1] = i << 1; - /* Begin Computing Sigma (Mu+1) and L(mu) */ - /* check if discrepancy is set to 0 */ - if (dmu[i] == 0) { - dmu_0_count++; - - tmp = ((cap - (lmu[i] >> 1) - 1) / 2); - if ((cap - (lmu[i] >> 1) - 1) & 0x1) - tmp += 2; - else - tmp += 1; - - if (dmu_0_count == tmp) { - for (j = 0; j <= (lmu[i] >> 1) + 1; j++) - smu[(cap + 1) * num + j] = - smu[i * num + j]; - - lmu[cap + 1] = lmu[i]; - return; - } - - /* copy polynom */ - for (j = 0; j <= lmu[i] >> 1; j++) - smu[(i + 1) * num + j] = smu[i * num + j]; - - /* copy previous polynom order to the next */ - lmu[i + 1] = lmu[i]; - } else { - ro = 0; - largest = -1; - /* find largest delta with dmu != 0 */ - for (j = 0; j < i; j++) { - if ((dmu[j]) && (delta[j] > largest)) { - largest = delta[j]; - ro = j; - } - } - - /* compute difference */ - diff = (mu[i] - mu[ro]); - - /* Compute degree of the new smu polynomial */ - if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff)) - lmu[i + 1] = lmu[i]; - else - lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2; - - /* Init smu[i+1] with 0 */ - for (k = 0; k < num; k++) - smu[(i + 1) * num + k] = 0; - - /* Compute smu[i+1] */ - for (k = 0; k <= lmu[ro] >> 1; k++) { - int16_t a, b, c; - - if (!(smu[ro * num + k] && dmu[i])) - continue; - a = readw_relaxed(index_of + dmu[i]); - b = readw_relaxed(index_of + dmu[ro]); - c = readw_relaxed(index_of + smu[ro * num + k]); - tmp = a + (cw_len - b) + c; - a = readw_relaxed(alpha_to + tmp % cw_len); - smu[(i + 1) * num + (k + diff)] = a; - } - - for (k = 0; k <= lmu[i] >> 1; k++) - smu[(i + 1) * num + k] ^= smu[i * num + k]; - } - - /* End Computing Sigma (Mu+1) and L(mu) */ - /* In either case compute delta */ - delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1; - - /* Do not compute discrepancy for the last iteration */ - if (i >= cap) - continue; - - for (k = 0; k <= (lmu[i + 1] >> 1); k++) { - tmp = 2 * (i - 1); - if (k == 0) { - dmu[i + 1] = si[tmp + 3]; - } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) { - int16_t a, b, c; - a = readw_relaxed(index_of + - smu[(i + 1) * num + k]); - b = si[2 * (i - 1) + 3 - k]; - c = readw_relaxed(index_of + b); - tmp = a + c; - tmp %= cw_len; - dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^ - dmu[i + 1]; - } - } - } - - return; -} - -static int pmecc_err_location(struct mtd_info *mtd) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct atmel_nand_host *host = nand_get_controller_data(nand_chip); - unsigned long end_time; - const int cap = host->pmecc_corr_cap; - const int num = 2 * cap + 1; - int sector_size = host->pmecc_sector_size; - int err_nbr = 0; /* number of error */ - int roots_nbr; /* number of roots */ - int i; - uint32_t val; - int16_t *smu = host->pmecc_smu; - - pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE); - - for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) { - pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i, - smu[(cap + 1) * num + i]); - err_nbr++; - } - - val = (err_nbr - 1) << 16; - if (sector_size == 1024) - val |= 1; - - pmerrloc_writel(host->pmerrloc_base, ELCFG, val); - pmerrloc_writel(host->pmerrloc_base, ELEN, - sector_size * 8 + host->pmecc_degree * cap); - - end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS); - while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR) - & PMERRLOC_CALC_DONE)) { - if (unlikely(time_after(jiffies, end_time))) { - dev_err(host->dev, "PMECC: Timeout to calculate error location.\n"); - return -1; - } - cpu_relax(); - } - - roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR) - & PMERRLOC_ERR_NUM_MASK) >> 8; - /* Number of roots == degree of smu hence <= cap */ - if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1) - return err_nbr - 1; - - /* Number of roots does not match the degree of smu - * unable to correct error */ - return -1; -} - -static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc, - int sector_num, int extra_bytes, int err_nbr) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct atmel_nand_host *host = nand_get_controller_data(nand_chip); - int i = 0; - int byte_pos, bit_pos, sector_size, pos; - uint32_t tmp; - uint8_t err_byte; - - sector_size = host->pmecc_sector_size; - - while (err_nbr) { - tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_el_base, i) - 1; - byte_pos = tmp / 8; - bit_pos = tmp % 8; - - if (byte_pos >= (sector_size + extra_bytes)) - BUG(); /* should never happen */ - - if (byte_pos < sector_size) { - err_byte = *(buf + byte_pos); - *(buf + byte_pos) ^= (1 << bit_pos); - - pos = sector_num * host->pmecc_sector_size + byte_pos; - dev_dbg(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n", - pos, bit_pos, err_byte, *(buf + byte_pos)); - } else { - struct mtd_oob_region oobregion; - - /* Bit flip in OOB area */ - tmp = sector_num * nand_chip->ecc.bytes - + (byte_pos - sector_size); - err_byte = ecc[tmp]; - ecc[tmp] ^= (1 << bit_pos); - - mtd_ooblayout_ecc(mtd, 0, &oobregion); - pos = tmp + oobregion.offset; - dev_dbg(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n", - pos, bit_pos, err_byte, ecc[tmp]); - } - - i++; - err_nbr--; - } - - return; -} - -static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf, - u8 *ecc) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct atmel_nand_host *host = nand_get_controller_data(nand_chip); - int i, err_nbr; - uint8_t *buf_pos; - int max_bitflips = 0; - - for (i = 0; i < nand_chip->ecc.steps; i++) { - err_nbr = 0; - if (pmecc_stat & 0x1) { - buf_pos = buf + i * host->pmecc_sector_size; - - pmecc_gen_syndrome(mtd, i); - pmecc_substitute(mtd); - pmecc_get_sigma(mtd); - - err_nbr = pmecc_err_location(mtd); - if (err_nbr >= 0) { - pmecc_correct_data(mtd, buf_pos, ecc, i, - nand_chip->ecc.bytes, - err_nbr); - } else if (!host->caps->pmecc_correct_erase_page) { - u8 *ecc_pos = ecc + (i * nand_chip->ecc.bytes); - - /* Try to detect erased pages */ - err_nbr = nand_check_erased_ecc_chunk(buf_pos, - host->pmecc_sector_size, - ecc_pos, - nand_chip->ecc.bytes, - NULL, 0, - nand_chip->ecc.strength); - } - - if (err_nbr < 0) { - dev_err(host->dev, "PMECC: Too many errors\n"); - mtd->ecc_stats.failed++; - return -EIO; - } - - mtd->ecc_stats.corrected += err_nbr; - max_bitflips = max_t(int, max_bitflips, err_nbr); - } - pmecc_stat >>= 1; - } - - return max_bitflips; -} - -static void pmecc_enable(struct atmel_nand_host *host, int ecc_op) -{ - u32 val; - - if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) { - dev_err(host->dev, "atmel_nand: wrong pmecc operation type!"); - return; - } - - pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST); - pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); - val = pmecc_readl_relaxed(host->ecc, CFG); - - if (ecc_op == NAND_ECC_READ) - pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP) - | PMECC_CFG_AUTO_ENABLE); - else - pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP) - & ~PMECC_CFG_AUTO_ENABLE); - - pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE); - pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA); -} - -static int atmel_nand_pmecc_read_page(struct mtd_info *mtd, - struct nand_chip *chip, uint8_t *buf, int oob_required, int page) -{ - struct atmel_nand_host *host = nand_get_controller_data(chip); - int eccsize = chip->ecc.size * chip->ecc.steps; - uint8_t *oob = chip->oob_poi; - uint32_t stat; - unsigned long end_time; - int bitflips = 0; - - if (!host->nfc || !host->nfc->use_nfc_sram) - pmecc_enable(host, NAND_ECC_READ); - - chip->read_buf(mtd, buf, eccsize); - chip->read_buf(mtd, oob, mtd->oobsize); - - end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS); - while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) { - if (unlikely(time_after(jiffies, end_time))) { - dev_err(host->dev, "PMECC: Timeout to get error status.\n"); - return -EIO; - } - cpu_relax(); - } - - stat = pmecc_readl_relaxed(host->ecc, ISR); - if (stat != 0) { - struct mtd_oob_region oobregion; - - mtd_ooblayout_ecc(mtd, 0, &oobregion); - bitflips = pmecc_correction(mtd, stat, buf, - &oob[oobregion.offset]); - if (bitflips < 0) - /* uncorrectable errors */ - return 0; - } - - return bitflips; -} - -static int atmel_nand_pmecc_write_page(struct mtd_info *mtd, - struct nand_chip *chip, const uint8_t *buf, int oob_required, - int page) -{ - struct atmel_nand_host *host = nand_get_controller_data(chip); - struct mtd_oob_region oobregion = { }; - int i, j, section = 0; - unsigned long end_time; - - if (!host->nfc || !host->nfc->write_by_sram) { - pmecc_enable(host, NAND_ECC_WRITE); - chip->write_buf(mtd, (u8 *)buf, mtd->writesize); - } - - end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS); - while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) { - if (unlikely(time_after(jiffies, end_time))) { - dev_err(host->dev, "PMECC: Timeout to get ECC value.\n"); - return -EIO; - } - cpu_relax(); - } - - for (i = 0; i < chip->ecc.steps; i++) { - for (j = 0; j < chip->ecc.bytes; j++) { - if (!oobregion.length) - mtd_ooblayout_ecc(mtd, section, &oobregion); - - chip->oob_poi[oobregion.offset] = - pmecc_readb_ecc_relaxed(host->ecc, i, j); - oobregion.length--; - oobregion.offset++; - section++; - } - } - chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); - - return 0; -} - -static void atmel_pmecc_core_init(struct mtd_info *mtd) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct atmel_nand_host *host = nand_get_controller_data(nand_chip); - int eccbytes = mtd_ooblayout_count_eccbytes(mtd); - uint32_t val = 0; - struct mtd_oob_region oobregion; - - pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST); - pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); - - switch (host->pmecc_corr_cap) { - case 2: - val = PMECC_CFG_BCH_ERR2; - break; - case 4: - val = PMECC_CFG_BCH_ERR4; - break; - case 8: - val = PMECC_CFG_BCH_ERR8; - break; - case 12: - val = PMECC_CFG_BCH_ERR12; - break; - case 24: - val = PMECC_CFG_BCH_ERR24; - break; - case 32: - val = PMECC_CFG_BCH_ERR32; - break; - } - - if (host->pmecc_sector_size == 512) - val |= PMECC_CFG_SECTOR512; - else if (host->pmecc_sector_size == 1024) - val |= PMECC_CFG_SECTOR1024; - - switch (nand_chip->ecc.steps) { - case 1: - val |= PMECC_CFG_PAGE_1SECTOR; - break; - case 2: - val |= PMECC_CFG_PAGE_2SECTORS; - break; - case 4: - val |= PMECC_CFG_PAGE_4SECTORS; - break; - case 8: - val |= PMECC_CFG_PAGE_8SECTORS; - break; - } - - val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE - | PMECC_CFG_AUTO_DISABLE); - pmecc_writel(host->ecc, CFG, val); - - pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1); - mtd_ooblayout_ecc(mtd, 0, &oobregion); - pmecc_writel(host->ecc, SADDR, oobregion.offset); - pmecc_writel(host->ecc, EADDR, - oobregion.offset + eccbytes - 1); - /* See datasheet about PMECC Clock Control Register */ - pmecc_writel(host->ecc, CLK, 2); - pmecc_writel(host->ecc, IDR, 0xff); - pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE); -} - -/* - * Get minimum ecc requirements from NAND. - * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function - * will set them according to minimum ecc requirement. Otherwise, use the - * value in DTS file. - * return 0 if success. otherwise return error code. - */ -static int pmecc_choose_ecc(struct atmel_nand_host *host, - int *cap, int *sector_size) -{ - /* Get minimum ECC requirements */ - if (host->nand_chip.ecc_strength_ds) { - *cap = host->nand_chip.ecc_strength_ds; - *sector_size = host->nand_chip.ecc_step_ds; - dev_info(host->dev, "minimum ECC: %d bits in %d bytes\n", - *cap, *sector_size); - } else { - *cap = 2; - *sector_size = 512; - dev_info(host->dev, "can't detect min. ECC, assume 2 bits in 512 bytes\n"); - } - - /* If device tree doesn't specify, use NAND's minimum ECC parameters */ - if (host->pmecc_corr_cap == 0) { - if (*cap > host->caps->pmecc_max_correction) - return -EINVAL; - - /* use the most fitable ecc bits (the near bigger one ) */ - if (*cap <= 2) - host->pmecc_corr_cap = 2; - else if (*cap <= 4) - host->pmecc_corr_cap = 4; - else if (*cap <= 8) - host->pmecc_corr_cap = 8; - else if (*cap <= 12) - host->pmecc_corr_cap = 12; - else if (*cap <= 24) - host->pmecc_corr_cap = 24; - else if (*cap <= 32) - host->pmecc_corr_cap = 32; - else - return -EINVAL; - } - if (host->pmecc_sector_size == 0) { - /* use the most fitable sector size (the near smaller one ) */ - if (*sector_size >= 1024) - host->pmecc_sector_size = 1024; - else if (*sector_size >= 512) - host->pmecc_sector_size = 512; - else - return -EINVAL; - } - return 0; -} - -static inline int deg(unsigned int poly) -{ - /* polynomial degree is the most-significant bit index */ - return fls(poly) - 1; -} - -static int build_gf_tables(int mm, unsigned int poly, - int16_t *index_of, int16_t *alpha_to) -{ - unsigned int i, x = 1; - const unsigned int k = 1 << deg(poly); - unsigned int nn = (1 << mm) - 1; - - /* primitive polynomial must be of degree m */ - if (k != (1u << mm)) - return -EINVAL; - - for (i = 0; i < nn; i++) { - alpha_to[i] = x; - index_of[x] = i; - if (i && (x == 1)) - /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ - return -EINVAL; - x <<= 1; - if (x & k) - x ^= poly; - } - alpha_to[nn] = 1; - index_of[0] = 0; - - return 0; -} - -static uint16_t *create_lookup_table(struct device *dev, int sector_size) -{ - int degree = (sector_size == 512) ? - PMECC_GF_DIMENSION_13 : - PMECC_GF_DIMENSION_14; - unsigned int poly = (sector_size == 512) ? - PMECC_GF_13_PRIMITIVE_POLY : - PMECC_GF_14_PRIMITIVE_POLY; - int table_size = (sector_size == 512) ? - PMECC_LOOKUP_TABLE_SIZE_512 : - PMECC_LOOKUP_TABLE_SIZE_1024; - - int16_t *addr = devm_kzalloc(dev, 2 * table_size * sizeof(uint16_t), - GFP_KERNEL); - if (addr && build_gf_tables(degree, poly, addr, addr + table_size)) - return NULL; - - return addr; -} - -static int atmel_pmecc_nand_init_params(struct platform_device *pdev, - struct atmel_nand_host *host) -{ - struct nand_chip *nand_chip = &host->nand_chip; - struct mtd_info *mtd = nand_to_mtd(nand_chip); - struct resource *regs, *regs_pmerr, *regs_rom; - uint16_t *galois_table; - int cap, sector_size, err_no; - - err_no = pmecc_choose_ecc(host, &cap, §or_size); - if (err_no) { - dev_err(host->dev, "The NAND flash's ECC requirement are not support!"); - return err_no; - } - - if (cap > host->pmecc_corr_cap || - sector_size != host->pmecc_sector_size) - dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n"); - - cap = host->pmecc_corr_cap; - sector_size = host->pmecc_sector_size; - host->pmecc_lookup_table_offset = (sector_size == 512) ? - host->pmecc_lookup_table_offset_512 : - host->pmecc_lookup_table_offset_1024; - - dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n", - cap, sector_size); - - regs = platform_get_resource(pdev, IORESOURCE_MEM, 1); - if (!regs) { - dev_warn(host->dev, - "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n"); - nand_chip->ecc.mode = NAND_ECC_SOFT; - nand_chip->ecc.algo = NAND_ECC_HAMMING; - return 0; - } - - host->ecc = devm_ioremap_resource(&pdev->dev, regs); - if (IS_ERR(host->ecc)) { - err_no = PTR_ERR(host->ecc); - goto err; - } - - regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2); - host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr); - if (IS_ERR(host->pmerrloc_base)) { - err_no = PTR_ERR(host->pmerrloc_base); - goto err; - } - host->pmerrloc_el_base = host->pmerrloc_base + ATMEL_PMERRLOC_SIGMAx + - (host->caps->pmecc_max_correction + 1) * 4; - - if (!host->has_no_lookup_table) { - regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3); - host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev, - regs_rom); - if (IS_ERR(host->pmecc_rom_base)) { - dev_err(host->dev, "Can not get I/O resource for ROM, will build a lookup table in runtime!\n"); - host->has_no_lookup_table = true; - } - } - - if (host->has_no_lookup_table) { - /* Build the look-up table in runtime */ - galois_table = create_lookup_table(host->dev, sector_size); - if (!galois_table) { - dev_err(host->dev, "Failed to build a lookup table in runtime!\n"); - err_no = -EINVAL; - goto err; - } - - host->pmecc_rom_base = (void __iomem *)galois_table; - host->pmecc_lookup_table_offset = 0; - } - - nand_chip->ecc.size = sector_size; - - /* set ECC page size and oob layout */ - switch (mtd->writesize) { - case 512: - case 1024: - case 2048: - case 4096: - case 8192: - if (sector_size > mtd->writesize) { - dev_err(host->dev, "pmecc sector size is bigger than the page size!\n"); - err_no = -EINVAL; - goto err; - } - - host->pmecc_degree = (sector_size == 512) ? - PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14; - host->pmecc_cw_len = (1 << host->pmecc_degree) - 1; - host->pmecc_alpha_to = pmecc_get_alpha_to(host); - host->pmecc_index_of = host->pmecc_rom_base + - host->pmecc_lookup_table_offset; - - nand_chip->ecc.strength = cap; - nand_chip->ecc.bytes = pmecc_get_ecc_bytes(cap, sector_size); - nand_chip->ecc.steps = mtd->writesize / sector_size; - nand_chip->ecc.total = nand_chip->ecc.bytes * - nand_chip->ecc.steps; - if (nand_chip->ecc.total > - mtd->oobsize - PMECC_OOB_RESERVED_BYTES) { - dev_err(host->dev, "No room for ECC bytes\n"); - err_no = -EINVAL; - goto err; - } - - mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); - break; - default: - dev_warn(host->dev, - "Unsupported page size for PMECC, use Software ECC\n"); - /* page size not handled by HW ECC */ - /* switching back to soft ECC */ - nand_chip->ecc.mode = NAND_ECC_SOFT; - nand_chip->ecc.algo = NAND_ECC_HAMMING; - return 0; - } - - /* Allocate data for PMECC computation */ - err_no = pmecc_data_alloc(host); - if (err_no) { - dev_err(host->dev, - "Cannot allocate memory for PMECC computation!\n"); - goto err; - } - - nand_chip->options |= NAND_NO_SUBPAGE_WRITE; - nand_chip->ecc.read_page = atmel_nand_pmecc_read_page; - nand_chip->ecc.write_page = atmel_nand_pmecc_write_page; - - atmel_pmecc_core_init(mtd); - - return 0; - -err: - return err_no; -} - -/* - * Calculate HW ECC - * - * function called after a write - * - * mtd: MTD block structure - * dat: raw data (unused) - * ecc_code: buffer for ECC - */ -static int atmel_nand_calculate(struct mtd_info *mtd, - const u_char *dat, unsigned char *ecc_code) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct atmel_nand_host *host = nand_get_controller_data(nand_chip); - unsigned int ecc_value; - - /* get the first 2 ECC bytes */ - ecc_value = ecc_readl(host->ecc, PR); - - ecc_code[0] = ecc_value & 0xFF; - ecc_code[1] = (ecc_value >> 8) & 0xFF; - - /* get the last 2 ECC bytes */ - ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY; - - ecc_code[2] = ecc_value & 0xFF; - ecc_code[3] = (ecc_value >> 8) & 0xFF; - - return 0; -} - -/* - * HW ECC read page function - * - * mtd: mtd info structure - * chip: nand chip info structure - * buf: buffer to store read data - * oob_required: caller expects OOB data read to chip->oob_poi - */ -static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - int eccsize = chip->ecc.size; - int eccbytes = chip->ecc.bytes; - uint8_t *p = buf; - uint8_t *oob = chip->oob_poi; - uint8_t *ecc_pos; - int stat; - unsigned int max_bitflips = 0; - struct mtd_oob_region oobregion = {}; - - /* - * Errata: ALE is incorrectly wired up to the ECC controller - * on the AP7000, so it will include the address cycles in the - * ECC calculation. - * - * Workaround: Reset the parity registers before reading the - * actual data. - */ - struct atmel_nand_host *host = nand_get_controller_data(chip); - if (host->board.need_reset_workaround) - ecc_writel(host->ecc, CR, ATMEL_ECC_RST); - - /* read the page */ - chip->read_buf(mtd, p, eccsize); - - /* move to ECC position if needed */ - mtd_ooblayout_ecc(mtd, 0, &oobregion); - if (oobregion.offset != 0) { - /* - * This only works on large pages because the ECC controller - * waits for NAND_CMD_RNDOUTSTART after the NAND_CMD_RNDOUT. - * Anyway, for small pages, the first ECC byte is at offset - * 0 in the OOB area. - */ - chip->cmdfunc(mtd, NAND_CMD_RNDOUT, - mtd->writesize + oobregion.offset, -1); - } - - /* the ECC controller needs to read the ECC just after the data */ - ecc_pos = oob + oobregion.offset; - chip->read_buf(mtd, ecc_pos, eccbytes); - - /* check if there's an error */ - stat = chip->ecc.correct(mtd, p, oob, NULL); - - if (stat < 0) { - mtd->ecc_stats.failed++; - } else { - mtd->ecc_stats.corrected += stat; - max_bitflips = max_t(unsigned int, max_bitflips, stat); - } - - /* get back to oob start (end of page) */ - chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1); - - /* read the oob */ - chip->read_buf(mtd, oob, mtd->oobsize); - - return max_bitflips; -} - -/* - * HW ECC Correction - * - * function called after a read - * - * mtd: MTD block structure - * dat: raw data read from the chip - * read_ecc: ECC from the chip (unused) - * isnull: unused - * - * Detect and correct a 1 bit error for a page - */ -static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat, - u_char *read_ecc, u_char *isnull) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct atmel_nand_host *host = nand_get_controller_data(nand_chip); - unsigned int ecc_status; - unsigned int ecc_word, ecc_bit; - - /* get the status from the Status Register */ - ecc_status = ecc_readl(host->ecc, SR); - - /* if there's no error */ - if (likely(!(ecc_status & ATMEL_ECC_RECERR))) - return 0; - - /* get error bit offset (4 bits) */ - ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR; - /* get word address (12 bits) */ - ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR; - ecc_word >>= 4; - - /* if there are multiple errors */ - if (ecc_status & ATMEL_ECC_MULERR) { - /* check if it is a freshly erased block - * (filled with 0xff) */ - if ((ecc_bit == ATMEL_ECC_BITADDR) - && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) { - /* the block has just been erased, return OK */ - return 0; - } - /* it doesn't seems to be a freshly - * erased block. - * We can't correct so many errors */ - dev_dbg(host->dev, "atmel_nand : multiple errors detected." - " Unable to correct.\n"); - return -EBADMSG; - } - - /* if there's a single bit error : we can correct it */ - if (ecc_status & ATMEL_ECC_ECCERR) { - /* there's nothing much to do here. - * the bit error is on the ECC itself. - */ - dev_dbg(host->dev, "atmel_nand : one bit error on ECC code." - " Nothing to correct\n"); - return 0; - } - - dev_dbg(host->dev, "atmel_nand : one bit error on data." - " (word offset in the page :" - " 0x%x bit offset : 0x%x)\n", - ecc_word, ecc_bit); - /* correct the error */ - if (nand_chip->options & NAND_BUSWIDTH_16) { - /* 16 bits words */ - ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit); - } else { - /* 8 bits words */ - dat[ecc_word] ^= (1 << ecc_bit); - } - dev_dbg(host->dev, "atmel_nand : error corrected\n"); - return 1; -} - -/* - * Enable HW ECC : unused on most chips - */ -static void atmel_nand_hwctl(struct mtd_info *mtd, int mode) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct atmel_nand_host *host = nand_get_controller_data(nand_chip); - - if (host->board.need_reset_workaround) - ecc_writel(host->ecc, CR, ATMEL_ECC_RST); -} - -static int atmel_of_init_ecc(struct atmel_nand_host *host, - struct device_node *np) -{ - u32 offset[2]; - u32 val; - - host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc"); - - /* Not using PMECC */ - if (!(host->nand_chip.ecc.mode == NAND_ECC_HW) || !host->has_pmecc) - return 0; - - /* use PMECC, get correction capability, sector size and lookup - * table offset. - * If correction bits and sector size are not specified, then find - * them from NAND ONFI parameters. - */ - if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) { - if (val > host->caps->pmecc_max_correction) { - dev_err(host->dev, - "Required ECC strength too high: %u max %u\n", - val, host->caps->pmecc_max_correction); - return -EINVAL; - } - if ((val != 2) && (val != 4) && (val != 8) && - (val != 12) && (val != 24) && (val != 32)) { - dev_err(host->dev, - "Required ECC strength not supported: %u\n", - val); - return -EINVAL; - } - host->pmecc_corr_cap = (u8)val; - } - - if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) { - if ((val != 512) && (val != 1024)) { - dev_err(host->dev, - "Required ECC sector size not supported: %u\n", - val); - return -EINVAL; - } - host->pmecc_sector_size = (u16)val; - } - - if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset", - offset, 2) != 0) { - dev_err(host->dev, "Cannot get PMECC lookup table offset, will build a lookup table in runtime.