summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-05-05 06:52:45 +0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-05-05 06:52:45 +0400
commit897f5ab2cd733a77a2279268262919caa8154b9d (patch)
tree95866d31faa6db4ec786399296238344c7cfea0c
parent1d42a0ecf478962e8aede355a0be41365c117ff0 (diff)
parentb48fc7bb3868abffc89ce70d4baf324574338d8e (diff)
downloadlinux-897f5ab2cd733a77a2279268262919caa8154b9d.tar.xz
Automatic merge of rsync://rsync.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6.git
-rw-r--r--arch/ia64/Kconfig19
-rw-r--r--arch/ia64/configs/tiger_defconfig96
-rw-r--r--arch/ia64/hp/common/sba_iommu.c34
-rw-r--r--arch/ia64/kernel/acpi.c23
-rw-r--r--arch/ia64/kernel/entry.S2
-rw-r--r--arch/ia64/kernel/fsys.S4
-rw-r--r--arch/ia64/kernel/mca_drv.c4
-rw-r--r--arch/ia64/kernel/mca_drv_asm.S18
-rw-r--r--arch/ia64/kernel/perfmon.c43
-rw-r--r--arch/ia64/kernel/process.c55
-rw-r--r--arch/ia64/kernel/signal.c3
-rw-r--r--arch/ia64/lib/flush.S6
-rw-r--r--arch/ia64/lib/memcpy_mck.S2
-rw-r--r--arch/ia64/lib/memset.S2
-rw-r--r--arch/ia64/sn/kernel/Makefile7
-rw-r--r--arch/ia64/sn/kernel/io_init.c10
-rw-r--r--arch/ia64/sn/kernel/mca.c34
-rw-r--r--arch/ia64/sn/kernel/setup.c40
-rw-r--r--arch/ia64/sn/kernel/tiocx.c60
-rw-r--r--arch/ia64/sn/kernel/xp_main.c289
-rw-r--r--arch/ia64/sn/kernel/xp_nofault.S31
-rw-r--r--arch/ia64/sn/kernel/xpc.h991
-rw-r--r--arch/ia64/sn/kernel/xpc_channel.c2297
-rw-r--r--arch/ia64/sn/kernel/xpc_main.c1064
-rw-r--r--arch/ia64/sn/kernel/xpc_partition.c984
-rw-r--r--arch/ia64/sn/kernel/xpnet.c715
-rw-r--r--arch/ia64/sn/pci/pcibr/pcibr_dma.c2
-rw-r--r--arch/ia64/sn/pci/tioca_provider.c2
-rw-r--r--drivers/char/Kconfig2
-rw-r--r--include/asm-ia64/sn/addrs.h8
-rw-r--r--include/asm-ia64/sn/arch.h17
-rw-r--r--include/asm-ia64/sn/fetchop.h85
-rw-r--r--include/asm-ia64/sn/l1.h3
-rw-r--r--include/asm-ia64/sn/nodepda.h15
-rw-r--r--include/asm-ia64/sn/pda.h9
-rw-r--r--include/asm-ia64/sn/shub_mmr.h24
-rw-r--r--include/asm-ia64/sn/shubio.h3116
-rw-r--r--include/asm-ia64/sn/sn_cpuid.h25
-rw-r--r--include/asm-ia64/sn/sn_fru.h44
-rw-r--r--include/asm-ia64/sn/sn_sal.h65
-rw-r--r--include/asm-ia64/sn/sndrv.h47
-rw-r--r--include/asm-ia64/sn/xp.h436
-rw-r--r--kernel/exit.c2
-rw-r--r--mm/page_alloc.c2
44 files changed, 8697 insertions, 2040 deletions
diff --git a/arch/ia64/Kconfig b/arch/ia64/Kconfig
index 468dbe8a6b9c..ce13ad689d19 100644
--- a/arch/ia64/Kconfig
+++ b/arch/ia64/Kconfig
@@ -217,6 +217,16 @@ config IA64_SGI_SN_SIM
If you are compiling a kernel that will run under SGI's IA-64
simulator (Medusa) then say Y, otherwise say N.
+config IA64_SGI_SN_XP
+ tristate "Support communication between SGI SSIs"
+ depends on MSPEC
+ help
+ An SGI machine can be divided into multiple Single System
+ Images which act independently of each other and have
+ hardware based memory protection from the others. Enabling
+ this feature will allow for direct communication between SSIs
+ based on a network adapter and DMA messaging.
+
config FORCE_MAX_ZONEORDER
int
default "18"
@@ -261,6 +271,15 @@ config HOTPLUG_CPU
can be controlled through /sys/devices/system/cpu/cpu#.
Say N if you want to disable CPU hotplug.
+config SCHED_SMT
+ bool "SMT scheduler support"
+ depends on SMP
+ default off
+ help
+ Improves the CPU scheduler's decision making when dealing with
+ Intel IA64 chips with MultiThreading at a cost of slightly increased
+ overhead in some places. If unsure say N here.
+
config PREEMPT
bool "Preemptible Kernel"
help
diff --git a/arch/ia64/configs/tiger_defconfig b/arch/ia64/configs/tiger_defconfig
index 99830e8fc9ba..9086b789f6ac 100644
--- a/arch/ia64/configs/tiger_defconfig
+++ b/arch/ia64/configs/tiger_defconfig
@@ -1,7 +1,7 @@
#
# Automatically generated make config: don't edit
-# Linux kernel version: 2.6.11-rc2
-# Sat Jan 22 11:17:02 2005
+# Linux kernel version: 2.6.12-rc3
+# Tue May 3 15:55:04 2005
#
#
@@ -10,6 +10,7 @@
CONFIG_EXPERIMENTAL=y
CONFIG_CLEAN_COMPILE=y
CONFIG_LOCK_KERNEL=y
+CONFIG_INIT_ENV_ARG_LIMIT=32
#
# General setup
@@ -21,24 +22,27 @@ CONFIG_POSIX_MQUEUE=y
# CONFIG_BSD_PROCESS_ACCT is not set
CONFIG_SYSCTL=y
# CONFIG_AUDIT is not set
-CONFIG_LOG_BUF_SHIFT=20
CONFIG_HOTPLUG=y
CONFIG_KOBJECT_UEVENT=y
CONFIG_IKCONFIG=y
CONFIG_IKCONFIG_PROC=y
+# CONFIG_CPUSETS is not set
# CONFIG_EMBEDDED is not set
CONFIG_KALLSYMS=y
CONFIG_KALLSYMS_ALL=y
# CONFIG_KALLSYMS_EXTRA_PASS is not set
+CONFIG_PRINTK=y
+CONFIG_BUG=y
+CONFIG_BASE_FULL=y
CONFIG_FUTEX=y
CONFIG_EPOLL=y
-# CONFIG_CC_OPTIMIZE_FOR_SIZE is not set
CONFIG_SHMEM=y
CONFIG_CC_ALIGN_FUNCTIONS=0
CONFIG_CC_ALIGN_LABELS=0
CONFIG_CC_ALIGN_LOOPS=0
CONFIG_CC_ALIGN_JUMPS=0
# CONFIG_TINY_SHMEM is not set
+CONFIG_BASE_SMALL=0
#
# Loadable module support
@@ -85,6 +89,7 @@ CONFIG_FORCE_MAX_ZONEORDER=18
CONFIG_SMP=y
CONFIG_NR_CPUS=4
CONFIG_HOTPLUG_CPU=y
+# CONFIG_SCHED_SMT is not set
# CONFIG_PREEMPT is not set
CONFIG_HAVE_DEC_LOCK=y
CONFIG_IA32_SUPPORT=y
@@ -135,6 +140,7 @@ CONFIG_PCI_DOMAINS=y
# CONFIG_PCI_MSI is not set
CONFIG_PCI_LEGACY_PROC=y
CONFIG_PCI_NAMES=y
+# CONFIG_PCI_DEBUG is not set
#
# PCI Hotplug Support
@@ -152,10 +158,6 @@ CONFIG_HOTPLUG_PCI_ACPI=m
# CONFIG_PCCARD is not set
#
-# PC-card bridges
-#
-
-#
# Device Drivers
#
@@ -195,9 +197,10 @@ CONFIG_BLK_DEV_CRYPTOLOOP=m
CONFIG_BLK_DEV_NBD=m
# CONFIG_BLK_DEV_SX8 is not set
# CONFIG_BLK_DEV_UB is not set
-CONFIG_BLK_DEV_RAM=m
+CONFIG_BLK_DEV_RAM=y
CONFIG_BLK_DEV_RAM_COUNT=16
CONFIG_BLK_DEV_RAM_SIZE=4096
+CONFIG_BLK_DEV_INITRD=y
CONFIG_INITRAMFS_SOURCE=""
# CONFIG_CDROM_PKTCDVD is not set
@@ -313,7 +316,6 @@ CONFIG_SCSI_FC_ATTRS=y
# CONFIG_SCSI_BUSLOGIC is not set
# CONFIG_SCSI_DMX3191D is not set
# CONFIG_SCSI_EATA is not set
-# CONFIG_SCSI_EATA_PIO is not set
# CONFIG_SCSI_FUTURE_DOMAIN is not set
# CONFIG_SCSI_GDTH is not set
# CONFIG_SCSI_IPS is not set
@@ -325,7 +327,6 @@ CONFIG_SCSI_SYM53C8XX_DEFAULT_TAGS=16
CONFIG_SCSI_SYM53C8XX_MAX_TAGS=64
# CONFIG_SCSI_SYM53C8XX_IOMAPPED is not set
# CONFIG_SCSI_IPR is not set
-# CONFIG_SCSI_QLOGIC_ISP is not set
CONFIG_SCSI_QLOGIC_FC=y
# CONFIG_SCSI_QLOGIC_FC_FIRMWARE is not set
CONFIG_SCSI_QLOGIC_1280=y
@@ -336,6 +337,7 @@ CONFIG_SCSI_QLA22XX=m
CONFIG_SCSI_QLA2300=m
CONFIG_SCSI_QLA2322=m
# CONFIG_SCSI_QLA6312 is not set
+# CONFIG_SCSI_LPFC is not set
# CONFIG_SCSI_DC395x is not set
# CONFIG_SCSI_DC390T is not set
# CONFIG_SCSI_DEBUG is not set
@@ -358,6 +360,7 @@ CONFIG_DM_CRYPT=m
CONFIG_DM_SNAPSHOT=m
CONFIG_DM_MIRROR=m
CONFIG_DM_ZERO=m
+# CONFIG_DM_MULTIPATH is not set
#
# Fusion MPT device support
@@ -386,7 +389,6 @@ CONFIG_NET=y
#
CONFIG_PACKET=y
# CONFIG_PACKET_MMAP is not set
-CONFIG_NETLINK_DEV=y
CONFIG_UNIX=y
# CONFIG_NET_KEY is not set
CONFIG_INET=y
@@ -446,7 +448,6 @@ CONFIG_DUMMY=m
# CONFIG_BONDING is not set
# CONFIG_EQUALIZER is not set
# CONFIG_TUN is not set
-# CONFIG_ETHERTAP is not set
#
# ARCnet devices
@@ -484,7 +485,6 @@ CONFIG_NET_PCI=y
# CONFIG_DGRS is not set
CONFIG_EEPRO100=m
CONFIG_E100=m
-# CONFIG_E100_NAPI is not set
# CONFIG_FEALNX is not set
# CONFIG_NATSEMI is not set
# CONFIG_NE2K_PCI is not set
@@ -566,25 +566,6 @@ CONFIG_INPUT_MOUSEDEV_SCREEN_Y=768
# CONFIG_INPUT_EVBUG is not set
#
-# Input I/O drivers
-#
-CONFIG_GAMEPORT=m
-CONFIG_SOUND_GAMEPORT=m
-# CONFIG_GAMEPORT_NS558 is not set
-# CONFIG_GAMEPORT_L4 is not set
-# CONFIG_GAMEPORT_EMU10K1 is not set
-# CONFIG_GAMEPORT_VORTEX is not set
-# CONFIG_GAMEPORT_FM801 is not set
-# CONFIG_GAMEPORT_CS461X is not set
-CONFIG_SERIO=y
-CONFIG_SERIO_I8042=y
-# CONFIG_SERIO_SERPORT is not set
-# CONFIG_SERIO_CT82C710 is not set
-# CONFIG_SERIO_PCIPS2 is not set
-CONFIG_SERIO_LIBPS2=y
-# CONFIG_SERIO_RAW is not set
-
-#
# Input Device Drivers
#
CONFIG_INPUT_KEYBOARD=y
@@ -602,6 +583,24 @@ CONFIG_MOUSE_PS2=y
# CONFIG_INPUT_MISC is not set
#
+# Hardware I/O ports
+#
+CONFIG_SERIO=y
+CONFIG_SERIO_I8042=y
+# CONFIG_SERIO_SERPORT is not set
+# CONFIG_SERIO_PCIPS2 is not set
+CONFIG_SERIO_LIBPS2=y
+# CONFIG_SERIO_RAW is not set
+CONFIG_GAMEPORT=m
+# CONFIG_GAMEPORT_NS558 is not set
+# CONFIG_GAMEPORT_L4 is not set
+# CONFIG_GAMEPORT_EMU10K1 is not set
+# CONFIG_GAMEPORT_VORTEX is not set
+# CONFIG_GAMEPORT_FM801 is not set
+# CONFIG_GAMEPORT_CS461X is not set
+CONFIG_SOUND_GAMEPORT=m
+
+#
# Character devices
#
CONFIG_VT=y
@@ -615,6 +614,8 @@ CONFIG_SERIAL_NONSTANDARD=y
# CONFIG_SYNCLINK is not set
# CONFIG_SYNCLINKMP is not set
# CONFIG_N_HDLC is not set
+# CONFIG_SPECIALIX is not set
+# CONFIG_SX is not set
# CONFIG_STALDRV is not set
#
@@ -635,6 +636,7 @@ CONFIG_SERIAL_8250_SHARE_IRQ=y
#
CONFIG_SERIAL_CORE=y
CONFIG_SERIAL_CORE_CONSOLE=y
+# CONFIG_SERIAL_JSM is not set
CONFIG_UNIX98_PTYS=y
CONFIG_LEGACY_PTYS=y
CONFIG_LEGACY_PTY_COUNT=256
@@ -670,6 +672,12 @@ CONFIG_HPET=y
# CONFIG_HPET_RTC_IRQ is not set
CONFIG_HPET_MMAP=y
CONFIG_MAX_RAW_DEVS=256
+# CONFIG_HANGCHECK_TIMER is not set
+
+#
+# TPM devices
+#
+# CONFIG_TCG_TPM is not set
#
# I2C support
@@ -705,7 +713,6 @@ CONFIG_MAX_RAW_DEVS=256
#
CONFIG_VGA_CONSOLE=y
CONFIG_DUMMY_CONSOLE=y
-# CONFIG_BACKLIGHT_LCD_SUPPORT is not set
#
# Sound
@@ -715,6 +722,8 @@ CONFIG_DUMMY_CONSOLE=y
#
# USB support
#
+CONFIG_USB_ARCH_HAS_HCD=y
+CONFIG_USB_ARCH_HAS_OHCI=y
CONFIG_USB=y
# CONFIG_USB_DEBUG is not set
@@ -726,8 +735,6 @@ CONFIG_USB_DEVICEFS=y
# CONFIG_USB_DYNAMIC_MINORS is not set
# CONFIG_USB_SUSPEND is not set
# CONFIG_USB_OTG is not set
-CONFIG_USB_ARCH_HAS_HCD=y
-CONFIG_USB_ARCH_HAS_OHCI=y
#
# USB Host Controller Drivers
@@ -736,6 +743,8 @@ CONFIG_USB_EHCI_HCD=m
# CONFIG_USB_EHCI_SPLIT_ISO is not set
# CONFIG_USB_EHCI_ROOT_HUB_TT is not set
CONFIG_USB_OHCI_HCD=m
