summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorRafael J. Wysocki <rjw@sisk.pl>2009-07-08 15:23:51 +0400
committerRafael J. Wysocki <rjw@sisk.pl>2009-09-14 22:26:58 +0400
commit4bb334353ebd821bc8eeabeb019eaac33c7307df (patch)
treefc827906f10eebaed4c0483b25beaaba70b0b1dc
parente681c9dd62fe8fcc5bba28a3ca3f7dc8be940206 (diff)
downloadlinux-4bb334353ebd821bc8eeabeb019eaac33c7307df.tar.xz
PM/Hibernate: Rework shrinking of memory
Rework swsusp_shrink_memory() so that it calls shrink_all_memory() just once to make some room for the image and then allocates memory to apply more pressure to the memory management subsystem, if necessary. Unfortunately, we don't seem to be able to drop shrink_all_memory() entirely just yet, because that would lead to huge performance regressions in some test cases. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz>
-rw-r--r--kernel/power/snapshot.c205
1 files changed, 158 insertions, 47 deletions
diff --git a/kernel/power/snapshot.c b/kernel/power/snapshot.c
index 523a451b45d3..a3a175fa0a46 100644
--- a/kernel/power/snapshot.c
+++ b/kernel/power/snapshot.c
@@ -1066,69 +1066,180 @@ void swsusp_free(void)
buffer = NULL;
}
+/* Helper functions used for the shrinking of memory. */
+
+#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
+
/**
- * swsusp_shrink_memory - Try to free as much memory as needed
- *
- * ... but do not OOM-kill anyone
+ * preallocate_image_pages - Allocate a number of pages for hibernation image
+ * @nr_pages: Number of page frames to allocate.
+ * @mask: GFP flags to use for the allocation.
*
- * Notice: all userland should be stopped before it is called, or
- * livelock is possible.
+ * Return value: Number of page frames actually allocated
*/
+static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
+{
+ unsigned long nr_alloc = 0;
+
+ while (nr_pages > 0) {
+ if (!alloc_image_page(mask))
+ break;
+ nr_pages--;
+ nr_alloc++;
+ }
-#define SHRINK_BITE 10000
-static inline unsigned long __shrink_memory(long tmp)
+ return nr_alloc;
+}
+
+static unsigned long preallocate_image_memory(unsigned long nr_pages)
+{
+ return preallocate_image_pages(nr_pages, GFP_IMAGE);
+}
+
+#ifdef CONFIG_HIGHMEM
+static unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
- if (tmp > SHRINK_BITE)
- tmp = SHRINK_BITE;
- return shrink_all_memory(tmp);
+ return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
}
+/**
+ * __fraction - Compute (an approximation of) x * (multiplier / base)
+ */
+static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
+{
+ x *= multiplier;
+ do_div(x, base);
+ return (unsigned long)x;
+}
+
+static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
+ unsigned long highmem,
+ unsigned long total)
+{
+ unsigned long alloc = __fraction(nr_pages, highmem, total);
+
+ return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
+}
+#else /* CONFIG_HIGHMEM */
+static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
+{
+ return 0;
+}
+
+static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
+ unsigned long highmem,
+ unsigned long total)
+{
+ return 0;
+}
+#endif /* CONFIG_HIGHMEM */
+
+/**
+ * swsusp_shrink_memory - Make the kernel release as much memory as needed
+ *
+ * To create a hibernation image it is necessary to make a copy of every page
+ * frame in use. We also need a number of page frames to be free during
+ * hibernation for allocations made while saving the image and for device
+ * drivers, in case they need to allocate memory from their hibernation
+ * callbacks (these two numbers are given by PAGES_FOR_IO and SPARE_PAGES,
+ * respectively, both of which are rough estimates). To make this happen, we
+ * compute the total number of available page frames and allocate at least
+ *
+ * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 + 2 * SPARE_PAGES
+ *
+ * of them, which corresponds to the maximum size of a hibernation image.
+ *
+ * If image_size is set below the number following from the above formula,
+ * the preallocation of memory is continued until the total number of saveable
+ * pages in the system is below the requested image size or it is impossible to
+ * allocate more memory, whichever happens first.