\n"); - host->has_no_lookup_table = true; - /* Will build a lookup table and initialize the offset later */ - return 0; - } - - if (!offset[0] && !offset[1]) { - dev_err(host->dev, "Invalid PMECC lookup table offset\n"); - return -EINVAL; - } - - host->pmecc_lookup_table_offset_512 = offset[0]; - host->pmecc_lookup_table_offset_1024 = offset[1]; - - return 0; -} - -static int atmel_of_init_port(struct atmel_nand_host *host, - struct device_node *np) -{ - u32 val; - struct atmel_nand_data *board = &host->board; - enum of_gpio_flags flags = 0; - - host->caps = (struct atmel_nand_caps *) - of_device_get_match_data(host->dev); - - if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) { - if (val >= 32) { - dev_err(host->dev, "invalid addr-offset %u\n", val); - return -EINVAL; - } - board->ale = val; - } - - if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) { - if (val >= 32) { - dev_err(host->dev, "invalid cmd-offset %u\n", val); - return -EINVAL; - } - board->cle = val; - } - - board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma"); - - board->rdy_pin = of_get_gpio_flags(np, 0, &flags); - board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW); - - board->enable_pin = of_get_gpio(np, 1); - board->det_pin = of_get_gpio(np, 2); - - /* load the nfc driver if there is */ - of_platform_populate(np, NULL, NULL, host->dev); - - /* - * Initialize ECC mode to NAND_ECC_SOFT so that we have a correct value - * even if the nand-ecc-mode property is not defined. - */ - host->nand_chip.ecc.mode = NAND_ECC_SOFT; - host->nand_chip.ecc.algo = NAND_ECC_HAMMING; - - return 0; -} - -static int atmel_hw_nand_init_params(struct platform_device *pdev, - struct atmel_nand_host *host) -{ - struct nand_chip *nand_chip = &host->nand_chip; - struct mtd_info *mtd = nand_to_mtd(nand_chip); - struct resource *regs; - - regs = platform_get_resource(pdev, IORESOURCE_MEM, 1); - if (!regs) { - dev_err(host->dev, - "Can't get I/O resource regs, use software ECC\n"); - nand_chip->ecc.mode = NAND_ECC_SOFT; - nand_chip->ecc.algo = NAND_ECC_HAMMING; - return 0; - } - - host->ecc = devm_ioremap_resource(&pdev->dev, regs); - if (IS_ERR(host->ecc)) - return PTR_ERR(host->ecc); - - /* ECC is calculated for the whole page (1 step) */ - nand_chip->ecc.size = mtd->writesize; - - /* set ECC page size and oob layout */ - switch (mtd->writesize) { - case 512: - mtd_set_ooblayout(mtd, &atmel_ooblayout_sp_ops); - ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528); - break; - case 1024: - mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); - ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056); - break; - case 2048: - mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); - ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112); - break; - case 4096: - mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); - ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224); - break; - default: - /* page size not handled by HW ECC */ - /* switching back to soft ECC */ - nand_chip->ecc.mode = NAND_ECC_SOFT; - nand_chip->ecc.algo = NAND_ECC_HAMMING; - return 0; - } - - /* set up for HW ECC */ - nand_chip->ecc.calculate = atmel_nand_calculate; - nand_chip->ecc.correct = atmel_nand_correct; - nand_chip->ecc.hwctl = atmel_nand_hwctl; - nand_chip->ecc.read_page = atmel_nand_read_page; - nand_chip->ecc.bytes = 4; - nand_chip->ecc.strength = 1; - - return 0; -} - -static inline u32 nfc_read_status(struct atmel_nand_host *host) -{ - u32 err_flags = NFC_SR_DTOE | NFC_SR_UNDEF | NFC_SR_AWB | NFC_SR_ASE; - u32 nfc_status = nfc_readl(host->nfc->hsmc_regs, SR); - - if (unlikely(nfc_status & err_flags)) { - if (nfc_status & NFC_SR_DTOE) - dev_err(host->dev, "NFC: Waiting Nand R/B Timeout Error\n"); - else if (nfc_status & NFC_SR_UNDEF) - dev_err(host->dev, "NFC: Access Undefined Area Error\n"); - else if (nfc_status & NFC_SR_AWB) - dev_err(host->dev, "NFC: Access memory While NFC is busy\n"); - else if (nfc_status & NFC_SR_ASE) - dev_err(host->dev, "NFC: Access memory Size Error\n"); - } - - return nfc_status; -} - -/* SMC interrupt service routine */ -static irqreturn_t hsmc_interrupt(int irq, void *dev_id) -{ - struct atmel_nand_host *host = dev_id; - u32 status, mask, pending; - irqreturn_t ret = IRQ_NONE; - - status = nfc_read_status(host); - mask = nfc_readl(host->nfc->hsmc_regs, IMR); - pending = status & mask; - - if (pending & NFC_SR_XFR_DONE) { - complete(&host->nfc->comp_xfer_done); - nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE); - ret = IRQ_HANDLED; - } - if (pending & NFC_SR_RB_EDGE) { - complete(&host->nfc->comp_ready); - nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE); - ret = IRQ_HANDLED; - } - if (pending & NFC_SR_CMD_DONE) { - complete(&host->nfc->comp_cmd_done); - nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE); - ret = IRQ_HANDLED; - } - - return ret; -} - -/* NFC(Nand Flash Controller) related functions */ -static void nfc_prepare_interrupt(struct atmel_nand_host *host, u32 flag) -{ - if (flag & NFC_SR_XFR_DONE) - init_completion(&host->nfc->comp_xfer_done); - - if (flag & NFC_SR_RB_EDGE) - init_completion(&host->nfc->comp_ready); - - if (flag & NFC_SR_CMD_DONE) - init_completion(&host->nfc->comp_cmd_done); - - /* Enable interrupt that need to wait for */ - nfc_writel(host->nfc->hsmc_regs, IER, flag); -} - -static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag) -{ - int i, index = 0; - struct completion *comp[3]; /* Support 3 interrupt completion */ - - if (flag & NFC_SR_XFR_DONE) - comp[index++] = &host->nfc->comp_xfer_done; - - if (flag & NFC_SR_RB_EDGE) - comp[index++] = &host->nfc->comp_ready; - - if (flag & NFC_SR_CMD_DONE) - comp[index++] = &host->nfc->comp_cmd_done; - - if (index == 0) { - dev_err(host->dev, "Unknown interrupt flag: 0x%08x\n", flag); - return -EINVAL; - } - - for (i = 0; i < index; i++) { - if (wait_for_completion_timeout(comp[i], - msecs_to_jiffies(NFC_TIME_OUT_MS))) - continue; /* wait for next completion */ - else - goto err_timeout; - } - - return 0; - -err_timeout: - dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag); - /* Disable the interrupt as it is not handled by interrupt handler */ - nfc_writel(host->nfc->hsmc_regs, IDR, flag); - return -ETIMEDOUT; -} - -static int nfc_send_command(struct atmel_nand_host *host, - unsigned int cmd, unsigned int addr, unsigned char cycle0) -{ - unsigned long timeout; - u32 flag = NFC_SR_CMD_DONE; - flag |= cmd & NFCADDR_CMD_DATAEN ? NFC_SR_XFR_DONE : 0; - - dev_dbg(host->dev, - "nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n", - cmd, addr, cycle0); - - timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS); - while (nfc_readl(host->nfc->hsmc_regs, SR) & NFC_SR_BUSY) { - if (time_after(jiffies, timeout)) { - dev_err(host->dev, - "Time out to wait for NFC ready!\n"); - return -ETIMEDOUT; - } - } - - nfc_prepare_interrupt(host, flag); - nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0); - nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs); - return nfc_wait_interrupt(host, flag); -} - -static int nfc_device_ready(struct mtd_info *mtd) -{ - u32 status, mask; - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct atmel_nand_host *host = nand_get_controller_data(nand_chip); - - status = nfc_read_status(host); - mask = nfc_readl(host->nfc->hsmc_regs, IMR); - - /* The mask should be 0. If not we may lost interrupts */ - if (unlikely(mask & status)) - dev_err(host->dev, "Lost the interrupt flags: 0x%08x\n", - mask & status); - - return status & NFC_SR_RB_EDGE; -} - -static void nfc_select_chip(struct mtd_info *mtd, int chip) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct atmel_nand_host *host = nand_get_controller_data(nand_chip); - - if (chip == -1) - nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE); - else - nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE); -} - -static int nfc_make_addr(struct mtd_info *mtd, int command, int column, - int page_addr, unsigned int *addr1234, unsigned int *cycle0) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - int acycle = 0; - unsigned char addr_bytes[8]; - int index = 0, bit_shift; - - BUG_ON(addr1234 == NULL || cycle0 == NULL); - - *cycle0 = 0; - *addr1234 = 0; - - if (column != -1) { - if (chip->options & NAND_BUSWIDTH_16 && - !nand_opcode_8bits(command)) - column >>= 1; - addr_bytes[acycle++] = column & 0xff; - if (mtd->writesize > 512) - addr_bytes[acycle++] = (column >> 8) & 0xff; - } - - if (page_addr != -1) { - addr_bytes[acycle++] = page_addr & 0xff; - addr_bytes[acycle++] = (page_addr >> 8) & 0xff; - if (chip->chipsize > (128 << 20)) - addr_bytes[acycle++] = (page_addr >> 16) & 0xff; - } - - if (acycle > 4) - *cycle0 = addr_bytes[index++]; - - for (bit_shift = 0; index < acycle; bit_shift += 8) - *addr1234 += addr_bytes[index++] << bit_shift; - - /* return acycle in cmd register */ - return acycle << NFCADDR_CMD_ACYCLE_BIT_POS; -} - -static void nfc_nand_command(struct mtd_info *mtd, unsigned int command, - int column, int page_addr) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct atmel_nand_host *host = nand_get_controller_data(chip); - unsigned long timeout; - unsigned int nfc_addr_cmd = 0; - - unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS; - - /* Set default settings: no cmd2, no addr cycle. read from nand */ - unsigned int cmd2 = 0; - unsigned int vcmd2 = 0; - int acycle = NFCADDR_CMD_ACYCLE_NONE; - int csid = NFCADDR_CMD_CSID_3; - int dataen = NFCADDR_CMD_DATADIS; - int nfcwr = NFCADDR_CMD_NFCRD; - unsigned int addr1234 = 0; - unsigned int cycle0 = 0; - bool do_addr = true; - host->nfc->data_in_sram = NULL; - - dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n", - __func__, command, column, page_addr); - - switch (command) { - case NAND_CMD_RESET: - nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr; - nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0); - udelay(chip->chip_delay); - - nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1); - timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS); - while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) { - if (time_after(jiffies, timeout)) { - dev_err(host->dev, - "Time out to wait status ready!\n"); - break; - } - } - return; - case NAND_CMD_STATUS: - do_addr = false; - break; - case NAND_CMD_PARAM: - case NAND_CMD_READID: - do_addr = false; - acycle = NFCADDR_CMD_ACYCLE_1; - if (column != -1) - addr1234 = column; - break; - case NAND_CMD_RNDOUT: - cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS; - vcmd2 = NFCADDR_CMD_VCMD2; - break; - case NAND_CMD_READ0: - case NAND_CMD_READOOB: - if (command == NAND_CMD_READOOB) { - column += mtd->writesize; - command = NAND_CMD_READ0; /* only READ0 is valid */ - cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS; - } - if (host->nfc->use_nfc_sram) { - /* Enable Data transfer to sram */ - dataen = NFCADDR_CMD_DATAEN; - - /* Need enable PMECC now, since NFC will transfer - * data in bus after sending nfc read command. - */ - if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) - pmecc_enable(host, NAND_ECC_READ); - } - - cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS; - vcmd2 = NFCADDR_CMD_VCMD2; - break; - /* For prgramming command, the cmd need set to write enable */ - case NAND_CMD_PAGEPROG: - case NAND_CMD_SEQIN: - case NAND_CMD_RNDIN: - nfcwr = NFCADDR_CMD_NFCWR; - if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN) - dataen = NFCADDR_CMD_DATAEN; - break; - default: - break; - } - - if (do_addr) - acycle = nfc_make_addr(mtd, command, column, page_addr, - &addr1234, &cycle0); - - nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr; - nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0); - - /* - * Program and erase have their own busy handlers status, sequential - * in, and deplete1 need no delay. - */ - switch (command) { - case NAND_CMD_CACHEDPROG: - case NAND_CMD_PAGEPROG: - case NAND_CMD_ERASE1: - case NAND_CMD_ERASE2: - case NAND_CMD_RNDIN: - case NAND_CMD_STATUS: - case NAND_CMD_RNDOUT: - case NAND_CMD_SEQIN: - case NAND_CMD_READID: - return; - - case NAND_CMD_READ0: - if (dataen == NFCADDR_CMD_DATAEN) { - host->nfc->data_in_sram = host->nfc->sram_bank0 + - nfc_get_sram_off(host); - return; - } - /* fall through */ - default: - nfc_prepare_interrupt(host, NFC_SR_RB_EDGE); - nfc_wait_interrupt(host, NFC_SR_RB_EDGE); - } -} - -static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip, - uint32_t offset, int data_len, const uint8_t *buf, - int oob_required, int page, int cached, int raw) -{ - int cfg, len; - int status = 0; - struct atmel_nand_host *host = nand_get_controller_data(chip); - void *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host); - - /* Subpage write is not supported */ - if (offset || (data_len < mtd->writesize)) - return -EINVAL; - - len = mtd->writesize; - /* Copy page data to sram that will write to nand via NFC */ - if (use_dma) { - if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0) - /* Fall back to use cpu copy */ - memcpy(sram, buf, len); - } else { - memcpy(sram, buf, len); - } - - cfg = nfc_readl(host->nfc->hsmc_regs, CFG); - if (unlikely(raw) && oob_required) { - memcpy(sram + len, chip->oob_poi, mtd->oobsize); - len += mtd->oobsize; - nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE); - } else { - nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE); - } - - if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) - /* - * When use NFC sram, need set up PMECC before send - * NAND_CMD_SEQIN command. Since when the nand command - * is sent, nfc will do transfer from sram and nand. - */ - pmecc_enable(host, NAND_ECC_WRITE); - - host->nfc->will_write_sram = true; - chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); - host->nfc->will_write_sram = false; - - if (likely(!raw)) - /* Need to write ecc into oob */ - status = chip->ecc.write_page(mtd, chip, buf, oob_required, - page); - - if (status < 0) - return status; - - chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); - status = chip->waitfunc(mtd, chip); - - if ((status & NAND_STATUS_FAIL) && (chip->errstat)) - status = chip->errstat(mtd, chip, FL_WRITING, status, page); - - if (status & NAND_STATUS_FAIL) - return -EIO; - - return 0; -} - -static int nfc_sram_init(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct atmel_nand_host *host = nand_get_controller_data(chip); - int res = 0; - - /* Initialize the NFC CFG register */ - unsigned int cfg_nfc = 0; - - /* set page size and oob layout */ - switch (mtd->writesize) { - case 512: - cfg_nfc = NFC_CFG_PAGESIZE_512; - break; - case 1024: - cfg_nfc = NFC_CFG_PAGESIZE_1024; - break; - case 2048: - cfg_nfc = NFC_CFG_PAGESIZE_2048; - break; - case 4096: - cfg_nfc = NFC_CFG_PAGESIZE_4096; - break; - case 8192: - cfg_nfc = NFC_CFG_PAGESIZE_8192; - break; - default: - dev_err(host->dev, "Unsupported page size for NFC.\n"); - res = -ENXIO; - return res; - } - - /* oob bytes size = (NFCSPARESIZE + 1) * 4 - * Max support spare size is 512 bytes. */ - cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS - & NFC_CFG_NFC_SPARESIZE); - /* default set a max timeout */ - cfg_nfc |= NFC_CFG_RSPARE | - NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL; - - nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc); - - host->nfc->will_write_sram = false; - nfc_set_sram_bank(host, 0); - - /* Use Write page with NFC SRAM only for PMECC or ECC NONE. */ - if (host->nfc->write_by_sram) { - if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) || - chip->ecc.mode == NAND_ECC_NONE) - chip->write_page = nfc_sram_write_page; - else - host->nfc->write_by_sram = false; - } - - dev_info(host->dev, "Using NFC Sram read %s\n", - host->nfc->write_by_sram ? "and write" : ""); - return 0; -} - -static struct platform_driver atmel_nand_nfc_driver; -/* - * Probe for the NAND device. - */ -static int atmel_nand_probe(struct platform_device *pdev) -{ - struct atmel_nand_host *host; - struct mtd_info *mtd; - struct nand_chip *nand_chip; - struct resource *mem; - int res, irq; - - /* Allocate memory for the device structure (and zero it) */ - host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); - if (!host) - return -ENOMEM; - - res = platform_driver_register(&atmel_nand_nfc_driver); - if (res) - dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n"); - - mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); - host->io_base = devm_ioremap_resource(&pdev->dev, mem); - if (IS_ERR(host->io_base)) { - res = PTR_ERR(host->io_base); - goto err_nand_ioremap; - } - host->io_phys = (dma_addr_t)mem->start; - - nand_chip = &host->nand_chip; - mtd = nand_to_mtd(nand_chip); - host->dev = &pdev->dev; - if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) { - nand_set_flash_node(nand_chip, pdev->dev.of_node); - /* Only when CONFIG_OF is enabled of_node can be parsed */ - res = atmel_of_init_port(host, pdev->dev.of_node); - if (res) - goto err_nand_ioremap; - } else { - memcpy(&host->board, dev_get_platdata(&pdev->dev), - sizeof(struct atmel_nand_data)); - nand_chip->ecc.mode = host->board.ecc_mode; - - /* - * When using software ECC every supported avr32 board means - * Hamming algorithm. If that ever changes we'll need to add - * ecc_algo field to the struct atmel_nand_data. - */ - if (nand_chip->ecc.mode == NAND_ECC_SOFT) - nand_chip->ecc.algo = NAND_ECC_HAMMING; - - /* 16-bit bus width */ - if (host->board.bus_width_16) - nand_chip->options |= NAND_BUSWIDTH_16; - } - - /* link the private data structures */ - nand_set_controller_data(nand_chip, host); - mtd->dev.parent = &pdev->dev; - - /* Set address of NAND IO lines */ - nand_chip->IO_ADDR_R = host->io_base; - nand_chip->IO_ADDR_W = host->io_base; - - if (nand_nfc.is_initialized) { - /* NFC driver is probed and initialized */ - host->nfc = &nand_nfc; - - nand_chip->select_chip = nfc_select_chip; - nand_chip->dev_ready = nfc_device_ready; - nand_chip->cmdfunc = nfc_nand_command; - - /* Initialize the interrupt for NFC */ - irq = platform_get_irq(pdev, 0); - if (irq < 0) { - dev_err(host->dev, "Cannot get HSMC irq!\n"); - res = irq; - goto err_nand_ioremap; - } - - res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt, - 0, "hsmc", host); - if (res) { - dev_err(&pdev->dev, "Unable to request HSMC irq %d\n", - irq); - goto err_nand_ioremap; - } - } else { - res = atmel_nand_set_enable_ready_pins(mtd); - if (res) - goto err_nand_ioremap; - - nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl; - } - - nand_chip->chip_delay = 40; /* 40us command delay time */ - - - nand_chip->read_buf = atmel_read_buf; - nand_chip->write_buf = atmel_write_buf; - - platform_set_drvdata(pdev, host); - atmel_nand_enable(host); - - if (gpio_is_valid(host->board.det_pin)) { - res = devm_gpio_request(&pdev->dev, - host->board.det_pin, "nand_det"); - if (res < 0) { - dev_err(&pdev->dev, - "can't request det gpio %d\n", - host->board.det_pin); - goto err_no_card; - } - - res = gpio_direction_input(host->board.det_pin); - if (res < 0) { - dev_err(&pdev->dev, - "can't request input direction det gpio %d\n", - host->board.det_pin); - goto err_no_card; - } - - if (gpio_get_value(host->board.det_pin)) { - dev_info(&pdev->dev, "No SmartMedia card inserted.\n"); - res = -ENXIO; - goto err_no_card; - } - } - - if (!host->board.has_dma) - use_dma = 0; - - if (use_dma) { - dma_cap_mask_t mask; - - dma_cap_zero(mask); - dma_cap_set(DMA_MEMCPY, mask); - host->dma_chan = dma_request_channel(mask, NULL, NULL); - if (!host->dma_chan) { - dev_err(host->dev, "Failed to request DMA channel\n"); - use_dma = 0; - } - } - if (use_dma) - dev_info(host->dev, "Using %s for DMA transfers.\n", - dma_chan_name(host->dma_chan)); - else - dev_info(host->dev, "No DMA support for NAND access.\n"); - - /* first scan to find the device and get the page size */ - res = nand_scan_ident(mtd, 1, NULL); - if (res) - goto err_scan_ident; - - if (host->board.on_flash_bbt || on_flash_bbt) - nand_chip->bbt_options |= NAND_BBT_USE_FLASH; - - if (nand_chip->bbt_options & NAND_BBT_USE_FLASH) - dev_info(&pdev->dev, "Use On Flash BBT\n"); - - if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) { - res = atmel_of_init_ecc(host, pdev->dev.of_node); - if (res) - goto err_hw_ecc; - } - - if (nand_chip->ecc.mode == NAND_ECC_HW) { - if (host->has_pmecc) - res = atmel_pmecc_nand_init_params(pdev, host); - else - res = atmel_hw_nand_init_params(pdev, host); - - if (res != 0) - goto err_hw_ecc; - } - - /* initialize the nfc configuration register */ - if (host->nfc && host->nfc->use_nfc_sram) { - res = nfc_sram_init(mtd); - if (res) { - host->nfc->use_nfc_sram = false; - dev_err(host->dev, "Disable use nfc sram for data transfer.\n"); - } - } - - /* second phase scan */ - res = nand_scan_tail(mtd); - if (res) - goto err_scan_tail; - - mtd->name = "atmel_nand"; - res = mtd_device_register(mtd, host->board.parts, - host->board.num_parts); - if (!res) - return res; - -err_scan_tail: - if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) - pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); -err_hw_ecc: -err_scan_ident: -err_no_card: - atmel_nand_disable(host); - if (host->dma_chan) - dma_release_channel(host->dma_chan); -err_nand_ioremap: - return res; -} - -/* - * Remove a NAND device. - */ -static int atmel_nand_remove(struct platform_device *pdev) -{ - struct atmel_nand_host *host = platform_get_drvdata(pdev); - struct mtd_info *mtd = nand_to_mtd(&host->nand_chip); - - nand_release(mtd); - - atmel_nand_disable(host); - - if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) { - pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); - pmerrloc_writel(host->pmerrloc_base, ELDIS, - PMERRLOC_DISABLE); - } - - if (host->dma_chan) - dma_release_channel(host->dma_chan); - - platform_driver_unregister(&atmel_nand_nfc_driver); - - return 0; -} - -/* - * AT91RM9200 does not have PMECC or PMECC Errloc peripherals for - * BCH ECC. Combined with the "atmel,has-pmecc", it is used to describe - * devices from the SAM9 family that have those. - */ -static const struct atmel_nand_caps at91rm9200_caps = { - .pmecc_correct_erase_page = false, - .pmecc_max_correction = 24, -}; - -static const struct atmel_nand_caps sama5d4_caps = { - .pmecc_correct_erase_page = true, - .pmecc_max_correction = 24, -}; - -/* - * The PMECC Errloc controller starting in SAMA5D2 is not compatible, - * as the increased correction strength requires more registers. - */ -static const struct atmel_nand_caps sama5d2_caps = { - .pmecc_correct_erase_page = true, - .pmecc_max_correction = 32, -}; - -static const struct of_device_id atmel_nand_dt_ids[] = { - { .compatible = "atmel,at91rm9200-nand", .data = &at91rm9200_caps }, - { .compatible = "atmel,sama5d4-nand", .data = &sama5d4_caps }, - { .compatible = "atmel,sama5d2-nand", .data = &sama5d2_caps }, - { /* sentinel */ } -}; - -MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids); - -static int atmel_nand_nfc_probe(struct platform_device *pdev) -{ - struct atmel_nfc *nfc = &nand_nfc; - struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram; - int ret; - - nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); - nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs); - if (IS_ERR(nfc->base_cmd_regs)) - return PTR_ERR(nfc->base_cmd_regs); - - nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1); - nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs); - if (IS_ERR(nfc->hsmc_regs)) - return PTR_ERR(nfc->hsmc_regs); - - nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2); - if (nfc_sram) { - nfc->sram_bank0 = (void * __force) - devm_ioremap_resource(&pdev->dev, nfc_sram); - if (IS_ERR(nfc->sram_bank0)) { - dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n", - PTR_ERR(nfc->sram_bank0)); - } else { - nfc->use_nfc_sram = true; - nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start; - - if (pdev->dev.of_node) - nfc->write_by_sram = of_property_read_bool( - pdev->dev.of_node, - "atmel,write-by-sram"); - } - } - - nfc_writel(nfc->hsmc_regs, IDR, 0xffffffff); - nfc_readl(nfc->hsmc_regs, SR); /* clear the NFC_SR */ - - nfc->clk = devm_clk_get(&pdev->dev, NULL); - if (!IS_ERR(nfc->clk)) { - ret = clk_prepare_enable(nfc->clk); - if (ret) - return ret; - } else { - dev_warn(&pdev->dev, "NFC clock missing, update your Device Tree"); - } - - nfc->is_initialized = true; - dev_info(&pdev->dev, "NFC is probed.\n"); - - return 0; -} - -static int atmel_nand_nfc_remove(struct platform_device *pdev) -{ - struct atmel_nfc *nfc = &nand_nfc; - - if (!IS_ERR(nfc->clk)) - clk_disable_unprepare(nfc->clk); - - return 0; -} - -static const struct of_device_id atmel_nand_nfc_match[] = { - { .compatible = "atmel,sama5d3-nfc" }, - { /* sentinel */ } -}; -MODULE_DEVICE_TABLE(of, atmel_nand_nfc_match); - -static struct platform_driver atmel_nand_nfc_driver = { - .driver = { - .name = "atmel_nand_nfc", - .of_match_table = of_match_ptr(atmel_nand_nfc_match), - }, - .probe = atmel_nand_nfc_probe, - .remove = atmel_nand_nfc_remove, -}; - -static struct platform_driver atmel_nand_driver = { - .probe = atmel_nand_probe, - .remove = atmel_nand_remove, - .driver = { - .name = "atmel_nand", - .of_match_table = of_match_ptr(atmel_nand_dt_ids), - }, -}; - -module_platform_driver(atmel_nand_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Rick Bronson"); -MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32"); -MODULE_ALIAS("platform:atmel_nand"); diff --git a/drivers/mtd/nand/atmel_nand_ecc.h b/drivers/mtd/nand/atmel_nand_ecc.h deleted file mode 100644 index 834d694487bd..000000000000 --- a/drivers/mtd/nand/atmel_nand_ecc.h +++ /dev/null @@ -1,163 +0,0 @@ -/* - * Error Corrected Code Controller (ECC) - System peripherals regsters. - * Based on AT91SAM9260 datasheet revision B. - * - * Copyright (C) 2007 Andrew Victor - * Copyright (C) 2007 - 2012 Atmel Corporation. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License as published by the - * Free Software Foundation; either version 2 of the License, or (at your - * option) any later version. - */ - -#ifndef ATMEL_NAND_ECC_H -#define ATMEL_NAND_ECC_H - -#define ATMEL_ECC_CR 0x00 /* Control register */ -#define ATMEL_ECC_RST (1 << 0) /* Reset parity */ - -#define ATMEL_ECC_MR 0x04 /* Mode register */ -#define ATMEL_ECC_PAGESIZE (3 << 0) /* Page Size */ -#define ATMEL_ECC_PAGESIZE_528 (0) -#define ATMEL_ECC_PAGESIZE_1056 (1) -#define ATMEL_ECC_PAGESIZE_2112 (2) -#define ATMEL_ECC_PAGESIZE_4224 (3) - -#define ATMEL_ECC_SR 0x08 /* Status register */ -#define ATMEL_ECC_RECERR (1 << 0) /* Recoverable Error */ -#define ATMEL_ECC_ECCERR (1 << 1) /* ECC Single Bit Error */ -#define ATMEL_ECC_MULERR (1 << 2) /* Multiple Errors */ - -#define ATMEL_ECC_PR 0x0c /* Parity register */ -#define ATMEL_ECC_BITADDR (0xf << 0) /* Bit Error Address */ -#define ATMEL_ECC_WORDADDR (0xfff << 4) /* Word Error Address */ - -#define ATMEL_ECC_NPR 0x10 /* NParity register */ -#define ATMEL_ECC_NPARITY (0xffff << 0) /* NParity */ - -/* PMECC Register Definitions */ -#define ATMEL_PMECC_CFG 0x000 /* Configuration Register */ -#define PMECC_CFG_BCH_ERR2 (0 << 0) -#define PMECC_CFG_BCH_ERR4 (1 << 0) -#define PMECC_CFG_BCH_ERR8 (2 << 0) -#define PMECC_CFG_BCH_ERR12 (3 << 0) -#define PMECC_CFG_BCH_ERR24 (4 << 0) -#define PMECC_CFG_BCH_ERR32 (5 << 0) - -#define PMECC_CFG_SECTOR512 (0 << 4) -#define PMECC_CFG_SECTOR1024 (1 << 4) - -#define PMECC_CFG_PAGE_1SECTOR (0 << 8) -#define PMECC_CFG_PAGE_2SECTORS (1 << 8) -#define PMECC_CFG_PAGE_4SECTORS (2 << 8) -#define PMECC_CFG_PAGE_8SECTORS (3 << 8) - -#define PMECC_CFG_READ_OP (0 << 12) -#define PMECC_CFG_WRITE_OP (1 << 12) - -#define PMECC_CFG_SPARE_ENABLE (1 << 16) -#define PMECC_CFG_SPARE_DISABLE (0 << 16) - -#define PMECC_CFG_AUTO_ENABLE (1 << 20) -#define PMECC_CFG_AUTO_DISABLE (0 << 20) - -#define ATMEL_PMECC_SAREA 0x004 /* Spare area size */ -#define ATMEL_PMECC_SADDR 0x008 /* PMECC starting address */ -#define ATMEL_PMECC_EADDR 0x00c /* PMECC ending address */ -#define ATMEL_PMECC_CLK 0x010 /* PMECC clock control */ -#define PMECC_CLK_133MHZ (2 << 0) - -#define ATMEL_PMECC_CTRL 0x014 /* PMECC control register */ -#define PMECC_CTRL_RST (1 << 0) -#define PMECC_CTRL_DATA (1 << 1) -#define PMECC_CTRL_USER (1 << 2) -#define PMECC_CTRL_ENABLE (1 << 4) -#define PMECC_CTRL_DISABLE (1 << 5) - -#define ATMEL_PMECC_SR 0x018 /* PMECC status register */ -#define PMECC_SR_BUSY (1 << 0) -#define PMECC_SR_ENABLE (1 << 4) - -#define ATMEL_PMECC_IER 0x01c /* PMECC interrupt enable */ -#define PMECC_IER_ENABLE (1 << 0) -#define ATMEL_PMECC_IDR 0x020 /* PMECC interrupt disable */ -#define PMECC_IER_DISABLE (1 << 0) -#define ATMEL_PMECC_IMR 0x024 /* PMECC interrupt mask */ -#define PMECC_IER_MASK (1 << 0) -#define ATMEL_PMECC_ISR 0x028 /* PMECC interrupt status */ -#define ATMEL_PMECC_ECCx 0x040 /* PMECC ECC x */ -#define ATMEL_PMECC_REMx 0x240 /* PMECC REM x */ - -/* PMERRLOC Register Definitions */ -#define ATMEL_PMERRLOC_ELCFG 0x000 /* Error location config */ -#define PMERRLOC_ELCFG_SECTOR_512 (0 << 0) -#define PMERRLOC_ELCFG_SECTOR_1024 (1 << 0) -#define PMERRLOC_ELCFG_NUM_ERRORS(n) ((n) << 16) - -#define ATMEL_PMERRLOC_ELPRIM 0x004 /* Error location primitive */ -#define ATMEL_PMERRLOC_ELEN 0x008 /* Error location enable */ -#define ATMEL_PMERRLOC_ELDIS 0x00c /* Error location disable */ -#define PMERRLOC_DISABLE (1 << 0) - -#define ATMEL_PMERRLOC_ELSR 0x010 /* Error location status */ -#define PMERRLOC_ELSR_BUSY (1 << 0) -#define ATMEL_PMERRLOC_ELIER 0x014 /* Error location int enable */ -#define ATMEL_PMERRLOC_ELIDR 0x018 /* Error location int disable */ -#define ATMEL_PMERRLOC_ELIMR 0x01c /* Error location int mask */ -#define ATMEL_PMERRLOC_ELISR 0x020 /* Error location int status */ -#define PMERRLOC_ERR_NUM_MASK (0x1f << 8) -#define PMERRLOC_CALC_DONE (1 << 0) -#define ATMEL_PMERRLOC_SIGMAx 0x028 /* Error location SIGMA x */ - -/* - * The ATMEL_PMERRLOC_ELx register location depends from the number of - * bits corrected by the PMECC controller. Do not use it. - */ - -/* Register access macros for PMECC */ -#define pmecc_readl_relaxed(addr, reg) \ - readl_relaxed((addr) + ATMEL_PMECC_##reg) - -#define pmecc_writel(addr, reg, value) \ - writel((value), (addr) + ATMEL_PMECC_##reg) - -#define pmecc_readb_ecc_relaxed(addr, sector, n) \ - readb_relaxed((addr) + ATMEL_PMECC_ECCx + ((sector) * 0x40) + (n)) - -#define pmecc_readl_rem_relaxed(addr, sector, n) \ - readl_relaxed((addr) + ATMEL_PMECC_REMx + ((sector) * 0x40) + ((n) * 4)) - -#define pmerrloc_readl_relaxed(addr, reg) \ - readl_relaxed((addr) + ATMEL_PMERRLOC_##reg) - -#define pmerrloc_writel(addr, reg, value) \ - writel((value), (addr) + ATMEL_PMERRLOC_##reg) - -#define pmerrloc_writel_sigma_relaxed(addr, n, value) \ - writel_relaxed((value), (addr) + ATMEL_PMERRLOC_SIGMAx + ((n) * 4)) - -#define pmerrloc_readl_sigma_relaxed(addr, n) \ - readl_relaxed((addr) + ATMEL_PMERRLOC_SIGMAx + ((n) * 4)) - -#define pmerrloc_readl_el_relaxed(addr, n) \ - readl_relaxed((addr) + ((n) * 4)) - -/* Galois field dimension */ -#define PMECC_GF_DIMENSION_13 13 -#define PMECC_GF_DIMENSION_14 14 - -/* Primitive Polynomial used by PMECC */ -#define PMECC_GF_13_PRIMITIVE_POLY 0x201b -#define PMECC_GF_14_PRIMITIVE_POLY 0x4443 - -#define PMECC_LOOKUP_TABLE_SIZE_512 0x2000 -#define PMECC_LOOKUP_TABLE_SIZE_1024 0x4000 - -/* Time out value for reading PMECC status register */ -#define PMECC_MAX_TIMEOUT_MS 100 - -/* Reserved bytes in oob area */ -#define PMECC_OOB_RESERVED_BYTES 2 - -#endif diff --git a/drivers/mtd/nand/atmel_nand_nfc.h b/drivers/mtd/nand/atmel_nand_nfc.h deleted file mode 100644 index 4d5d26221a7e..000000000000 --- a/drivers/mtd/nand/atmel_nand_nfc.h +++ /dev/null @@ -1,103 +0,0 @@ -/* - * Atmel Nand Flash Controller (NFC) - System peripherals regsters. - * Based on SAMA5D3 datasheet. - * - * © Copyright 2013 Atmel Corporation. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License as published by the - * Free Software Foundation; either version 2 of the License, or (at your - * option) any later version. - */ - -#ifndef ATMEL_NAND_NFC_H -#define ATMEL_NAND_NFC_H - -/* - * HSMC NFC registers - */ -#define ATMEL_HSMC_NFC_CFG 0x00 /* NFC Configuration Register */ -#define NFC_CFG_PAGESIZE (7 << 0) -#define NFC_CFG_PAGESIZE_512 (0 << 0) -#define NFC_CFG_PAGESIZE_1024 (1 << 0) -#define NFC_CFG_PAGESIZE_2048 (2 << 0) -#define NFC_CFG_PAGESIZE_4096 (3 << 0) -#define NFC_CFG_PAGESIZE_8192 (4 << 0) -#define NFC_CFG_WSPARE (1 << 8) -#define NFC_CFG_RSPARE (1 << 9) -#define NFC_CFG_NFC_DTOCYC (0xf << 16) -#define NFC_CFG_NFC_DTOMUL (0x7 << 20) -#define NFC_CFG_NFC_SPARESIZE (0x7f << 24) -#define NFC_CFG_NFC_SPARESIZE_BIT_POS 24 - -#define ATMEL_HSMC_NFC_CTRL 0x04 /* NFC Control Register */ -#define NFC_CTRL_ENABLE (1 << 0) -#define NFC_CTRL_DISABLE (1 << 1) - -#define ATMEL_HSMC_NFC_SR 0x08 /* NFC Status Register */ -#define NFC_SR_BUSY (1 << 8) -#define NFC_SR_XFR_DONE (1 << 16) -#define NFC_SR_CMD_DONE (1 << 17) -#define NFC_SR_DTOE (1 << 20) -#define NFC_SR_UNDEF (1 << 21) -#define NFC_SR_AWB (1 << 22) -#define NFC_SR_ASE (1 << 23) -#define NFC_SR_RB_EDGE (1 << 24) - -#define ATMEL_HSMC_NFC_IER 0x0c -#define ATMEL_HSMC_NFC_IDR 0x10 -#define ATMEL_HSMC_NFC_IMR 0x14 -#define ATMEL_HSMC_NFC_CYCLE0 0x18 /* NFC Address Cycle Zero */ -#define ATMEL_HSMC_NFC_ADDR_CYCLE0 (0xff) - -#define ATMEL_HSMC_NFC_BANK 0x1c /* NFC Bank Register */ -#define ATMEL_HSMC_NFC_BANK0 (0 << 0) -#define ATMEL_HSMC_NFC_BANK1 (1 << 0) - -#define nfc_writel(addr, reg, value) \ - writel((value), (addr) + ATMEL_HSMC_NFC_##reg) - -#define nfc_readl(addr, reg) \ - readl_relaxed((addr) + ATMEL_HSMC_NFC_##reg) - -/* - * NFC Address Command definitions - */ -#define NFCADDR_CMD_CMD1 (0xff << 2) /* Command for Cycle 1 */ -#define NFCADDR_CMD_CMD1_BIT_POS 2 -#define NFCADDR_CMD_CMD2 (0xff << 10) /* Command for Cycle 2 */ -#define NFCADDR_CMD_CMD2_BIT_POS 10 -#define NFCADDR_CMD_VCMD2 (0x1 << 18) /* Valid Cycle 2 Command */ -#define NFCADDR_CMD_ACYCLE (0x7 << 19) /* Number of Address required */ -#define NFCADDR_CMD_ACYCLE_NONE (0x0 << 19) -#define NFCADDR_CMD_ACYCLE_1 (0x1 << 19) -#define NFCADDR_CMD_ACYCLE_2 (0x2 << 19) -#define NFCADDR_CMD_ACYCLE_3 (0x3 << 19) -#define NFCADDR_CMD_ACYCLE_4 (0x4 << 19) -#define NFCADDR_CMD_ACYCLE_5 (0x5 << 19) -#define NFCADDR_CMD_ACYCLE_BIT_POS 19 -#define NFCADDR_CMD_CSID (0x7 << 22) /* Chip Select Identifier */ -#define NFCADDR_CMD_CSID_0 (0x0 << 22) -#define NFCADDR_CMD_CSID_1 (0x1 << 22) -#define NFCADDR_CMD_CSID_2 (0x2 << 22) -#define NFCADDR_CMD_CSID_3 (0x3 << 22) -#define NFCADDR_CMD_CSID_4 (0x4 << 22) -#define NFCADDR_CMD_CSID_5 (0x5 << 22) -#define NFCADDR_CMD_CSID_6 (0x6 << 22) -#define NFCADDR_CMD_CSID_7 (0x7 << 22) -#define NFCADDR_CMD_DATAEN (0x1 << 25) /* Data Transfer Enable */ -#define NFCADDR_CMD_DATADIS (0x0 << 25) /* Data Transfer Disable */ -#define NFCADDR_CMD_NFCRD (0x0 << 26) /* NFC Read Enable */ -#define NFCADDR_CMD_NFCWR (0x1 << 26) /* NFC Write Enable */ -#define NFCADDR_CMD_NFCBUSY (0x1 << 27) /* NFC Busy */ - -#define nfc_cmd_addr1234_writel(cmd, addr1234, nfc_base) \ - writel((addr1234), (cmd) + nfc_base) - -#define nfc_cmd_readl(bitstatus, nfc_base) \ - readl_relaxed((bitstatus) + nfc_base) - -#define NFC_TIME_OUT_MS 100 -#define NFC_SRAM_BANK1_OFFSET 0x1200 - -#endif diff --git a/drivers/mtd/nand/brcmnand/brcmnand.c b/drivers/mtd/nand/brcmnand/brcmnand.c index 42ebd73f821d..7419c5ce63f8 100644 --- a/drivers/mtd/nand/brcmnand/brcmnand.c +++ b/drivers/mtd/nand/brcmnand/brcmnand.c @@ -101,6 +101,9 @@ struct brcm_nand_dma_desc { #define BRCMNAND_MIN_BLOCKSIZE (8 * 1024) #define BRCMNAND_MIN_DEVSIZE (4ULL * 1024 * 1024) +#define NAND_CTRL_RDY (INTFC_CTLR_READY | INTFC_FLASH_READY) +#define NAND_POLL_STATUS_TIMEOUT_MS 100 + /* Controller feature flags */ enum { BRCMNAND_HAS_1K_SECTORS = BIT(0), @@ -765,6 +768,31 @@ enum { CS_SELECT_AUTO_DEVICE_ID_CFG = BIT(30), }; +static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl, + u32 mask, u32 expected_val, + unsigned long timeout_ms) +{ + unsigned long limit; + u32 val; + + if (!timeout_ms) + timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS; + + limit = jiffies + msecs_to_jiffies(timeout_ms); + do { + val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS); + if ((val & mask) == expected_val) + return 0; + + cpu_relax(); + } while (time_after(limit, jiffies)); + + dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n", + expected_val, val & mask); + + return -ETIMEDOUT; +} + static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en) { u32 val = en ? CS_SELECT_NAND_WP : 0; @@ -1024,12 +1052,39 @@ static void brcmnand_wp(struct mtd_info *mtd, int wp) if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) { static int old_wp = -1; + int ret; if (old_wp != wp) { dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off"); old_wp = wp; } + + /* + * make sure ctrl/flash ready before and after + * changing state of #WP pin + */ + ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY | + NAND_STATUS_READY, + NAND_CTRL_RDY | + NAND_STATUS_READY, 0); + if (ret) + return; + brcmnand_set_wp(ctrl, wp); + chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); + /* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */ + ret = bcmnand_ctrl_poll_status(ctrl, + NAND_CTRL_RDY | + NAND_STATUS_READY | + NAND_STATUS_WP, + NAND_CTRL_RDY | + NAND_STATUS_READY | + (wp ? 0 : NAND_STATUS_WP), 0); + + if (ret) + dev_err_ratelimited(&host->pdev->dev, + "nand #WP expected %s\n", + wp ? "on" : "off"); } } @@ -1157,15 +1212,15 @@ static irqreturn_t brcmnand_dma_irq(int irq, void *data) static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd) { struct brcmnand_controller *ctrl = host->ctrl; - u32 intfc; + int ret; dev_dbg(ctrl->dev, "send native cmd %d addr_lo 0x%x\n", cmd, brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS)); BUG_ON(ctrl->cmd_pending != 0); ctrl->cmd_pending = cmd; - intfc = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS); - WARN_ON(!(intfc & INTFC_CTLR_READY)); + ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0); + WARN_ON(ret); mb(); /* flush previous writes */ brcmnand_write_reg(ctrl, BRCMNAND_CMD_START, diff --git a/drivers/mtd/nand/cmx270_nand.c b/drivers/mtd/nand/cmx270_nand.c index 226ac0bcafc6..949b9400dcb7 100644 --- a/drivers/mtd/nand/cmx270_nand.c +++ b/drivers/mtd/nand/cmx270_nand.c @@ -145,7 +145,7 @@ static int __init cmx270_init(void) ret = gpio_request(GPIO_NAND_CS, "NAND CS"); if (ret) { - pr_warning("CM-X270: failed to request NAND CS gpio\n"); + pr_warn("CM-X270: failed to request NAND CS gpio\n"); return ret; } @@ -153,7 +153,7 @@ static int __init cmx270_init(void) ret = gpio_request(GPIO_NAND_RB, "NAND R/B"); if (ret) { - pr_warning("CM-X270: failed to request NAND R/B gpio\n"); + pr_warn("CM-X270: failed to request NAND R/B gpio\n"); goto err_gpio_request; } diff --git a/drivers/mtd/nand/davinci_nand.c b/drivers/mtd/nand/davinci_nand.c index 27fa8b87cd5f..531c51991e57 100644 --- a/drivers/mtd/nand/davinci_nand.c +++ b/drivers/mtd/nand/davinci_nand.c @@ -581,6 +581,17 @@ static struct davinci_nand_pdata "ti,davinci-nand-use-bbt")) pdata->bbt_options = NAND_BBT_USE_FLASH; + /* + * Since kernel v4.8, this driver has been fixed to enable + * use of 4-bit hardware ECC with subpages and verified on + * TI's keystone EVMs (K2L, K2HK and K2E). + * However, in the interest of not breaking systems using + * existing UBI partitions, sub-page writes are not being + * (re)enabled. If you want to use subpage writes on Keystone + * platforms (i.e. do not have any existing UBI partitions), + * then use "ti,davinci-nand" as the compatible in your + * device-tree file. + */ if (of_device_is_compatible(pdev->dev.of_node, "ti,keystone-nand")) { pdata->options |= NAND_NO_SUBPAGE_WRITE; diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c index 73b9d4e2dca0..16634df2e39a 100644 --- a/drivers/mtd/nand/denali.c +++ b/drivers/mtd/nand/denali.c @@ -45,16 +45,16 @@ MODULE_PARM_DESC(onfi_timing_mode, * We define a macro here that combines all interrupts this driver uses into * a single constant value, for convenience. */ -#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \ - INTR_STATUS__ECC_TRANSACTION_DONE | \ - INTR_STATUS__ECC_ERR | \ - INTR_STATUS__PROGRAM_FAIL | \ - INTR_STATUS__LOAD_COMP | \ - INTR_STATUS__PROGRAM_COMP | \ - INTR_STATUS__TIME_OUT | \ - INTR_STATUS__ERASE_FAIL | \ - INTR_STATUS__RST_COMP | \ - INTR_STATUS__ERASE_COMP) +#define DENALI_IRQ_ALL (INTR__DMA_CMD_COMP | \ + INTR__ECC_TRANSACTION_DONE | \ + INTR__ECC_ERR | \ + INTR__PROGRAM_FAIL | \ + INTR__LOAD_COMP | \ + INTR__PROGRAM_COMP | \ + INTR__TIME_OUT | \ + INTR__ERASE_FAIL | \ + INTR__RST_COMP | \ + INTR__ERASE_COMP) /* * indicates whether or not the internal value for the flash bank is @@ -62,8 +62,6 @@ MODULE_PARM_DESC(onfi_timing_mode, */ #define CHIP_SELECT_INVALID -1 -#define SUPPORT_8BITECC 1 - /* * This macro divides two integers and rounds fractional values up * to the nearest integer value. @@ -86,16 +84,10 @@ static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd) #define SPARE_ACCESS 0x41 #define MAIN_ACCESS 0x42 #define MAIN_SPARE_ACCESS 0x43 -#define PIPELINE_ACCESS 0x2000 #define DENALI_READ 0 #define DENALI_WRITE 0x100 -/* types of device accesses. We can issue commands and get status */ -#define COMMAND_CYCLE 0 -#define ADDR_CYCLE 1 -#define STATUS_CYCLE 2 - /* * this is a helper macro that allows us to * format the bank into the proper bits for the controller @@ -164,7 +156,7 @@ static void read_status(struct denali_nand_info *denali) static void reset_bank(struct denali_nand_info *denali) { uint32_t irq_status; - uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT; + uint32_t irq_mask = INTR__RST_COMP | INTR__TIME_OUT; clear_interrupts(denali); @@ -172,7 +164,7 @@ static void reset_bank(struct denali_nand_info *denali) irq_status = wait_for_irq(denali, irq_mask); - if (irq_status & INTR_STATUS__TIME_OUT) + if (irq_status & INTR__TIME_OUT) dev_err(denali->dev, "reset bank failed.\n"); } @@ -182,22 +174,22 @@ static uint16_t denali_nand_reset(struct denali_nand_info *denali) int i; for (i = 0; i < denali->max_banks; i++) - iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, + iowrite32(INTR__RST_COMP | INTR__TIME_OUT, denali->flash_reg + INTR_STATUS(i)); for (i = 0; i < denali->max_banks; i++) { iowrite32(1 << i, denali->flash_reg + DEVICE_RESET); while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) & - (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT))) + (INTR__RST_COMP | INTR__TIME_OUT))) cpu_relax(); if (ioread32(denali->flash_reg + INTR_STATUS(i)) & - INTR_STATUS__TIME_OUT) + INTR__TIME_OUT) dev_dbg(denali->dev, "NAND Reset operation timed out on bank %d\n", i); } for (i = 0; i < denali->max_banks; i++) - iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, + iowrite32(INTR__RST_COMP | INTR__TIME_OUT, denali->flash_reg + INTR_STATUS(i)); return PASS; @@ -347,52 +339,25 @@ static void get_samsung_nand_para(struct denali_nand_info *denali, static void get_toshiba_nand_para(struct denali_nand_info *denali) { - uint32_t tmp; - /* * Workaround to fix a controller bug which reports a wrong * spare area size for some kind of Toshiba NAND device */ if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) && - (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) { + (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); - tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) * - ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE); - iowrite32(tmp, - denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); -#if SUPPORT_15BITECC - iowrite32(15, denali->flash_reg + ECC_CORRECTION); -#elif SUPPORT_8BITECC - iowrite32(8, denali->flash_reg + ECC_CORRECTION); -#endif - } } static void get_hynix_nand_para(struct denali_nand_info *denali, uint8_t device_id) { - uint32_t main_size, spare_size; - switch (device_id) { case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */ case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */ iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK); iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE); iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); - main_size = 4096 * - ioread32(denali->flash_reg + DEVICES_CONNECTED); - spare_size = 224 * - ioread32(denali->flash_reg + DEVICES_CONNECTED); - iowrite32(main_size, - denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); - iowrite32(spare_size, - denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); iowrite32(0, denali->flash_reg + DEVICE_WIDTH); -#if SUPPORT_15BITECC - iowrite32(15, denali->flash_reg + ECC_CORRECTION); -#elif SUPPORT_8BITECC - iowrite32(8, denali->flash_reg + ECC_CORRECTION); -#endif break; default: dev_warn(denali->dev, @@ -454,17 +419,12 @@ static void find_valid_banks(struct denali_nand_info *denali) static void detect_max_banks(struct denali_nand_info *denali) { uint32_t features = ioread32(denali->flash_reg + FEATURES); - /* - * Read the revision register, so we can calculate the max_banks - * properly: the encoding changed from rev 5.0 to 5.1 - */ - u32 revision = MAKE_COMPARABLE_REVISION( - ioread32(denali->flash_reg + REVISION)); - if (revision < REVISION_5_1) - denali->max_banks = 2 << (features & FEATURES__N_BANKS); - else - denali->max_banks = 1 << (features & FEATURES__N_BANKS); + denali->max_banks = 1 << (features & FEATURES__N_BANKS); + + /* the encoding changed from rev 5.0 to 5.1 */ + if (denali->revision < 0x0501) + denali->max_banks <<= 1; } static uint16_t denali_nand_timing_set(struct denali_nand_info *denali) @@ -653,7 +613,6 @@ static irqreturn_t denali_isr(int irq, void *dev_id) spin_unlock(&denali->irq_lock); return result; } -#define BANK(x) ((x) << 24) static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) { @@ -718,15 +677,7 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, int access_type, int op) { int status = PASS; - uint32_t page_count = 1; - uint32_t addr, cmd, irq_status, irq_mask; - - if (op == DENALI_READ) - irq_mask = INTR_STATUS__LOAD_COMP; - else if (op == DENALI_WRITE) - irq_mask = 0; - else - BUG(); + uint32_t addr, cmd; setup_ecc_for_xfer(denali, ecc_en, transfer_spare); @@ -749,35 +700,8 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, cmd = MODE_10 | addr; index_addr(denali, cmd, access_type); - /* - * page 33 of the NAND controller spec indicates we should not - * use the pipeline commands in Spare area only mode. - * So we don't. - */ - if (access_type == SPARE_ACCESS) { - cmd = MODE_01 | addr; - iowrite32(cmd, denali->flash_mem); - } else { - index_addr(denali, cmd, - PIPELINE_ACCESS | op | page_count); - - /* - * wait for command to be accepted - * can always use status0 bit as the - * mask is identical for each bank. - */ - irq_status = wait_for_irq(denali, irq_mask); - - if (irq_status == 0) { - dev_err(denali->dev, - "cmd, page, addr on timeout (0x%x, 0x%x, 0x%x)\n", - cmd, denali->page, addr); - status = FAIL; - } else { - cmd = MODE_01 | addr; - iowrite32(cmd, denali->flash_mem); - } - } + cmd = MODE_01 | addr; + iowrite32(cmd, denali->flash_mem); } return status; } @@ -829,8 +753,7 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); uint32_t irq_status; - uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP | - INTR_STATUS__PROGRAM_FAIL; + uint32_t irq_mask = INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL; int status = 0; denali->page = page; @@ -857,7 +780,7 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); - uint32_t irq_mask = INTR_STATUS__LOAD_COMP; + uint32_t irq_mask = INTR__LOAD_COMP; uint32_t irq_status, addr, cmd; denali->page = page; @@ -890,98 +813,158 @@ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) } } -/* - * this function examines buffers to see if they contain data that - * indicate that the buffer is part of an erased region of flash. - */ -static bool is_erased(uint8_t *buf, int len) +static int denali_check_erased_page(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, + unsigned long uncor_ecc_flags, + unsigned int max_bitflips) { - int i; + uint8_t *ecc_code = chip->buffers->ecccode; + int ecc_steps = chip->ecc.steps; + int ecc_size = chip->ecc.size; + int ecc_bytes = chip->ecc.bytes; + int i, ret, stat; + + ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, + chip->ecc.total); + if (ret) + return ret; + + for (i = 0; i < ecc_steps; i++) { + if (!(uncor_ecc_flags & BIT(i))) + continue; - for (i = 0; i < len; i++) - if (buf[i] != 0xFF) - return false; - return true; + stat = nand_check_erased_ecc_chunk(buf, ecc_size, + ecc_code, ecc_bytes, + NULL, 0, + chip->ecc.strength); + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + + buf += ecc_size; + ecc_code += ecc_bytes; + } + + return max_bitflips; +} + +static int denali_hw_ecc_fixup(struct mtd_info *mtd, + struct denali_nand_info *denali, + unsigned long *uncor_ecc_flags) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int bank = denali->flash_bank; + uint32_t ecc_cor; + unsigned int max_bitflips; + + ecc_cor = ioread32(denali->flash_reg + ECC_COR_INFO(bank)); + ecc_cor >>= ECC_COR_INFO__SHIFT(bank); + + if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) { + /* + * This flag is set when uncorrectable error occurs at least in + * one ECC sector. We can not know "how many sectors", or + * "which sector(s)". We need erase-page check for all sectors. + */ + *uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0); + return 0; + } + + max_bitflips = ecc_cor & ECC_COR_INFO__MAX_ERRORS; + + /* + * The register holds the maximum of per-sector corrected bitflips. + * This is suitable for the return value of the ->read_page() callback. + * Unfortunately, we can not know the total number of corrected bits in + * the page. Increase the stats by max_bitflips. (compromised solution) + */ + mtd->ecc_stats.corrected += max_bitflips; + + return max_bitflips; } + #define ECC_SECTOR_SIZE 512 #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12) #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET)) #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK) -#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE)) +#define ECC_ERROR_UNCORRECTABLE(x) ((x) & ERR_CORRECTION_INFO__ERROR_TYPE) #define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8) #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO) -static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, - uint32_t irq_status, unsigned int *max_bitflips) +static int denali_sw_ecc_fixup(struct mtd_info *mtd, + struct denali_nand_info *denali, + unsigned long *uncor_ecc_flags, uint8_t *buf) { - bool check_erased_page = false; unsigned int bitflips = 0; + unsigned int max_bitflips = 0; + uint32_t err_addr, err_cor_info; + unsigned int err_byte, err_sector, err_device; + uint8_t err_cor_value; + unsigned int prev_sector = 0; - if (irq_status & INTR_STATUS__ECC_ERR) { - /* read the ECC errors. we'll ignore them for now */ - uint32_t err_address, err_correction_info, err_byte, - err_sector, err_device, err_correction_value; - denali_set_intr_modes(denali, false); - - do { - err_address = ioread32(denali->flash_reg + - ECC_ERROR_ADDRESS); - err_sector = ECC_SECTOR(err_address); - err_byte = ECC_BYTE(err_address); - - err_correction_info = ioread32(denali->flash_reg + - ERR_CORRECTION_INFO); - err_correction_value = - ECC_CORRECTION_VALUE(err_correction_info); - err_device = ECC_ERR_DEVICE(err_correction_info); - - if (ECC_ERROR_CORRECTABLE(err_correction_info)) { - /* - * If err_byte is larger than ECC_SECTOR_SIZE, - * means error happened in OOB, so we ignore - * it. It's no need for us to correct it - * err_device is represented the NAND error - * bits are happened in if there are more - * than one NAND connected. - */ - if (err_byte < ECC_SECTOR_SIZE) { - struct mtd_info *mtd = - nand_to_mtd(&denali->nand); - int offset; - - offset = (err_sector * - ECC_SECTOR_SIZE + - err_byte) * - denali->devnum + - err_device; - /* correct the ECC error */ - buf[offset] ^= err_correction_value; - mtd->ecc_stats.corrected++; - bitflips++; - } - } else { - /* - * if the error is not correctable, need to - * look at the page to see if it is an erased - * page. if so, then it's not a real ECC error - */ - check_erased_page = true; - } - } while (!ECC_LAST_ERR(err_correction_info)); - /* - * Once handle all ecc errors, controller will triger - * a ECC_TRANSACTION_DONE interrupt, so here just wait - * for a while for this interrupt - */ - while (!