+# CONFIG_USB_OHCI_BIG_ENDIAN is not set
+CONFIG_USB_OHCI_LITTLE_ENDIAN=y
CONFIG_USB_UHCI_HCD=y
# CONFIG_USB_SL811_HCD is not set
@@ -751,12 +760,11 @@ CONFIG_USB_UHCI_HCD=y
#
CONFIG_USB_STORAGE=m
# CONFIG_USB_STORAGE_DEBUG is not set
-# CONFIG_USB_STORAGE_RW_DETECT is not set
# CONFIG_USB_STORAGE_DATAFAB is not set
# CONFIG_USB_STORAGE_FREECOM is not set
# CONFIG_USB_STORAGE_ISD200 is not set
# CONFIG_USB_STORAGE_DPCM is not set
-# CONFIG_USB_STORAGE_HP8200e is not set
+# CONFIG_USB_STORAGE_USBAT is not set
# CONFIG_USB_STORAGE_SDDR09 is not set
# CONFIG_USB_STORAGE_SDDR55 is not set
# CONFIG_USB_STORAGE_JUMPSHOT is not set
@@ -800,6 +808,7 @@ CONFIG_USB_HIDINPUT=y
# CONFIG_USB_PEGASUS is not set
# CONFIG_USB_RTL8150 is not set
# CONFIG_USB_USBNET is not set
+# CONFIG_USB_MON is not set
#
# USB port drivers
@@ -824,6 +833,7 @@ CONFIG_USB_HIDINPUT=y
# CONFIG_USB_PHIDGETKIT is not set
# CONFIG_USB_PHIDGETSERVO is not set
# CONFIG_USB_IDMOUSE is not set
+# CONFIG_USB_SISUSBVGA is not set
# CONFIG_USB_TEST is not set
#
@@ -867,7 +877,12 @@ CONFIG_REISERFS_FS_POSIX_ACL=y
CONFIG_REISERFS_FS_SECURITY=y
# CONFIG_JFS_FS is not set
CONFIG_FS_POSIX_ACL=y
+
+#
+# XFS support
+#
CONFIG_XFS_FS=y
+CONFIG_XFS_EXPORT=y
# CONFIG_XFS_RT is not set
# CONFIG_XFS_QUOTA is not set
# CONFIG_XFS_SECURITY is not set
@@ -945,7 +960,7 @@ CONFIG_NFSD_V4=y
CONFIG_NFSD_TCP=y
CONFIG_LOCKD=m
CONFIG_LOCKD_V4=y
-CONFIG_EXPORTFS=m
+CONFIG_EXPORTFS=y
CONFIG_SUNRPC=m
CONFIG_SUNRPC_GSS=m
CONFIG_RPCSEC_GSS_KRB5=m
@@ -1042,8 +1057,10 @@ CONFIG_GENERIC_IRQ_PROBE=y
#
# Kernel hacking
#
+# CONFIG_PRINTK_TIME is not set
CONFIG_DEBUG_KERNEL=y
CONFIG_MAGIC_SYSRQ=y
+CONFIG_LOG_BUF_SHIFT=20
# CONFIG_SCHEDSTATS is not set
# CONFIG_DEBUG_SLAB is not set
# CONFIG_DEBUG_SPINLOCK is not set
@@ -1077,6 +1094,7 @@ CONFIG_CRYPTO_MD5=m
# CONFIG_CRYPTO_SHA256 is not set
# CONFIG_CRYPTO_SHA512 is not set
# CONFIG_CRYPTO_WP512 is not set
+# CONFIG_CRYPTO_TGR192 is not set
CONFIG_CRYPTO_DES=m
# CONFIG_CRYPTO_BLOWFISH is not set
# CONFIG_CRYPTO_TWOFISH is not set
diff --git a/arch/ia64/hp/common/sba_iommu.c b/arch/ia64/hp/common/sba_iommu.c
index 6a8fcba7a853..b8db6e3e5e81 100644
--- a/arch/ia64/hp/common/sba_iommu.c
+++ b/arch/ia64/hp/common/sba_iommu.c
@@ -1944,43 +1944,17 @@ sba_connect_bus(struct pci_bus *bus)
static void __init
sba_map_ioc_to_node(struct ioc *ioc, acpi_handle handle)
{
- struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
- union acpi_object *obj;
- acpi_handle phandle;
unsigned int node;
+ int pxm;
ioc->node = MAX_NUMNODES;
- /*
- * Check for a _PXM on this node first. We don't typically see
- * one here, so we'll end up getting it from the parent.
- */
- if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PXM", NULL, &buffer))) {
- if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
- return;
-
- /* Reset the acpi buffer */
- buffer.length = ACPI_ALLOCATE_BUFFER;
- buffer.pointer = NULL;
-
- if (ACPI_FAILURE(acpi_evaluate_object(phandle, "_PXM", NULL,
- &buffer)))
- return;
- }
+ pxm = acpi_get_pxm(handle);
- if (!buffer.length || !buffer.pointer)
+ if (pxm < 0)
return;
- obj = buffer.pointer;
-
- if (obj->type != ACPI_TYPE_INTEGER ||
- obj->integer.value >= MAX_PXM_DOMAINS) {
- acpi_os_free(buffer.pointer);
- return;
- }
-
- node = pxm_to_nid_map[obj->integer.value];
- acpi_os_free(buffer.pointer);
+ node = pxm_to_nid_map[pxm];
if (node >= MAX_NUMNODES || !node_online(node))
return;
diff --git a/arch/ia64/kernel/acpi.c b/arch/ia64/kernel/acpi.c
index a8e99c56a768..72dfd9e7de0f 100644
--- a/arch/ia64/kernel/acpi.c
+++ b/arch/ia64/kernel/acpi.c
@@ -779,7 +779,7 @@ acpi_map_iosapic (acpi_handle handle, u32 depth, void *context, void **ret)
union acpi_object *obj;
struct acpi_table_iosapic *iosapic;
unsigned int gsi_base;
- int node;
+ int pxm, node;
/* Only care about objects w/ a method that returns the MADT */
if (ACPI_FAILURE(acpi_evaluate_object(handle, "_MAT", NULL, &buffer)))
@@ -805,29 +805,16 @@ acpi_map_iosapic (acpi_handle handle, u32 depth, void *context, void **ret)
gsi_base = iosapic->global_irq_base;
acpi_os_free(buffer.pointer);
- buffer.length = ACPI_ALLOCATE_BUFFER;
- buffer.pointer = NULL;
/*
- * OK, it's an IOSAPIC MADT entry, look for a _PXM method to tell
+ * OK, it's an IOSAPIC MADT entry, look for a _PXM value to tell
* us which node to associate this with.
*/
- if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PXM", NULL, &buffer)))
- return AE_OK;
-
- if (!buffer.length || !buffer.pointer)
- return AE_OK;
-
- obj = buffer.pointer;
-
- if (obj->type != ACPI_TYPE_INTEGER ||
- obj->integer.value >= MAX_PXM_DOMAINS) {
- acpi_os_free(buffer.pointer);
+ pxm = acpi_get_pxm(handle);
+ if (pxm < 0)
return AE_OK;
- }
- node = pxm_to_nid_map[obj->integer.value];
- acpi_os_free(buffer.pointer);
+ node = pxm_to_nid_map[pxm];
if (node >= MAX_NUMNODES || !node_online(node) ||
cpus_empty(node_to_cpumask(node)))
diff --git a/arch/ia64/kernel/entry.S b/arch/ia64/kernel/entry.S
index d3f093820bc7..81c45d447394 100644
--- a/arch/ia64/kernel/entry.S
+++ b/arch/ia64/kernel/entry.S
@@ -782,7 +782,7 @@ GLOBAL_ENTRY(ia64_ret_from_ia32_execve)
st8.spill [r2]=r8 // store return value in slot for r8 and set unat bit
.mem.offset 8,0
st8.spill [r3]=r0 // clear error indication in slot for r10 and set unat bit
-END(ia64_ret_from_ia32_execve_syscall)
+END(ia64_ret_from_ia32_execve)
// fall through
#endif /* CONFIG_IA32_SUPPORT */
GLOBAL_ENTRY(ia64_leave_kernel)
diff --git a/arch/ia64/kernel/fsys.S b/arch/ia64/kernel/fsys.S
index 0d8650f7fce7..4f3cdef75797 100644
--- a/arch/ia64/kernel/fsys.S
+++ b/arch/ia64/kernel/fsys.S
@@ -611,8 +611,10 @@ GLOBAL_ENTRY(fsys_bubble_down)
movl r2=ia64_ret_from_syscall
;;
mov rp=r2 // set the real return addr
- tbit.z p8,p0=r3,TIF_SYSCALL_TRACE
+ and r3=_TIF_SYSCALL_TRACEAUDIT,r3
;;
+ cmp.eq p8,p0=r3,r0
+
(p10) br.cond.spnt.many ia64_ret_from_syscall // p10==true means out registers are more than 8
(p8) br.call.sptk.many b6=b6 // ignore this return addr
br.cond.sptk ia64_trace_syscall
diff --git a/arch/ia64/kernel/mca_drv.c b/arch/ia64/kernel/mca_drv.c
index ab478172c349..abc0113a821d 100644
--- a/arch/ia64/kernel/mca_drv.c
+++ b/arch/ia64/kernel/mca_drv.c
@@ -132,8 +132,7 @@ mca_handler_bh(unsigned long paddr)
spin_unlock(&mca_bh_lock);
/* This process is about to be killed itself */
- force_sig(SIGKILL, current);
- schedule();
+ do_exit(SIGKILL);
}
/**
@@ -439,6 +438,7 @@ recover_from_read_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_chec
psr2 = (struct ia64_psr *)&pmsa->pmsa_ipsr;
psr2->cpl = 0;
psr2->ri = 0;
+ psr2->i = 0;
return 1;
}
diff --git a/arch/ia64/kernel/mca_drv_asm.S b/arch/ia64/kernel/mca_drv_asm.S
index bcfa05acc561..2d7e0217638d 100644
--- a/arch/ia64/kernel/mca_drv_asm.S
+++ b/arch/ia64/kernel/mca_drv_asm.S
@@ -10,6 +10,7 @@
#include <asm/asmmacro.h>
#include <asm/processor.h>
+#include <asm/ptrace.h>
GLOBAL_ENTRY(mca_handler_bhhook)
invala // clear RSE ?
@@ -20,12 +21,21 @@ GLOBAL_ENTRY(mca_handler_bhhook)
;;
alloc r16=ar.pfs,0,2,1,0 // make a new frame
;;
+ mov ar.rsc=0
+ ;;
mov r13=IA64_KR(CURRENT) // current task pointer
;;
- adds r12=IA64_TASK_THREAD_KSP_OFFSET,r13
+ mov r2=r13
+ ;;
+ addl r22=IA64_RBS_OFFSET,r2
+ ;;
+ mov ar.bspstore=r22
;;
- ld8 r12=[r12] // stack pointer
+ addl sp=IA64_STK_OFFSET-IA64_PT_REGS_SIZE,r2
;;
+ adds r2=IA64_TASK_THREAD_ON_USTACK_OFFSET,r13
+ ;;
+ st1 [r2]=r0 // clear current->thread.on_ustack flag
mov loc0=r16
movl loc1=mca_handler_bh // recovery C function
;;
@@ -34,7 +44,9 @@ GLOBAL_ENTRY(mca_handler_bhhook)
;;
mov loc1=rp
;;
- br.call.sptk.many rp=b6 // not return ...
+ ssm psr.i
+ ;;
+ br.call.sptk.many rp=b6 // does not return ...
;;
mov ar.pfs=loc0
mov rp=loc1
diff --git a/arch/ia64/kernel/perfmon.c b/arch/ia64/kernel/perfmon.c
index 376fcbc3f8da..71c101601e3e 100644
--- a/arch/ia64/kernel/perfmon.c
+++ b/arch/ia64/kernel/perfmon.c
@@ -1265,6 +1265,8 @@ out:
}
EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
+extern void update_pal_halt_status(int);
+
static int
pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
{
@@ -1311,6 +1313,11 @@ pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
is_syswide,
cpu));
+ /*
+ * disable default_idle() to go to PAL_HALT
+ */
+ update_pal_halt_status(0);
+
UNLOCK_PFS(flags);
return 0;
@@ -1366,6 +1373,12 @@ pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
is_syswide,
cpu));
+ /*
+ * if possible, enable default_idle() to go into PAL_HALT
+ */
+ if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
+ update_pal_halt_status(1);
+
UNLOCK_PFS(flags);
return 0;
@@ -4202,7 +4215,7 @@ pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
req->load_pid,
ctx->ctx_state));
- return -EINVAL;
+ return -EBUSY;
}
DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
@@ -4704,16 +4717,26 @@ recheck:
if (task == current || ctx->ctx_fl_system) return 0;
/*
- * if context is UNLOADED we are safe to go
- */
- if (state == PFM_CTX_UNLOADED) return 0;
-
- /*
- * no command can operate on a zombie context
+ * we are monitoring another thread
*/
- if (state == PFM_CTX_ZOMBIE) {
- DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
- return -EINVAL;
+ switch(state) {
+ case PFM_CTX_UNLOADED:
+ /*
+ * if context is UNLOADED we are safe to go
+ */
+ return 0;
+ case PFM_CTX_ZOMBIE:
+ /*
+ * no command can operate on a zombie context
+ */
+ DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
+ return -EINVAL;
+ case PFM_CTX_MASKED:
+ /*
+ * PMU state has been saved to software even though
+ * the thread may still be running.