+ */
int swsusp_shrink_memory(void)
{
- long tmp;
struct zone *zone;
- unsigned long pages = 0;
- unsigned int i = 0;
- char *p = "-\\|/";
+ unsigned long saveable, size, max_size, count, highmem, pages = 0;
+ unsigned long alloc, pages_highmem;
struct timeval start, stop;
+ int error = 0;
- printk(KERN_INFO "PM: Shrinking memory... ");
+ printk(KERN_INFO "PM: Shrinking memory... ");
do_gettimeofday(&start);
- do {
- long size, highmem_size;
-
- highmem_size = count_highmem_pages();
- size = count_data_pages() + PAGES_FOR_IO + SPARE_PAGES;
- tmp = size;
- size += highmem_size;
- for_each_populated_zone(zone) {
- tmp += snapshot_additional_pages(zone);
- if (is_highmem(zone)) {
- highmem_size -=
- zone_page_state(zone, NR_FREE_PAGES);
- } else {
- tmp -= zone_page_state(zone, NR_FREE_PAGES);
- tmp += zone->lowmem_reserve[ZONE_NORMAL];
- }
- }
- if (highmem_size < 0)
- highmem_size = 0;
+ /* Count the number of saveable data pages. */
+ highmem = count_highmem_pages();
+ saveable = count_data_pages();
- tmp += highmem_size;
- if (tmp > 0) {
- tmp = __shrink_memory(tmp);
- if (!tmp)
- return -ENOMEM;
- pages += tmp;
- } else if (size > image_size / PAGE_SIZE) {
- tmp = __shrink_memory(size - (image_size / PAGE_SIZE));
- pages += tmp;
- }
- printk("\b%c", p[i++%4]);
- } while (tmp > 0);
+ /*
+ * Compute the total number of page frames we can use (count) and the
+ * number of pages needed for image metadata (size).
+ */
+ count = saveable;
+ saveable += highmem;
+ size = 0;
+ for_each_populated_zone(zone) {
+ size += snapshot_additional_pages(zone);
+ if (is_highmem(zone))
+ highmem += zone_page_state(zone, NR_FREE_PAGES);
+ else
+ count += zone_page_state(zone, NR_FREE_PAGES);
+ }
+ count += highmem;
+ count -= totalreserve_pages;
+
+ /* Compute the maximum number of saveable pages to leave in memory. */
+ max_size = (count - (size + PAGES_FOR_IO)) / 2 - 2 * SPARE_PAGES;
+ size = DIV_ROUND_UP(image_size, PAGE_SIZE);
+ if (size > max_size)
+ size = max_size;
+ /*
+ * If the maximum is not less than the current number of saveable pages
+ * in memory, we don't need to do anything more.
+ */
+ if (size >= saveable)
+ goto out;
+
+ /*
+ * Let the memory management subsystem know that we're going to need a
+ * large number of page frames to allocate and make it free some memory.
+ * NOTE: If this is not done, performance will be hurt badly in some
+ * test cases.
+ */
+ shrink_all_memory(saveable - size);
+
+ /*
+ * The number of saveable pages in memory was too high, so apply some
+ * pressure to decrease it. First, make room for the largest possible
+ * image and fail if that doesn't work. Next, try to decrease the size
+ * of the image as much as indicated by image_size using allocations
+ * from highmem and non-highmem zones separately.
+ */
+ pages_highmem = preallocate_image_highmem(highmem / 2);
+ alloc = (count - max_size) - pages_highmem;
+ pages = preallocate_image_memory(alloc);
+ if (pages < alloc) {
+ error = -ENOMEM;
+ goto free_out;
+ }
+ size = max_size - size;
+ alloc = size;
+ size = preallocate_highmem_fraction(size, highmem, count);
+ pages_highmem += size;
+ alloc -= size;
+ pages += preallocate_image_memory(alloc);
+ pages += pages_highmem;
+
+ free_out:
+ /* Release all of the preallocated page frames. */
+ swsusp_free();
+
+ if (error) {
+ printk(KERN_CONT "\n");
+ return error;
+ }
+
+ out:
do_gettimeofday(&stop);
- printk("\bdone (%lu pages freed)\n", pages);
+ printk(KERN_CONT "done (preallocated %lu free pages)\n", pages);
swsusp_show_speed(&start, &stop, pages, "Freed");
return 0;