(read_interrupt_status(denali) & - INTR_STATUS__ECC_TRANSACTION_DONE)) - cpu_relax(); - clear_interrupts(denali); - denali_set_intr_modes(denali, true); - } - *max_bitflips = bitflips; - return check_erased_page; + /* read the ECC errors. we'll ignore them for now */ + denali_set_intr_modes(denali, false); + + do { + err_addr = ioread32(denali->flash_reg + ECC_ERROR_ADDRESS); + err_sector = ECC_SECTOR(err_addr); + err_byte = ECC_BYTE(err_addr); + + err_cor_info = ioread32(denali->flash_reg + ERR_CORRECTION_INFO); + err_cor_value = ECC_CORRECTION_VALUE(err_cor_info); + err_device = ECC_ERR_DEVICE(err_cor_info); + + /* reset the bitflip counter when crossing ECC sector */ + if (err_sector != prev_sector) + bitflips = 0; + + if (ECC_ERROR_UNCORRECTABLE(err_cor_info)) { + /* + * Check later if this is a real ECC error, or + * an erased sector. + */ + *uncor_ecc_flags |= BIT(err_sector); + } else if (err_byte < ECC_SECTOR_SIZE) { + /* + * If err_byte is larger than ECC_SECTOR_SIZE, means error + * happened in OOB, so we ignore it. It's no need for + * us to correct it err_device is represented the NAND + * error bits are happened in if there are more than + * one NAND connected. + */ + int offset; + unsigned int flips_in_byte; + + offset = (err_sector * ECC_SECTOR_SIZE + err_byte) * + denali->devnum + err_device; + + /* correct the ECC error */ + flips_in_byte = hweight8(buf[offset] ^ err_cor_value); + buf[offset] ^= err_cor_value; + mtd->ecc_stats.corrected += flips_in_byte; + bitflips += flips_in_byte; + + max_bitflips = max(max_bitflips, bitflips); + } + + prev_sector = err_sector; + } while (!ECC_LAST_ERR(err_cor_info)); + + /* + * Once handle all ecc errors, controller will trigger a + * ECC_TRANSACTION_DONE interrupt, so here just wait for + * a while for this interrupt + */ + while (!(read_interrupt_status(denali) & INTR__ECC_TRANSACTION_DONE)) + cpu_relax(); + clear_interrupts(denali); + denali_set_intr_modes(denali, true); + + return max_bitflips; } /* programs the controller to either enable/disable DMA transfers */ @@ -991,8 +974,30 @@ static void denali_enable_dma(struct denali_nand_info *denali, bool en) ioread32(denali->flash_reg + DMA_ENABLE); } -/* setups the HW to perform the data DMA */ -static void denali_setup_dma(struct denali_nand_info *denali, int op) +static void denali_setup_dma64(struct denali_nand_info *denali, int op) +{ + uint32_t mode; + const int page_count = 1; + uint64_t addr = denali->buf.dma_buf; + + mode = MODE_10 | BANK(denali->flash_bank) | denali->page; + + /* DMA is a three step process */ + + /* + * 1. setup transfer type, interrupt when complete, + * burst len = 64 bytes, the number of pages + */ + index_addr(denali, mode, 0x01002000 | (64 << 16) | op | page_count); + + /* 2. set memory low address */ + index_addr(denali, mode, addr); + + /* 3. set memory high address */ + index_addr(denali, mode, addr >> 32); +} + +static void denali_setup_dma32(struct denali_nand_info *denali, int op) { uint32_t mode; const int page_count = 1; @@ -1015,6 +1020,14 @@ static void denali_setup_dma(struct denali_nand_info *denali, int op) index_addr(denali, mode | 0x14000, 0x2400); } +static void denali_setup_dma(struct denali_nand_info *denali, int op) +{ + if (denali->caps & DENALI_CAP_DMA_64BIT) + denali_setup_dma64(denali, op); + else + denali_setup_dma32(denali, op); +} + /* * writes a page. user specifies type, and this function handles the * configuration details. @@ -1026,8 +1039,7 @@ static int write_page(struct mtd_info *mtd, struct nand_chip *chip, dma_addr_t addr = denali->buf.dma_buf; size_t size = mtd->writesize + mtd->oobsize; uint32_t irq_status; - uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP | - INTR_STATUS__PROGRAM_FAIL; + uint32_t irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL; /* * if it is a raw xfer, we want to disable ecc and send the spare area. @@ -1118,16 +1130,15 @@ static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { - unsigned int max_bitflips; struct denali_nand_info *denali = mtd_to_denali(mtd); - dma_addr_t addr = denali->buf.dma_buf; size_t size = mtd->writesize + mtd->oobsize; - uint32_t irq_status; - uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE | - INTR_STATUS__ECC_ERR; - bool check_erased_page = false; + uint32_t irq_mask = denali->caps & DENALI_CAP_HW_ECC_FIXUP ? + INTR__DMA_CMD_COMP | INTR__ECC_UNCOR_ERR : + INTR__ECC_TRANSACTION_DONE | INTR__ECC_ERR; + unsigned long uncor_ecc_flags = 0; + int stat = 0; if (page != denali->page) { dev_err(denali->dev, @@ -1151,21 +1162,23 @@ static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, memcpy(buf, denali->buf.buf, mtd->writesize); - check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips); + if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) + stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags); + else if (irq_status & INTR__ECC_ERR) + stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf); denali_enable_dma(denali, false); - if (check_erased_page) { + if (stat < 0) + return stat; + + if (uncor_ecc_flags) { read_oob_data(mtd, chip->oob_poi, denali->page); - /* check ECC failures that may have occurred on erased pages */ - if (check_erased_page) { - if (!is_erased(buf, mtd->writesize)) - mtd->ecc_stats.failed++; - if (!is_erased(buf, mtd->oobsize)) - mtd->ecc_stats.failed++; - } + stat = denali_check_erased_page(mtd, chip, buf, + uncor_ecc_flags, stat); } - return max_bitflips; + + return stat; } static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, @@ -1174,7 +1187,7 @@ static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, struct denali_nand_info *denali = mtd_to_denali(mtd); dma_addr_t addr = denali->buf.dma_buf; size_t size = mtd->writesize + mtd->oobsize; - uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP; + uint32_t irq_mask = INTR__DMA_CMD_COMP; if (page != denali->page) { dev_err(denali->dev, @@ -1247,10 +1260,9 @@ static int denali_erase(struct mtd_info *mtd, int page) index_addr(denali, cmd, 0x1); /* wait for erase to complete or failure to occur */ - irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP | - INTR_STATUS__ERASE_FAIL); + irq_status = wait_for_irq(denali, INTR__ERASE_COMP | INTR__ERASE_FAIL); - return irq_status & INTR_STATUS__ERASE_FAIL ? NAND_STATUS_FAIL : PASS; + return irq_status & INTR__ERASE_FAIL ? NAND_STATUS_FAIL : PASS; } static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, @@ -1303,6 +1315,14 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, static void denali_hw_init(struct denali_nand_info *denali) { /* + * The REVISION register may not be reliable. Platforms are allowed to + * override it. + */ + if (!denali->revision) + denali->revision = + swab16(ioread32(denali->flash_reg + REVISION)); + + /* * tell driver how many bit controller will skip before * writing ECC code in OOB, this register may be already * set by firmware. So we read this value out. @@ -1413,9 +1433,61 @@ static void denali_drv_init(struct denali_nand_info *denali) denali->irq_status = 0; } +static int denali_multidev_fixup(struct denali_nand_info *denali) +{ + struct nand_chip *chip = &denali->nand; + struct mtd_info *mtd = nand_to_mtd(chip); + + /* + * Support for multi device: + * When the IP configuration is x16 capable and two x8 chips are + * connected in parallel, DEVICES_CONNECTED should be set to 2. + * In this case, the core framework knows nothing about this fact, + * so we should tell it the _logical_ pagesize and anything necessary. + */ + denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED); + + /* + * On some SoCs, DEVICES_CONNECTED is not auto-detected. + * For those, DEVICES_CONNECTED is left to 0. Set 1 if it is the case. + */ + if (denali->devnum == 0) { + denali->devnum = 1; + iowrite32(1, denali->flash_reg + DEVICES_CONNECTED); + } + + if (denali->devnum == 1) + return 0; + + if (denali->devnum != 2) { + dev_err(denali->dev, "unsupported number of devices %d\n", + denali->devnum); + return -EINVAL; + } + + /* 2 chips in parallel */ + mtd->size <<= 1; + mtd->erasesize <<= 1; + mtd->writesize <<= 1; + mtd->oobsize <<= 1; + chip->chipsize <<= 1; + chip->page_shift += 1; + chip->phys_erase_shift += 1; + chip->bbt_erase_shift += 1; + chip->chip_shift += 1; + chip->pagemask <<= 1; + chip->ecc.size <<= 1; + chip->ecc.bytes <<= 1; + chip->ecc.strength <<= 1; + denali->bbtskipbytes <<= 1; + + return 0; +} + int denali_init(struct denali_nand_info *denali) { - struct mtd_info *mtd = nand_to_mtd(&denali->nand); + struct nand_chip *chip = &denali->nand; + struct mtd_info *mtd = nand_to_mtd(chip); int ret; if (denali->platform == INTEL_CE4100) { @@ -1449,13 +1521,16 @@ int denali_init(struct denali_nand_info *denali) /* now that our ISR is registered, we can enable interrupts */ denali_set_intr_modes(denali, true); - mtd->name = "denali-nand"; + nand_set_flash_node(chip, denali->dev->of_node); + /* Fallback to the default name if DT did not give "label" property */ + if (!mtd->name) + mtd->name = "denali-nand"; /* register the driver with the NAND core subsystem */ - denali->nand.select_chip = denali_select_chip; - denali->nand.cmdfunc = denali_cmdfunc; - denali->nand.read_byte = denali_read_byte; - denali->nand.waitfunc = denali_waitfunc; + chip->select_chip = denali_select_chip; + chip->cmdfunc = denali_cmdfunc; + chip->read_byte = denali_read_byte; + chip->waitfunc = denali_waitfunc; /* * scan for NAND devices attached to the controller @@ -1476,8 +1551,9 @@ int denali_init(struct denali_nand_info *denali) goto failed_req_irq; } - /* Is 32-bit DMA supported? */ - ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32)); + ret = dma_set_mask(denali->dev, + DMA_BIT_MASK(denali->caps & DENALI_CAP_DMA_64BIT ? + 64 : 32)); if (ret) { dev_err(denali->dev, "No usable DMA configuration\n"); goto failed_req_irq; @@ -1493,54 +1569,35 @@ int denali_init(struct denali_nand_info *denali) } /* - * support for multi nand - * MTD known nothing about multi nand, so we should tell it - * the real pagesize and anything necessery - */ - denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED); - denali->nand.chipsize <<= denali->devnum - 1; - denali->nand.page_shift += denali->devnum - 1; - denali->nand.pagemask = (denali->nand.chipsize >> - denali->nand.page_shift) - 1; - denali->nand.bbt_erase_shift += denali->devnum - 1; - denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift; - denali->nand.chip_shift += denali->devnum - 1; - mtd->writesize <<= denali->devnum - 1; - mtd->oobsize <<= denali->devnum - 1; - mtd->erasesize <<= denali->devnum - 1; - mtd->size = denali->nand.numchips * denali->nand.chipsize; - denali->bbtskipbytes *= denali->devnum; - - /* * second stage of the NAND scan * this stage requires information regarding ECC and * bad block management. */ /* Bad block management */ - denali->nand.bbt_td = &bbt_main_descr; - denali->nand.bbt_md = &bbt_mirror_descr; + chip->bbt_td = &bbt_main_descr; + chip->bbt_md = &bbt_mirror_descr; /* skip the scan for now until we have OOB read and write support */ - denali->nand.bbt_options |= NAND_BBT_USE_FLASH; - denali->nand.options |= NAND_SKIP_BBTSCAN; - denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME; + chip->bbt_options |= NAND_BBT_USE_FLASH; + chip->options |= NAND_SKIP_BBTSCAN; + chip->ecc.mode = NAND_ECC_HW_SYNDROME; /* no subpage writes on denali */ - denali->nand.options |= NAND_NO_SUBPAGE_WRITE; + chip->options |= NAND_NO_SUBPAGE_WRITE; /* * Denali Controller only support 15bit and 8bit ECC in MRST, * so just let controller do 15bit ECC for MLC and 8bit ECC for * SLC if possible. * */ - if (!nand_is_slc(&denali->nand) && + if (!nand_is_slc(chip) && (mtd->oobsize > (denali->bbtskipbytes + ECC_15BITS * (mtd->writesize / ECC_SECTOR_SIZE)))) { /* if MLC OOB size is large enough, use 15bit ECC*/ - denali->nand.ecc.strength = 15; - denali->nand.ecc.bytes = ECC_15BITS; + chip->ecc.strength = 15; + chip->ecc.bytes = ECC_15BITS; iowrite32(15, denali->flash_reg + ECC_CORRECTION); } else if (mtd->oobsize < (denali->bbtskipbytes + ECC_8BITS * (mtd->writesize / @@ -1548,24 +1605,26 @@ int denali_init(struct denali_nand_info *denali) pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes"); goto failed_req_irq; } else { - denali->nand.ecc.strength = 8; - denali->nand.ecc.bytes = ECC_8BITS; + chip->ecc.strength = 8; + chip->ecc.bytes = ECC_8BITS; iowrite32(8, denali->flash_reg + ECC_CORRECTION); } mtd_set_ooblayout(mtd, &denali_ooblayout_ops); - denali->nand.ecc.bytes *= denali->devnum; - denali->nand.ecc.strength *= denali->devnum; /* override the default read operations */ - denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum; - denali->nand.ecc.read_page = denali_read_page; - denali->nand.ecc.read_page_raw = denali_read_page_raw; - denali->nand.ecc.write_page = denali_write_page; - denali->nand.ecc.write_page_raw = denali_write_page_raw; - denali->nand.ecc.read_oob = denali_read_oob; - denali->nand.ecc.write_oob = denali_write_oob; - denali->nand.erase = denali_erase; + chip->ecc.size = ECC_SECTOR_SIZE; + chip->ecc.read_page = denali_read_page; + chip->ecc.read_page_raw = denali_read_page_raw; + chip->ecc.write_page = denali_write_page; + chip->ecc.write_page_raw = denali_write_page_raw; + chip->ecc.read_oob = denali_read_oob; + chip->ecc.write_oob = denali_write_oob; + chip->erase = denali_erase; + + ret = denali_multidev_fixup(denali); + if (ret) + goto failed_req_irq; ret = nand_scan_tail(mtd); if (ret) diff --git a/drivers/mtd/nand/denali.h b/drivers/mtd/nand/denali.h index ea22191e8515..ec004850652a 100644 --- a/drivers/mtd/nand/denali.h +++ b/drivers/mtd/nand/denali.h @@ -20,6 +20,7 @@ #ifndef __DENALI_H__ #define __DENALI_H__ +#include <linux/bitops.h> #include <linux/mtd/nand.h> #define DEVICE_RESET 0x0 @@ -178,8 +179,6 @@ #define REVISION 0x370 #define REVISION__VALUE 0xffff -#define MAKE_COMPARABLE_REVISION(x) swab16((x) & REVISION__VALUE) -#define REVISION_5_1 0x00000501 #define ONFI_DEVICE_FEATURES 0x380 #define ONFI_DEVICE_FEATURES__VALUE 0x003f @@ -218,65 +217,29 @@ #define INTR_STATUS(__bank) (0x410 + ((__bank) * 0x50)) #define INTR_EN(__bank) (0x420 + ((__bank) * 0x50)) - -#define INTR_STATUS__ECC_TRANSACTION_DONE 0x0001 -#define INTR_STATUS__ECC_ERR 0x0002 -#define INTR_STATUS__DMA_CMD_COMP 0x0004 -#define INTR_STATUS__TIME_OUT 0x0008 -#define INTR_STATUS__PROGRAM_FAIL 0x0010 -#define INTR_STATUS__ERASE_FAIL 0x0020 -#define INTR_STATUS__LOAD_COMP 0x0040 -#define INTR_STATUS__PROGRAM_COMP 0x0080 -#define INTR_STATUS__ERASE_COMP 0x0100 -#define INTR_STATUS__PIPE_CPYBCK_CMD_COMP 0x0200 -#define INTR_STATUS__LOCKED_BLK 0x0400 -#define INTR_STATUS__UNSUP_CMD 0x0800 -#define INTR_STATUS__INT_ACT 0x1000 -#define INTR_STATUS__RST_COMP 0x2000 -#define INTR_STATUS__PIPE_CMD_ERR 0x4000 -#define INTR_STATUS__PAGE_XFER_INC 0x8000 - -#define INTR_EN__ECC_TRANSACTION_DONE 0x0001 -#define INTR_EN__ECC_ERR 0x0002 -#define INTR_EN__DMA_CMD_COMP 0x0004 -#define INTR_EN__TIME_OUT 0x0008 -#define INTR_EN__PROGRAM_FAIL 0x0010 -#define INTR_EN__ERASE_FAIL 0x0020 -#define INTR_EN__LOAD_COMP 0x0040 -#define INTR_EN__PROGRAM_COMP 0x0080 -#define INTR_EN__ERASE_COMP 0x0100 -#define INTR_EN__PIPE_CPYBCK_CMD_COMP 0x0200 -#define INTR_EN__LOCKED_BLK 0x0400 -#define INTR_EN__UNSUP_CMD 0x0800 -#define INTR_EN__INT_ACT 0x1000 -#define INTR_EN__RST_COMP 0x2000 -#define INTR_EN__PIPE_CMD_ERR 0x4000 -#define INTR_EN__PAGE_XFER_INC 0x8000 +/* bit[1:0] is used differently depending on IP version */ +#define INTR__ECC_UNCOR_ERR 0x0001 /* new IP */ +#define INTR__ECC_TRANSACTION_DONE 0x0001 /* old IP */ +#define INTR__ECC_ERR 0x0002 /* old IP */ +#define INTR__DMA_CMD_COMP 0x0004 +#define INTR__TIME_OUT 0x0008 +#define INTR__PROGRAM_FAIL 0x0010 +#define INTR__ERASE_FAIL 0x0020 +#define INTR__LOAD_COMP 0x0040 +#define INTR__PROGRAM_COMP 0x0080 +#define INTR__ERASE_COMP 0x0100 +#define INTR__PIPE_CPYBCK_CMD_COMP 0x0200 +#define INTR__LOCKED_BLK 0x0400 +#define INTR__UNSUP_CMD 0x0800 +#define INTR__INT_ACT 0x1000 +#define INTR__RST_COMP 0x2000 +#define INTR__PIPE_CMD_ERR 0x4000 +#define INTR__PAGE_XFER_INC 0x8000 #define PAGE_CNT(__bank) (0x430 + ((__bank) * 0x50)) #define ERR_PAGE_ADDR(__bank) (0x440 + ((__bank) * 0x50)) #define ERR_BLOCK_ADDR(__bank) (0x450 + ((__bank) * 0x50)) -#define DATA_INTR 0x550 -#define DATA_INTR__WRITE_SPACE_AV 0x0001 -#define DATA_INTR__READ_DATA_AV 0x0002 - -#define DATA_INTR_EN 0x560 -#define DATA_INTR_EN__WRITE_SPACE_AV 0x0001 -#define DATA_INTR_EN__READ_DATA_AV 0x0002 - -#define GPREG_0 0x570 -#define GPREG_0__VALUE 0xffff - -#define GPREG_1 0x580 -#define GPREG_1__VALUE 0xffff - -#define GPREG_2 0x590 -#define GPREG_2__VALUE 0xffff - -#define GPREG_3 0x5a0 -#define GPREG_3__VALUE 0xffff - #define ECC_THRESHOLD 0x600 #define ECC_THRESHOLD__VALUE 0x03ff @@ -297,6 +260,11 @@ #define ERR_CORRECTION_INFO__ERROR_TYPE 0x4000 #define ERR_CORRECTION_INFO__LAST_ERR_INFO 0x8000 +#define ECC_COR_INFO(bank) (0x650 + (bank) / 2 * 0x10) +#define ECC_COR_INFO__SHIFT(bank) ((bank) % 2 * 8) +#define ECC_COR_INFO__MAX_ERRORS 0x007f +#define ECC_COR_INFO__UNCOR_ERR 0x0080 + #define DMA_ENABLE 0x700 #define DMA_ENABLE__FLAG 0x0001 @@ -304,20 +272,13 @@ #define IGNORE_ECC_DONE__FLAG 0x0001 #define DMA_INTR 0x720 +#define DMA_INTR_EN 0x730 #define DMA_INTR__TARGET_ERROR 0x0001 #define DMA_INTR__DESC_COMP_CHANNEL0 0x0002 #define DMA_INTR__DESC_COMP_CHANNEL1 0x0004 #define DMA_INTR__DESC_COMP_CHANNEL2 0x0008 #define DMA_INTR__DESC_COMP_CHANNEL3 0x0010 -#define DMA_INTR__MEMCOPY_DESC_COMP 0x0020 - -#define DMA_INTR_EN 0x730 -#define DMA_INTR_EN__TARGET_ERROR 0x0001 -#define DMA_INTR_EN__DESC_COMP_CHANNEL0 0x0002 -#define DMA_INTR_EN__DESC_COMP_CHANNEL1 0x0004 -#define DMA_INTR_EN__DESC_COMP_CHANNEL2 0x0008 -#define DMA_INTR_EN__DESC_COMP_CHANNEL3 0x0010 -#define DMA_INTR_EN__MEMCOPY_DESC_COMP 0x0020 +#define DMA_INTR__MEMCOPY_DESC_COMP 0x0020 #define TARGET_ERR_ADDR_LO 0x740 #define TARGET_ERR_ADDR_LO__VALUE 0xffff @@ -331,69 +292,12 @@ #define CHNL_ACTIVE__CHANNEL2 0x0004 #define CHNL_ACTIVE__CHANNEL3 0x0008 -#define ACTIVE_SRC_ID 0x800 -#define ACTIVE_SRC_ID__VALUE 0x00ff - -#define PTN_INTR 0x810 -#define PTN_INTR__CONFIG_ERROR 0x0001 -#define PTN_INTR__ACCESS_ERROR_BANK0 0x0002 -#define PTN_INTR__ACCESS_ERROR_BANK1 0x0004 -#define PTN_INTR__ACCESS_ERROR_BANK2 0x0008 -#define PTN_INTR__ACCESS_ERROR_BANK3 0x0010 -#define PTN_INTR__REG_ACCESS_ERROR 0x0020 - -#define PTN_INTR_EN 0x820 -#define PTN_INTR_EN__CONFIG_ERROR 0x0001 -#define PTN_INTR_EN__ACCESS_ERROR_BANK0 0x0002 -#define PTN_INTR_EN__ACCESS_ERROR_BANK1 0x0004 -#define PTN_INTR_EN__ACCESS_ERROR_BANK2 0x0008 -#define PTN_INTR_EN__ACCESS_ERROR_BANK3 0x0010 -#define PTN_INTR_EN__REG_ACCESS_ERROR 0x0020 - -#define PERM_SRC_ID(__bank) (0x830 + ((__bank) * 0x40)) -#define PERM_SRC_ID__SRCID 0x00ff -#define PERM_SRC_ID__DIRECT_ACCESS_ACTIVE 0x0800 -#define PERM_SRC_ID__WRITE_ACTIVE 0x2000 -#define PERM_SRC_ID__READ_ACTIVE 0x4000 -#define PERM_SRC_ID__PARTITION_VALID 0x8000 - -#define MIN_BLK_ADDR(__bank) (0x840 + ((__bank) * 0x40)) -#define MIN_BLK_ADDR__VALUE 0xffff - -#define MAX_BLK_ADDR(__bank) (0x850 + ((__bank) * 0x40)) -#define MAX_BLK_ADDR__VALUE 0xffff - -#define MIN_MAX_BANK(__bank) (0x860 + ((__bank) * 0x40)) -#define MIN_MAX_BANK__MIN_VALUE 0x0003 -#define MIN_MAX_BANK__MAX_VALUE 0x000c - - -/* ffsdefs.h */ -#define CLEAR 0 /*use this to clear a field instead of "fail"*/ -#define SET 1 /*use this to set a field instead of "pass"*/ #define FAIL 1 /*failed flag*/ #define PASS 0 /*success flag*/ -#define ERR -1 /*error flag*/ - -/* lld.h */ -#define GOOD_BLOCK 0 -#define DEFECTIVE_BLOCK 1 -#define READ_ERROR 2 #define CLK_X 5 #define CLK_MULTI 4 -/* KBV - Updated to LNW scratch register address */ -#define SCRATCH_REG_ADDR CONFIG_MTD_NAND_DENALI_SCRATCH_REG_ADDR -#define SCRATCH_REG_SIZE 64 - -#define GLOB_HWCTL_DEFAULT_BLKS 2048 - -#define SUPPORT_15BITECC 1 -#define SUPPORT_8BITECC 1 - -#define CUSTOM_CONF_PARAMS 0 - #define ONFI_BLOOM_TIME 1 #define MODE5_WORKAROUND 0 @@ -403,31 +307,6 @@ #define MODE_10 0x08000000 #define MODE_11 0x0C000000 - -#define DATA_TRANSFER_MODE 0 -#define PROTECTION_PER_BLOCK 1 -#define LOAD_WAIT_COUNT 2 -#define PROGRAM_WAIT_COUNT 3 -#define ERASE_WAIT_COUNT 4 -#define INT_MONITOR_CYCLE_COUNT 5 -#define READ_BUSY_PIN_ENABLED 6 -#define MULTIPLANE_OPERATION_SUPPORT 7 -#define PRE_FETCH_MODE 8 -#define CE_DONT_CARE_SUPPORT 9 -#define COPYBACK_SUPPORT 10 -#define CACHE_WRITE_SUPPORT 11 -#define CACHE_READ_SUPPORT 12 -#define NUM_PAGES_IN_BLOCK 13 -#define ECC_ENABLE_SELECT 14 -#define WRITE_ENABLE_2_READ_ENABLE 15 -#define ADDRESS_2_DATA 16 -#define READ_ENABLE_2_WRITE_ENABLE 17 -#define TWO_ROW_ADDRESS_CYCLES 18 -#define MULTIPLANE_ADDRESS_RESTRICT 19 -#define ACC_CLOCKS 20 -#define READ_WRITE_ENABLE_LOW_COUNT 21 -#define READ_WRITE_ENABLE_HIGH_COUNT 22 - #define ECC_SECTOR_SIZE 512 struct nand_buf { @@ -449,23 +328,26 @@ struct denali_nand_info { struct nand_buf buf; struct device *dev; int total_used_banks; - uint32_t block; /* stored for future use */ - uint16_t page; - void __iomem *flash_reg; /* Mapped io reg base address */ - void __iomem *flash_mem; /* Mapped io reg base address */ + int page; + void __iomem *flash_reg; /* Register Interface */ + void __iomem *flash_mem; /* Host Data/Command Interface */ /* elements used by ISR */ struct completion complete; spinlock_t irq_lock; uint32_t irq_status; - int irq_debug_array[32]; int irq; - uint32_t devnum; /* represent how many nands connected */ - uint32_t bbtskipbytes; - uint32_t max_banks; + int devnum; /* represent how many nands connected */ + int bbtskipbytes; + int max_banks; + unsigned int revision; + unsigned int caps; }; +#define DENALI_CAP_HW_ECC_FIXUP BIT(0) +#define DENALI_CAP_DMA_64BIT BIT(1) + extern int denali_init(struct denali_nand_info *denali); extern void denali_remove(struct denali_nand_info *denali); diff --git a/drivers/mtd/nand/denali_dt.c b/drivers/mtd/nand/denali_dt.c index 5607fcd3b8ed..df9ef36cc2ce 100644 --- a/drivers/mtd/nand/denali_dt.c +++ b/drivers/mtd/nand/denali_dt.c @@ -29,64 +29,66 @@ struct denali_dt { struct clk *clk; }; -static const struct of_device_id denali_nand_dt_ids[] = { - { .compatible = "denali,denali-nand-dt" }, - { /* sentinel */ } - }; +struct denali_dt_data { + unsigned int revision; + unsigned int caps; +}; -MODULE_DEVICE_TABLE(of, denali_nand_dt_ids); +static const struct denali_dt_data denali_socfpga_data = { + .caps = DENALI_CAP_HW_ECC_FIXUP, +}; -static u64 denali_dma_mask; +static const struct of_device_id denali_nand_dt_ids[] = { + { + .compatible = "altr,socfpga-denali-nand", + .data = &denali_socfpga_data, + }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, denali_nand_dt_ids); -static int denali_dt_probe(struct platform_device *ofdev) +static int denali_dt_probe(struct platform_device *pdev) { struct resource *denali_reg, *nand_data; struct denali_dt *dt; + const struct denali_dt_data *data; struct denali_nand_info *denali; int ret; - const struct of_device_id *of_id; - of_id = of_match_device(denali_nand_dt_ids, &ofdev->dev); - if (of_id) { - ofdev->id_entry = of_id->data; - } else { - pr_err("Failed to find the right device id.