+ */
+ if (cmd != PFM_UNLOAD_CONTEXT) return 0;
}
/*
diff --git a/arch/ia64/kernel/process.c b/arch/ia64/kernel/process.c
index 7c43aea5f7f7..ebb71f3d6d19 100644
--- a/arch/ia64/kernel/process.c
+++ b/arch/ia64/kernel/process.c
@@ -50,7 +50,7 @@
#include "sigframe.h"
void (*ia64_mark_idle)(int);
-static cpumask_t cpu_idle_map;
+static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
unsigned long boot_option_idle_override = 0;
EXPORT_SYMBOL(boot_option_idle_override);
@@ -173,7 +173,9 @@ do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall
ia64_do_signal(oldset, scr, in_syscall);
}
-static int pal_halt = 1;
+static int pal_halt = 1;
+static int can_do_pal_halt = 1;
+
static int __init nohalt_setup(char * str)
{
pal_halt = 0;
@@ -181,16 +183,20 @@ static int __init nohalt_setup(char * str)
}
__setup("nohalt", nohalt_setup);
+void
+update_pal_halt_status(int status)
+{
+ can_do_pal_halt = pal_halt && status;
+}
+
/*
* We use this if we don't have any better idle routine..
*/
void
default_idle (void)
{
- unsigned long pmu_active = ia64_getreg(_IA64_REG_PSR) & (IA64_PSR_PP | IA64_PSR_UP);
-
while (!need_resched())
- if (pal_halt && !pmu_active)
+ if (can_do_pal_halt)
safe_halt();
else
cpu_relax();
@@ -223,20 +229,31 @@ static inline void play_dead(void)
}
#endif /* CONFIG_HOTPLUG_CPU */
-
void cpu_idle_wait(void)
{
- int cpu;
- cpumask_t map;
+ unsigned int cpu, this_cpu = get_cpu();
+ cpumask_t map;
- for_each_online_cpu(cpu)
- cpu_set(cpu, cpu_idle_map);
+ set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
+ put_cpu();
- wmb();
- do {
- ssleep(1);
- cpus_and(map, cpu_idle_map, cpu_online_map);
- } while (!cpus_empty(map));
+ cpus_clear(map);
+ for_each_online_cpu(cpu) {
+ per_cpu(cpu_idle_state, cpu) = 1;
+ cpu_set(cpu, map);
+ }
+
+ __get_cpu_var(cpu_idle_state) = 0;
+
+ wmb();
+ do {
+ ssleep(1);
+ for_each_online_cpu(cpu) {
+ if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
+ cpu_clear(cpu, map);
+ }
+ cpus_and(map, map, cpu_online_map);
+ } while (!cpus_empty(map));
}
EXPORT_SYMBOL_GPL(cpu_idle_wait);
@@ -244,7 +261,6 @@ void __attribute__((noreturn))
cpu_idle (void)
{
void (*mark_idle)(int) = ia64_mark_idle;
- int cpu = smp_processor_id();
/* endless idle loop with no priority at all */
while (1) {
@@ -255,12 +271,13 @@ cpu_idle (void)
while (!need_resched()) {
void (*idle)(void);
+ if (__get_cpu_var(cpu_idle_state))
+ __get_cpu_var(cpu_idle_state) = 0;
+
+ rmb();
if (mark_idle)
(*mark_idle)(1);
- if (cpu_isset(cpu, cpu_idle_map))
- cpu_clear(cpu, cpu_idle_map);
- rmb();
idle = pm_idle;
if (!idle)
idle = default_idle;
diff --git a/arch/ia64/kernel/signal.c b/arch/ia64/kernel/signal.c
index 6891d86937d9..499b7e5317cf 100644
--- a/arch/ia64/kernel/signal.c
+++ b/arch/ia64/kernel/signal.c
@@ -224,7 +224,8 @@ ia64_rt_sigreturn (struct sigscratch *scr)
* could be corrupted.
*/
retval = (long) &ia64_leave_kernel;
- if (test_thread_flag(TIF_SYSCALL_TRACE))
+ if (test_thread_flag(TIF_SYSCALL_TRACE)
+ || test_thread_flag(TIF_SYSCALL_AUDIT))
/*
* strace expects to be notified after sigreturn returns even though the
* context to which we return may not be in the middle of a syscall.
diff --git a/arch/ia64/lib/flush.S b/arch/ia64/lib/flush.S
index 29c802b19669..a1af9146cfdb 100644
--- a/arch/ia64/lib/flush.S
+++ b/arch/ia64/lib/flush.S
@@ -1,8 +1,8 @@
/*
* Cache flushing routines.
*
- * Copyright (C) 1999-2001 Hewlett-Packard Co
- * Copyright (C) 1999-2001 David Mosberger-Tang <davidm@hpl.hp.com>
+ * Copyright (C) 1999-2001, 2005 Hewlett-Packard Co
+ * David Mosberger-Tang <davidm@hpl.hp.com>
*/
#include <asm/asmmacro.h>
#include <asm/page.h>
@@ -26,7 +26,7 @@ GLOBAL_ENTRY(flush_icache_range)
mov ar.lc=r8
;;
-.Loop: fc in0 // issuable on M0 only
+.Loop: fc.i in0 // issuable on M2 only
add in0=32,in0
br.cloop.sptk.few .Loop
;;
diff --git a/arch/ia64/lib/memcpy_mck.S b/arch/ia64/lib/memcpy_mck.S
index 3c2cd2f04db9..6f308e62c137 100644
--- a/arch/ia64/lib/memcpy_mck.S
+++ b/arch/ia64/lib/memcpy_mck.S
@@ -75,6 +75,7 @@ GLOBAL_ENTRY(memcpy)
mov f6=f0
br.cond.sptk .common_code
;;
+END(memcpy)
GLOBAL_ENTRY(__copy_user)
.prologue
// check dest alignment
@@ -524,7 +525,6 @@ EK(.ex_handler, (p17) st8 [dst1]=r39,8); \
#undef B
#undef C
#undef D
-END(memcpy)
/*
* Due to lack of local tag support in gcc 2.x assembler, it is not clear which
diff --git a/arch/ia64/lib/memset.S b/arch/ia64/lib/memset.S
index bd8cf907fe22..f26c16aefb1c 100644
--- a/arch/ia64/lib/memset.S
+++ b/arch/ia64/lib/memset.S
@@ -57,10 +57,10 @@ GLOBAL_ENTRY(memset)
{ .mmi
.prologue
alloc tmp = ar.pfs, 3, 0, 0, 0
- .body
lfetch.nt1 [dest] //
.save ar.lc, save_lc
mov.i save_lc = ar.lc
+ .body
} { .mmi
mov ret0 = dest // return value
cmp.ne p_nz, p_zr = value, r0 // use stf.spill if value is zero
diff --git a/arch/ia64/sn/kernel/Makefile b/arch/ia64/sn/kernel/Makefile
index 4f381fb25049..4351c4ff9845 100644
--- a/arch/ia64/sn/kernel/Makefile
+++ b/arch/ia64/sn/kernel/Makefile
@@ -4,10 +4,15 @@
# License. See the file "COPYING" in the main directory of this archive
# for more details.
#
-# Copyright (C) 1999,2001-2003 Silicon Graphics, Inc. All Rights Reserved.
+# Copyright (C) 1999,2001-2005 Silicon Graphics, Inc. All Rights Reserved.
#
obj-y += setup.o bte.o bte_error.o irq.o mca.o idle.o \
huberror.o io_init.o iomv.o klconflib.o sn2/
obj-$(CONFIG_IA64_GENERIC) += machvec.o
obj-$(CONFIG_SGI_TIOCX) += tiocx.o
+obj-$(CONFIG_IA64_SGI_SN_XP) += xp.o
+xp-y := xp_main.o xp_nofault.o
+obj-$(CONFIG_IA64_SGI_SN_XP) += xpc.o
+xpc-y := xpc_main.o xpc_channel.o xpc_partition.o
+obj-$(CONFIG_IA64_SGI_SN_XP) += xpnet.o
diff --git a/arch/ia64/sn/kernel/io_init.c b/arch/ia64/sn/kernel/io_init.c
index 18160a06a8c9..9e07f5463f21 100644
--- a/arch/ia64/sn/kernel/io_init.c
+++ b/arch/ia64/sn/kernel/io_init.c
@@ -174,6 +174,12 @@ static void sn_fixup_ionodes(void)
if (status)
continue;
+ /* Attach the error interrupt handlers */
+ if (nasid & 1)
+ ice_error_init(hubdev);
+ else
+ hub_error_init(hubdev);
+
for (widget = 0; widget <= HUB_WIDGET_ID_MAX; widget++)
hubdev->hdi_xwidget_info[widget].xwi_hubinfo = hubdev;
@@ -211,10 +217,6 @@ static void sn_fixup_ionodes(void)
sn_flush_device_list;
}
- if (!(i & 1))
- hub_error_init(hubdev);
- else
- ice_error_init(hubdev);
}
}
diff --git a/arch/ia64/sn/kernel/mca.c b/arch/ia64/sn/kernel/mca.c
index 857774bb2c9a..6546db6abdba 100644
--- a/arch/ia64/sn/kernel/mca.c
+++ b/arch/ia64/sn/kernel/mca.c
@@ -37,6 +37,11 @@ static u64 *sn_oemdata_size, sn_oemdata_bufsize;
* This function is the callback routine that SAL calls to log error
* info for platform errors. buf is appended to sn_oemdata, resizing as
* required.
+ * Note: this is a SAL to OS callback, running under the same rules as the SAL
+ * code. SAL calls are run with preempt disabled so this routine must not
+ * sleep. vmalloc can sleep so print_hook cannot resize the output buffer
+ * itself, instead it must set the required size and return to let the caller
+ * resize the buffer then redrive the SAL call.
*/
static int print_hook(const char *fmt, ...)
{
@@ -47,18 +52,8 @@ static int print_hook(const char *fmt, ...)
vsnprintf(buf, sizeof(buf), fmt, args);
va_end(args);
len = strlen(buf);
- while (*sn_oemdata_size + len + 1 > sn_oemdata_bufsize) {
- u8 *newbuf = vmalloc(sn_oemdata_bufsize += 1000);
- if (!newbuf) {
- printk(KERN_ERR "%s: unable to extend sn_oemdata\n",
- __FUNCTION__);
- return 0;
- }
- memcpy(newbuf, *sn_oemdata, *sn_oemdata_size);
- vfree(*sn_oemdata);
- *sn_oemdata = newbuf;
- }
- memcpy(*sn_oemdata + *sn_oemdata_size, buf, len + 1);
+ if (*sn_oemdata_size + len <= sn_oemdata_bufsize)
+ memcpy(*sn_oemdata + *sn_oemdata_size, buf, len);
*sn_oemdata_size += len;
return 0;
}
@@ -98,7 +93,20 @@ sn_platform_plat_specific_err_print(const u8 * sect_header, u8 ** oemdata,
sn_oemdata = oemdata;
sn_oemdata_size = oemdata_size;
sn_oemdata_bufsize = 0;
- ia64_sn_plat_specific_err_print(print_hook, (char *)sect_header);
+ *sn_oemdata_size = PAGE_SIZE; /* first guess at how much data will be generated */
+ while (*sn_oemdata_size > sn_oemdata_bufsize) {
+ u8 *newbuf = vmalloc(*sn_oemdata_size);
+ if (!newbuf) {
+ printk(KERN_ERR "%s: unable to extend sn_oemdata\n",
+ __FUNCTION__);
+ return 1;
+ }
+ vfree(*sn_oemdata);
+ *sn_oemdata = newbuf;
+ sn_oemdata_bufsize = *sn_oemdata_size;
+ *sn_oemdata_size = 0;
+ ia64_sn_plat_specific_err_print(print_hook, (char *)sect_header);
+ }
up(&sn_oemdata_mutex);
return 0;
}
diff --git a/arch/ia64/sn/kernel/setup.c b/arch/ia64/sn/kernel/setup.c
index d35f2a6f9c94..4fb44984afe6 100644
--- a/arch/ia64/sn/kernel/setup.c
+++ b/arch/ia64/sn/kernel/setup.c
@@ -3,7 +3,7 @@
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
- * Copyright (C) 1999,2001-2004 Silicon Graphics, Inc. All rights reserved.
+ * Copyright (C) 1999,2001-2005 Silicon Graphics, Inc. All rights reserved.
*/
#include <linux/config.h>
@@ -73,6 +73,12 @@ EXPORT_SYMBOL(sn_rtc_cycles_per_second);
DEFINE_PER_CPU(struct sn_hub_info_s, __sn_hub_info);
EXPORT_PER_CPU_SYMBOL(__sn_hub_info);
+DEFINE_PER_CPU(short, __sn_cnodeid_to_nasid[MAX_NUMNODES]);
+EXPORT_PER_CPU_SYMBOL(__sn_cnodeid_to_nasid);
+
+DEFINE_PER_CPU(struct nodepda_s *, __sn_nodepda);
+EXPORT_PER_CPU_SYMBOL(__sn_nodepda);
+
partid_t sn_partid = -1;
EXPORT_SYMBOL(sn_partid);
char sn_system_serial_number_string[128];
@@ -373,11 +379,11 @@ static void __init sn_init_pdas(char **cmdline_p)
{
cnodeid_t cnode;
- memset(pda->cnodeid_to_nasid_table, -1,
- sizeof(pda->cnodeid_to_nasid_table));
+ memset(sn_cnodeid_to_nasid, -1,
+ sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));
for_each_online_node(cnode)
- pda->cnodeid_to_nasid_table[cnode] =
- pxm_to_nasid(nid_to_pxm_map[cnode]);
+ sn_cnodeid_to_nasid[cnode] =
+ pxm_to_nasid(nid_to_pxm_map[cnode]);
numionodes = num_online_nodes();
scan_for_ionodes();
@@ -477,7 +483,8 @@ void __init sn_cpu_init(void)
cnode = nasid_to_cnodeid(nasid);
- pda->p_nodepda = nodepdaindr[cnode];
+ sn_nodepda = nodepdaindr[cnode];
+
pda->led_address =
(typeof(pda->led_address)) (LED0 + (slice << LED_CPU_SHIFT));
pda->led_state = LED_ALWAYS_SET;
@@ -486,15 +493,18 @@ void __init sn_cpu_init(void)
pda->idle_flag = 0;
if (cpuid != 0) {
- memcpy(pda->cnodeid_to_nasid_table,
- pdacpu(0)->cnodeid_to_nasid_table,
- sizeof(pda->cnodeid_to_nasid_table));
+ /* copy cpu 0's sn_cnodeid_to_nasid table to this cpu's */
+ memcpy(sn_cnodeid_to_nasid,
+ (&per_cpu(__sn_cnodeid_to_nasid, 0)),
+ sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));
}
/*
* Check for WARs.