\n"); - return -ENOMEM; - } - - dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL); + dt = devm_kzalloc(&pdev->dev, sizeof(*dt), GFP_KERNEL); if (!dt) return -ENOMEM; denali = &dt->denali; + data = of_device_get_match_data(&pdev->dev); + if (data) { + denali->revision = data->revision; + denali->caps = data->caps; + } + denali->platform = DT; - denali->dev = &ofdev->dev; - denali->irq = platform_get_irq(ofdev, 0); + denali->dev = &pdev->dev; + denali->irq = platform_get_irq(pdev, 0); if (denali->irq < 0) { - dev_err(&ofdev->dev, "no irq defined\n"); + dev_err(&pdev->dev, "no irq defined\n"); return denali->irq; } - denali_reg = platform_get_resource_byname(ofdev, IORESOURCE_MEM, "denali_reg"); - denali->flash_reg = devm_ioremap_resource(&ofdev->dev, denali_reg); + denali_reg = platform_get_resource_byname(pdev, IORESOURCE_MEM, + "denali_reg"); + denali->flash_reg = devm_ioremap_resource(&pdev->dev, denali_reg); if (IS_ERR(denali->flash_reg)) return PTR_ERR(denali->flash_reg); - nand_data = platform_get_resource_byname(ofdev, IORESOURCE_MEM, "nand_data"); - denali->flash_mem = devm_ioremap_resource(&ofdev->dev, nand_data); + nand_data = platform_get_resource_byname(pdev, IORESOURCE_MEM, + "nand_data"); + denali->flash_mem = devm_ioremap_resource(&pdev->dev, nand_data); if (IS_ERR(denali->flash_mem)) return PTR_ERR(denali->flash_mem); - if (!of_property_read_u32(ofdev->dev.of_node, - "dma-mask", (u32 *)&denali_dma_mask)) { - denali->dev->dma_mask = &denali_dma_mask; - } else { - denali->dev->dma_mask = NULL; - } - - dt->clk = devm_clk_get(&ofdev->dev, NULL); + dt->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(dt->clk)) { - dev_err(&ofdev->dev, "no clk available\n"); + dev_err(&pdev->dev, "no clk available\n"); return PTR_ERR(dt->clk); } clk_prepare_enable(dt->clk); @@ -95,7 +97,7 @@ static int denali_dt_probe(struct platform_device *ofdev) if (ret) goto out_disable_clk; - platform_set_drvdata(ofdev, dt); + platform_set_drvdata(pdev, dt); return 0; out_disable_clk: @@ -104,9 +106,9 @@ out_disable_clk: return ret; } -static int denali_dt_remove(struct platform_device *ofdev) +static int denali_dt_remove(struct platform_device *pdev) { - struct denali_dt *dt = platform_get_drvdata(ofdev); + struct denali_dt *dt = platform_get_drvdata(pdev); denali_remove(&dt->denali); clk_disable_unprepare(dt->clk); diff --git a/drivers/mtd/nand/fsmc_nand.c b/drivers/mtd/nand/fsmc_nand.c index bda1e4667138..cea50d2f218c 100644 --- a/drivers/mtd/nand/fsmc_nand.c +++ b/drivers/mtd/nand/fsmc_nand.c @@ -38,15 +38,6 @@ #include <linux/amba/bus.h> #include <mtd/mtd-abi.h> -#define FSMC_NAND_BW8 1 -#define FSMC_NAND_BW16 2 - -#define FSMC_MAX_NOR_BANKS 4 -#define FSMC_MAX_NAND_BANKS 4 - -#define FSMC_FLASH_WIDTH8 1 -#define FSMC_FLASH_WIDTH16 2 - /* fsmc controller registers for NOR flash */ #define CTRL 0x0 /* ctrl register definitions */ @@ -133,33 +124,48 @@ enum access_mode { }; /** - * fsmc_nand_platform_data - platform specific NAND controller config - * @nand_timings: timing setup for the physical NAND interface - * @partitions: partition table for the platform, use a default fallback - * if this is NULL - * @nr_partitions: the number of partitions in the previous entry - * @options: different options for the driver - * @width: bus width - * @bank: default bank - * @select_bank: callback to select a certain bank, this is - * platform-specific. If the controller only supports one bank - * this may be set to NULL + * struct fsmc_nand_data - structure for FSMC NAND device state + * + * @pid: Part ID on the AMBA PrimeCell format + * @mtd: MTD info for a NAND flash. + * @nand: Chip related info for a NAND flash. + * @partitions: Partition info for a NAND Flash. + * @nr_partitions: Total number of partition of a NAND flash. + * + * @bank: Bank number for probed device. + * @clk: Clock structure for FSMC. + * + * @read_dma_chan: DMA channel for read access + * @write_dma_chan: DMA channel for write access to NAND + * @dma_access_complete: Completion structure + * + * @data_pa: NAND Physical port for Data. + * @data_va: NAND port for Data. + * @cmd_va: NAND port for Command. + * @addr_va: NAND port for Address. + * @regs_va: FSMC regs base address. */ -struct fsmc_nand_platform_data { - struct fsmc_nand_timings *nand_timings; - struct mtd_partition *partitions; - unsigned int nr_partitions; - unsigned int options; - unsigned int width; - unsigned int bank; +struct fsmc_nand_data { + u32 pid; + struct nand_chip nand; + unsigned int bank; + struct device *dev; enum access_mode mode; + struct clk *clk; - void (*select_bank)(uint32_t bank, uint32_t busw); + /* DMA related objects */ + struct dma_chan *read_dma_chan; + struct dma_chan *write_dma_chan; + struct completion dma_access_complete; - /* priv structures for dma accesses */ - void *read_dma_priv; - void *write_dma_priv; + struct fsmc_nand_timings *dev_timings; + + dma_addr_t data_pa; + void __iomem *data_va; + void __iomem *cmd_va; + void __iomem *addr_va; + void __iomem *regs_va; }; static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section, @@ -246,86 +252,11 @@ static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = { .free = fsmc_ecc4_ooblayout_free, }; -/** - * struct fsmc_nand_data - structure for FSMC NAND device state - * - * @pid: Part ID on the AMBA PrimeCell format - * @mtd: MTD info for a NAND flash. - * @nand: Chip related info for a NAND flash. - * @partitions: Partition info for a NAND Flash. - * @nr_partitions: Total number of partition of a NAND flash. - * - * @bank: Bank number for probed device. - * @clk: Clock structure for FSMC. - * - * @read_dma_chan: DMA channel for read access - * @write_dma_chan: DMA channel for write access to NAND - * @dma_access_complete: Completion structure - * - * @data_pa: NAND Physical port for Data. - * @data_va: NAND port for Data. - * @cmd_va: NAND port for Command. - * @addr_va: NAND port for Address. - * @regs_va: FSMC regs base address. - */ -struct fsmc_nand_data { - u32 pid; - struct nand_chip nand; - struct mtd_partition *partitions; - unsigned int nr_partitions; - - unsigned int bank; - struct device *dev; - enum access_mode mode; - struct clk *clk; - - /* DMA related objects */ - struct dma_chan *read_dma_chan; - struct dma_chan *write_dma_chan; - struct completion dma_access_complete; - - struct fsmc_nand_timings *dev_timings; - - dma_addr_t data_pa; - void __iomem *data_va; - void __iomem *cmd_va; - void __iomem *addr_va; - void __iomem *regs_va; - - void (*select_chip)(uint32_t bank, uint32_t busw); -}; - static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd) { return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand); } -/* Assert CS signal based on chipnr */ -static void fsmc_select_chip(struct mtd_info *mtd, int chipnr) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct fsmc_nand_data *host; - - host = mtd_to_fsmc(mtd); - - switch (chipnr) { - case -1: - chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); - break; - case 0: - case 1: - case 2: - case 3: - if (host->select_chip) - host->select_chip(chipnr, - chip->options & NAND_BUSWIDTH_16); - break; - - default: - dev_err(host->dev, "unsupported chip-select %d\n", chipnr); - } -} - /* * fsmc_cmd_ctrl - For facilitaing Hardware access * This routine allows hardware specific access to control-lines(ALE,CLE) @@ -838,44 +769,46 @@ static bool filter(struct dma_chan *chan, void *slave) } static int fsmc_nand_probe_config_dt(struct platform_device *pdev, - struct device_node *np) + struct fsmc_nand_data *host, + struct nand_chip *nand) { - struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); + struct device_node *np = pdev->dev.of_node; u32 val; int ret; - /* Set default NAND width to 8 bits */ - pdata->width = 8; + nand->options = 0; + if (!of_property_read_u32(np, "bank-width", &val)) { if (val == 2) { - pdata->width = 16; + nand->options |= NAND_BUSWIDTH_16; } else if (val != 1) { dev_err(&pdev->dev, "invalid bank-width %u\n", val); return -EINVAL; } } + if (of_get_property(np, "nand-skip-bbtscan", NULL)) - pdata->options = NAND_SKIP_BBTSCAN; + nand->options |= NAND_SKIP_BBTSCAN; - pdata->nand_timings = devm_kzalloc(&pdev->dev, - sizeof(*pdata->nand_timings), GFP_KERNEL); - if (!pdata->nand_timings) + host->dev_timings = devm_kzalloc(&pdev->dev, + sizeof(*host->dev_timings), GFP_KERNEL); + if (!host->dev_timings) return -ENOMEM; - ret = of_property_read_u8_array(np, "timings", (u8 *)pdata->nand_timings, - sizeof(*pdata->nand_timings)); + ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings, + sizeof(*host->dev_timings)); if (ret) { dev_info(&pdev->dev, "No timings in dts specified, using default timings!\n"); - pdata->nand_timings = NULL; + host->dev_timings = NULL; } /* Set default NAND bank to 0 */ - pdata->bank = 0; + host->bank = 0; if (!of_property_read_u32(np, "bank", &val)) { if (val > 3) { dev_err(&pdev->dev, "invalid bank %u\n", val); return -EINVAL; } - pdata->bank = val; + host->bank = val; } return 0; } @@ -886,8 +819,6 @@ static int fsmc_nand_probe_config_dt(struct platform_device *pdev, */ static int __init fsmc_nand_probe(struct platform_device *pdev) { - struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); - struct device_node __maybe_unused *np = pdev->dev.of_node; struct fsmc_nand_data *host; struct mtd_info *mtd; struct nand_chip *nand; @@ -897,22 +828,17 @@ static int __init fsmc_nand_probe(struct platform_device *pdev) u32 pid; int i; - pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); - if (!pdata) - return -ENOMEM; - - pdev->dev.platform_data = pdata; - ret = fsmc_nand_probe_config_dt(pdev, np); - if (ret) { - dev_err(&pdev->dev, "no platform data\n"); - return -ENODEV; - } - /* Allocate memory for the device structure (and zero it) */ host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); if (!host) return -ENOMEM; + nand = &host->nand; + + ret = fsmc_nand_probe_config_dt(pdev, host, nand); + if (ret) + return ret; + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); host->data_va = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(host->data_va)) @@ -935,7 +861,7 @@ static int __init fsmc_nand_probe(struct platform_device *pdev) if (IS_ERR(host->regs_va)) return PTR_ERR(host->regs_va); - host->clk = clk_get(&pdev->dev, NULL); + host->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(host->clk)) { dev_err(&pdev->dev, "failed to fetch block clock\n"); return PTR_ERR(host->clk); @@ -943,7 +869,7 @@ static int __init fsmc_nand_probe(struct platform_device *pdev) ret = clk_prepare_enable(host->clk); if (ret) - goto err_clk_prepare_enable; + return ret; /* * This device ID is actually a common AMBA ID as used on the @@ -957,22 +883,15 @@ static int __init fsmc_nand_probe(struct platform_device *pdev) AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid), AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid)); - host->bank = pdata->bank; - host->select_chip = pdata->select_bank; - host->partitions = pdata->partitions; - host->nr_partitions = pdata->nr_partitions; host->dev = &pdev->dev; - host->dev_timings = pdata->nand_timings; - host->mode = pdata->mode; if (host->mode == USE_DMA_ACCESS) init_completion(&host->dma_access_complete); /* Link all private pointers */ mtd = nand_to_mtd(&host->nand); - nand = &host->nand; nand_set_controller_data(nand, host); - nand_set_flash_node(nand, np); + nand_set_flash_node(nand, pdev->dev.of_node); mtd->dev.parent = &pdev->dev; nand->IO_ADDR_R = host->data_va; @@ -987,26 +906,18 @@ static int __init fsmc_nand_probe(struct platform_device *pdev) nand->ecc.mode = NAND_ECC_HW; nand->ecc.hwctl = fsmc_enable_hwecc; nand->ecc.size = 512; - nand->options = pdata->options; - nand->select_chip = fsmc_select_chip; nand->badblockbits = 7; - nand_set_flash_node(nand, np); - - if (pdata->width == FSMC_NAND_BW16) - nand->options |= NAND_BUSWIDTH_16; switch (host->mode) { case USE_DMA_ACCESS: dma_cap_zero(mask); dma_cap_set(DMA_MEMCPY, mask); - host->read_dma_chan = dma_request_channel(mask, filter, - pdata->read_dma_priv); + host->read_dma_chan = dma_request_channel(mask, filter, NULL); if (!host->read_dma_chan) { dev_err(&pdev->dev, "Unable to get read dma channel\n"); goto err_req_read_chnl; } - host->write_dma_chan = dma_request_channel(mask, filter, - pdata->write_dma_priv); + host->write_dma_chan = dma_request_channel(mask, filter, NULL); if (!host->write_dma_chan) { dev_err(&pdev->dev, "Unable to get write dma channel\n"); goto err_req_write_chnl; @@ -1107,18 +1018,8 @@ static int __init fsmc_nand_probe(struct platform_device *pdev) if (ret) goto err_probe; - /* - * The partition information can is accessed by (in the same precedence) - * - * command line through Bootloader, - * platform data, - * default partition information present in driver. - */ - /* - * Check for partition info passed - */ mtd->name = "nand"; - ret = mtd_device_register(mtd, host->partitions, host->nr_partitions); + ret = mtd_device_register(mtd, NULL, 0); if (ret) goto err_probe; @@ -1135,8 +1036,6 @@ err_req_write_chnl: dma_release_channel(host->read_dma_chan); err_req_read_chnl: clk_disable_unprepare(host->clk); -err_clk_prepare_enable: - clk_put(host->clk); return ret; } @@ -1155,7 +1054,6 @@ static int fsmc_nand_remove(struct platform_device *pdev) dma_release_channel(host->read_dma_chan); } clk_disable_unprepare(host->clk); - clk_put(host->clk); } return 0; @@ -1185,20 +1083,18 @@ static int fsmc_nand_resume(struct device *dev) static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume); -#ifdef CONFIG_OF static const struct of_device_id fsmc_nand_id_table[] = { { .compatible = "st,spear600-fsmc-nand" }, { .compatible = "stericsson,fsmc-nand" }, {} }; MODULE_DEVICE_TABLE(of, fsmc_nand_id_table); -#endif static struct platform_driver fsmc_nand_driver = { .remove = fsmc_nand_remove, .driver = { .name = "fsmc-nand", - .of_match_table = of_match_ptr(fsmc_nand_id_table), + .of_match_table = fsmc_nand_id_table, .pm = &fsmc_nand_pm_ops, }, }; diff --git a/drivers/mtd/nand/gpio.c b/drivers/mtd/nand/gpio.c index 0d24857469ab..85294f150f4f 100644 --- a/drivers/mtd/nand/gpio.c +++ b/drivers/mtd/nand/gpio.c @@ -78,7 +78,9 @@ static void gpio_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) gpio_nand_dosync(gpiomtd); if (ctrl & NAND_CTRL_CHANGE) { - gpio_set_value(gpiomtd->plat.gpio_nce, !(ctrl & NAND_NCE)); + if (gpio_is_valid(gpiomtd->plat.gpio_nce)) + gpio_set_value(gpiomtd->plat.gpio_nce, + !(ctrl & NAND_NCE)); gpio_set_value(gpiomtd->plat.gpio_cle, !!(ctrl & NAND_CLE)); gpio_set_value(gpiomtd->plat.gpio_ale, !!(ctrl & NAND_ALE)); gpio_nand_dosync(gpiomtd); @@ -201,7 +203,8 @@ static int gpio_nand_remove(struct platform_device *pdev) if (gpio_is_valid(gpiomtd->plat.gpio_nwp)) gpio_set_value(gpiomtd->plat.gpio_nwp, 0); - gpio_set_value(gpiomtd->plat.gpio_nce, 1); + if (gpio_is_valid(gpiomtd->plat.gpio_nce)) + gpio_set_value(gpiomtd->plat.gpio_nce, 1); return 0; } @@ -239,10 +242,13 @@ static int gpio_nand_probe(struct platform_device *pdev) if (ret) return ret; - ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_nce, "NAND NCE"); - if (ret) - return ret; - gpio_direction_output(gpiomtd->plat.gpio_nce, 1); + if (gpio_is_valid(gpiomtd->plat.gpio_nce)) { + ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_nce, + "NAND NCE"); + if (ret) + return ret; + gpio_direction_output(gpiomtd->plat.gpio_nce, 1); + } if (gpio_is_valid(gpiomtd->plat.gpio_nwp)) { ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_nwp, diff --git a/drivers/mtd/nand/nand_amd.c b/drivers/mtd/nand/nand_amd.c new file mode 100644 index 000000000000..170403a3bfa8 --- /dev/null +++ b/drivers/mtd/nand/nand_amd.c @@ -0,0 +1,51 @@ +/* + * Copyright (C) 2017 Free Electrons + * Copyright (C) 2017 NextThing Co + * + * Author: Boris Brezillon <boris.brezillon@free-electrons.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include <linux/mtd/nand.h> + +static void amd_nand_decode_id(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + nand_decode_ext_id(chip); + + /* + * Check for Spansion/AMD ID + repeating 5th, 6th byte since + * some Spansion chips have erasesize that conflicts with size + * listed in nand_ids table. + * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39) + */ + if (chip->id.data[4] != 0x00 && chip->id.data[5] == 0x00 && + chip->id.data[6] == 0x00 && chip->id.data[7] == 0x00 && + mtd->writesize == 512) { + mtd->erasesize = 128 * 1024; + mtd->erasesize <<= ((chip->id.data[3] & 0x03) << 1); + } +} + +static int amd_nand_init(struct nand_chip *chip) +{ + if (nand_is_slc(chip)) + chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; + + return 0; +} + +const struct nand_manufacturer_ops amd_nand_manuf_ops = { + .detect = amd_nand_decode_id, + .init = amd_nand_init, +}; diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c index b0524f8accb6..d474378ed810 100644 --- a/drivers/mtd/nand/nand_base.c +++ b/drivers/mtd/nand/nand_base.c @@ -139,6 +139,74 @@ const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = { }; EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops); +/* + * Support the old "large page" layout used for 1-bit Hamming ECC where ECC + * are placed at a fixed offset. + */ +static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &chip->ecc; + + if (section) + return -ERANGE; + + switch (mtd->oobsize) { + case 64: + oobregion->offset = 40; + break; + case 128: + oobregion->offset = 80; + break; + default: + return -EINVAL; + } + + oobregion->length = ecc->total; + if (oobregion->offset + oobregion->length > mtd->oobsize) + return -ERANGE; + + return 0; +} + +static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int ecc_offset = 0; + + if (section < 0 || section > 1) + return -ERANGE; + + switch (mtd->oobsize) { + case 64: + ecc_offset = 40; + break; + case 128: + ecc_offset = 80; + break; + default: + return -EINVAL; + } + + if (section == 0) { + oobregion->offset = 2; + oobregion->length = ecc_offset - 2; + } else { + oobregion->offset = ecc_offset + ecc->total; + oobregion->length = mtd->oobsize - oobregion->offset; + } + + return 0; +} + +const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = { + .ecc = nand_ooblayout_ecc_lp_hamming, + .free = nand_ooblayout_free_lp_hamming, +}; + static int check_offs_len(struct mtd_info *mtd, loff_t ofs, uint64_t len) { @@ -354,40 +422,32 @@ static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) */ static int nand_block_bad(struct mtd_info *mtd, loff_t ofs) { - int page, res = 0, i = 0; + int page, page_end, res; struct nand_chip *chip = mtd_to_nand(mtd); - u16 bad; + u8 bad; if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) ofs += mtd->erasesize - mtd->writesize; page = (int)(ofs >> chip->page_shift) & chip->pagemask; + page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1); - do { - if (chip->options & NAND_BUSWIDTH_16) { - chip->cmdfunc(mtd, NAND_CMD_READOOB, - chip->badblockpos & 0xFE, page); - bad = cpu_to_le16(chip->read_word(mtd)); - if (chip->badblockpos & 0x1) - bad >>= 8; - else - bad &= 0xFF; - } else { - chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, - page); - bad = chip->read_byte(mtd); - } + for (; page < page_end; page++) { + res = chip->ecc.read_oob(mtd, chip, page); + if (res) + return res; + + bad = chip->oob_poi[chip->badblockpos]; if (likely(chip->badblockbits == 8)) res = bad != 0xFF; else res = hweight8(bad) < chip->badblockbits; - ofs += mtd->writesize; - page = (int)(ofs >> chip->page_shift) & chip->pagemask; - i++; - } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE)); + if (res) + return res; + } - return res; + return 0; } /** @@ -676,6 +736,8 @@ static void nand_command(struct mtd_info *mtd, unsigned int command, case NAND_CMD_ERASE2: case NAND_CMD_SEQIN: case NAND_CMD_STATUS: + case NAND_CMD_READID: + case NAND_CMD_SET_FEATURES: return; case NAND_CMD_RESET: @@ -794,6 +856,8 @@ static void nand_command_lp(struct mtd_info *mtd, unsigned int command, case NAND_CMD_ERASE2: case NAND_CMD_SEQIN: case NAND_CMD_STATUS: + case NAND_CMD_READID: + case NAND_CMD_SET_FEATURES: return; case NAND_CMD_RNDIN: @@ -1958,7 +2022,9 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, if (!aligned) use_bufpoi = 1; else if (chip->options & NAND_USE_BOUNCE_BUFFER) - use_bufpoi = !virt_addr_valid(buf); + use_bufpoi = !virt_addr_valid(buf) || + !IS_ALIGNED((unsigned long)buf, + chip->buf_align); else use_bufpoi = 0; @@ -1997,8 +2063,6 @@ read_retry: break; } - max_bitflips = max_t(unsigned int, max_bitflips, ret); - /* Transfer not aligned data */ if (use_bufpoi) { if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && @@ -2049,6 +2113,7 @@ read_retry: } buf += bytes; + max_bitflips = max_t(unsigned int, max_bitflips, ret); } else { memcpy(buf, chip->buffers->databuf + col, bytes); buf += bytes; @@ -2637,7 +2702,7 @@ static int nand_write_page_syndrome(struct mtd_info *mtd, } /** - * nand_write_page - [REPLACEABLE] write one page + * nand_write_page - write one page * @mtd: MTD device structure * @chip: NAND chip descriptor * @offset: address offset within the page @@ -2815,7 +2880,9 @@ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, if (part_pagewr) use_bufpoi = 1; else if (chip->options & NAND_USE_BOUNCE_BUFFER) - use_bufpoi = !virt_addr_valid(buf); + use_bufpoi = !virt_addr_valid(buf) || + !IS_ALIGNED((unsigned long)buf, + chip->buf_align); else use_bufpoi = 0; @@ -2840,9 +2907,10 @@ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, /* We still need to erase leftover OOB data */ memset(chip->oob_poi, 0xff, mtd->oobsize); } - ret = chip->write_page(mtd, chip, column, bytes, wbuf, - oob_required, page, cached, - (ops->mode == MTD_OPS_RAW)); + + ret = nand_write_page(mtd, chip, column, bytes, wbuf, + oob_required, page, cached, + (ops->mode == MTD_OPS_RAW)); if (ret) break; @@ -3385,8 +3453,10 @@ static void nand_shutdown(struct mtd_info *mtd) } /* Set default functions */ -static void nand_set_defaults(struct nand_chip *chip, int busw) +static void nand_set_defaults(struct nand_chip *chip) { + unsigned int busw = chip->options & NAND_BUSWIDTH_16; + /* check for proper chip_delay setup, set 20us if not */ if (!chip->chip_delay) chip->chip_delay = 20; @@ -3431,6 +3501,8 @@ static void nand_set_defaults(struct nand_chip *chip, int busw) nand_hw_control_init(chip->controller); } + if (!chip->buf_align) + chip->buf_align = 1; } /* Sanitize ONFI strings so we can safely print them */ @@ -3464,9 +3536,10 @@ static u16 onfi_crc16(u16 crc, u8 const *p, size_t len) } /* Parse the Extended Parameter Page. */ -static int nand_flash_detect_ext_param_page(struct mtd_info *mtd, - struct nand_chip *chip, struct nand_onfi_params *p) +static int nand_flash_detect_ext_param_page(struct nand_chip *chip, + struct nand_onfi_params *p) { + struct mtd_info *mtd = nand_to_mtd(chip); struct onfi_ext_param_page *ep; struct onfi_ext_section *s; struct onfi_ext_ecc_info *ecc; @@ -3534,36 +3607,12 @@ ext_out: return ret; } -static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode}; - - return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY, - feature); -} - -/* - * Configure chip properties from Micron vendor-specific ONFI table - */ -static void nand_onfi_detect_micron(struct nand_chip *chip, - struct nand_onfi_params *p) -{ - struct nand_onfi_vendor_micron *micron = (void *)p->vendor; - - if (le16_to_cpu(p->vendor_revision) < 1) - return; - - chip->read_retries = micron->read_retry_options; - chip->setup_read_retry = nand_setup_read_retry_micron; -} - /* * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise. */ -static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip, - int *busw) +static int nand_flash_detect_onfi(struct nand_chip *chip) { + struct mtd_info *mtd = nand_to_mtd(chip); struct nand_onfi_params *p = &chip->onfi_params; int i, j; int val; @@ -3633,9 +3682,7 @@ static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip, chip->blocks_per_die = le32_to_cpu(p->blocks_per_lun); if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS) - *busw = NAND_BUSWIDTH_16; - else - *busw = 0; + chip->options |= NAND_BUSWIDTH_16; if (p->ecc_bits != 0xff) { chip->ecc_strength_ds = p->ecc_bits; @@ -3653,24 +3700,21 @@ static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip, chip->cmdfunc = nand_command_lp; /* The Extended Parameter Page is supported since ONFI 2.1. */ - if (nand_flash_detect_ext_param_page(mtd, chip, p)) + if (nand_flash_detect_ext_param_page(chip, p)) pr_warn("Failed to detect ONFI extended param page\n"); } else { pr_warn("Could not retrieve ONFI ECC requirements\n"); } - if (p->jedec_id == NAND_MFR_MICRON) - nand_onfi_detect_micron(chip, p); - return 1; } /* * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise. */ -static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip, - int *busw) +static int nand_flash_detect_jedec(struct nand_chip *chip) { + struct mtd_info *mtd = nand_to_mtd(chip); struct nand_jedec_params *p = &chip->jedec_params; struct jedec_ecc_info *ecc; int val; @@ -3729,9 +3773,7 @@ static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip, chip->bits_per_cell = p->bits_per_cell; if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS) - *busw = NAND_BUSWIDTH_16; - else - *busw = 0; + chip->options |= NAND_BUSWIDTH_16; /* ECC info */ ecc = &p->ecc_info[0]; @@ -3820,165 +3862,46 @@ static int nand_get_bits_per_cell(u8 cellinfo) * chip. The rest of the parameters must be decoded according to generic or * manufacturer-specific "extended ID" decoding patterns. */ -static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip, - u8 id_data[8], int *busw) +void nand_decode_ext_id(struct nand_chip *chip) { - int extid, id_len; + struct mtd_info *mtd = nand_to_mtd(chip); + int extid; + u8 *id_data = chip->id.data; /* The 3rd id byte holds MLC / multichip data */ chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]); /* The 4th id byte is the important one */ extid = id_data[3]; - id_len = nand_id_len(id_data, 8); - - /* - * Field definitions are in the following datasheets: - * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32) - * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44) - * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22) - * - * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung - * ID to decide what to do. - */ - if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG && - !nand_is_slc(chip) && id_data[5] != 0x00) { - /* Calc pagesize */ - mtd->writesize = 2048 << (extid & 0x03); - extid >>= 2; - /* Calc oobsize */ - switch (((extid >> 2) & 0x04) | (extid & 0x03)) { - case 1: - mtd->oobsize = 128; - break; - case 2: - mtd->oobsize = 218; - break; - case 3: - mtd->oobsize = 400; - break; - case 4: - mtd->oobsize = 436; - break; - case 5: - mtd->oobsize = 512; - break; - case 6: - mtd->oobsize = 640; - break; - case 7: - default: /* Other cases are "reserved" (unknown) */ - mtd->oobsize = 1024; - break; - } - extid >>= 2; - /* Calc blocksize */ - mtd->erasesize = (128 * 1024) << - (((extid >> 1) & 0x04) | (extid & 0x03)); - *busw = 0; - } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX && - !nand_is_slc(chip)) { - unsigned int tmp; - - /* Calc pagesize */ - mtd->writesize = 2048 << (extid & 0x03); - extid >>= 2; - /* Calc oobsize */ - switch (((extid >> 2) & 0x04) | (extid & 0x03)) { - case 0: - mtd->oobsize = 128; - break; - case 1: - mtd->oobsize = 224; - break; - case 2: - mtd->oobsize = 448; - break; - case 3: - mtd->oobsize = 64; - break; - case 4: - mtd->oobsize = 32; - break; - case 5: - mtd->oobsize = 16; - break; - default: - mtd->oobsize = 640; - break; - } - extid >>= 2; - /* Calc blocksize */ - tmp = ((extid >> 1) & 0x04) | (extid & 0x03); - if (tmp < 0x03) - mtd->erasesize = (128 * 1024) << tmp; - else if (tmp == 0x03) - mtd->erasesize = 768 * 1024; - else - mtd->erasesize = (64 * 1024) << tmp; - *busw = 0; - } else { - /* Calc pagesize */ - mtd->writesize = 1024 << (extid & 0x03); - extid >>= 2; - /* Calc oobsize */ - mtd->oobsize = (8 << (extid & 0x01)) * - (mtd->writesize >> 9); - extid >>= 2; - /* Calc blocksize. Blocksize is multiples of 64KiB */ - mtd->erasesize = (64 * 1024) << (extid & 0x03); - extid >>= 2; - /* Get buswidth information */ - *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0; - - /* - * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per - * 512B page. For Toshiba SLC, we decode the 5th/6th byte as - * follows: - * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm, - * 110b -> 24nm - * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC - */ - if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA && - nand_is_slc(chip) && - (id_data[5] & 0x7) == 0x6 /* 24nm */ && - !(id_data[4] & 0x80) /* !BENAND */) { - mtd->oobsize = 32 * mtd->writesize >> 9; - } - - } + /* Calc pagesize */ + mtd->writesize = 1024 << (extid & 0x03); + extid >>= 2; + /* Calc oobsize */ + mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9); + extid >>= 2; + /* Calc blocksize. Blocksize is multiples of 64KiB */ + mtd->erasesize = (64 * 1024) << (extid & 0x03); + extid >>= 2; + /* Get buswidth information */ + if (extid & 0x1) + chip->options |= NAND_BUSWIDTH_16; } +EXPORT_SYMBOL_GPL(nand_decode_ext_id); /* * Old devices have chip data hardcoded in the device ID table. nand_decode_id * decodes a matching ID table entry and assigns the MTD size parameters for * the chip. */ -static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip, - struct nand_flash_dev *type, u8 id_data[8], - int *busw) +static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type) { - int maf_id = id_data[0]; + struct mtd_info *mtd = nand_to_mtd(chip); mtd->erasesize = type->erasesize; mtd->writesize = type->pagesize; mtd->oobsize = mtd->writesize / 32; - *busw = type->options & NAND_BUSWIDTH_16; /* All legacy ID NAND are small-page, SLC */ chip->bits_per_cell = 1; - - /* - * Check for Spansion/AMD ID + repeating 5th, 6th byte since - * some Spansion chips have erasesize that conflicts with size - * listed in nand_ids table. - * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39) - */ - if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00 - && id_data[6] == 0x00 && id_data[7] == 0x00 - && mtd->writesize == 512) { - mtd->erasesize = 128 * 1024; - mtd->erasesize <<= ((id_data[3] & 0x03) << 1); - } } /* @@ -3986,36 +3909,15 @@ static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip, * heuristic patterns using various detected parameters (e.g., manufacturer, * page size, cell-type information). */ -static void nand_decode_bbm_options(struct mtd_info *mtd, - struct nand_chip *chip, u8 id_data[8]) +static void nand_decode_bbm_options(struct nand_chip *chip) { - int maf_id = id_data[0]; + struct mtd_info *mtd = nand_to_mtd(chip); /* Set the bad block position */ if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) chip->badblockpos = NAND_LARGE_BADBLOCK_POS; else chip->badblockpos = NAND_SMALL_BADBLOCK_POS; - - /* - * Bad block marker is stored in the last page of each block on Samsung - * and Hynix MLC devices; stored in first two pages of each block on - * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba, - * AMD/Spansion, and Macronix. All others scan only the first page. - */ - if (!nand_is_slc(chip) && - (maf_id == NAND_MFR_SAMSUNG || - maf_id == NAND_MFR_HYNIX)) - chip->bbt_options |= NAND_BBT_SCANLASTPAGE; - else if ((nand_is_slc(chip) && - (maf_id == NAND_MFR_SAMSUNG || - maf_id == NAND_MFR_HYNIX || - maf_id == NAND_MFR_TOSHIBA || - maf_id == NAND_MFR_AMD || - maf_id == NAND_MFR_MACRONIX)) || - (mtd->writesize == 2048 && - maf_id == NAND_MFR_MICRON)) - chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; } static inline bool is_full_id_nand(struct nand_flash_dev *type) @@ -4023,9 +3925,12 @@ static inline bool is_full_id_nand(struct nand_flash_dev *type) return type->id_len; } -static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip, - struct nand_flash_dev *type, u8 *id_data, int *busw) +static bool find_full_id_nand(struct nand_chip *chip, + struct nand_flash_dev *type) { + struct mtd_info *mtd = nand_to_mtd(chip); + u8 *id_data = chip->id.data; + if (!strncmp(type->id, id_data, type->id_len)) { mtd->writesize = type->pagesize; mtd->erasesize = type->erasesize; @@ -4039,8 +3944,6 @@ static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip, chip->onfi_timing_mode_default = type->onfi_timing_mode_default; - *busw = type->options & NAND_BUSWIDTH_16; - if (!mtd->name) mtd->name = type->name; @@ -4050,15 +3953,63 @@ static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip, } /* + * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC + * compliant and does not have a full-id or legacy-id entry in the nand_ids + * table. + */ +static void nand_manufacturer_detect(struct nand_chip *chip) +{ + /* + * Try manufacturer detection if available and use + * nand_decode_ext_id() otherwise. + */ + if (chip->manufacturer.desc && chip->manufacturer.desc->ops && + chip->manufacturer.desc->ops->detect) + chip->manufacturer.desc->ops->detect(chip); + else + nand_decode_ext_id(chip); +} + +/* + * Manufacturer initialization. This function is called for all NANDs including + * ONFI and JEDEC compliant ones. + * Manufacturer drivers should put all their specific initialization code in + * their ->init() hook. + */ +static int nand_manufacturer_init(struct nand_chip *chip) +{ + if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops || + !chip->manufacturer.desc->ops->init) + return 0; + + return chip->manufacturer.desc->ops->init(chip); +} + +/* + * Manufacturer cleanup. This function is called for all NANDs including + * ONFI and JEDEC compliant ones. + * Manufacturer drivers should put all their specific cleanup code in their + * ->cleanup() hook. + */ +static void nand_manufacturer_cleanup(struct nand_chip *chip) +{ + /* Release manufacturer private data */ + if (chip->manufacturer.desc && chip->manufacturer.desc->ops && + chip->manufacturer.desc->ops->cleanup) + chip->manufacturer.desc->ops->cleanup(chip); +} + +/* * Get the flash and manufacturer id and lookup if the type is supported. */ -static int nand_get_flash_type(struct mtd_info *mtd, struct nand_chip *chip, - int *maf_id, int *dev_id, - struct nand_flash_dev *type) +static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) { + const struct nand_manufacturer *manufacturer; + struct mtd_info *mtd = nand_to_mtd(chip); int busw; - int i, maf_idx; - u8 id_data[8]; + int i, ret; + u8 *id_data = chip->id.data; + u8 maf_id, dev_id; /* * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) @@ -4073,8 +4024,8 @@ static int nand_get_flash_type(struct mtd_info *mtd, struct nand_chip *chip, chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); /* Read manufacturer and device IDs */ - *maf_id = chip->read_byte(mtd); - *dev_id = chip->read_byte(mtd); + maf_id = chip->read_byte(mtd); + dev_id = chip->read_byte(mtd); /* * Try again to make sure, as some systems the bus-hold or other @@ -4089,20 +4040,41 @@ static int nand_get_flash_type(struct mtd_info *mtd, struct nand_chip *chip, for (i = 0; i < 8; i++) id_data[i] = chip->read_byte(mtd); - if (id_data[0] != *maf_id || id_data[1] != *dev_id) { + if (id_data[0] != maf_id || id_data[1] != dev_id) { pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", - *maf_id, *dev_id, id_data[0], id_data[1]); + maf_id, dev_id, id_data[0], id_data[1]); return -ENODEV; } + chip->id.len = nand_id_len(id_data, 8); + + /* Try to identify manufacturer */ + manufacturer = nand_get_manufacturer(maf_id); + chip->manufacturer.desc = manufacturer; + if (!type) type = nand_flash_ids; + /* + * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic + * override it. + * This is required to make sure initial NAND bus width set by the + * NAND controller driver is coherent with the real NAND bus width + * (extracted by auto-detection code). + */ + busw = chip->options & NAND_BUSWIDTH_16; + + /* + * The flag is only set (never cleared), reset it to its default value + * before starting auto-detection. + */ + chip->options &= ~NAND_BUSWIDTH_16; + for (; type->name != NULL; type++) { if (is_full_id_nand(type)) { - if (find_full_id_nand(mtd, chip, type, id_data, &busw)) + if (find_full_id_nand(chip, type)) goto ident_done; - } else if (*dev_id == type->dev_id) { + } else if (dev_id == type->dev_id) { break; } } @@ -4110,11 +4082,11 @@ static int nand_get_flash_type(struct mtd_info *mtd, struct nand_chip *chip, chip->onfi_version = 0; if (!type->name || !type->pagesize) { /* Check if the chip is ONFI compliant */ - if (nand_flash_detect_onfi(mtd, chip, &busw)) + if (nand_flash_detect_onfi(chip)) goto ident_done; /* Check if the chip is JEDEC compliant */ - if (nand_flash_detect_jedec(mtd, chip, &busw)) + if (nand_flash_detect_jedec(chip)) goto ident_done; } @@ -4126,48 +4098,34 @@ static int nand_get_flash_type(struct mtd_info *mtd, struct nand_chip *chip, chip->chipsize = (uint64_t)type->chipsize << 20; - if (!type->pagesize) { - /* Decode parameters from extended ID */ - nand_decode_ext_id(mtd, chip, id_data, &busw); - } else { - nand_decode_id(mtd, chip, type, id_data, &busw); - } + if (!type->pagesize) + nand_manufacturer_detect(chip); + else + nand_decode_id(chip, type); + /* Get chip options */ chip->options |= type->options; - /* - * Check if chip is not a Samsung device. Do not clear the - * options for chips which do not have an extended id. - */ - if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize) - chip->options &= ~NAND_SAMSUNG_LP_OPTIONS; ident_done: - /* Try to identify manufacturer */ - for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) { - if (nand_manuf_ids[maf_idx].id == *maf_id) - break; - } - if (chip->options & NAND_BUSWIDTH_AUTO) { - WARN_ON(chip->options & NAND_BUSWIDTH_16); - chip->options |= busw; - nand_set_defaults(chip, busw); + WARN_ON(busw & NAND_BUSWIDTH_16); + nand_set_defaults(chip); } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { /* * Check, if buswidth is correct. Hardware drivers should set * chip correct! */ pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", - *maf_id, *dev_id); - pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name); - pr_warn("bus width %d instead %d bit\n", - (chip->options & NAND_BUSWIDTH_16) ? 16 : 8, - busw ? 16 : 8); + maf_id, dev_id); + pr_info("%s %s\n", nand_manufacturer_name(manufacturer), + mtd->name); + pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8, + (chip->options & NAND_BUSWIDTH_16) ? 16 : 8); return -EINVAL; } - nand_decode_bbm_options(mtd, chip, id_data); + nand_decode_bbm_options(chip); /* Calculate the address shift from the page size */ chip->page_shift = ffs(mtd->writesize) - 1; @@ -4190,18 +4148,22 @@ ident_done: if (mtd->writesize > 512 && chip->cmdfunc == nand_command) chip->cmdfunc = nand_command_lp; + ret = nand_manufacturer_init(chip); + if (ret) + return ret; + pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", - *maf_id, *dev_id); + maf_id, dev_id); if (chip->onfi_version) - pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, - chip->onfi_params.model); + pr_info("%s %s\n", nand_manufacturer_name(manufacturer), + chip->onfi_params.model); else if (chip->jedec_version) - pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, - chip->jedec_params.model); + pr_info("%s %s\n", nand_manufacturer_name(manufacturer), + chip->jedec_params.model); else - pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, - type->name); + pr_info("%s %s\n", nand_manufacturer_name(manufacturer), + type->name); pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n", (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", @@ -4333,12 +4295,6 @@ static int nand_dt_init(struct nand_chip *chip) ecc_strength = of_get_nand_ecc_strength(dn); ecc_step = of_get_nand_ecc_step_size(dn); - if ((ecc_step >= 0 && !(ecc_strength >= 0)) || - (!(ecc_step >= 0) && ecc_strength >= 0)) { - pr_err("must set both strength and step size in DT\n"); - return -EINVAL; - } - if (ecc_mode >= 0) chip->ecc.mode = ecc_mode; @@ -4391,10 +4347,10 @@ int nand_scan_ident(struct mtd_info *mtd, int maxchips, return -EINVAL; } /* Set the default functions */ - nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16); + nand_set_defaults(chip); /* Read the flash type */ - ret = nand_get_flash_type(mtd, chip, &nand_maf_id, &nand_dev_id, table); + ret = nand_detect(chip, table); if (ret) { if (!(chip->options & NAND_SCAN_SILENT_NODEV)) pr_warn("No NAND device found\n"); @@ -4419,6 +4375,9 @@ int nand_scan_ident(struct mtd_info *mtd, int maxchips, if (ret) return ret; + nand_maf_id = chip->id.data[0]; + nand_dev_id = chip->id.data[1]; + chip->select_chip(mtd, -1); /* Check for a chip array */ @@ -4610,7 +4569,7 @@ int nand_scan_tail(struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); struct nand_ecc_ctrl *ecc = &chip->ecc; - struct nand_buffers *nbuf; + struct nand_buffers *nbuf = NULL; int ret; /* New bad blocks should be marked in OOB, flash-based BBT, or both */ @@ -4624,13 +4583,28 @@ int nand_scan_tail(struct mtd_info *mtd) } if (!(chip->options & NAND_OWN_BUFFERS)) { - nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize - + mtd->oobsize * 3, GFP_KERNEL); + nbuf = kzalloc(sizeof(*nbuf), GFP_KERNEL); if (!nbuf) return -ENOMEM; - nbuf->ecccalc = (uint8_t *)(nbuf + 1); - nbuf->ecccode = nbuf->ecccalc + mtd->oobsize; - nbuf->databuf = nbuf->ecccode + mtd->oobsize; + + nbuf->ecccalc = kmalloc(mtd->oobsize, GFP_KERNEL); + if (!nbuf->ecccalc) { + ret = -ENOMEM; + goto err_free; + } + + nbuf->ecccode = kmalloc(mtd->oobsize, GFP_KERNEL); + if (!nbuf->ecccode) { + ret = -ENOMEM; + goto err_free; + } + + nbuf->databuf = kmalloc(mtd->writesize + mtd->oobsize, + GFP_KERNEL); + if (!nbuf->databuf) { + ret = -ENOMEM; + goto err_free; + } chip->buffers = nbuf; } else { @@ -4653,7 +4627,7 @@ int nand_scan_tail(struct mtd_info *mtd) break; case 64: case 128: - mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); + mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops); break; default: WARN(1, "No oob scheme defined for oobsize %d\n", @@ -4663,9 +4637,6 @@ int nand_scan_tail(struct mtd_info *mtd) } } - if (!chip->write_page) - chip->write_page = nand_write_page; - /* * Check ECC mode, default to software if 3byte/512byte hardware ECC is * selected and we have 256 byte pagesize fallback to software ECC @@ -4873,8 +4844,12 @@ int nand_scan_tail(struct mtd_info *mtd) /* Build bad block table */ return chip->scan_bbt(mtd); err_free: - if (!(chip->options & NAND_OWN_BUFFERS)) - kfree(chip->buffers); + if (nbuf) { + kfree(nbuf->databuf); + kfree(nbuf->ecccode); + kfree(nbuf->ecccalc); + kfree(nbuf); + } return ret; } EXPORT_SYMBOL(nand_scan_tail); @@ -4925,13 +4900,20 @@ void nand_cleanup(struct nand_chip *chip) /* Free bad block table memory */ kfree(chip->bbt); - if (!(chip->options & NAND_OWN_BUFFERS)) + if (!(chip->options & NAND_OWN_BUFFERS) && chip->buffers) { + kfree(chip->buffers->databuf); + kfree(chip->buffers->ecccode); + kfree(chip->buffers->ecccalc); kfree(chip->buffers); + } /* Free bad block descriptor memory */ if (chip->badblock_pattern && chip->badblock_pattern->options & NAND_BBT_DYNAMICSTRUCT) kfree(chip->badblock_pattern); + + /* Free manufacturer priv data. */ + nand_manufacturer_cleanup(chip); } EXPORT_SYMBOL_GPL(nand_cleanup); diff --git a/drivers/mtd/nand/nand_hynix.c b/drivers/mtd/nand/nand_hynix.c new file mode 100644 index 000000000000..b12dc7325378 --- /dev/null +++ b/drivers/mtd/nand/nand_hynix.c @@ -0,0 +1,631 @@ +/* + * Copyright (C) 2017 Free Electrons + * Copyright (C) 2017 NextThing Co + * + * Author: Boris Brezillon <boris.brezillon@free-electrons.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include <linux/mtd/nand.h> +#include <linux/sizes.h> +#include <linux/slab.h> + +#define NAND_HYNIX_CMD_SET_PARAMS 0x36 +#define NAND_HYNIX_CMD_APPLY_PARAMS 0x16 + +#define NAND_HYNIX_1XNM_RR_REPEAT 8 + +/** + * struct hynix_read_retry - read-retry data + * @nregs: number of register to set when applying a new read-retry mode + * @regs: register offsets (NAND chip dependent) + * @values: array of values to set in registers. The array size is equal to + * (nregs * nmodes) + */ +struct hynix_read_retry { + int nregs; + const u8 *regs; + u8 values[0]; +}; + +/** + * struct hynix_nand - private Hynix NAND struct + * @nand_technology: manufacturing process expressed in picometer + * @read_retry: read-retry information + */ +struct hynix_nand { + const struct hynix_read_retry *read_retry; +}; + +/** + * struct hynix_read_retry_otp - structure describing how the read-retry OTP + * area + * @nregs: number of hynix private registers to set before reading the reading + * the OTP area + * @regs: registers that should be configured + * @values: values that should be set in regs + * @page: the address to pass to the READ_PAGE command. Depends on the NAND + * chip + * @size: size of the read-retry OTP section + */ +struct hynix_read_retry_otp { + int nregs; + const u8 *regs; + const u8 *values; + int page; + int size; +}; + +static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + u8 jedecid[6] = { }; + int i = 0; + + chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1); + for (i = 0; i < 5; i++) + jedecid[i] = chip->read_byte(mtd); + + return !strcmp("JEDEC", jedecid); +} + +static int hynix_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct hynix_nand *hynix = nand_get_manufacturer_data(chip); + const u8 *values; + int status; + int i; + + values = hynix->read_retry->values + + (retry_mode * hynix->read_retry->nregs); + + /* Enter 'Set Hynix Parameters' mode */ + chip->cmdfunc(mtd, NAND_HYNIX_CMD_SET_PARAMS, -1, -1); + + /* + * Configure the NAND in the requested read-retry mode. + * This is done by setting pre-defined values in internal NAND + * registers. + * + * The set of registers is NAND specific, and the values are either + * predefined or extracted from an OTP area on the NAND (values are + * probably tweaked at production in this case). + */ + for (i = 0; i < hynix->read_retry->nregs; i++) { + int column = hynix->read_retry->regs[i]; + + column |= column << 8; + chip->cmdfunc(mtd, NAND_CMD_NONE, column, -1); + chip->write_byte(mtd, values[i]); + } + + /* Apply the new settings. */ + chip->cmdfunc(mtd, NAND_HYNIX_CMD_APPLY_PARAMS, -1, -1); + + status = chip->waitfunc(mtd, chip); + if (status & NAND_STATUS_FAIL) + return -EIO; + + return 0; +} + +/** + * hynix_get_majority - get the value that is occurring the most in a given + * set of values + * @in: the array of values to test + * @repeat: the size of the in array + * @out: pointer used to store the output value + * + * This function implements the 'majority check' logic that is supposed to + * overcome the unreliability of MLC NANDs when reading the OTP area storing + * the read-retry parameters. + * + * It's based on a pretty simple assumption: if we repeat the same value + * several times and then take the one that is occurring the most, we should + * find the correct value. + * Let's hope this dummy algorithm prevents us from losing the read-retry + * parameters. + */ +static int hynix_get_majority(const u8 *in, int repeat, u8 *out) +{ + int i, j, half = repeat / 2; + + /* + * We only test the first half of the in array because we must ensure + * that the value is at least occurring repeat / 2 times. + * + * This loop is suboptimal since we may count the occurrences of the + * same value several time, but we are doing that on small sets, which + * makes it acceptable. + */ + for (i = 0; i < half; i++) { + int cnt = 0; + u8 val = in[i]; + + /* Count all values that are matching the one at index i. */ + for (j = i + 1; j < repeat; j++) { + if (in[j] == val) + cnt++; + } + + /* We found a value occurring more than repeat / 2. */ + if (cnt > half) { + *out = val; + return 0; + } + } + + return -EIO; +} + +static int hynix_read_rr_otp(struct nand_chip *chip, + const struct hynix_read_retry_otp *info, + void *buf) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int i; + + chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); + + chip->cmdfunc(mtd, NAND_HYNIX_CMD_SET_PARAMS, -1, -1); + + for (i = 0; i < info->nregs; i++) { + int column = info->regs[i]; + + column |= column << 8; + chip->cmdfunc(mtd, NAND_CMD_NONE, column, -1); + chip->write_byte(mtd, info->values[i]); + } + + chip->cmdfunc(mtd, NAND_HYNIX_CMD_APPLY_PARAMS, -1, -1); + + /* Sequence to enter OTP mode? */ + chip->cmdfunc(mtd, 0x17, -1, -1); + chip->cmdfunc(mtd, 0x04, -1, -1); + chip->cmdfunc(mtd, 0x19, -1, -1); + + /* Now read the page */ + chip->cmdfunc(mtd, NAND_CMD_READ0, 0x0, info->page); + chip->read_buf(mtd, buf, info->size); + + /* Put everything back to normal */ + chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); + chip->cmdfunc(mtd, NAND_HYNIX_CMD_SET_PARAMS, 0x38, -1); + chip->write_byte(mtd, 0x0); + chip->cmdfunc(mtd, NAND_HYNIX_CMD_APPLY_PARAMS, -1, -1); + chip->cmdfunc(mtd, NAND_CMD_READ0, 0x0, -1); + + return 0; +} + +#define NAND_HYNIX_1XNM_RR_COUNT_OFFS 0 +#define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS 8 +#define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv) \ + (16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize))) + +static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs, + int mode, int reg, bool inv, u8 *val) +{ + u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT]; + int val_offs = (mode * nregs) + reg; + int set_size = nmodes * nregs; + int i, ret; + + for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) { + int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv); + + tmp[i] = buf[val_offs + set_offs]; + } + + ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val); + if (ret) + return ret; + + if (inv) + *val = ~*val; + + return 0; +} + +static u8 hynix_1xnm_mlc_read_retry_regs[] = { + 0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf +}; + +static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip, + const struct hynix_read_retry_otp *info) +{ + struct hynix_nand *hynix = nand_get_manufacturer_data(chip); + struct hynix_read_retry *rr = NULL; + int ret, i, j; + u8 nregs, nmodes; + u8 *buf; + + buf = kmalloc(info->size, GFP_KERNEL); + if (!buf) + return -ENOMEM; + + ret = hynix_read_rr_otp(chip, info, buf); + if (ret) + goto out; + + ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT, + &nmodes); + if (ret) + goto out; + + ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT, + NAND_HYNIX_1XNM_RR_REPEAT, + &nregs); + if (ret) + goto out; + + rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL); + if (!rr) { + ret = -ENOMEM; + goto out; + } + + for (i = 0; i < nmodes; i++) { + for (j = 0; j < nregs; j++) { + u8 *val = rr->values + (i * nregs); + + ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j, + false, val); + if (!ret) + continue; + + ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j, + true, val); + if (ret) + goto out; + } + } + + rr->nregs = nregs; + rr->regs = hynix_1xnm_mlc_read_retry_regs; + hynix->read_retry = rr; + chip->setup_read_retry = hynix_nand_setup_read_retry; + chip->read_retries = nmodes; + +out: + kfree(buf); + + if (ret) + kfree(rr); + + return ret; +} + +static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 }; +static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 }; + +static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = { + { + .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs), + .regs = hynix_mlc_1xnm_rr_otp_regs, + .values = hynix_mlc_1xnm_rr_otp_values, + .page = 0x21f, + .size = 784 + }, + { + .