* Only needs to be done once, on BSP.
- * Has to be done after loop above, because it uses pda.cnodeid_to_nasid_table[i].
+ * Has to be done after loop above, because it uses this cpu's
+ * sn_cnodeid_to_nasid table which was just initialized if this
+ * isn't cpu 0.
* Has to be done before assignment below.
*/
if (!wars_have_been_checked) {
@@ -580,8 +590,7 @@ static void __init scan_for_ionodes(void)
brd = find_lboard_any(brd, KLTYPE_SNIA);
while (brd) {
- pda->cnodeid_to_nasid_table[numionodes] =
- brd->brd_nasid;
+ sn_cnodeid_to_nasid[numionodes] = brd->brd_nasid;
physical_node_map[brd->brd_nasid] = numionodes;
root_lboard[numionodes] = brd;
numionodes++;
@@ -602,8 +611,7 @@ static void __init scan_for_ionodes(void)
root_lboard[nasid_to_cnodeid(nasid)],
KLTYPE_TIO);
while (brd) {
- pda->cnodeid_to_nasid_table[numionodes] =
- brd->brd_nasid;
+ sn_cnodeid_to_nasid[numionodes] = brd->brd_nasid;
physical_node_map[brd->brd_nasid] = numionodes;
root_lboard[numionodes] = brd;
numionodes++;
@@ -614,7 +622,6 @@ static void __init scan_for_ionodes(void)
brd = find_lboard_any(brd, KLTYPE_TIO);
}
}
-
}
int
@@ -623,7 +630,8 @@ nasid_slice_to_cpuid(int nasid, int slice)
long cpu;
for (cpu=0; cpu < NR_CPUS; cpu++)
- if (nodepda->phys_cpuid[cpu].nasid == nasid && nodepda->phys_cpuid[cpu].slice == slice)
+ if (cpuid_to_nasid(cpu) == nasid &&
+ cpuid_to_slice(cpu) == slice)
return cpu;
return -1;
diff --git a/arch/ia64/sn/kernel/tiocx.c b/arch/ia64/sn/kernel/tiocx.c
index 66190d7e492d..ab9b5f35c2a7 100644
--- a/arch/ia64/sn/kernel/tiocx.c
+++ b/arch/ia64/sn/kernel/tiocx.c
@@ -21,6 +21,8 @@
#include <asm/sn/types.h>
#include <asm/sn/shubio.h>
#include <asm/sn/tiocx.h>
+#include <asm/sn/l1.h>
+#include <asm/sn/module.h>
#include "tio.h"
#include "xtalk/xwidgetdev.h"
#include "xtalk/hubdev.h"
@@ -308,14 +310,12 @@ void tiocx_irq_free(struct sn_irq_info *sn_irq_info)
}
}
-uint64_t
-tiocx_dma_addr(uint64_t addr)
+uint64_t tiocx_dma_addr(uint64_t addr)
{
return PHYS_TO_TIODMA(addr);
}
-uint64_t
-tiocx_swin_base(int nasid)
+uint64_t tiocx_swin_base(int nasid)
{
return TIO_SWIN_BASE(nasid, TIOCX_CORELET);
}
@@ -330,19 +330,6 @@ EXPORT_SYMBOL(tiocx_bus_type);
EXPORT_SYMBOL(tiocx_dma_addr);
EXPORT_SYMBOL(tiocx_swin_base);
-static uint64_t tiocx_get_hubdev_info(u64 handle, u64 address)
-{
-
- struct ia64_sal_retval ret_stuff;
- ret_stuff.status = 0;
- ret_stuff.v0 = 0;
-
- ia64_sal_oemcall_nolock(&ret_stuff,
- SN_SAL_IOIF_GET_HUBDEV_INFO,
- handle, address, 0, 0, 0, 0, 0);
- return ret_stuff.v0;
-}
-
static void tio_conveyor_set(nasid_t nasid, int enable_flag)
{
uint64_t ice_frz;
@@ -379,7 +366,29 @@ static void tio_corelet_reset(nasid_t nasid, int corelet)
udelay(2000);
}
-static int fpga_attached(nasid_t nasid)
+static int tiocx_btchar_get(int nasid)
+{
+ moduleid_t module_id;
+ geoid_t geoid;
+ int cnodeid;
+
+ cnodeid = nasid_to_cnodeid(nasid);
+ geoid = cnodeid_get_geoid(cnodeid);
+ module_id = geo_module(geoid);
+ return MODULE_GET_BTCHAR(module_id);
+}
+
+static int is_fpga_brick(int nasid)
+{
+ switch (tiocx_btchar_get(nasid)) {
+ case L1_BRICKTYPE_SA:
+ case L1_BRICKTYPE_ATHENA:
+ return 1;
+ }
+ return 0;
+}
+
+static int bitstream_loaded(nasid_t nasid)
{
uint64_t cx_credits;
@@ -396,7 +405,7 @@ static int tiocx_reload(struct cx_dev *cx_dev)
int mfg_num = CX_DEV_NONE;
nasid_t nasid = cx_dev->cx_id.nasid;
- if (fpga_attached(nasid)) {
+ if (bitstream_loaded(nasid)) {
uint64_t cx_id;
cx_id =
@@ -427,9 +436,10 @@ static ssize_t show_cxdev_control(struct device *dev, char *buf)
{
struct cx_dev *cx_dev = to_cx_dev(dev);
- return sprintf(buf, "0x%x 0x%x 0x%x\n",
+ return sprintf(buf, "0x%x 0x%x 0x%x %d\n",
cx_dev->cx_id.nasid,
- cx_dev->cx_id.part_num, cx_dev->cx_id.mfg_num);
+ cx_dev->cx_id.part_num, cx_dev->cx_id.mfg_num,
+ tiocx_btchar_get(cx_dev->cx_id.nasid));
}
static ssize_t store_cxdev_control(struct device *dev, const char *buf,
@@ -475,20 +485,14 @@ static int __init tiocx_init(void)
if ((nasid = cnodeid_to_nasid(cnodeid)) < 0)
break; /* No more nasids .. bail out of loop */
- if (nasid & 0x1) { /* TIO's are always odd */
+ if ((nasid & 0x1) && is_fpga_brick(nasid)) {
struct hubdev_info *hubdev;
- uint64_t status;
struct xwidget_info *widgetp;
DBG("Found TIO at nasid 0x%x\n", nasid);
hubdev =
(struct hubdev_info *)(NODEPDA(cnodeid)->pdinfo);
- status =
- tiocx_get_hubdev_info(nasid,
- (uint64_t) __pa(hubdev));
- if (status)
- continue;
widgetp = &hubdev->hdi_xwidget_info[TIOCX_CORELET];
diff --git a/arch/ia64/sn/kernel/xp_main.c b/arch/ia64/sn/kernel/xp_main.c
new file mode 100644
index 000000000000..3be52a34c80f
--- /dev/null
+++ b/arch/ia64/sn/kernel/xp_main.c
@@ -0,0 +1,289 @@
+/*
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ * Copyright (c) 2004-2005 Silicon Graphics, Inc. All Rights Reserved.
+ */
+
+
+/*
+ * Cross Partition (XP) base.
+ *
+ * XP provides a base from which its users can interact
+ * with XPC, yet not be dependent on XPC.
+ *
+ */
+
+
+#include <linux/kernel.h>
+#include <linux/interrupt.h>
+#include <linux/module.h>
+#include <asm/sn/intr.h>
+#include <asm/sn/sn_sal.h>
+#include <asm/sn/xp.h>
+
+
+/*
+ * Target of nofault PIO read.
+ */
+u64 xp_nofault_PIOR_target;
+
+
+/*
+ * xpc_registrations[] keeps track of xpc_connect()'s done by the kernel-level
+ * users of XPC.
+ */
+struct xpc_registration xpc_registrations[XPC_NCHANNELS];
+
+
+/*
+ * Initialize the XPC interface to indicate that XPC isn't loaded.
+ */
+static enum xpc_retval xpc_notloaded(void) { return xpcNotLoaded; }
+
+struct xpc_interface xpc_interface = {
+ (void (*)(int)) xpc_notloaded,
+ (void (*)(int)) xpc_notloaded,
+ (enum xpc_retval (*)(partid_t, int, u32, void **)) xpc_notloaded,
+ (enum xpc_retval (*)(partid_t, int, void *)) xpc_notloaded,
+ (enum xpc_retval (*)(partid_t, int, void *, xpc_notify_func, void *))
+ xpc_notloaded,
+ (void (*)(partid_t, int, void *)) xpc_notloaded,
+ (enum xpc_retval (*)(partid_t, void *)) xpc_notloaded
+};
+
+
+/*
+ * XPC calls this when it (the XPC module) has been loaded.
+ */
+void
+xpc_set_interface(void (*connect)(int),
+ void (*disconnect)(int),
+ enum xpc_retval (*allocate)(partid_t, int, u32, void **),
+ enum xpc_retval (*send)(partid_t, int, void *),
+ enum xpc_retval (*send_notify)(partid_t, int, void *,
+ xpc_notify_func, void *),
+ void (*received)(partid_t, int, void *),
+ enum xpc_retval (*partid_to_nasids)(partid_t, void *))
+{
+ xpc_interface.connect = connect;
+ xpc_interface.disconnect = disconnect;
+ xpc_interface.allocate = allocate;
+ xpc_interface.send = send;
+ xpc_interface.send_notify = send_notify;
+ xpc_interface.received = received;
+ xpc_interface.partid_to_nasids = partid_to_nasids;
+}
+
+
+/*
+ * XPC calls this when it (the XPC module) is being unloaded.
+ */
+void
+xpc_clear_interface(void)
+{
+ xpc_interface.connect = (void (*)(int)) xpc_notloaded;
+ xpc_interface.disconnect = (void (*)(int)) xpc_notloaded;
+ xpc_interface.allocate = (enum xpc_retval (*)(partid_t, int, u32,
+ void **)) xpc_notloaded;
+ xpc_interface.send = (enum xpc_retval (*)(partid_t, int, void *))
+ xpc_notloaded;
+ xpc_interface.send_notify = (enum xpc_retval (*)(partid_t, int, void *,
+ xpc_notify_func, void *)) xpc_notloaded;
+ xpc_interface.received = (void (*)(partid_t, int, void *))
+ xpc_notloaded;
+ xpc_interface.partid_to_nasids = (enum xpc_retval (*)(partid_t, void *))
+ xpc_notloaded;
+}
+
+
+/*
+ * Register for automatic establishment of a channel connection whenever
+ * a partition comes up.
+ *
+ * Arguments:
+ *
+ * ch_number - channel # to register for connection.
+ * func - function to call for asynchronous notification of channel
+ * state changes (i.e., connection, disconnection, error) and
+ * the arrival of incoming messages.
+ * key - pointer to optional user-defined value that gets passed back
+ * to the user on any callouts made to func.
+ * payload_size - size in bytes of the XPC message's payload area which
+ * contains a user-defined message. The user should make
+ * this large enough to hold their largest message.
+ * nentries - max #of XPC message entries a message queue can contain.
+ * The actual number, which is determined when a connection
+ * is established and may be less then requested, will be
+ * passed to the user via the xpcConnected callout.
+ * assigned_limit - max number of kthreads allowed to be processing
+ * messages (per connection) at any given instant.
+ * idle_limit - max number of kthreads allowed to be idle at any given
+ * instant.
+ */
+enum xpc_retval
+xpc_connect(int ch_number, xpc_channel_func func, void *key, u16 payload_size,
+ u16 nentries, u32 assigned_limit, u32 idle_limit)
+{
+ struct xpc_registration *registration;
+
+
+ DBUG_ON(ch_number < 0 || ch_number >= XPC_NCHANNELS);
+ DBUG_ON(payload_size == 0 || nentries == 0);
+ DBUG_ON(func == NULL);
+ DBUG_ON(assigned_limit == 0 || idle_limit > assigned_limit);
+
+ registration = &xpc_registrations[ch_number];
+
+ if (down_interruptible(&registration->sema) != 0) {
+ return xpcInterrupted;
+ }
+
+ /* if XPC_CHANNEL_REGISTERED(ch_number) */
+ if (registration->func != NULL) {
+ up(&registration->sema);
+ return xpcAlreadyRegistered;
+ }
+
+ /* register the channel for connection */
+ registration->msg_size = XPC_MSG_SIZE(payload_size);
+ registration->nentries = nentries;
+ registration->assigned_limit = assigned_limit;
+ registration->idle_limit = idle_limit;
+ registration->key = key;
+ registration->func = func;
+
+ up(&registration->sema);
+
+ xpc_interface.connect(ch_number);
+
+ return xpcSuccess;
+}
+
+
+/*
+ * Remove the registration for automatic connection of the specified channel
+ * when a partition comes up.
+ *
+ * Before returning this xpc_disconnect() will wait for all connections on the
+ * specified channel have been closed/torndown. So the caller can be assured
+ * that they will not be receiving any more callouts from XPC to their
+ * function registered via xpc_connect().
+ *
+ * Arguments:
+ *
+ * ch_number - channel # to unregister.
+ */
+void
+xpc_disconnect(int ch_number)
+{
+ struct xpc_registration *registration;
+
+
+ DBUG_ON(ch_number < 0 || ch_number >= XPC_NCHANNELS);
+
+ registration = &xpc_registrations[ch_number];
+
+ /*
+ * We've decided not to make this a down_interruptible(), since we
+ * figured XPC's users will just turn around and call xpc_disconnect()
+ * again anyways, so we might as well wait, if need be.
+ */
+ down(&registration->sema);
+
+ /* if !XPC_CHANNEL_REGISTERED(ch_number) */
+ if (registration->func == NULL) {
+ up(&registration->sema);
+ return;
+ }
+
+ /* remove the connection registration for the specified channel */
+ registration->func = NULL;
+ registration->key = NULL;
+ registration->nentries = 0;
+ registration->msg_size = 0;
+ registration->assigned_limit = 0;
+ registration->idle_limit = 0;
+
+ xpc_interface.disconnect(ch_number);
+
+ up(&registration->sema);
+
+ return;
+}
+
+
+int __init
+xp_init(void)
+{
+ int ret, ch_number;
+ u64 func_addr = *(u64 *) xp_nofault_PIOR;
+ u64 err_func_addr = *(u64 *) xp_error_PIOR;
+
+
+ if (!ia64_platform_is("sn2")) {
+ return -ENODEV;
+ }
+
+ /*
+ * Register a nofault code region which performs a cross-partition
+ * PIO read. If the PIO read times out, the MCA handler will consume
+ * the error and return to a kernel-provided instruction to indicate
+ * an error. This PIO read exists because it is guaranteed to timeout
+ * if the destination is down (AMO operations do not timeout on at
+ * least some CPUs on Shubs <= v1.2, which unfortunately we have to
+ * work around).
+ */
+ if ((ret = sn_register_nofault_code(func_addr, err_func_addr,
+ err_func_addr, 1, 1)) != 0) {
+ printk(KERN_ERR "XP: can't register nofault code, error=%d\n",
+ ret);
+ }
+ /*
+ * Setup the nofault PIO read target. (There is no special reason why
+ * SH_IPI_ACCESS was selected.)
+ */
+ if (is_shub2()) {
+ xp_nofault_PIOR_target = SH2_IPI_ACCESS0;
+ } else {
+ xp_nofault_PIOR_target = SH1_IPI_ACCESS;
+ }
+
+ /* initialize the connection registration semaphores */
+ for (ch_number = 0; ch_number < XPC_NCHANNELS; ch_number++) {
+ sema_init(&xpc_registrations[ch_number].sema, 1); /* mutex */
+ }
+
+ return 0;
+}
+module_init(xp_init);
+
+
+void __exit
+xp_exit(void)
+{
+ u64 func_addr = *(u64 *) xp_nofault_PIOR;
+ u64 err_func_addr = *(u64 *) xp_error_PIOR;
+
+
+ /* unregister the PIO read nofault code region */
+ (void) sn_register_nofault_code(func_addr, err_func_addr,
+ err_func_addr, 1, 0);
+}
+module_exit(xp_exit);
+
+
+MODULE_AUTHOR("Silicon Graphics, Inc.");
+MODULE_DESCRIPTION("Cross Partition (XP) base");
+MODULE_LICENSE("GPL");
+
+EXPORT_SYMBOL(xp_nofault_PIOR);
+EXPORT_SYMBOL(xp_nofault_PIOR_target);
+EXPORT_SYMBOL(xpc_registrations);
+EXPORT_SYMBOL(xpc_interface);
+EXPORT_SYMBOL(xpc_clear_interface);
+EXPORT_SYMBOL(xpc_set_interface);
+EXPORT_SYMBOL(xpc_connect);
+EXPORT_SYMBOL(xpc_disconnect);
+
diff --git a/arch/ia64/sn/kernel/xp_nofault.S b/arch/ia64/sn/kernel/xp_nofault.S
new file mode 100644
index 000000000000..b772543053c9
--- /dev/null
+++ b/arch/ia64/sn/kernel/xp_nofault.S
@@ -0,0 +1,31 @@
+/*
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ * Copyright (c) 2004-2005 Silicon Graphics, Inc. All Rights Reserved.
+ */
+
+
+/*
+ * The xp_nofault_PIOR function takes a pointer to a remote PIO register
+ * and attempts to load and consume a value from it. This function
+ * will be registered as a nofault code block. In the event that the
+ * PIO read fails, the MCA handler will force the error to look
+ * corrected and vector to the xp_error_PIOR which will return an error.
+ *
+ * extern int xp_nofault_PIOR(void *remote_register);
+ */
+
+ .global xp_nofault_PIOR
+xp_nofault_PIOR:
+ mov r8=r0 // Stage a success return value
+ ld8.acq r9=[r32];; // PIO Read the specified register
+ adds r9=1,r9 // Add to force a consume
+ br.ret.sptk.many b0;; // Return success
+
+ .global xp_error_PIOR
+xp_error_PIOR:
+ mov r8=1 // Return value of 1
+ br.ret.sptk.many b0;; // Return failure
+
diff --git a/arch/ia64/sn/kernel/xpc.h b/arch/ia64/sn/kernel/xpc.h
new file mode 100644
index 000000000000..1a0aed8490d1
--- /dev/null
+++ b/arch/ia64/sn/kernel/xpc.h
@@ -0,0 +1,991 @@
+/*
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ * Copyright (c) 2004-2005 Silicon Graphics, Inc. All Rights Reserved.
+ */
+
+
+/*
+ * Cross Partition Communication (XPC) structures and macros.
+ */
+
+#ifndef _IA64_SN_KERNEL_XPC_H
+#define _IA64_SN_KERNEL_XPC_H
+
+
+#include <linux/config.h>
+#include <linux/interrupt.h>
+#include <linux/sysctl.h>
+#include <linux/device.h>
+#include <asm/pgtable.h>
+#include <asm/processor.h>
+#include <asm/sn/bte.h>
+#include <asm/sn/clksupport.h>
+#include <asm/sn/addrs.h>
+#include <asm/sn/mspec.h>
+#include <asm/sn/shub_mmr.h>
+#include <asm/sn/xp.h>
+
+
+/*
+ * XPC Version numbers consist of a major and minor number. XPC can always
+ * talk to versions with same major #, and never talk to versions with a
+ * different major #.
+ */
+#define _XPC_VERSION(_maj, _min) (((_maj) << 4) | ((_min) & 0xf))
+#define XPC_VERSION_MAJOR(_v) ((_v) >> 4)
+#define XPC_VERSION_MINOR(_v) ((_v) & 0xf)
+
+
+/*
+ * The next macros define word or bit representations for given
+ * C-brick nasid in either the SAL provided bit array representing
+ * nasids in the partition/machine or the AMO_t array used for
+ * inter-partition initiation communications.
+ *
+ * For SN2 machines, C-Bricks are alway even numbered NASIDs. As
+ * such, some space will be saved by insisting that nasid information
+ * passed from SAL always be packed for C-Bricks and the
+ * cross-partition interrupts use the same packing scheme.
+ */
+#define XPC_NASID_W_INDEX(_n) (((_n) / 64) / 2)
+#define XPC_NASID_B_INDEX(_n) (((_n) / 2) & (64 - 1))
+#define XPC_NASID_IN_ARRAY(_n, _p) ((_p)[XPC_NASID_W_INDEX(_n)] & \
+ (1UL << XPC_NASID_B_INDEX(_n)))
+#define XPC_NASID_FROM_W_B(_w, _b) (((_w) * 64 + (_b)) * 2)
+
+#define XPC_HB_DEFAULT_INTERVAL 5 /* incr HB every x secs */
+#define XPC_HB_CHECK_DEFAULT_TIMEOUT 20 /* check HB every x secs */
+
+/* define the process name of HB checker and the CPU it is pinned to */
+#define XPC_HB_CHECK_THREAD_NAME "xpc_hb"
+#define XPC_HB_CHECK_CPU 0
+
+/* define the process name of the discovery thread */
+#define XPC_DISCOVERY_THREAD_NAME "xpc_discovery"
+
+
+#define XPC_HB_ALLOWED(_p, _v) ((_v)->heartbeating_to_mask & (1UL << (_p)))
+#define XPC_ALLOW_HB(_p, _v) (_v)->heartbeating_to_mask |= (1UL << (_p))
+#define XPC_DISALLOW_HB(_p, _v) (_v)->heartbeating_to_mask &= (~(1UL << (_p)))
+
+
+/*
+ * Reserved Page provided by SAL.
+ *
+ * SAL provides one page per partition of reserved memory. When SAL
+ * initialization is complete, SAL_signature, SAL_version, partid,
+ * part_nasids, and mach_nasids are set.
+ *
+ * Note: Until vars_pa is set, the partition XPC code has not been initialized.
+ */
+struct xpc_rsvd_page {
+ u64 SAL_signature; /* SAL unique signature */
+ u64 SAL_version; /* SAL specified version */
+ u8 partid; /* partition ID from SAL */
+ u8 version;
+ u8 pad[6]; /* pad to u64 align */
+ u64 vars_pa;
+ u64 part_nasids[XP_NASID_MASK_WORDS] ____cacheline_aligned;
+ u64 mach_nasids[XP_NASID_MASK_WORDS] ____cacheline_aligned;
+};
+#define XPC_RP_VERSION _XPC_VERSION(1,0) /* version 1.0 of the reserved page */
+
+#define XPC_RSVD_PAGE_ALIGNED_SIZE \
+ (L1_CACHE_ALIGN(sizeof(struct xpc_rsvd_page)))
+
+
+/*
+ * Define the structures by which XPC variables can be exported to other
+ * partitions. (There are two: struct xpc_vars and struct xpc_vars_part)
+ */
+
+/*
+ * The following structure describes the partition generic variables
+ * needed by other partitions in order to properly initialize.
+ *
+ * struct xpc_vars version number also applies to struct xpc_vars_part.
+ * Changes to either structure and/or related functionality should be
+ * reflected by incrementing either the major or minor version numbers
+ * of struct xpc_vars.
+ */
+struct xpc_vars {
+ u8 version;
+ u64 heartbeat;
+ u64 heartbeating_to_mask;
+ u64 kdb_status; /* 0 = machine running */
+ int act_nasid;
+ int act_phys_cpuid;
+ u64 vars_part_pa;
+ u64 amos_page_pa; /* paddr of page of AMOs from MSPEC driver */
+ AMO_t *amos_page; /* vaddr of page of AMOs from MSPEC driver */
+ AMO_t *act_amos; /* pointer to the first activation AMO */
+};
+#define XPC_V_VERSION _XPC_VERSION(3,0) /* version 3.0 of the cross vars */
+
+#define XPC_VARS_ALIGNED_SIZE (L1_CACHE_ALIGN(sizeof(struct xpc_vars)))
+
+/*
+ * The following structure describes the per partition specific variables.
+ *
+ * An array of these structures, one per partition, will be defined. As a
+ * partition becomes active XPC will copy the array entry corresponding to
+ * itself from that partition. It is desirable that the size of this
+ * structure evenly divide into a cacheline, such that none of the entries
+ * in this array crosses a cacheline boundary. As it is now, each entry
+ * occupies half a cacheline.
+ */
+struct xpc_vars_part {
+ u64 magic;
+
+ u64 openclose_args_pa; /* physical address of open and close args */
+ u64 GPs_pa; /* physical address of Get/Put values */
+
+ u64 IPI_amo_pa; /* physical address of IPI AMO_t structure */
+ int IPI_nasid; /* nasid of where to send IPIs */
+ int IPI_phys_cpuid; /* physical CPU ID of where to send IPIs */
+
+ u8 nchannels; /* #of defined channels supported */
+
+ u8 reserved[23]; /* pad to a full 64 bytes */
+};
+
+/*
+ * The vars_part MAGIC numbers play a part in the first contact protocol.
+ *
+ * MAGIC1 indicates that the per partition specific variables for a remote
+ * partition have been initialized by this partition.
+ *
+ * MAGIC2 indicates that this partition has pulled the remote partititions
+ * per partition variables that pertain to this partition.
+ */
+#define XPC_VP_MAGIC1 0x0053524156435058L /* 'XPCVARS\0'L (little endian) */
+#define XPC_VP_MAGIC2 0x0073726176435058L /* 'XPCvars\0'L (little endian) */
+
+
+
+/*
+ * Functions registered by add_timer() or called by kernel_thread() only
+ * allow for a single 64-bit argument. The following macros can be used to
+ * pack and unpack two (32-bit, 16-bit or 8-bit) arguments into or out from
+ * the passed argument.
+ */
+#define XPC_PACK_ARGS(_arg1, _arg2) \
+ ((((u64) _arg1) & 0xffffffff) | \
+ ((((u64) _arg2) & 0xffffffff) << 32))
+
+#define XPC_UNPACK_ARG1(_args) (((u64) _args) & 0xffffffff)
+#define XPC_UNPACK_ARG2(_args) ((((u64) _args) >> 32) & 0xffffffff)
+
+
+
+/*
+ * Define a Get/Put value pair (pointers) used with a message queue.
+ */
+struct xpc_gp {
+ s64 get; /* Get value */
+ s64 put; /* Put value */
+};
+
+#define XPC_GP_SIZE \
+ L1_CACHE_ALIGN(sizeof(struct xpc_gp) * XPC_NCHANNELS)
+
+
+
+/*
+ * Define a structure that contains arguments associated with opening and
+ * closing a channel.
+ */
+struct xpc_openclose_args {
+ u16 reason; /* reason why channel is closing */
+ u16 msg_size; /* sizeof each message entry */
+ u16 remote_nentries; /* #of message entries in remote msg queue */
+ u16 local_nentries; /* #of message entries in local msg queue */
+ u64 local_msgqueue_pa; /* physical address of local message queue */
+};
+
+#define XPC_OPENCLOSE_ARGS_SIZE \
+ L1_CACHE_ALIGN(sizeof(struct xpc_openclose_args) * XPC_NCHANNELS)
+
+
+
+/* struct xpc_msg flags */
+
+#define XPC_M_DONE 0x01 /* msg has been received/consumed */
+#define XPC_M_READY 0x02 /* msg is ready to be sent */
+#define XPC_M_INTERRUPT 0x04 /* send interrupt when msg consumed */
+
+
+#define XPC_MSG_ADDRESS(_payload) \
+ ((struct xpc_msg *)((u8 *)(_payload) - XPC_MSG_PAYLOAD_OFFSET))
+
+
+
+/*
+ * Defines notify entry.
+ *
+ * This is used to notify a message's sender that their message was received
+ * and consumed by the intended recipient.
+ */
+struct xpc_notify {
+ struct semaphore sema; /* notify semaphore */
+ u8 type; /* type of notification */
+
+ /* the following two fields are only used if type == XPC_N_CALL */
+ xpc_notify_func func; /* user's notify function */
+ void *key; /* pointer to user's key */
+};
+
+/* struct xpc_notify type of notification */
+
+#define XPC_N_CALL 0x01 /* notify function provided by user */
+
+
+
+/*
+ * Define the structure that manages all the stuff required by a channel. In
+ * particular, they are used to manage the messages sent across the channel.
+ *
+ * This structure is private to a partition, and is NOT shared across the
+ * partition boundary.
+ *
+ * There is an array of these structures for each remote partition. It is
+ * allocated at the time a partition becomes active. The array contains one
+ * of these structures for each potential channel connection to that partition.
+ *
+ * Each of these structures manages two message queues (circular buffers).
+ * They are allocated at the time a channel connection is made. One of
+ * these message queues (local_msgqueue) holds the locally created messages
+ * that are destined for the remote partition. The other of these message
+ * queues (remote_msgqueue) is a locally cached copy of the remote partition's
+ * own local_msgqueue.
+ *
+ * The following is a description of the Get/Put pointers used to manage these
+ * two message queues. Consider the local_msgqueue to be on one partition
+ * and the remote_msgqueue to be its cached copy on another partition. A
+ * description of what each of the lettered areas contains is included.