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs), + .regs = hynix_mlc_1xnm_rr_otp_regs, + .values = hynix_mlc_1xnm_rr_otp_values, + .page = 0x200, + .size = 528, + }, +}; + +static int hynix_nand_rr_init(struct nand_chip *chip) +{ + int i, ret = 0; + bool valid_jedecid; + + valid_jedecid = hynix_nand_has_valid_jedecid(chip); + + /* + * We only support read-retry for 1xnm NANDs, and those NANDs all + * expose a valid JEDEC ID. + */ + if (valid_jedecid) { + u8 nand_tech = chip->id.data[5] >> 4; + + /* 1xnm technology */ + if (nand_tech == 4) { + for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps); + i++) { + /* + * FIXME: Hynix recommend to copy the + * read-retry OTP area into a normal page. + */ + ret = hynix_mlc_1xnm_rr_init(chip, + hynix_mlc_1xnm_rr_otps); + if (!ret) + break; + } + } + } + + if (ret) + pr_warn("failed to initialize read-retry infrastructure"); + + return 0; +} + +static void hynix_nand_extract_oobsize(struct nand_chip *chip, + bool valid_jedecid) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + u8 oobsize; + + oobsize = ((chip->id.data[3] >> 2) & 0x3) | + ((chip->id.data[3] >> 4) & 0x4); + + if (valid_jedecid) { + switch (oobsize) { + case 0: + mtd->oobsize = 2048; + break; + case 1: + mtd->oobsize = 1664; + break; + case 2: + mtd->oobsize = 1024; + break; + case 3: + mtd->oobsize = 640; + break; + default: + /* + * We should never reach this case, but if that + * happens, this probably means Hynix decided to use + * a different extended ID format, and we should find + * a way to support it. + */ + WARN(1, "Invalid OOB size"); + break; + } + } else { + switch (oobsize) { + case 0: + mtd->oobsize = 128; + break; + case 1: + mtd->oobsize = 224; + break; + case 2: + mtd->oobsize = 448; + break; + case 3: + mtd->oobsize = 64; + break; + case 4: + mtd->oobsize = 32; + break; + case 5: + mtd->oobsize = 16; + break; + case 6: + mtd->oobsize = 640; + break; + default: + /* + * We should never reach this case, but if that + * happens, this probably means Hynix decided to use + * a different extended ID format, and we should find + * a way to support it. + */ + WARN(1, "Invalid OOB size"); + break; + } + } +} + +static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip, + bool valid_jedecid) +{ + u8 ecc_level = (chip->id.data[4] >> 4) & 0x7; + + if (valid_jedecid) { + /* Reference: H27UCG8T2E datasheet */ + chip->ecc_step_ds = 1024; + + switch (ecc_level) { + case 0: + chip->ecc_step_ds = 0; + chip->ecc_strength_ds = 0; + break; + case 1: + chip->ecc_strength_ds = 4; + break; + case 2: + chip->ecc_strength_ds = 24; + break; + case 3: + chip->ecc_strength_ds = 32; + break; + case 4: + chip->ecc_strength_ds = 40; + break; + case 5: + chip->ecc_strength_ds = 50; + break; + case 6: + chip->ecc_strength_ds = 60; + break; + default: + /* + * We should never reach this case, but if that + * happens, this probably means Hynix decided to use + * a different extended ID format, and we should find + * a way to support it. + */ + WARN(1, "Invalid ECC requirements"); + } + } else { + /* + * The ECC requirements field meaning depends on the + * NAND technology. + */ + u8 nand_tech = chip->id.data[5] & 0x3; + + if (nand_tech < 3) { + /* > 26nm, reference: H27UBG8T2A datasheet */ + if (ecc_level < 5) { + chip->ecc_step_ds = 512; + chip->ecc_strength_ds = 1 << ecc_level; + } else if (ecc_level < 7) { + if (ecc_level == 5) + chip->ecc_step_ds = 2048; + else + chip->ecc_step_ds = 1024; + chip->ecc_strength_ds = 24; + } else { + /* + * We should never reach this case, but if that + * happens, this probably means Hynix decided + * to use a different extended ID format, and + * we should find a way to support it. + */ + WARN(1, "Invalid ECC requirements"); + } + } else { + /* <= 26nm, reference: H27UBG8T2B datasheet */ + if (!ecc_level) { + chip->ecc_step_ds = 0; + chip->ecc_strength_ds = 0; + } else if (ecc_level < 5) { + chip->ecc_step_ds = 512; + chip->ecc_strength_ds = 1 << (ecc_level - 1); + } else { + chip->ecc_step_ds = 1024; + chip->ecc_strength_ds = 24 + + (8 * (ecc_level - 5)); + } + } + } +} + +static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip, + bool valid_jedecid) +{ + u8 nand_tech; + + /* We need scrambling on all TLC NANDs*/ + if (chip->bits_per_cell > 2) + chip->options |= NAND_NEED_SCRAMBLING; + + /* And on MLC NANDs with sub-3xnm process */ + if (valid_jedecid) { + nand_tech = chip->id.data[5] >> 4; + + /* < 3xnm */ + if (nand_tech > 0) + chip->options |= NAND_NEED_SCRAMBLING; + } else { + nand_tech = chip->id.data[5] & 0x3; + + /* < 32nm */ + if (nand_tech > 2) + chip->options |= NAND_NEED_SCRAMBLING; + } +} + +static void hynix_nand_decode_id(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + bool valid_jedecid; + u8 tmp; + + /* + * Exclude all SLC NANDs from this advanced detection scheme. + * According to the ranges defined in several datasheets, it might + * appear that even SLC NANDs could fall in this extended ID scheme. + * If that the case rework the test to let SLC NANDs go through the + * detection process. + */ + if (chip->id.len < 6 || nand_is_slc(chip)) { + nand_decode_ext_id(chip); + return; + } + + /* Extract pagesize */ + mtd->writesize = 2048 << (chip->id.data[3] & 0x03); + + tmp = (chip->id.data[3] >> 4) & 0x3; + /* + * When bit7 is set that means we start counting at 1MiB, otherwise + * we start counting at 128KiB and shift this value the content of + * ID[3][4:5]. + * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in + * this case the erasesize is set to 768KiB. + */ + if (chip->id.data[3] & 0x80) + mtd->erasesize = SZ_1M << tmp; + else if (tmp == 3) + mtd->erasesize = SZ_512K + SZ_256K; + else + mtd->erasesize = SZ_128K << tmp; + + /* + * Modern Toggle DDR NANDs have a valid JEDECID even though they are + * not exposing a valid JEDEC parameter table. + * These NANDs use a different NAND ID scheme. + */ + valid_jedecid = hynix_nand_has_valid_jedecid(chip); + + hynix_nand_extract_oobsize(chip, valid_jedecid); + hynix_nand_extract_ecc_requirements(chip, valid_jedecid); + hynix_nand_extract_scrambling_requirements(chip, valid_jedecid); +} + +static void hynix_nand_cleanup(struct nand_chip *chip) +{ + struct hynix_nand *hynix = nand_get_manufacturer_data(chip); + + if (!hynix) + return; + + kfree(hynix->read_retry); + kfree(hynix); + nand_set_manufacturer_data(chip, NULL); +} + +static int hynix_nand_init(struct nand_chip *chip) +{ + struct hynix_nand *hynix; + int ret; + + if (!nand_is_slc(chip)) + chip->bbt_options |= NAND_BBT_SCANLASTPAGE; + else + chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; + + hynix = kzalloc(sizeof(*hynix), GFP_KERNEL); + if (!hynix) + return -ENOMEM; + + nand_set_manufacturer_data(chip, hynix); + + ret = hynix_nand_rr_init(chip); + if (ret) + hynix_nand_cleanup(chip); + + return ret; +} + +const struct nand_manufacturer_ops hynix_nand_manuf_ops = { + .detect = hynix_nand_decode_id, + .init = hynix_nand_init, + .cleanup = hynix_nand_cleanup, +}; diff --git a/drivers/mtd/nand/nand_ids.c b/drivers/mtd/nand/nand_ids.c index 4a2f75b0c200..9d5ca0e540b5 100644 --- a/drivers/mtd/nand/nand_ids.c +++ b/drivers/mtd/nand/nand_ids.c @@ -10,7 +10,7 @@ #include <linux/mtd/nand.h> #include <linux/sizes.h> -#define LP_OPTIONS NAND_SAMSUNG_LP_OPTIONS +#define LP_OPTIONS 0 #define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16) #define SP_OPTIONS NAND_NEED_READRDY @@ -169,29 +169,40 @@ struct nand_flash_dev nand_flash_ids[] = { }; /* Manufacturer IDs */ -struct nand_manufacturers nand_manuf_ids[] = { - {NAND_MFR_TOSHIBA, "Toshiba"}, +static const struct nand_manufacturer nand_manufacturers[] = { + {NAND_MFR_TOSHIBA, "Toshiba", &toshiba_nand_manuf_ops}, {NAND_MFR_ESMT, "ESMT"}, - {NAND_MFR_SAMSUNG, "Samsung"}, + {NAND_MFR_SAMSUNG, "Samsung", &samsung_nand_manuf_ops}, {NAND_MFR_FUJITSU, "Fujitsu"}, {NAND_MFR_NATIONAL, "National"}, {NAND_MFR_RENESAS, "Renesas"}, {NAND_MFR_STMICRO, "ST Micro"}, - {NAND_MFR_HYNIX, "Hynix"}, - {NAND_MFR_MICRON, "Micron"}, - {NAND_MFR_AMD, "AMD/Spansion"}, - {NAND_MFR_MACRONIX, "Macronix"}, + {NAND_MFR_HYNIX, "Hynix", &hynix_nand_manuf_ops}, + {NAND_MFR_MICRON, "Micron", µn_nand_manuf_ops}, + {NAND_MFR_AMD, "AMD/Spansion", &amd_nand_manuf_ops}, + {NAND_MFR_MACRONIX, "Macronix", ¯onix_nand_manuf_ops}, {NAND_MFR_EON, "Eon"}, {NAND_MFR_SANDISK, "SanDisk"}, {NAND_MFR_INTEL, "Intel"}, {NAND_MFR_ATO, "ATO"}, {NAND_MFR_WINBOND, "Winbond"}, - {0x0, "Unknown"} }; -EXPORT_SYMBOL(nand_manuf_ids); -EXPORT_SYMBOL(nand_flash_ids); +/** + * nand_get_manufacturer - Get manufacturer information from the manufacturer + * ID + * @id: manufacturer ID + * + * Returns a pointer a nand_manufacturer object if the manufacturer is defined + * in the NAND manufacturers database, NULL otherwise. + */ +const struct nand_manufacturer *nand_get_manufacturer(u8 id) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(nand_manufacturers); i++) + if (nand_manufacturers[i].id == id) + return &nand_manufacturers[i]; -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); -MODULE_DESCRIPTION("Nand device & manufacturer IDs"); + return NULL; +} diff --git a/drivers/mtd/nand/nand_macronix.c b/drivers/mtd/nand/nand_macronix.c new file mode 100644 index 000000000000..84855c3e1a02 --- /dev/null +++ b/drivers/mtd/nand/nand_macronix.c @@ -0,0 +1,30 @@ +/* + * Copyright (C) 2017 Free Electrons + * Copyright (C) 2017 NextThing Co + * + * Author: Boris Brezillon <boris.brezillon@free-electrons.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include <linux/mtd/nand.h> + +static int macronix_nand_init(struct nand_chip *chip) +{ + if (nand_is_slc(chip)) + chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; + + return 0; +} + +const struct nand_manufacturer_ops macronix_nand_manuf_ops = { + .init = macronix_nand_init, +}; diff --git a/drivers/mtd/nand/nand_micron.c b/drivers/mtd/nand/nand_micron.c new file mode 100644 index 000000000000..877011069251 --- /dev/null +++ b/drivers/mtd/nand/nand_micron.c @@ -0,0 +1,86 @@ +/* + * Copyright (C) 2017 Free Electrons + * Copyright (C) 2017 NextThing Co + * + * Author: Boris Brezillon <boris.brezillon@free-electrons.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include <linux/mtd/nand.h> + +struct nand_onfi_vendor_micron { + u8 two_plane_read; + u8 read_cache; + u8 read_unique_id; + u8 dq_imped; + u8 dq_imped_num_settings; + u8 dq_imped_feat_addr; + u8 rb_pulldown_strength; + u8 rb_pulldown_strength_feat_addr; + u8 rb_pulldown_strength_num_settings; + u8 otp_mode; + u8 otp_page_start; + u8 otp_data_prot_addr; + u8 otp_num_pages; + u8 otp_feat_addr; + u8 read_retry_options; + u8 reserved[72]; + u8 param_revision; +} __packed; + +static int micron_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode}; + + return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY, + feature); +} + +/* + * Configure chip properties from Micron vendor-specific ONFI table + */ +static int micron_nand_onfi_init(struct nand_chip *chip) +{ + struct nand_onfi_params *p = &chip->onfi_params; + struct nand_onfi_vendor_micron *micron = (void *)p->vendor; + + if (!chip->onfi_version) + return 0; + + if (le16_to_cpu(p->vendor_revision) < 1) + return 0; + + chip->read_retries = micron->read_retry_options; + chip->setup_read_retry = micron_nand_setup_read_retry; + + return 0; +} + +static int micron_nand_init(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + ret = micron_nand_onfi_init(chip); + if (ret) + return ret; + + if (mtd->writesize == 2048) + chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; + + return 0; +} + +const struct nand_manufacturer_ops micron_nand_manuf_ops = { + .init = micron_nand_init, +}; diff --git a/drivers/mtd/nand/nand_samsung.c b/drivers/mtd/nand/nand_samsung.c new file mode 100644 index 000000000000..9cfc4035a420 --- /dev/null +++ b/drivers/mtd/nand/nand_samsung.c @@ -0,0 +1,112 @@ +/* + * Copyright (C) 2017 Free Electrons + * Copyright (C) 2017 NextThing Co + * + * Author: Boris Brezillon <boris.brezillon@free-electrons.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include <linux/mtd/nand.h> + +static void samsung_nand_decode_id(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + /* New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44) */ + if (chip->id.len == 6 && !nand_is_slc(chip) && + chip->id.data[5] != 0x00) { + u8 extid = chip->id.data[3]; + + /* Get pagesize */ + mtd->writesize = 2048 << (extid & 0x03); + + extid >>= 2; + + /* Get oobsize */ + switch (((extid >> 2) & 0x4) | (extid & 0x3)) { + case 1: + mtd->oobsize = 128; + break; + case 2: + mtd->oobsize = 218; + break; + case 3: + mtd->oobsize = 400; + break; + case 4: + mtd->oobsize = 436; + break; + case 5: + mtd->oobsize = 512; + break; + case 6: + mtd->oobsize = 640; + break; + default: + /* + * We should never reach this case, but if that + * happens, this probably means Samsung decided to use + * a different extended ID format, and we should find + * a way to support it. + */ + WARN(1, "Invalid OOB size value"); + break; + } + + /* Get blocksize */ + extid >>= 2; + mtd->erasesize = (128 * 1024) << + (((extid >> 1) & 0x04) | (extid & 0x03)); + + /* Extract ECC requirements from 5th id byte*/ + extid = (chip->id.data[4] >> 4) & 0x07; + if (extid < 5) { + chip->ecc_step_ds = 512; + chip->ecc_strength_ds = 1 << extid; + } else { + chip->ecc_step_ds = 1024; + switch (extid) { + case 5: + chip->ecc_strength_ds = 24; + break; + case 6: + chip->ecc_strength_ds = 40; + break; + case 7: + chip->ecc_strength_ds = 60; + break; + } + } + } else { + nand_decode_ext_id(chip); + } +} + +static int samsung_nand_init(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (mtd->writesize > 512) + chip->options |= NAND_SAMSUNG_LP_OPTIONS; + + if (!nand_is_slc(chip)) + chip->bbt_options |= NAND_BBT_SCANLASTPAGE; + else + chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; + + return 0; +} + +const struct nand_manufacturer_ops samsung_nand_manuf_ops = { + .detect = samsung_nand_decode_id, + .init = samsung_nand_init, +}; diff --git a/drivers/mtd/nand/nand_toshiba.c b/drivers/mtd/nand/nand_toshiba.c new file mode 100644 index 000000000000..fa787ba38dcd --- /dev/null +++ b/drivers/mtd/nand/nand_toshiba.c @@ -0,0 +1,51 @@ +/* + * Copyright (C) 2017 Free Electrons + * Copyright (C) 2017 NextThing Co + * + * Author: Boris Brezillon <boris.brezillon@free-electrons.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include <linux/mtd/nand.h> + +static void toshiba_nand_decode_id(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + nand_decode_ext_id(chip); + + /* + * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per + * 512B page. For Toshiba SLC, we decode the 5th/6th byte as + * follows: + * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm, + * 110b -> 24nm + * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC + */ + if (chip->id.len >= 6 && nand_is_slc(chip) && + (chip->id.data[5] & 0x7) == 0x6 /* 24nm */ && + !(chip->id.data[4] & 0x80) /* !BENAND */) + mtd->oobsize = 32 * mtd->writesize >> 9; +} + +static int toshiba_nand_init(struct nand_chip *chip) +{ + if (nand_is_slc(chip)) + chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; + + return 0; +} + +const struct nand_manufacturer_ops toshiba_nand_manuf_ops = { + .detect = toshiba_nand_decode_id, + .init = toshiba_nand_init, +}; diff --git a/drivers/mtd/nand/nandsim.c b/drivers/mtd/nand/nandsim.c index 092c9bd225be..03a0d057bf2f 100644 --- a/drivers/mtd/nand/nandsim.c +++ b/drivers/mtd/nand/nandsim.c @@ -902,7 +902,7 @@ static int parse_weakpages(void) zero_ok = (*w == '0' ? 1 : 0); page_no = simple_strtoul(w, &w, 0); if (!zero_ok && !page_no) { - NS_ERR("invalid weakpagess.\n"); + NS_ERR("invalid weakpages.\n"); return -EINVAL; } max_writes = 3; diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/omap2.c index 2a52101120d4..084934a9f19c 100644 --- a/drivers/mtd/nand/omap2.c +++ b/drivers/mtd/nand/omap2.c @@ -1856,6 +1856,15 @@ static int omap_nand_probe(struct platform_device *pdev) nand_chip->ecc.priv = NULL; nand_set_flash_node(nand_chip, dev->of_node); + if (!mtd->name) { + mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, + "omap2-nand.%d", info->gpmc_cs); + if (!mtd->name) { + dev_err(&pdev->dev, "Failed to set MTD name\n"); + return -ENOMEM; + } + } + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(nand_chip->IO_ADDR_R)) diff --git a/drivers/mtd/nand/orion_nand.c b/drivers/mtd/nand/orion_nand.c index 4a91c5d000be..f8e463a97b9e 100644 --- a/drivers/mtd/nand/orion_nand.c +++ b/drivers/mtd/nand/orion_nand.c @@ -23,6 +23,11 @@ #include <asm/sizes.h> #include <linux/platform_data/mtd-orion_nand.h> +struct orion_nand_info { + struct nand_chip chip; + struct clk *clk; +}; + static void orion_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct nand_chip *nc = mtd_to_nand(mtd); @@ -75,20 +80,21 @@ static void orion_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) static int __init orion_nand_probe(struct platform_device *pdev) { + struct orion_nand_info *info; struct mtd_info *mtd; struct nand_chip *nc; struct orion_nand_data *board; struct resource *res; - struct clk *clk; void __iomem *io_base; int ret = 0; u32 val = 0; - nc = devm_kzalloc(&pdev->dev, - sizeof(struct nand_chip), + info = devm_kzalloc(&pdev->dev, + sizeof(struct orion_nand_info), GFP_KERNEL); - if (!nc) + if (!info) return -ENOMEM; + nc = &info->chip; mtd = nand_to_mtd(nc); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); @@ -145,16 +151,23 @@ static int __init orion_nand_probe(struct platform_device *pdev) if (board->dev_ready) nc->dev_ready = board->dev_ready; - platform_set_drvdata(pdev, mtd); + platform_set_drvdata(pdev, info); /* Not all platforms can gate the clock, so it is not an error if the clock does not exists. */ - clk = clk_get(&pdev->dev, NULL); - if (!IS_ERR(clk)) { - clk_prepare_enable(clk); - clk_put(clk); + info->clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(info->clk)) { + ret = PTR_ERR(info->clk); + if (ret == -ENOENT) { + info->clk = NULL; + } else { + dev_err(&pdev->dev, "failed to get clock!\n"); + return ret; + } } + clk_prepare_enable(info->clk); + ret = nand_scan(mtd, 1); if (ret) goto no_dev; @@ -169,26 +182,19 @@ static int __init orion_nand_probe(struct platform_device *pdev) return 0; no_dev: - if (!IS_ERR(clk)) { - clk_disable_unprepare(clk); - clk_put(clk); - } - + clk_disable_unprepare(info->clk); return ret; } static int orion_nand_remove(struct platform_device *pdev) { - struct mtd_info *mtd = platform_get_drvdata(pdev); - struct clk *clk; + struct orion_nand_info *info = platform_get_drvdata(pdev); + struct nand_chip *chip = &info->chip; + struct mtd_info *mtd = nand_to_mtd(chip); nand_release(mtd); - clk = clk_get(&pdev->dev, NULL); - if (!IS_ERR(clk)) { - clk_disable_unprepare(clk); - clk_put(clk); - } + clk_disable_unprepare(info->clk); return 0; } diff --git a/drivers/mtd/nand/oxnas_nand.c b/drivers/mtd/nand/oxnas_nand.c index 3e3bf3b364d2..1b207aac840c 100644 --- a/drivers/mtd/nand/oxnas_nand.c +++ b/drivers/mtd/nand/oxnas_nand.c @@ -91,7 +91,7 @@ static int oxnas_nand_probe(struct platform_device *pdev) int err = 0; /* Allocate memory for the device structure (and zero it) */ - oxnas = devm_kzalloc(&pdev->dev, sizeof(struct nand_chip), + oxnas = devm_kzalloc(&pdev->dev, sizeof(*oxnas), GFP_KERNEL); if (!oxnas) return -ENOMEM; diff --git a/drivers/mtd/nand/sunxi_nand.c b/drivers/mtd/nand/sunxi_nand.c index 0eeeb8b889ea..118a26fff368 100644 --- a/drivers/mtd/nand/sunxi_nand.c +++ b/drivers/mtd/nand/sunxi_nand.c @@ -2212,17 +2212,17 @@ static int sunxi_nfc_probe(struct platform_device *pdev) goto out_ahb_clk_unprepare; nfc->reset = devm_reset_control_get_optional(dev, "ahb"); - if (!IS_ERR(nfc->reset)) { - ret = reset_control_deassert(nfc->reset); - if (ret) { - dev_err(dev, "reset err %d\n", ret); - goto out_mod_clk_unprepare; - } - } else if (PTR_ERR(nfc->reset) != -ENOENT) { + if (IS_ERR(nfc->reset)) { ret = PTR_ERR(nfc->reset); goto out_mod_clk_unprepare; } + ret = reset_control_deassert(nfc->reset); + if (ret) { + dev_err(dev, "reset err %d\n", ret); + goto out_mod_clk_unprepare; + } + ret = sunxi_nfc_rst(nfc); if (ret) goto out_ahb_reset_reassert; @@ -2262,8 +2262,7 @@ out_release_dmac: if (nfc->dmac) dma_release_channel(nfc->dmac); out_ahb_reset_reassert: - if (!IS_ERR(nfc->reset)) - reset_control_assert(nfc->reset); + reset_control_assert(nfc->reset); out_mod_clk_unprepare: clk_disable_unprepare(nfc->mod_clk); out_ahb_clk_unprepare: @@ -2278,8 +2277,7 @@ static int sunxi_nfc_remove(struct platform_device *pdev) sunxi_nand_chips_cleanup(nfc); - if (!IS_ERR(nfc->reset)) - reset_control_assert(nfc->reset); + reset_control_assert(nfc->reset); if (nfc->dmac) dma_release_channel(nfc->dmac); diff --git a/drivers/mtd/nand/tango_nand.c b/drivers/mtd/nand/tango_nand.c index 4a5e948c62df..05b6e1065203 100644 --- a/drivers/mtd/nand/tango_nand.c +++ b/drivers/mtd/nand/tango_nand.c @@ -223,12 +223,13 @@ static void tango_dma_callback(void *arg) complete(arg); } -static int do_dma(struct tango_nfc *nfc, int dir, int cmd, const void *buf, - int len, int page) +static int do_dma(struct tango_nfc *nfc, enum dma_data_direction dir, int cmd, + const void *buf, int len, int page) { void __iomem *addr = nfc->reg_base + NFC_STATUS; struct dma_chan *chan = nfc->chan; struct dma_async_tx_descriptor *desc; + enum dma_transfer_direction tdir; struct scatterlist sg; struct completion tx_done; int err = -EIO; @@ -238,7 +239,8 @@ static int do_dma(struct tango_nfc *nfc, int dir, int cmd, const void *buf, if (dma_map_sg(chan->device->dev, &sg, 1, dir) != 1) return -EIO; - desc = dmaengine_prep_slave_sg(chan, &sg, 1, dir, DMA_PREP_INTERRUPT); + tdir = dir == DMA_TO_DEVICE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM; + desc = dmaengine_prep_slave_sg(chan, &sg, 1, tdir, DMA_PREP_INTERRUPT); if (!desc) goto dma_unmap; diff --git a/drivers/mtd/ofpart.c b/drivers/mtd/ofpart.c index 464470122493..2861c7079d7b 100644 --- a/drivers/mtd/ofpart.c +++ b/drivers/mtd/ofpart.c @@ -166,8 +166,8 @@ static int parse_ofoldpart_partitions(struct mtd_info *master, if (!part) return 0; /* No partitions found */ - pr_warning("Device tree uses obsolete partition map binding: %s\n", - dp->full_name); + pr_warn("Device tree uses obsolete partition map binding: %s\n", + dp->full_name); nr_parts = plen / sizeof(part[0]); diff --git a/drivers/mtd/spi-nor/Kconfig b/drivers/mtd/spi-nor/Kconfig index 7252087ef407..bfdfb1e72b38 100644 --- a/drivers/mtd/spi-nor/Kconfig +++ b/drivers/mtd/spi-nor/Kconfig @@ -106,4 +106,11 @@ config SPI_INTEL_SPI_PLATFORM To compile this driver as a module, choose M here: the module will be called intel-spi-platform. +config SPI_STM32_QUADSPI + tristate "STM32 Quad SPI controller" + depends on ARCH_STM32 + help + This enables support for the STM32 Quad SPI controller. + We only connect the NOR to this controller. + endif # MTD_SPI_NOR diff --git a/drivers/mtd/spi-nor/Makefile b/drivers/mtd/spi-nor/Makefile index 72238a793198..285aab86c7ca 100644 --- a/drivers/mtd/spi-nor/Makefile +++ b/drivers/mtd/spi-nor/Makefile @@ -8,3 +8,4 @@ obj-$(CONFIG_MTD_MT81xx_NOR) += mtk-quadspi.o obj-$(CONFIG_SPI_NXP_SPIFI) += nxp-spifi.o obj-$(CONFIG_SPI_INTEL_SPI) += intel-spi.o obj-$(CONFIG_SPI_INTEL_SPI_PLATFORM) += intel-spi-platform.o +obj-$(CONFIG_SPI_STM32_QUADSPI) += stm32-quadspi.o
\ No newline at end of file diff --git a/drivers/mtd/spi-nor/hisi-sfc.c b/drivers/mtd/spi-nor/hisi-sfc.c index 20378b0d55e9..a286350627a6 100644 --- a/drivers/mtd/spi-nor/hisi-sfc.c +++ b/drivers/mtd/spi-nor/hisi-sfc.c @@ -448,8 +448,11 @@ static int hisi_spi_nor_probe(struct platform_device *pdev) if (!host->buffer) return -ENOMEM; + ret = clk_prepare_enable(host->clk); + if (ret) + return ret; + mutex_init(&host->lock); - clk_prepare_enable(host->clk); hisi_spi_nor_init(host); ret = hisi_spi_nor_register_all(host); if (ret) diff --git a/drivers/mtd/spi-nor/intel-spi.c b/drivers/mtd/spi-nor/intel-spi.c index a10f6027b386..986a3d020a3a 100644 --- a/drivers/mtd/spi-nor/intel-spi.c +++ b/drivers/mtd/spi-nor/intel-spi.c @@ -704,7 +704,7 @@ static void intel_spi_fill_partition(struct intel_spi *ispi, * whole partition read-only to be on the safe side. */ if (intel_spi_is_protected(ispi, base, limit)) - ispi->writeable = 0; + ispi->writeable = false; end = (limit << 12) + 4096; if (end > part->size) @@ -728,7 +728,7 @@ struct intel_spi *intel_spi_probe(struct device *dev, ispi->base = devm_ioremap_resource(dev, mem); if (IS_ERR(ispi->base)) - return ispi->base; + return ERR_CAST(ispi->base); ispi->dev = dev; ispi->info = info; diff --git a/drivers/mtd/spi-nor/mtk-quadspi.c b/drivers/mtd/spi-nor/mtk-quadspi.c index e661877c23de..b6377707ce32 100644 --- a/drivers/mtd/spi-nor/mtk-quadspi.c +++ b/drivers/mtd/spi-nor/mtk-quadspi.c @@ -104,6 +104,8 @@ #define MTK_NOR_MAX_RX_TX_SHIFT 6 /* can shift up to 56 bits (7 bytes) transfer by MTK_NOR_PRG_CMD */ #define MTK_NOR_MAX_SHIFT 7 +/* nor controller 4-byte address mode enable bit */ +#define MTK_NOR_4B_ADDR_EN BIT(4) /* Helpers for accessing the program data / shift data registers */ #define MTK_NOR_PRG_REG(n) (MTK_NOR_PRGDATA0_REG + 4 * (n)) @@ -230,10 +232,35 @@ static int mt8173_nor_write_buffer_disable(struct mt8173_nor *mt8173_nor) 10000); } +static void mt8173_nor_set_addr_width(struct mt8173_nor *mt8173_nor) +{ + u8 val; + struct spi_nor *nor = &mt8173_nor->nor; + + val = readb(mt8173_nor->base + MTK_NOR_DUAL_REG); + + switch (nor->addr_width) { + case 3: + val &= ~MTK_NOR_4B_ADDR_EN; + break; + case 4: + val |= MTK_NOR_4B_ADDR_EN; + break; + default: + dev_warn(mt8173_nor->dev, "Unexpected address width %u.\n", + nor->addr_width); + break; + } + + writeb(val, mt8173_nor->base + MTK_NOR_DUAL_REG); +} + static void mt8173_nor_set_addr(struct mt8173_nor *mt8173_nor, u32 addr) { int i; + mt8173_nor_set_addr_width(mt8173_nor); + for (i = 0; i < 3; i++) { writeb(addr & 0xff, mt8173_nor->base + MTK_NOR_RADR0_REG + i * 4); addr >>= 8; diff --git a/drivers/mtd/spi-nor/spi-nor.c b/drivers/mtd/spi-nor/spi-nor.c index 747645c74134..dea8c9cbadf0 100644 --- a/drivers/mtd/spi-nor/spi-nor.c +++ b/drivers/mtd/spi-nor/spi-nor.c @@ -85,6 +85,7 @@ struct flash_info { * Use dedicated 4byte address op codes * to support memory size above 128Mib. */ +#define NO_CHIP_ERASE BIT(12) /* Chip does not support chip erase */ }; #define JEDEC_MFR(info) ((info)->id[0]) @@ -960,6 +961,8 @@ static const struct flash_info spi_nor_ids[] = { /* ESMT */ { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) }, + { "f25l32qa", INFO(0x8c4116, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) }, + { "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_HAS_LOCK) }, /* Everspin */ { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, @@ -1013,11 +1016,14 @@ static const struct flash_info spi_nor_ids[] = { { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, SECT_4K) }, { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) }, { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) }, + { "mx25u2033e", INFO(0xc22532, 0, 64 * 1024, 4, SECT_4K) }, + { "mx25u4035", INFO(0xc22533, 0, 64 * 1024, 8, SECT_4K) }, + { "mx25u8035", INFO(0xc22534, 0, 64 * 1024, 16, SECT_4K) }, { "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) }, { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) }, { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) }, { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) }, - { "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K) }, + { "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_4B_OPCODES) }, { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) }, { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) }, { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) }, @@ -1031,10 +1037,11 @@ static const struct flash_info spi_nor_ids[] = { { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) }, { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) }, { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) }, + { "n25q256ax1", INFO(0x20bb19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) }, { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) }, { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) }, - { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) }, - { "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) }, + { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) }, + { "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) }, /* PMC */ { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) }, @@ -1128,6 +1135,9 @@ static const struct flash_info spi_nor_ids[] = { { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) }, { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) }, { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) }, + { "w25q20cl", INFO(0xef4012, 0, 64 * 1024, 4, SECT_4K) }, + { "w25q20bw", INFO(0xef5012, 0, 64 * 1024, 4, SECT_4K) }, + { "w25q20ew", INFO(0xef6012, 0, 64 * 1024, 4, SECT_4K) }, { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) }, { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, @@ -1629,6 +1639,8 @@ int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode) nor->flags |= SNOR_F_USE_FSR; if (info->flags & SPI_NOR_HAS_TB) nor->flags |= SNOR_F_HAS_SR_TB; + if (info->flags & NO_CHIP_ERASE) + nor->flags |= SNOR_F_NO_OP_CHIP_ERASE; #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS /* prefer "small sector" erase if possible */ diff --git a/drivers/mtd/spi-nor/stm32-quadspi.c b/drivers/mtd/spi-nor/stm32-quadspi.c new file mode 100644 index 000000000000..ae45f81b8cd3 --- /dev/null +++ b/drivers/mtd/spi-nor/stm32-quadspi.c @@ -0,0 +1,693 @@ +/* + * stm32_quadspi.c + * + * Copyright (C) 2017, Ludovic Barre + * + * License terms: GNU General Public License (GPL), version 2 + */ +#include <linux/clk.h> +#include <linux/errno.h> +#include <linux/io.h> +#include <linux/iopoll.h> +#include <linux/interrupt.