+ *
+ *
+ * local_msgqueue remote_msgqueue
+ *
+ * |/////////| |/////////|
+ * w_remote_GP.get --> +---------+ |/////////|
+ * | F | |/////////|
+ * remote_GP.get --> +---------+ +---------+ <-- local_GP->get
+ * | | | |
+ * | | | E |
+ * | | | |
+ * | | +---------+ <-- w_local_GP.get
+ * | B | |/////////|
+ * | | |////D////|
+ * | | |/////////|
+ * | | +---------+ <-- w_remote_GP.put
+ * | | |////C////|
+ * local_GP->put --> +---------+ +---------+ <-- remote_GP.put
+ * | | |/////////|
+ * | A | |/////////|
+ * | | |/////////|
+ * w_local_GP.put --> +---------+ |/////////|
+ * |/////////| |/////////|
+ *
+ *
+ * ( remote_GP.[get|put] are cached copies of the remote
+ * partition's local_GP->[get|put], and thus their values can
+ * lag behind their counterparts on the remote partition. )
+ *
+ *
+ * A - Messages that have been allocated, but have not yet been sent to the
+ * remote partition.
+ *
+ * B - Messages that have been sent, but have not yet been acknowledged by the
+ * remote partition as having been received.
+ *
+ * C - Area that needs to be prepared for the copying of sent messages, by
+ * the clearing of the message flags of any previously received messages.
+ *
+ * D - Area into which sent messages are to be copied from the remote
+ * partition's local_msgqueue and then delivered to their intended
+ * recipients. [ To allow for a multi-message copy, another pointer
+ * (next_msg_to_pull) has been added to keep track of the next message
+ * number needing to be copied (pulled). It chases after w_remote_GP.put.
+ * Any messages lying between w_local_GP.get and next_msg_to_pull have
+ * been copied and are ready to be delivered. ]
+ *
+ * E - Messages that have been copied and delivered, but have not yet been
+ * acknowledged by the recipient as having been received.
+ *
+ * F - Messages that have been acknowledged, but XPC has not yet notified the
+ * sender that the message was received by its intended recipient.
+ * This is also an area that needs to be prepared for the allocating of
+ * new messages, by the clearing of the message flags of the acknowledged
+ * messages.
+ */
+struct xpc_channel {
+ partid_t partid; /* ID of remote partition connected */
+ spinlock_t lock; /* lock for updating this structure */
+ u32 flags; /* general flags */
+
+ enum xpc_retval reason; /* reason why channel is disconnect'g */
+ int reason_line; /* line# disconnect initiated from */
+
+ u16 number; /* channel # */
+
+ u16 msg_size; /* sizeof each msg entry */
+ u16 local_nentries; /* #of msg entries in local msg queue */
+ u16 remote_nentries; /* #of msg entries in remote msg queue*/
+
+ void *local_msgqueue_base; /* base address of kmalloc'd space */
+ struct xpc_msg *local_msgqueue; /* local message queue */
+ void *remote_msgqueue_base; /* base address of kmalloc'd space */
+ struct xpc_msg *remote_msgqueue;/* cached copy of remote partition's */
+ /* local message queue */
+ u64 remote_msgqueue_pa; /* phys addr of remote partition's */
+ /* local message queue */
+
+ atomic_t references; /* #of external references to queues */
+
+ atomic_t n_on_msg_allocate_wq; /* #on msg allocation wait queue */
+ wait_queue_head_t msg_allocate_wq; /* msg allocation wait queue */
+
+ /* queue of msg senders who want to be notified when msg received */
+
+ atomic_t n_to_notify; /* #of msg senders to notify */
+ struct xpc_notify *notify_queue;/* notify queue for messages sent */
+
+ xpc_channel_func func; /* user's channel function */
+ void *key; /* pointer to user's key */
+
+ struct semaphore msg_to_pull_sema; /* next msg to pull serialization */
+ struct semaphore teardown_sema; /* wait for teardown completion */
+
+ struct xpc_openclose_args *local_openclose_args; /* args passed on */
+ /* opening or closing of channel */
+
+ /* various flavors of local and remote Get/Put values */
+
+ struct xpc_gp *local_GP; /* local Get/Put values */
+ struct xpc_gp remote_GP; /* remote Get/Put values */
+ struct xpc_gp w_local_GP; /* working local Get/Put values */
+ struct xpc_gp w_remote_GP; /* working remote Get/Put values */
+ s64 next_msg_to_pull; /* Put value of next msg to pull */
+
+ /* kthread management related fields */
+
+// >>> rethink having kthreads_assigned_limit and kthreads_idle_limit; perhaps
+// >>> allow the assigned limit be unbounded and let the idle limit be dynamic
+// >>> dependent on activity over the last interval of time
+ atomic_t kthreads_assigned; /* #of kthreads assigned to channel */
+ u32 kthreads_assigned_limit; /* limit on #of kthreads assigned */
+ atomic_t kthreads_idle; /* #of kthreads idle waiting for work */
+ u32 kthreads_idle_limit; /* limit on #of kthreads idle */
+ atomic_t kthreads_active; /* #of kthreads actively working */
+ // >>> following field is temporary
+ u32 kthreads_created; /* total #of kthreads created */
+
+ wait_queue_head_t idle_wq; /* idle kthread wait queue */
+
+} ____cacheline_aligned;
+
+
+/* struct xpc_channel flags */
+
+#define XPC_C_WASCONNECTED 0x00000001 /* channel was connected */
+
+#define XPC_C_ROPENREPLY 0x00000002 /* remote open channel reply */
+#define XPC_C_OPENREPLY 0x00000004 /* local open channel reply */
+#define XPC_C_ROPENREQUEST 0x00000008 /* remote open channel request */
+#define XPC_C_OPENREQUEST 0x00000010 /* local open channel request */
+
+#define XPC_C_SETUP 0x00000020 /* channel's msgqueues are alloc'd */
+#define XPC_C_CONNECTCALLOUT 0x00000040 /* channel connected callout made */
+#define XPC_C_CONNECTED 0x00000080 /* local channel is connected */
+#define XPC_C_CONNECTING 0x00000100 /* channel is being connected */
+
+#define XPC_C_RCLOSEREPLY 0x00000200 /* remote close channel reply */
+#define XPC_C_CLOSEREPLY 0x00000400 /* local close channel reply */
+#define XPC_C_RCLOSEREQUEST 0x00000800 /* remote close channel request */
+#define XPC_C_CLOSEREQUEST 0x00001000 /* local close channel request */
+
+#define XPC_C_DISCONNECTED 0x00002000 /* channel is disconnected */
+#define XPC_C_DISCONNECTING 0x00004000 /* channel is being disconnected */
+
+
+
+/*
+ * Manages channels on a partition basis. There is one of these structures
+ * for each partition (a partition will never utilize the structure that
+ * represents itself).
+ */
+struct xpc_partition {
+
+ /* XPC HB infrastructure */
+
+ u64 remote_rp_pa; /* phys addr of partition's rsvd pg */
+ u64 remote_vars_pa; /* phys addr of partition's vars */
+ u64 remote_vars_part_pa; /* phys addr of partition's vars part */
+ u64 last_heartbeat; /* HB at last read */
+ u64 remote_amos_page_pa; /* phys addr of partition's amos page */
+ int remote_act_nasid; /* active part's act/deact nasid */
+ int remote_act_phys_cpuid; /* active part's act/deact phys cpuid */
+ u32 act_IRQ_rcvd; /* IRQs since activation */
+ spinlock_t act_lock; /* protect updating of act_state */
+ u8 act_state; /* from XPC HB viewpoint */
+ enum xpc_retval reason; /* reason partition is deactivating */
+ int reason_line; /* line# deactivation initiated from */
+ int reactivate_nasid; /* nasid in partition to reactivate */
+
+
+ /* XPC infrastructure referencing and teardown control */
+
+ u8 setup_state; /* infrastructure setup state */
+ wait_queue_head_t teardown_wq; /* kthread waiting to teardown infra */
+ atomic_t references; /* #of references to infrastructure */
+
+
+ /*
+ * NONE OF THE PRECEDING FIELDS OF THIS STRUCTURE WILL BE CLEARED WHEN
+ * XPC SETS UP THE NECESSARY INFRASTRUCTURE TO SUPPORT CROSS PARTITION
+ * COMMUNICATION. ALL OF THE FOLLOWING FIELDS WILL BE CLEARED. (THE
+ * 'nchannels' FIELD MUST BE THE FIRST OF THE FIELDS TO BE CLEARED.)
+ */
+
+
+ u8 nchannels; /* #of defined channels supported */
+ atomic_t nchannels_active; /* #of channels that are not DISCONNECTED */
+ struct xpc_channel *channels;/* array of channel structures */
+
+ void *local_GPs_base; /* base address of kmalloc'd space */
+ struct xpc_gp *local_GPs; /* local Get/Put values */
+ void *remote_GPs_base; /* base address of kmalloc'd space */
+ struct xpc_gp *remote_GPs;/* copy of remote partition's local Get/Put */
+ /* values */
+ u64 remote_GPs_pa; /* phys address of remote partition's local */
+ /* Get/Put values */
+
+
+ /* fields used to pass args when opening or closing a channel */
+
+ void *local_openclose_args_base; /* base address of kmalloc'd space */
+ struct xpc_openclose_args *local_openclose_args; /* local's args */
+ void *remote_openclose_args_base; /* base address of kmalloc'd space */
+ struct xpc_openclose_args *remote_openclose_args; /* copy of remote's */
+ /* args */
+ u64 remote_openclose_args_pa; /* phys addr of remote's args */
+
+
+ /* IPI sending, receiving and handling related fields */
+
+ int remote_IPI_nasid; /* nasid of where to send IPIs */
+ int remote_IPI_phys_cpuid; /* phys CPU ID of where to send IPIs */
+ AMO_t *remote_IPI_amo_va; /* address of remote IPI AMO_t structure */
+
+ AMO_t *local_IPI_amo_va; /* address of IPI AMO_t structure */
+ u64 local_IPI_amo; /* IPI amo flags yet to be handled */
+ char IPI_owner[8]; /* IPI owner's name */
+ struct timer_list dropped_IPI_timer; /* dropped IPI timer */
+
+ spinlock_t IPI_lock; /* IPI handler lock */
+
+
+ /* channel manager related fields */
+
+ atomic_t channel_mgr_requests; /* #of requests to activate chan mgr */
+ wait_queue_head_t channel_mgr_wq; /* channel mgr's wait queue */
+
+} ____cacheline_aligned;
+
+
+/* struct xpc_partition act_state values (for XPC HB) */
+
+#define XPC_P_INACTIVE 0x00 /* partition is not active */
+#define XPC_P_ACTIVATION_REQ 0x01 /* created thread to activate */
+#define XPC_P_ACTIVATING 0x02 /* activation thread started */
+#define XPC_P_ACTIVE 0x03 /* xpc_partition_up() was called */
+#define XPC_P_DEACTIVATING 0x04 /* partition deactivation initiated */
+
+
+#define XPC_DEACTIVATE_PARTITION(_p, _reason) \
+ xpc_deactivate_partition(__LINE__, (_p), (_reason))
+
+
+/* struct xpc_partition setup_state values */
+
+#define XPC_P_UNSET 0x00 /* infrastructure was never setup */
+#define XPC_P_SETUP 0x01 /* infrastructure is setup */
+#define XPC_P_WTEARDOWN 0x02 /* waiting to teardown infrastructure */
+#define XPC_P_TORNDOWN 0x03 /* infrastructure is torndown */
+
+
+/*
+ * struct xpc_partition IPI_timer #of seconds to wait before checking for
+ * dropped IPIs. These occur whenever an IPI amo write doesn't complete until
+ * after the IPI was received.
+ */
+#define XPC_P_DROPPED_IPI_WAIT (0.25 * HZ)
+
+
+#define XPC_PARTID(_p) ((partid_t) ((_p) - &xpc_partitions[0]))
+
+
+
+/* found in xp_main.c */
+extern struct xpc_registration xpc_registrations[];
+
+
+/* >>> found in xpc_main.c only */
+extern struct device *xpc_part;
+extern struct device *xpc_chan;
+extern irqreturn_t xpc_notify_IRQ_handler(int, void *, struct pt_regs *);
+extern void xpc_dropped_IPI_check(struct xpc_partition *);
+extern void xpc_activate_kthreads(struct xpc_channel *, int);
+extern void xpc_create_kthreads(struct xpc_channel *, int);
+extern void xpc_disconnect_wait(int);
+
+
+/* found in xpc_main.c and efi-xpc.c */
+extern void xpc_activate_partition(struct xpc_partition *);
+
+
+/* found in xpc_partition.c */
+extern int xpc_exiting;
+extern int xpc_hb_interval;
+extern int xpc_hb_check_interval;
+extern struct xpc_vars *xpc_vars;
+extern struct xpc_rsvd_page *xpc_rsvd_page;
+extern struct xpc_vars_part *xpc_vars_part;
+extern struct xpc_partition xpc_partitions[XP_MAX_PARTITIONS + 1];
+extern char xpc_remote_copy_buffer[];
+extern struct xpc_rsvd_page *xpc_rsvd_page_init(void);
+extern void xpc_allow_IPI_ops(void);
+extern void xpc_restrict_IPI_ops(void);
+extern int xpc_identify_act_IRQ_sender(void);
+extern enum xpc_retval xpc_mark_partition_active(struct xpc_partition *);
+extern void xpc_mark_partition_inactive(struct xpc_partition *);
+extern void xpc_discovery(void);
+extern void xpc_check_remote_hb(void);
+extern void xpc_deactivate_partition(const int, struct xpc_partition *,
+ enum xpc_retval);
+extern enum xpc_retval xpc_initiate_partid_to_nasids(partid_t, void *);
+
+
+/* found in xpc_channel.c */
+extern void xpc_initiate_connect(int);
+extern void xpc_initiate_disconnect(int);
+extern enum xpc_retval xpc_initiate_allocate(partid_t, int, u32, void **);
+extern enum xpc_retval xpc_initiate_send(partid_t, int, void *);
+extern enum xpc_retval xpc_initiate_send_notify(partid_t, int, void *,
+ xpc_notify_func, void *);
+extern void xpc_initiate_received(partid_t, int, void *);
+extern enum xpc_retval xpc_setup_infrastructure(struct xpc_partition *);
+extern enum xpc_retval xpc_pull_remote_vars_part(struct xpc_partition *);
+extern void xpc_process_channel_activity(struct xpc_partition *);
+extern void xpc_connected_callout(struct xpc_channel *);
+extern void xpc_deliver_msg(struct xpc_channel *);
+extern void xpc_disconnect_channel(const int, struct xpc_channel *,
+ enum xpc_retval, unsigned long *);
+extern void xpc_disconnected_callout(struct xpc_channel *);
+extern void xpc_partition_down(struct xpc_partition *, enum xpc_retval);
+extern void xpc_teardown_infrastructure(struct xpc_partition *);
+
+
+
+static inline void
+xpc_wakeup_channel_mgr(struct xpc_partition *part)
+{
+ if (atomic_inc_return(&part->channel_mgr_requests) == 1) {
+ wake_up(&part->channel_mgr_wq);
+ }
+}
+
+
+
+/*
+ * These next two inlines are used to keep us from tearing down a channel's
+ * msg queues while a thread may be referencing them.