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/spi-nor.h> +#include <linux/mutex.h> +#include <linux/of.h> +#include <linux/of_device.h> +#include <linux/platform_device.h> +#include <linux/reset.h> + +#define QUADSPI_CR 0x00 +#define CR_EN BIT(0) +#define CR_ABORT BIT(1) +#define CR_DMAEN BIT(2) +#define CR_TCEN BIT(3) +#define CR_SSHIFT BIT(4) +#define CR_DFM BIT(6) +#define CR_FSEL BIT(7) +#define CR_FTHRES_SHIFT 8 +#define CR_FTHRES_MASK GENMASK(12, 8) +#define CR_FTHRES(n) (((n) << CR_FTHRES_SHIFT) & CR_FTHRES_MASK) +#define CR_TEIE BIT(16) +#define CR_TCIE BIT(17) +#define CR_FTIE BIT(18) +#define CR_SMIE BIT(19) +#define CR_TOIE BIT(20) +#define CR_PRESC_SHIFT 24 +#define CR_PRESC_MASK GENMASK(31, 24) +#define CR_PRESC(n) (((n) << CR_PRESC_SHIFT) & CR_PRESC_MASK) + +#define QUADSPI_DCR 0x04 +#define DCR_CSHT_SHIFT 8 +#define DCR_CSHT_MASK GENMASK(10, 8) +#define DCR_CSHT(n) (((n) << DCR_CSHT_SHIFT) & DCR_CSHT_MASK) +#define DCR_FSIZE_SHIFT 16 +#define DCR_FSIZE_MASK GENMASK(20, 16) +#define DCR_FSIZE(n) (((n) << DCR_FSIZE_SHIFT) & DCR_FSIZE_MASK) + +#define QUADSPI_SR 0x08 +#define SR_TEF BIT(0) +#define SR_TCF BIT(1) +#define SR_FTF BIT(2) +#define SR_SMF BIT(3) +#define SR_TOF BIT(4) +#define SR_BUSY BIT(5) +#define SR_FLEVEL_SHIFT 8 +#define SR_FLEVEL_MASK GENMASK(13, 8) + +#define QUADSPI_FCR 0x0c +#define FCR_CTCF BIT(1) + +#define QUADSPI_DLR 0x10 + +#define QUADSPI_CCR 0x14 +#define CCR_INST_SHIFT 0 +#define CCR_INST_MASK GENMASK(7, 0) +#define CCR_INST(n) (((n) << CCR_INST_SHIFT) & CCR_INST_MASK) +#define CCR_IMODE_NONE (0U << 8) +#define CCR_IMODE_1 (1U << 8) +#define CCR_IMODE_2 (2U << 8) +#define CCR_IMODE_4 (3U << 8) +#define CCR_ADMODE_NONE (0U << 10) +#define CCR_ADMODE_1 (1U << 10) +#define CCR_ADMODE_2 (2U << 10) +#define CCR_ADMODE_4 (3U << 10) +#define CCR_ADSIZE_SHIFT 12 +#define CCR_ADSIZE_MASK GENMASK(13, 12) +#define CCR_ADSIZE(n) (((n) << CCR_ADSIZE_SHIFT) & CCR_ADSIZE_MASK) +#define CCR_ABMODE_NONE (0U << 14) +#define CCR_ABMODE_1 (1U << 14) +#define CCR_ABMODE_2 (2U << 14) +#define CCR_ABMODE_4 (3U << 14) +#define CCR_ABSIZE_8 (0U << 16) +#define CCR_ABSIZE_16 (1U << 16) +#define CCR_ABSIZE_24 (2U << 16) +#define CCR_ABSIZE_32 (3U << 16) +#define CCR_DCYC_SHIFT 18 +#define CCR_DCYC_MASK GENMASK(22, 18) +#define CCR_DCYC(n) (((n) << CCR_DCYC_SHIFT) & CCR_DCYC_MASK) +#define CCR_DMODE_NONE (0U << 24) +#define CCR_DMODE_1 (1U << 24) +#define CCR_DMODE_2 (2U << 24) +#define CCR_DMODE_4 (3U << 24) +#define CCR_FMODE_INDW (0U << 26) +#define CCR_FMODE_INDR (1U << 26) +#define CCR_FMODE_APM (2U << 26) +#define CCR_FMODE_MM (3U << 26) + +#define QUADSPI_AR 0x18 +#define QUADSPI_ABR 0x1c +#define QUADSPI_DR 0x20 +#define QUADSPI_PSMKR 0x24 +#define QUADSPI_PSMAR 0x28 +#define QUADSPI_PIR 0x2c +#define QUADSPI_LPTR 0x30 +#define LPTR_DFT_TIMEOUT 0x10 + +#define FSIZE_VAL(size) (__fls(size) - 1) + +#define STM32_MAX_MMAP_SZ SZ_256M +#define STM32_MAX_NORCHIP 2 + +#define STM32_QSPI_FIFO_TIMEOUT_US 30000 +#define STM32_QSPI_BUSY_TIMEOUT_US 100000 + +struct stm32_qspi_flash { + struct spi_nor nor; + struct stm32_qspi *qspi; + u32 cs; + u32 fsize; + u32 presc; + u32 read_mode; + bool registered; +}; + +struct stm32_qspi { + struct device *dev; + void __iomem *io_base; + void __iomem *mm_base; + resource_size_t mm_size; + u32 nor_num; + struct clk *clk; + u32 clk_rate; + struct stm32_qspi_flash flash[STM32_MAX_NORCHIP]; + struct completion cmd_completion; + + /* + * to protect device configuration, could be different between + * 2 flash access (bk1, bk2) + */ + struct mutex lock; +}; + +struct stm32_qspi_cmd { + u8 addr_width; + u8 dummy; + bool tx_data; + u8 opcode; + u32 framemode; + u32 qspimode; + u32 addr; + size_t len; + void *buf; +}; + +static int stm32_qspi_wait_cmd(struct stm32_qspi *qspi) +{ + u32 cr; + int err = 0; + + if (readl_relaxed(qspi->io_base + QUADSPI_SR) & SR_TCF) + return 0; + + reinit_completion(&qspi->cmd_completion); + cr = readl_relaxed(qspi->io_base + QUADSPI_CR); + writel_relaxed(cr | CR_TCIE, qspi->io_base + QUADSPI_CR); + + if (!wait_for_completion_interruptible_timeout(&qspi->cmd_completion, + msecs_to_jiffies(1000))) + err = -ETIMEDOUT; + + writel_relaxed(cr, qspi->io_base + QUADSPI_CR); + return err; +} + +static int stm32_qspi_wait_nobusy(struct stm32_qspi *qspi) +{ + u32 sr; + + return readl_relaxed_poll_timeout(qspi->io_base + QUADSPI_SR, sr, + !(sr & SR_BUSY), 10, + STM32_QSPI_BUSY_TIMEOUT_US); +} + +static void stm32_qspi_set_framemode(struct spi_nor *nor, + struct stm32_qspi_cmd *cmd, bool read) +{ + u32 dmode = CCR_DMODE_1; + + cmd->framemode = CCR_IMODE_1; + + if (read) { + switch (nor->flash_read) { + case SPI_NOR_NORMAL: + case SPI_NOR_FAST: + dmode = CCR_DMODE_1; + break; + case SPI_NOR_DUAL: + dmode = CCR_DMODE_2; + break; + case SPI_NOR_QUAD: + dmode = CCR_DMODE_4; + break; + } + } + + cmd->framemode |= cmd->tx_data ? dmode : 0; + cmd->framemode |= cmd->addr_width ? CCR_ADMODE_1 : 0; +} + +static void stm32_qspi_read_fifo(u8 *val, void __iomem *addr) +{ + *val = readb_relaxed(addr); +} + +static void stm32_qspi_write_fifo(u8 *val, void __iomem *addr) +{ + writeb_relaxed(*val, addr); +} + +static int stm32_qspi_tx_poll(struct stm32_qspi *qspi, + const struct stm32_qspi_cmd *cmd) +{ + void (*tx_fifo)(u8 *, void __iomem *); + u32 len = cmd->len, sr; + u8 *buf = cmd->buf; + int ret; + + if (cmd->qspimode == CCR_FMODE_INDW) + tx_fifo = stm32_qspi_write_fifo; + else + tx_fifo = stm32_qspi_read_fifo; + + while (len--) { + ret = readl_relaxed_poll_timeout(qspi->io_base + QUADSPI_SR, + sr, (sr & SR_FTF), 10, + STM32_QSPI_FIFO_TIMEOUT_US); + if (ret) { + dev_err(qspi->dev, "fifo timeout (stat:%#x)\n", sr); + break; + } + tx_fifo(buf++, qspi->io_base + QUADSPI_DR); + } + + return ret; +} + +static int stm32_qspi_tx_mm(struct stm32_qspi *qspi, + const struct stm32_qspi_cmd *cmd) +{ + memcpy_fromio(cmd->buf, qspi->mm_base + cmd->addr, cmd->len); + return 0; +} + +static int stm32_qspi_tx(struct stm32_qspi *qspi, + const struct stm32_qspi_cmd *cmd) +{ + if (!cmd->tx_data) + return 0; + + if (cmd->qspimode == CCR_FMODE_MM) + return stm32_qspi_tx_mm(qspi, cmd); + + return stm32_qspi_tx_poll(qspi, cmd); +} + +static int stm32_qspi_send(struct stm32_qspi_flash *flash, + const struct stm32_qspi_cmd *cmd) +{ + struct stm32_qspi *qspi = flash->qspi; + u32 ccr, dcr, cr; + int err; + + err = stm32_qspi_wait_nobusy(qspi); + if (err) + goto abort; + + dcr = readl_relaxed(qspi->io_base + QUADSPI_DCR) & ~DCR_FSIZE_MASK; + dcr |= DCR_FSIZE(flash->fsize); + writel_relaxed(dcr, qspi->io_base + QUADSPI_DCR); + + cr = readl_relaxed(qspi->io_base + QUADSPI_CR); + cr &= ~CR_PRESC_MASK & ~CR_FSEL; + cr |= CR_PRESC(flash->presc); + cr |= flash->cs ? CR_FSEL : 0; + writel_relaxed(cr, qspi->io_base + QUADSPI_CR); + + if (cmd->tx_data) + writel_relaxed(cmd->len - 1, qspi->io_base + QUADSPI_DLR); + + ccr = cmd->framemode | cmd->qspimode; + + if (cmd->dummy) + ccr |= CCR_DCYC(cmd->dummy); + + if (cmd->addr_width) + ccr |= CCR_ADSIZE(cmd->addr_width - 1); + + ccr |= CCR_INST(cmd->opcode); + writel_relaxed(ccr, qspi->io_base + QUADSPI_CCR); + + if (cmd->addr_width && cmd->qspimode != CCR_FMODE_MM) + writel_relaxed(cmd->addr, qspi->io_base + QUADSPI_AR); + + err = stm32_qspi_tx(qspi, cmd); + if (err) + goto abort; + + if (cmd->qspimode != CCR_FMODE_MM) { + err = stm32_qspi_wait_cmd(qspi); + if (err) + goto abort; + writel_relaxed(FCR_CTCF, qspi->io_base + QUADSPI_FCR); + } + + return err; + +abort: + cr = readl_relaxed(qspi->io_base + QUADSPI_CR) | CR_ABORT; + writel_relaxed(cr, qspi->io_base + QUADSPI_CR); + + dev_err(qspi->dev, "%s abort err:%d\n", __func__, err); + return err; +} + +static int stm32_qspi_read_reg(struct spi_nor *nor, + u8 opcode, u8 *buf, int len) +{ + struct stm32_qspi_flash *flash = nor->priv; + struct device *dev = flash->qspi->dev; + struct stm32_qspi_cmd cmd; + + dev_dbg(dev, "read_reg: cmd:%#.2x buf:%p len:%#x\n", opcode, buf, len); + + memset(&cmd, 0, sizeof(cmd)); + cmd.opcode = opcode; + cmd.tx_data = true; + cmd.len = len; + cmd.buf = buf; + cmd.qspimode = CCR_FMODE_INDR; + + stm32_qspi_set_framemode(nor, &cmd, false); + + return stm32_qspi_send(flash, &cmd); +} + +static int stm32_qspi_write_reg(struct spi_nor *nor, u8 opcode, + u8 *buf, int len) +{ + struct stm32_qspi_flash *flash = nor->priv; + struct device *dev = flash->qspi->dev; + struct stm32_qspi_cmd cmd; + + dev_dbg(dev, "write_reg: cmd:%#.2x buf:%p len:%#x\n", opcode, buf, len); + + memset(&cmd, 0, sizeof(cmd)); + cmd.opcode = opcode; + cmd.tx_data = !!(buf && len > 0); + cmd.len = len; + cmd.buf = buf; + cmd.qspimode = CCR_FMODE_INDW; + + stm32_qspi_set_framemode(nor, &cmd, false); + + return stm32_qspi_send(flash, &cmd); +} + +static ssize_t stm32_qspi_read(struct spi_nor *nor, loff_t from, size_t len, + u_char *buf) +{ + struct stm32_qspi_flash *flash = nor->priv; + struct stm32_qspi *qspi = flash->qspi; + struct stm32_qspi_cmd cmd; + int err; + + dev_dbg(qspi->dev, "read(%#.2x): buf:%p from:%#.8x len:%#x\n", + nor->read_opcode, buf, (u32)from, len); + + memset(&cmd, 0, sizeof(cmd)); + cmd.opcode = nor->read_opcode; + cmd.addr_width = nor->addr_width; + cmd.addr = (u32)from; + cmd.tx_data = true; + cmd.dummy = nor->read_dummy; + cmd.len = len; + cmd.buf = buf; + cmd.qspimode = flash->read_mode; + + stm32_qspi_set_framemode(nor, &cmd, true); + err = stm32_qspi_send(flash, &cmd); + + return err ? err : len; +} + +static ssize_t stm32_qspi_write(struct spi_nor *nor, loff_t to, size_t len, + const u_char *buf) +{ + struct stm32_qspi_flash *flash = nor->priv; + struct device *dev = flash->qspi->dev; + struct stm32_qspi_cmd cmd; + int err; + + dev_dbg(dev, "write(%#.2x): buf:%p to:%#.8x len:%#x\n", + nor->program_opcode, buf, (u32)to, len); + + memset(&cmd, 0, sizeof(cmd)); + cmd.opcode = nor->program_opcode; + cmd.addr_width = nor->addr_width; + cmd.addr = (u32)to; + cmd.tx_data = true; + cmd.len = len; + cmd.buf = (void *)buf; + cmd.qspimode = CCR_FMODE_INDW; + + stm32_qspi_set_framemode(nor, &cmd, false); + err = stm32_qspi_send(flash, &cmd); + + return err ? err : len; +} + +static int stm32_qspi_erase(struct spi_nor *nor, loff_t offs) +{ + struct stm32_qspi_flash *flash = nor->priv; + struct device *dev = flash->qspi->dev; + struct stm32_qspi_cmd cmd; + + dev_dbg(dev, "erase(%#.2x):offs:%#x\n", nor->erase_opcode, (u32)offs); + + memset(&cmd, 0, sizeof(cmd)); + cmd.opcode = nor->erase_opcode; + cmd.addr_width = nor->addr_width; + cmd.addr = (u32)offs; + cmd.qspimode = CCR_FMODE_INDW; + + stm32_qspi_set_framemode(nor, &cmd, false); + + return stm32_qspi_send(flash, &cmd); +} + +static irqreturn_t stm32_qspi_irq(int irq, void *dev_id) +{ + struct stm32_qspi *qspi = (struct stm32_qspi *)dev_id; + u32 cr, sr, fcr = 0; + + cr = readl_relaxed(qspi->io_base + QUADSPI_CR); + sr = readl_relaxed(qspi->io_base + QUADSPI_SR); + + if ((cr & CR_TCIE) && (sr & SR_TCF)) { + /* tx complete */ + fcr |= FCR_CTCF; + complete(&qspi->cmd_completion); + } else { + dev_info_ratelimited(qspi->dev, "spurious interrupt\n"); + } + + writel_relaxed(fcr, qspi->io_base + QUADSPI_FCR); + + return IRQ_HANDLED; +} + +static int stm32_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops) +{ + struct stm32_qspi_flash *flash = nor->priv; + struct stm32_qspi *qspi = flash->qspi; + + mutex_lock(&qspi->lock); + return 0; +} + +static void stm32_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops) +{ + struct stm32_qspi_flash *flash = nor->priv; + struct stm32_qspi *qspi = flash->qspi; + + mutex_unlock(&qspi->lock); +} + +static int stm32_qspi_flash_setup(struct stm32_qspi *qspi, + struct device_node *np) +{ + u32 width, flash_read, presc, cs_num, max_rate = 0; + struct stm32_qspi_flash *flash; + struct mtd_info *mtd; + int ret; + + of_property_read_u32(np, "reg", &cs_num); + if (cs_num >= STM32_MAX_NORCHIP) + return -EINVAL; + + of_property_read_u32(np, "spi-max-frequency", &max_rate); + if (!max_rate) + return -EINVAL; + + presc = DIV_ROUND_UP(qspi->clk_rate, max_rate) - 1; + + if (of_property_read_u32(np, "spi-rx-bus-width", &width)) + width = 1; + + if (width == 4) + flash_read = SPI_NOR_QUAD; + else if (width == 2) + flash_read = SPI_NOR_DUAL; + else if (width == 1) + flash_read = SPI_NOR_NORMAL; + else + return -EINVAL; + + flash = &qspi->flash[cs_num]; + flash->qspi = qspi; + flash->cs = cs_num; + flash->presc = presc; + + flash->nor.dev = qspi->dev; + spi_nor_set_flash_node(&flash->nor, np); + flash->nor.priv = flash; + mtd = &flash->nor.mtd; + + flash->nor.read = stm32_qspi_read; + flash->nor.write = stm32_qspi_write; + flash->nor.erase = stm32_qspi_erase; + flash->nor.read_reg = stm32_qspi_read_reg; + flash->nor.write_reg = stm32_qspi_write_reg; + flash->nor.prepare = stm32_qspi_prep; + flash->nor.unprepare = stm32_qspi_unprep; + + writel_relaxed(LPTR_DFT_TIMEOUT, qspi->io_base + QUADSPI_LPTR); + + writel_relaxed(CR_PRESC(presc) | CR_FTHRES(3) | CR_TCEN | CR_SSHIFT + | CR_EN, qspi->io_base + QUADSPI_CR); + + /* + * in stm32 qspi controller, QUADSPI_DCR register has a fsize field + * which define the size of nor flash. + * if fsize is NULL, the controller can't sent spi-nor command. + * set a temporary value just to discover the nor flash with + * "spi_nor_scan". After, the right value (mtd->size) can be set. + */ + flash->fsize = FSIZE_VAL(SZ_1K); + + ret = spi_nor_scan(&flash->nor, NULL, flash_read); + if (ret) { + dev_err(qspi->dev, "device scan failed\n"); + return ret; + } + + flash->fsize = FSIZE_VAL(mtd->size); + + flash->read_mode = CCR_FMODE_MM; + if (mtd->size > qspi->mm_size) + flash->read_mode = CCR_FMODE_INDR; + + writel_relaxed(DCR_CSHT(1), qspi->io_base + QUADSPI_DCR); + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(qspi->dev, "mtd device parse failed\n"); + return ret; + } + + flash->registered = true; + + dev_dbg(qspi->dev, "read mm:%s cs:%d bus:%d\n", + flash->read_mode == CCR_FMODE_MM ? "yes" : "no", cs_num, width); + + return 0; +} + +static void stm32_qspi_mtd_free(struct stm32_qspi *qspi) +{ + int i; + + for (i = 0; i < STM32_MAX_NORCHIP; i++) + if (qspi->flash[i].registered) + mtd_device_unregister(&qspi->flash[i].nor.mtd); +} + +static int stm32_qspi_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct device_node *flash_np; + struct reset_control *rstc; + struct stm32_qspi *qspi; + struct resource *res; + int ret, irq; + + qspi = devm_kzalloc(dev, sizeof(*qspi), GFP_KERNEL); + if (!qspi) + return -ENOMEM; + + qspi->nor_num = of_get_child_count(dev->of_node); + if (!qspi->nor_num || qspi->nor_num > STM32_MAX_NORCHIP) + return -ENODEV; + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi"); + qspi->io_base = devm_ioremap_resource(dev, res); + if (IS_ERR(qspi->io_base)) + return PTR_ERR(qspi->io_base); + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mm"); + qspi->mm_base = devm_ioremap_resource(dev, res); + if (IS_ERR(qspi->mm_base)) + return PTR_ERR(qspi->mm_base); + + qspi->mm_size = resource_size(res); + + irq = platform_get_irq(pdev, 0); + ret = devm_request_irq(dev, irq, stm32_qspi_irq, 0, + dev_name(dev), qspi); + if (ret) { + dev_err(dev, "failed to request irq\n"); + return ret; + } + + init_completion(&qspi->cmd_completion); + + qspi->clk = devm_clk_get(dev, NULL); + if (IS_ERR(qspi->clk)) + return PTR_ERR(qspi->clk); + + qspi->clk_rate = clk_get_rate(qspi->clk); + if (!qspi->clk_rate) + return -EINVAL; + + ret = clk_prepare_enable(qspi->clk); + if (ret) { + dev_err(dev, "can not enable the clock\n"); + return ret; + } + + rstc = devm_reset_control_get(dev, NULL); + if (!IS_ERR(rstc)) { + reset_control_assert(rstc); + udelay(2); + reset_control_deassert(rstc); + } + + qspi->dev = dev; + platform_set_drvdata(pdev, qspi); + mutex_init(&qspi->lock); + + for_each_available_child_of_node(dev->of_node, flash_np) { + ret = stm32_qspi_flash_setup(qspi, flash_np); + if (ret) { + dev_err(dev, "unable to setup flash chip\n"); + goto err_flash; + } + } + + return 0; + +err_flash: + mutex_destroy(&qspi->lock); + stm32_qspi_mtd_free(qspi); + + clk_disable_unprepare(qspi->clk); + return ret; +} + +static int stm32_qspi_remove(struct platform_device *pdev) +{ + struct stm32_qspi *qspi = platform_get_drvdata(pdev); + + /* disable qspi */ + writel_relaxed(0, qspi->io_base + QUADSPI_CR); + + stm32_qspi_mtd_free(qspi); + mutex_destroy(&qspi->lock); + + clk_disable_unprepare(qspi->clk); + return 0; +} + +static const struct of_device_id stm32_qspi_match[] = { + {.compatible = "st,stm32f469-qspi"}, + {} +}; +MODULE_DEVICE_TABLE(of, stm32_qspi_match); + +static struct platform_driver stm32_qspi_driver = { + .probe = stm32_qspi_probe, + .remove = stm32_qspi_remove, + .driver = { + .name = "stm32-quadspi", + .of_match_table = stm32_qspi_match, + }, +}; +module_platform_driver(stm32_qspi_driver); + +MODULE_AUTHOR("Ludovic Barre <ludovic.barre@st.com>"); +MODULE_DESCRIPTION("STMicroelectronics STM32 quad spi driver"); +MODULE_LICENSE("GPL v2"); diff --git a/fs/jffs2/readinode.c b/fs/jffs2/readinode.c index 06a71dbd4833..389ea53ea487 100644 --- a/fs/jffs2/readinode.c +++ b/fs/jffs2/readinode.c @@ -1366,7 +1366,7 @@ int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, jffs2_add_ino_cache(c, f->inocache); } if (!f->inocache) { - JFFS2_ERROR("requestied to read an nonexistent ino %u\n", ino); + JFFS2_ERROR("requested to read a nonexistent ino %u\n", ino); return -ENOENT; } diff --git a/include/linux/mtd/mtd.h b/include/linux/mtd/mtd.h index 79b176eca04a..f8a2ef239c60 100644 --- a/include/linux/mtd/mtd.h +++ b/include/linux/mtd/mtd.h @@ -388,7 +388,7 @@ static inline void mtd_set_of_node(struct mtd_info *mtd, static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd) { - return mtd->dev.of_node; + return dev_of_node(&mtd->dev); } static inline int mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops) diff --git a/include/linux/mtd/nand.h b/include/linux/mtd/nand.h index 9591e0fbe5bd..8f67b1581683 100644 --- a/include/linux/mtd/nand.h +++ b/include/linux/mtd/nand.h @@ -366,26 +366,6 @@ struct onfi_ext_param_page { */ } __packed; -struct nand_onfi_vendor_micron { - u8 two_plane_read; - u8 read_cache; - u8 read_unique_id; - u8 dq_imped; - u8 dq_imped_num_settings; - u8 dq_imped_feat_addr; - u8 rb_pulldown_strength; - u8 rb_pulldown_strength_feat_addr; - u8 rb_pulldown_strength_num_settings; - u8 otp_mode; - u8 otp_page_start; - u8 otp_data_prot_addr; - u8 otp_num_pages; - u8 otp_feat_addr; - u8 read_retry_options; - u8 reserved[72]; - u8 param_revision; -} __packed; - struct jedec_ecc_info { u8 ecc_bits; u8 codeword_size; @@ -465,6 +445,17 @@ struct nand_jedec_params { } __packed; /** + * struct nand_id - NAND id structure + * @data: buffer containing the id bytes. Currently 8 bytes large, but can + * be extended if required. + * @len: ID length. + */ +struct nand_id { + u8 data[8]; + int len; +}; + +/** * struct nand_hw_control - Control structure for hardware controller (e.g ECC generator) shared among independent devices * @lock: protection lock * @active: the mtd device which holds the controller currently @@ -525,7 +516,7 @@ static inline void nand_hw_control_init(struct nand_hw_control *nfc) * out-of-band data). * @read_page: function to read a page according to the ECC generator * requirements; returns maximum number of bitflips corrected in - * any single ECC step, 0 if bitflips uncorrectable, -EIO hw error + * any single ECC step, -EIO hw error * @read_subpage: function to read parts of the page covered by ECC; * returns same as read_page() * @write_subpage: function to write parts of the page covered by ECC. @@ -721,6 +712,20 @@ nand_get_sdr_timings(const struct nand_data_interface *conf) } /** + * struct nand_manufacturer_ops - NAND Manufacturer operations + * @detect: detect the NAND memory organization and capabilities + * @init: initialize all vendor specific fields (like the ->read_retry() + * implementation) if any. + * @cleanup: the ->init() function may have allocated resources, ->cleanup() + * is here to let vendor specific code release those resources. + */ +struct nand_manufacturer_ops { + void (*detect)(struct nand_chip *chip); + int (*init)(struct nand_chip *chip); + void (*cleanup)(struct nand_chip *chip); +}; + +/** * struct nand_chip - NAND Private Flash Chip Data * @mtd: MTD device registered to the MTD framework * @IO_ADDR_R: [BOARDSPECIFIC] address to read the 8 I/O lines of the @@ -750,6 +755,7 @@ nand_get_sdr_timings(const struct nand_data_interface *conf) * setting the read-retry mode. Mostly needed for MLC NAND. * @ecc: [BOARDSPECIFIC] ECC control structure * @buffers: buffer structure for read/write + * @buf_align: minimum buffer alignment required by a platform * @hwcontrol: platform-specific hardware control structure * @erase: [REPLACEABLE] erase function * @scan_bbt: [REPLACEABLE] function to scan bad block table @@ -793,6 +799,7 @@ nand_get_sdr_timings(const struct nand_data_interface *conf) * @pagebuf_bitflips: [INTERN] holds the bitflip count for the page which is * currently in data_buf. * @subpagesize: [INTERN] holds the subpagesize + * @id: [INTERN] holds NAND ID * @onfi_version: [INTERN] holds the chip ONFI version (BCD encoded), * non 0 if ONFI supported. * @jedec_version: [INTERN] holds the chip JEDEC version (BCD encoded), @@ -822,7 +829,7 @@ nand_get_sdr_timings(const struct nand_data_interface *conf) * @errstat: [OPTIONAL] hardware specific function to perform * additional error status checks (determine if errors are * correctable). - * @write_page: [REPLACEABLE] High-level page write function + * @manufacturer: [INTERN] Contains manufacturer information */ struct nand_chip { @@ -847,9 +854,6 @@ struct nand_chip { int (*scan_bbt)(struct mtd_info *mtd); int (*errstat)(struct mtd_info *mtd, struct nand_chip *this, int state, int status, int page); - int (*write_page)(struct mtd_info *mtd, struct nand_chip *chip, - uint32_t offset, int data_len, const uint8_t *buf, - int oob_required, int page, int cached, int raw); int (*onfi_set_features)(struct mtd_info *mtd, struct nand_chip *chip, int feature_addr, uint8_t *subfeature_para); int (*onfi_get_features)(struct mtd_info *mtd, struct nand_chip *chip, @@ -881,6 +885,7 @@ struct nand_chip { int badblockpos; int badblockbits; + struct nand_id id; int onfi_version; int jedec_version; union { @@ -901,6 +906,7 @@ struct nand_chip { struct nand_ecc_ctrl ecc; struct nand_buffers *buffers; + unsigned long buf_align; struct nand_hw_control hwcontrol; uint8_t *bbt; @@ -910,6 +916,11 @@ struct nand_chip { struct nand_bbt_descr *badblock_pattern; void *priv; + + struct { + const struct nand_manufacturer *desc; + void *priv; + } manufacturer; }; extern const struct mtd_ooblayout_ops nand_ooblayout_sp_ops; @@ -946,6 +957,17 @@ static inline void nand_set_controller_data(struct nand_chip *chip, void *priv) chip->priv = priv; } +static inline void nand_set_manufacturer_data(struct nand_chip *chip, + void *priv) +{ + chip->manufacturer.priv = priv; +} + +static inline void *nand_get_manufacturer_data(struct nand_chip *chip) +{ + return chip->manufacturer.priv; +} + /* * NAND Flash Manufacturer ID Codes */ @@ -1049,17 +1071,33 @@ struct nand_flash_dev { }; /** - * struct nand_manufacturers - NAND Flash Manufacturer ID Structure + * struct nand_manufacturer - NAND Flash Manufacturer structure * @name: Manufacturer name * @id: manufacturer ID code of device. + * @ops: manufacturer operations */ -struct nand_manufacturers { +struct nand_manufacturer { int id; char *name; + const struct nand_manufacturer_ops *ops; }; +const struct nand_manufacturer *nand_get_manufacturer(u8 id); + +static inline const char * +nand_manufacturer_name(const struct nand_manufacturer *manufacturer) +{ + return manufacturer ? manufacturer->name : "Unknown"; +} + extern struct nand_flash_dev nand_flash_ids[]; -extern struct nand_manufacturers nand_manuf_ids[]; + +extern const struct nand_manufacturer_ops toshiba_nand_manuf_ops; +extern const struct nand_manufacturer_ops samsung_nand_manuf_ops; +extern const struct nand_manufacturer_ops hynix_nand_manuf_ops; +extern const struct nand_manufacturer_ops micron_nand_manuf_ops; +extern const struct nand_manufacturer_ops amd_nand_manuf_ops; +extern const struct nand_manufacturer_ops macronix_nand_manuf_ops; int nand_default_bbt(struct mtd_info *mtd); int nand_markbad_bbt(struct mtd_info *mtd, loff_t offs); @@ -1226,4 +1264,6 @@ int nand_reset(struct nand_chip *chip, int chipnr); /* Free resources held by the NAND device */ void nand_cleanup(struct nand_chip *chip); +/* Default extended ID decoding function */ +void nand_decode_ext_id(struct nand_chip *chip); #endif /* __LINUX_MTD_NAND_H */ |