+ */
+static inline void
+xpc_msgqueue_ref(struct xpc_channel *ch)
+{
+ atomic_inc(&ch->references);
+}
+
+static inline void
+xpc_msgqueue_deref(struct xpc_channel *ch)
+{
+ s32 refs = atomic_dec_return(&ch->references);
+
+ DBUG_ON(refs < 0);
+ if (refs == 0) {
+ xpc_wakeup_channel_mgr(&xpc_partitions[ch->partid]);
+ }
+}
+
+
+
+#define XPC_DISCONNECT_CHANNEL(_ch, _reason, _irqflgs) \
+ xpc_disconnect_channel(__LINE__, _ch, _reason, _irqflgs)
+
+
+/*
+ * These two inlines are used to keep us from tearing down a partition's
+ * setup infrastructure while a thread may be referencing it.
+ */
+static inline void
+xpc_part_deref(struct xpc_partition *part)
+{
+ s32 refs = atomic_dec_return(&part->references);
+
+
+ DBUG_ON(refs < 0);
+ if (refs == 0 && part->setup_state == XPC_P_WTEARDOWN) {
+ wake_up(&part->teardown_wq);
+ }
+}
+
+static inline int
+xpc_part_ref(struct xpc_partition *part)
+{
+ int setup;
+
+
+ atomic_inc(&part->references);
+ setup = (part->setup_state == XPC_P_SETUP);
+ if (!setup) {
+ xpc_part_deref(part);
+ }
+ return setup;
+}
+
+
+
+/*
+ * The following macro is to be used for the setting of the reason and
+ * reason_line fields in both the struct xpc_channel and struct xpc_partition
+ * structures.
+ */
+#define XPC_SET_REASON(_p, _reason, _line) \
+ { \
+ (_p)->reason = _reason; \
+ (_p)->reason_line = _line; \
+ }
+
+
+
+/*
+ * The following set of macros and inlines are used for the sending and
+ * receiving of IPIs (also known as IRQs). There are two flavors of IPIs,
+ * one that is associated with partition activity (SGI_XPC_ACTIVATE) and
+ * the other that is associated with channel activity (SGI_XPC_NOTIFY).
+ */
+
+static inline u64
+xpc_IPI_receive(AMO_t *amo)
+{
+ return FETCHOP_LOAD_OP(TO_AMO((u64) &amo->variable), FETCHOP_CLEAR);
+}
+
+
+static inline enum xpc_retval
+xpc_IPI_send(AMO_t *amo, u64 flag, int nasid, int phys_cpuid, int vector)
+{
+ int ret = 0;
+ unsigned long irq_flags;
+
+
+ local_irq_save(irq_flags);
+
+ FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_OR, flag);
+ sn_send_IPI_phys(nasid, phys_cpuid, vector, 0);
+
+ /*
+ * We must always use the nofault function regardless of whether we
+ * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
+ * didn't, we'd never know that the other partition is down and would
+ * keep sending IPIs and AMOs to it until the heartbeat times out.
+ */
+ ret = xp_nofault_PIOR((u64 *) GLOBAL_MMR_ADDR(NASID_GET(&amo->variable),
+ xp_nofault_PIOR_target));
+
+ local_irq_restore(irq_flags);
+
+ return ((ret == 0) ? xpcSuccess : xpcPioReadError);
+}
+
+
+/*
+ * IPIs associated with SGI_XPC_ACTIVATE IRQ.
+ */
+
+/*
+ * Flag the appropriate AMO variable and send an IPI to the specified node.
+ */
+static inline void
+xpc_activate_IRQ_send(u64 amos_page, int from_nasid, int to_nasid,
+ int to_phys_cpuid)
+{
+ int w_index = XPC_NASID_W_INDEX(from_nasid);
+ int b_index = XPC_NASID_B_INDEX(from_nasid);
+ AMO_t *amos = (AMO_t *) __va(amos_page +
+ (XP_MAX_PARTITIONS * sizeof(AMO_t)));
+
+
+ (void) xpc_IPI_send(&amos[w_index], (1UL << b_index), to_nasid,
+ to_phys_cpuid, SGI_XPC_ACTIVATE);
+}
+
+static inline void
+xpc_IPI_send_activate(struct xpc_vars *vars)
+{
+ xpc_activate_IRQ_send(vars->amos_page_pa, cnodeid_to_nasid(0),
+ vars->act_nasid, vars->act_phys_cpuid);
+}
+
+static inline void
+xpc_IPI_send_activated(struct xpc_partition *part)
+{
+ xpc_activate_IRQ_send(part->remote_amos_page_pa, cnodeid_to_nasid(0),
+ part->remote_act_nasid, part->remote_act_phys_cpuid);
+}
+
+static inline void
+xpc_IPI_send_reactivate(struct xpc_partition *part)
+{
+ xpc_activate_IRQ_send(xpc_vars->amos_page_pa, part->reactivate_nasid,
+ xpc_vars->act_nasid, xpc_vars->act_phys_cpuid);
+}
+
+
+/*
+ * IPIs associated with SGI_XPC_NOTIFY IRQ.
+ */
+
+/*
+ * Send an IPI to the remote partition that is associated with the
+ * specified channel.
+ */
+#define XPC_NOTIFY_IRQ_SEND(_ch, _ipi_f, _irq_f) \
+ xpc_notify_IRQ_send(_ch, _ipi_f, #_ipi_f, _irq_f)
+
+static inline void
+xpc_notify_IRQ_send(struct xpc_channel *ch, u8 ipi_flag, char *ipi_flag_string,
+ unsigned long *irq_flags)
+{
+ struct xpc_partition *part = &xpc_partitions[ch->partid];
+ enum xpc_retval ret;
+
+
+ if (likely(part->act_state != XPC_P_DEACTIVATING)) {
+ ret = xpc_IPI_send(part->remote_IPI_amo_va,
+ (u64) ipi_flag << (ch->number * 8),
+ part->remote_IPI_nasid,
+ part->remote_IPI_phys_cpuid,
+ SGI_XPC_NOTIFY);
+ dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n",
+ ipi_flag_string, ch->partid, ch->number, ret);
+ if (unlikely(ret != xpcSuccess)) {
+ if (irq_flags != NULL) {
+ spin_unlock_irqrestore(&ch->lock, *irq_flags);
+ }
+ XPC_DEACTIVATE_PARTITION(part, ret);
+ if (irq_flags != NULL) {
+ spin_lock_irqsave(&ch->lock, *irq_flags);
+ }
+ }
+ }
+}
+
+
+/*
+ * Make it look like the remote partition, which is associated with the
+ * specified channel, sent us an IPI. This faked IPI will be handled
+ * by xpc_dropped_IPI_check().
+ */
+#define XPC_NOTIFY_IRQ_SEND_LOCAL(_ch, _ipi_f) \
+ xpc_notify_IRQ_send_local(_ch, _ipi_f, #_ipi_f)
+
+static inline void
+xpc_notify_IRQ_send_local(struct xpc_channel *ch, u8 ipi_flag,
+ char *ipi_flag_string)
+{
+ struct xpc_partition *part = &xpc_partitions[ch->partid];
+
+
+ FETCHOP_STORE_OP(TO_AMO((u64) &part->local_IPI_amo_va->variable),
+ FETCHOP_OR, ((u64) ipi_flag << (ch->number * 8)));
+ dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n",
+ ipi_flag_string, ch->partid, ch->number);
+}
+
+
+/*
+ * The sending and receiving of IPIs includes the setting of an AMO variable
+ * to indicate the reason the IPI was sent. The 64-bit variable is divided
+ * up into eight bytes, ordered from right to left. Byte zero pertains to
+ * channel 0, byte one to channel 1, and so on. Each byte is described by
+ * the following IPI flags.
+ */
+
+#define XPC_IPI_CLOSEREQUEST 0x01
+#define XPC_IPI_CLOSEREPLY 0x02
+#define XPC_IPI_OPENREQUEST 0x04
+#define XPC_IPI_OPENREPLY 0x08
+#define XPC_IPI_MSGREQUEST 0x10
+
+
+/* given an AMO variable and a channel#, get its associated IPI flags */
+#define XPC_GET_IPI_FLAGS(_amo, _c) ((u8) (((_amo) >> ((_c) * 8)) & 0xff))
+
+#define XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(_amo) ((_amo) & 0x0f0f0f0f0f0f0f0f)
+#define XPC_ANY_MSG_IPI_FLAGS_SET(_amo) ((_amo) & 0x1010101010101010)
+
+
+static inline void
+xpc_IPI_send_closerequest(struct xpc_channel *ch, unsigned long *irq_flags)
+{
+ struct xpc_openclose_args *args = ch->local_openclose_args;
+
+
+ args->reason = ch->reason;
+
+ XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_CLOSEREQUEST, irq_flags);
+}
+
+static inline void
+xpc_IPI_send_closereply(struct xpc_channel *ch, unsigned long *irq_flags)
+{
+ XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_CLOSEREPLY, irq_flags);
+}
+
+static inline void
+xpc_IPI_send_openrequest(struct xpc_channel *ch, unsigned long *irq_flags)
+{
+ struct xpc_openclose_args *args = ch->local_openclose_args;
+
+
+ args->msg_size = ch->msg_size;
+ args->local_nentries = ch->local_nentries;
+
+ XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_OPENREQUEST, irq_flags);
+}
+
+static inline void
+xpc_IPI_send_openreply(struct xpc_channel *ch, unsigned long *irq_flags)
+{
+ struct xpc_openclose_args *args = ch->local_openclose_args;
+
+
+ args->remote_nentries = ch->remote_nentries;
+ args->local_nentries = ch->local_nentries;
+ args->local_msgqueue_pa = __pa(ch->local_msgqueue);
+
+ XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_OPENREPLY, irq_flags);
+}
+
+static inline void
+xpc_IPI_send_msgrequest(struct xpc_channel *ch)
+{
+ XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_MSGREQUEST, NULL);
+}
+
+static inline void
+xpc_IPI_send_local_msgrequest(struct xpc_channel *ch)
+{
+ XPC_NOTIFY_IRQ_SEND_LOCAL(ch, XPC_IPI_MSGREQUEST);
+}
+
+
+/*
+ * Memory for XPC's AMO variables is allocated by the MSPEC driver. These
+ * pages are located in the lowest granule. The lowest granule uses 4k pages
+ * for cached references and an alternate TLB handler to never provide a
+ * cacheable mapping for the entire region. This will prevent speculative
+ * reading of cached copies of our lines from being issued which will cause
+ * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64
+ * (XP_MAX_PARTITIONS) AMO variables for message notification (xpc_main.c)
+ * and an additional 16 AMO variables for partition activation (xpc_hb.c).
+ */
+static inline AMO_t *
+xpc_IPI_init(partid_t partid)
+{
+ AMO_t *part_amo = xpc_vars->amos_page + partid;
+
+
+ xpc_IPI_receive(part_amo);
+ return part_amo;
+}
+
+
+
+static inline enum xpc_retval
+xpc_map_bte_errors(bte_result_t error)
+{
+ switch (error) {
+ case BTE_SUCCESS: return xpcSuccess;
+ case BTEFAIL_DIR: return xpcBteDirectoryError;
+ case BTEFAIL_POISON: return xpcBtePoisonError;
+ case BTEFAIL_WERR: return xpcBteWriteError;
+ case BTEFAIL_ACCESS: return xpcBteAccessError;
+ case BTEFAIL_PWERR: return xpcBtePWriteError;
+ case BTEFAIL_PRERR: return xpcBtePReadError;
+ case BTEFAIL_TOUT: return xpcBteTimeOutError;
+ case BTEFAIL_XTERR: return xpcBteXtalkError;
+ case BTEFAIL_NOTAVAIL: return xpcBteNotAvailable;
+ default: return xpcBteUnmappedError;
+ }
+}
+
+
+
+static inline void *
+xpc_kmalloc_cacheline_aligned(size_t size, int flags, void **base)
+{
+ /* see if kmalloc will give us cachline aligned memory by default */
+ *base = kmalloc(size, flags);
+ if (*base == NULL) {
+ return NULL;
+ }
+ if ((u64) *base == L1_CACHE_ALIGN((u64) *base)) {
+ return *base;
+ }
+ kfree(*base);
+
+ /* nope, we'll have to do it ourselves */
+ *base = kmalloc(size + L1_CACHE_BYTES, flags);
+ if (*base == NULL) {
+ return NULL;
+ }
+ return (void *) L1_CACHE_ALIGN((u64) *base);
+}
+
+
+/*
+ * Check to see if there is any channel activity to/from the specified
+ * partition.
+ */
+static inline void
+xpc_check_for_channel_activity(struct xpc_partition *part)
+{
+ u64 IPI_amo;
+ unsigned long irq_flags;
+
+
+ IPI_amo = xpc_IPI_receive(part->local_IPI_amo_va);
+ if (IPI_amo == 0) {
+ return;
+ }
+
+ spin_lock_irqsave(&part->IPI_lock, irq_flags);
+ part->local_IPI_amo |= IPI_amo;
+ spin_unlock_irqrestore(&part->IPI_lock, irq_flags);
+
+ dev_dbg(xpc_chan, "received IPI from partid=%d, IPI_amo=0x%lx\n",
+ XPC_PARTID(part), IPI_amo);
+
+ xpc_wakeup_channel_mgr(part);
+}
+
+
+#endif /* _IA64_SN_KERNEL_XPC_H */
+
diff --git a/arch/ia64/sn/kernel/xpc_channel.c b/arch/ia64/sn/kernel/xpc_channel.c
new file mode 100644
index 000000000000..0bf6fbcc46d2
--- /dev/null
+++ b/arch/ia64/sn/kernel/xpc_channel.c
@@ -0,0 +1,2297 @@
+/*
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ * Copyright (c) 2004-2005 Silicon Graphics, Inc. All Rights Reserved.
+ */
+
+
+/*
+ * Cross Partition Communication (XPC) channel support.
+ *
+ * This is the part of XPC that manages the channels and
+ * sends/receives messages across them to/from other partitions.
+ *
+ */
+
+
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/sched.h>
+#include <linux/cache.h>
+#include <linux/interrupt.h>
+#include <linux/slab.h>
+#include <asm/sn/bte.h>
+#include <asm/sn/sn_sal.h>
+#include "xpc.h"
+
+
+/*
+ * Set up the initial values for the XPartition Communication channels.
+ */
+static void
+xpc_initialize_channels(struct xpc_partition *part, partid_t partid)
+{
+ int ch_number;
+ struct xpc_channel *ch;
+
+
+ for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
+ ch = &part->channels[ch_number];
+
+ ch->partid = partid;
+ ch->number = ch_number;
+ ch->flags = XPC_C_DISCONNECTED;
+
+ ch->local_GP = &part->local_GPs[ch_number];
+ ch->local_openclose_args =
+ &part->local_openclose_args[ch_number];
+
+ atomic_set(&ch->kthreads_assigned, 0);
+ atomic_set(&ch->kthreads_idle, 0);
+ atomic_set(&ch->kthreads_active, 0);
+
+ atomic_set(&ch->references, 0);
+ atomic_set(&ch->n_to_notify, 0);
+
+ spin_lock_init(&ch->lock);
+ sema_init(&ch->msg_to_pull_sema, 1); /* mutex */
+
+ atomic_set(&ch->n_on_msg_allocate_wq, 0);
+ init_waitqueue_head(&ch->msg_allocate_wq);
+ init_waitqueue_head(&ch->idle_wq);
+ }
+}
+
+
+/*
+ * Setup the infrastructure necessary to support XPartition Communication
+ * between the specified remote partition and the local one.
+ */
+enum xpc_retval
+xpc_setup_infrastructure(struct xpc_partition *part)
+{
+ int ret;
+ struct timer_list *timer;
+ partid_t partid = XPC_PARTID(part);
+
+
+ /*
+ * Zero out MOST of the entry for this partition. Only the fields
+ * starting with `nchannels' will be zeroed. The preceding fields must
+ * remain `viable' across partition ups and downs, since they may be
+ * referenced during this memset() operation.
+ */
+ memset(&part->nchannels, 0, sizeof(struct xpc_partition) -
+ offsetof(struct xpc_partition, nchannels));
+
+ /*
+ * Allocate all of the channel structures as a contiguous chunk of
+ * memory.
+ */
+ part->channels = kmalloc(sizeof(struct xpc_channel) * XPC_NCHANNELS,
+ GFP_KERNEL);
+ if (part->channels == NULL) {
+ dev_err(xpc_chan, "can't get memory for channels\n");
+ return xpcNoMemory;
+ }
+ memset(part->channels, 0, sizeof(struct xpc_channel) * XPC_NCHANNELS);
+
+ part->nchannels = XPC_NCHANNELS;
+
+
+ /* allocate all the required GET/PUT values */
+
+ part->local_GPs = xpc_kmalloc_cacheline_aligned(XPC_GP_SIZE,
+ GFP_KERNEL, &part->local_GPs_base);
+ if (part->local_GPs == NULL) {
+ kfree(part->channels);
+ part->channels = NULL;
+ dev_err(xpc_chan, "can't get memory for local get/put "
+ "values\n");
+ return xpcNoMemory;
+ }
+ memset(part->local_GPs, 0, XPC_GP_SIZE);
+
+ part->remote_GPs = xpc_kmalloc_cacheline_aligned(XPC_GP_SIZE,
+ GFP_KERNEL, &part->remote_GPs_base);
+ if (part->remote_GPs == NULL) {
+ kfree(part->channels);
+ part->channels = NULL;
+ kfree(part->local_GPs_base);
+ part->local_GPs = NULL;
+ dev_err(xpc_chan, "can't get memory for remote get/put "
+ "values\n");
+ return xpcNoMemory;
+ }
+ memset(part->remote_GPs, 0, XPC_GP_SIZE);
+
+
+ /* allocate all the required open and close args */
+
+ part->local_openclose_args = xpc_kmalloc_cacheline_aligned(
+ XPC_OPENCLOSE_ARGS_SIZE, GFP_KERNEL,
+ &part->local_openclose_args_base);
+ if (part->local_openclose_args == NULL) {
+ kfree(part->channels);
+ part->channels = NULL;
+ kfree(part->local_GPs_base);
+ part->local_GPs = NULL;
+ kfree(part->remote_GPs_base);
+ part->remote_GPs = NULL;
+ dev_err(xpc_chan, "can't get memory for local connect args\n");
+ return xpcNoMemory;
+ }
+ memset(part->local_openclose_args, 0, XPC_OPENCLOSE_ARGS_SIZE);
+
+ part->remote_openclose_args = xpc_kmalloc_cacheline_aligned(
+ XPC_OPENCLOSE_ARGS_SIZE, GFP_KERNEL,
+ &part->remote_openclose_args_base);
+ if (part->remote_openclose_args == NULL) {
+ kfree(part->channels);
+ part->channels = NULL;
+ kfree(part->local_GPs_base);
+ part->local_GPs = NULL;
+ kfree(part->remote_GPs_base);
+ part->remote_GPs = NULL;
+ kfree(part->local_openclose_args_base);
+ part->local_openclose_args = NULL;
+ dev_err(xpc_chan, "can't get memory for remote connect args\n");
+ return xpcNoMemory;
+ }
+ memset(part->remote_openclose_args, 0, XPC_OPENCLOSE_ARGS_SIZE);
+
+
+ xpc_initialize_channels(part, partid);
+
+ atomic_set(&part->nchannels_active, 0);
+
+
+ /* local_IPI_amo were set to 0 by an earlier memset() */
+
+ /* Initialize this partitions AMO_t structure */
+ part->local_IPI_amo_va = xpc_IPI_init(partid);
+
+ spin_lock_init(&part->IPI_lock);
+
+ atomic_set(&part->channel_mgr_requests, 1);
+ init_waitqueue_head(&part->channel_mgr_wq);
+
+ sprintf(part->IPI_owner, "xpc%02d", partid);
+ ret = request_irq(SGI_XPC_NOTIFY, xpc_notify_IRQ_handler, SA_SHIRQ,
+ part->IPI_owner, (void *) (u64) partid);
+ if (ret != 0) {
+ kfree(part->channels);
+ part->channels = NULL;
+ kfree(part->local_GPs_base);
+ part->local_GPs = NULL;
+ kfree(part->remote_GPs_base);
+ part->remote_GPs = NULL;
+ kfree(part->local_openclose_args_base);
+ part->local_openclose_args = NULL;
+ kfree(part->remote_openclose_args_base);
+ part->remote_openclose_args = NULL;
+ dev_err(xpc_chan, "can't register NOTIFY IRQ handler, "
+ "errno=%d\n", -ret);
+ return xpcLackOfResources;
+ }
+
+ /* Setup a timer to check for dropped IPIs */
+ timer = &part->dropped_IPI_timer;
+ init_timer(timer);
+ timer->function = (void (*)(unsigned long)) xpc_dropped_IPI_check;
+ timer->data = (unsigned long) part;
+ timer->expires = jiffies + XPC_P_DROPPED_IPI_WAIT;
+ add_timer(timer);
+
+ /*
+ * With the setting of the partition setup_state to XPC_P_SETUP, we're
+ * declaring that this partition is ready to go.
+ */
+ (volatile u8) part->setup_state = XPC_P_SETUP;
+
+
+ /*
+ * Setup the per partition specific variables required by the
+ * remote partition to establish channel connections with us.
+ *
+ * The setting of the magic # indicates that these per partition
+ * specific variables are ready to be used.
+ */
+ xpc_vars_part[partid].GPs_pa = __pa(part->local_GPs);
+ xpc_vars_part[partid].openclose_args_pa =
+ __pa(part->local_openclose_args);
+ xpc_vars_part[partid].IPI_amo_pa = __pa(part->local_IPI_amo_va);
+ xpc_vars_part[partid].IPI_nasid = cpuid_to_nasid(smp_processor_id());
+ xpc_vars_part[partid].IPI_phys_cpuid =
+ cpu_physical_id(smp_processor_id());
+ xpc_vars_part[partid].nchannels = part->nchannels;
+ (volatile u64) xpc_vars_part[partid].magic = XPC_VP_MAGIC1;
+
+ return xpcSuccess;
+}
+
+
+/*
+ * Create a wrapper that hides the underlying mechanism for pulling a cacheline
+ * (or multiple cachelines) from a remote partition.
+ *
+ * src must be a cacheline aligned physical address on the remote partition.
+ * dst must be a cacheline aligned virtual address on this partition.
+ * cnt must be an cacheline sized
+ */
+static enum xpc_retval
+xpc_pull_remote_cachelines(struct xpc_partition *part, void *dst,
+ const void *src, size_t cnt)
+{
+ bte_result_t bte_ret;
+
+
+ DBUG_ON((u64) src != L1_CACHE_ALIGN((u64) src));
+ DBUG_ON((u64) dst != L1_CACHE_ALIGN((u64) dst));
+ DBUG_ON(cnt != L1_CACHE_ALIGN(cnt));
+
+ if (part->act_state == XPC_P_DEACTIVATING) {
+ return part->reason;
+ }
+
+ bte_ret = xp_bte_copy((u64) src, (u64) ia64_tpa((u64) dst),
+ (u64) cnt, (BTE_NORMAL | BTE_WACQUIRE), NULL);
+ if (bte_ret == BTE_SUCCESS) {
+ return xpcSuccess;
+ }
+
+ dev_dbg(xpc_chan, "xp_bte_copy() from partition %d failed, ret=%d\n",
+ XPC_PARTID(part), bte_ret);
+
+ return xpc_map_bte_errors(bte_ret);
+}
+
+
+/*
+ * Pull the remote per partititon specific variables from the specified
+ * partition.
+ */
+enum xpc_retval
+xpc_pull_remote_vars_part(struct xpc_partition *part)
+{
+ u8 buffer[L1_CACHE_BYTES * 2];
+ struct xpc_vars_part *pulled_entry_cacheline =
+ (struct xpc_vars_part *) L1_CACHE_ALIGN((u64) buffer);
+ struct xpc_vars_part *pulled_entry;
+ u64 remote_entry_cacheline_pa, remote_entry_pa;
+ partid_t partid = XPC_PARTID(part);
+ enum xpc_retval ret;
+
+
+ /* pull the cacheline that contains the variables we're interested in */
+
+ DBUG_ON(part->remote_vars_part_pa !=
+ L1_CACHE_ALIGN(part->remote_vars_part_pa));
+ DBUG_ON(sizeof(struct xpc_vars_part) != L1_CACHE_BYTES / 2);
+
+ remote_entry_pa = part->remote_vars_part_pa +
+ sn_partition_id * sizeof(struct xpc_vars_part);
+
+ remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1));
+
+ pulled_entry = (struct xpc_vars_part *) ((u64) pulled_entry_cacheline +
+ (remote_entry_pa & (L1_CACHE_BYTES - 1)));
+
+ ret = xpc_pull_remote_cachelines(part, pulled_entry_cacheline,
+ (void *) remote_entry_cacheline_pa,
+ L1_CACHE_BYTES);
+ if (ret != xpcSuccess) {
+ dev_dbg(xpc_chan, "failed to pull XPC vars_part from "
+ "partition %d, ret=%d\n", partid, ret);
+ return ret;
+ }
+
+
+ /* see if they've been set up yet */
+
+ if (pulled_entry->magic != XPC_VP_MAGIC1 &&
+ pulled_entry->magic != XPC_VP_MAGIC2) {
+
+ if (pulled_entry->magic != 0) {
+ dev_dbg(xpc_chan, "partition %d's XPC vars_part for "
+ "partition %d has bad magic value (=0x%lx)\n",
+ partid, sn_partition_id, pulled_entry->magic);
+ return xpcBadMagic;
+ }
+
+ /* they've not been initialized yet */
+ return xpcRetry;
+ }
+
+ if (xpc_vars_part[partid].magic == XPC_VP_MAGIC1) {
+
+ /* validate the variables */
+
+ if (pulled_entry->GPs_pa == 0 ||
+ pulled_entry->openclose_args_pa == 0 ||
+ pulled_entry->IPI_amo_pa == 0) {
+
+ dev_err(xpc_chan, "partition %d's XPC vars_part for "
+ "partition %d are not valid\n", partid,
+ sn_partition_id);
+ return xpcInvalidAddress;
+ }
+
+ /* the variables we imported look to be valid */
+
+ part->remote_GPs_pa = pulled_entry->GPs_pa;
+ part->remote_openclose_args_pa =
+ pulled_entry->openclose_args_pa;
+ part->remote_IPI_amo_va =
+ (AMO_t *) __va(pulled_entry->IPI_amo_pa);
+ part->remote_IPI_nasid = pulled_entry->IPI_nasid;
+ part->remote_IPI_phys_cpuid = pulled_entry->IPI_phys_cpuid;
+
+ if (part->nchannels > pulled_entry->nchannels) {
+ part->nchannels = pulled_entry->nchannels;
+ }
+
+ /* let the other side know that we've pulled their variables */
+
+ (volatile u64) xpc_vars_part[partid].magic = XPC_VP_MAGIC2;
+ }
+
+ if (pulled_entry->magic == XPC_VP_MAGIC1) {
+ return xpcRetry;
+ }
+
+ return xpcSuccess;
+}
+
+
+/*
+ * Get the IPI flags and pull the openclose args and/or remote GPs as needed.
+ */
+static u64
+xpc_get_IPI_flags(struct xpc_partition *part)
+{
+ unsigned long irq_flags;
+ u64 IPI_amo;
+ enum xpc_retval ret;
+
+
+ /*
+ * See if there are any IPI flags to be handled.
+ */
+
+ spin_lock_irqsave(&part->IPI_lock, irq_flags);
+ if ((IPI_amo = part->local_IPI_amo) != 0) {
+ part->local_IPI_amo = 0;
+ }
+ spin_unlock_irqrestore(&part->IPI_lock, irq_flags);
+
+
+ if (XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(IPI_amo)) {
+ ret = xpc_pull_remote_cachelines(part,
+ part->remote_openclose_args,
+ (void *) part->remote_openclose_args_pa,
+ XPC_OPENCLOSE_ARGS_SIZE);
+ if (ret != xpcSuccess) {
+ XPC_DEACTIVATE_PARTITION(part, ret);
+
+ dev_dbg(xpc_chan, "failed to pull openclose args from "
+ "partition %d, ret=%d\n", XPC_PARTID(part),
+ ret);
+
+ /* don't bother processing IPIs anymore */
+ IPI_amo = 0;
+ }
+ }
+
+ if (XPC_ANY_MSG_IPI_FLAGS_SET(IPI_amo)) {
+ ret = xpc_pull_remote_cachelines(part, part->remote_GPs,
+ (void *) part->remote_GPs_pa,
+ XPC_GP_SIZE);
+ if (ret != xpcSuccess) {
+ XPC_DEACTIVATE_PARTITION(part, ret);
+
+ dev_dbg(xpc_chan, "failed to pull GPs from partition "
+ "%d, ret=%d\n", XPC_PARTID(part), ret);
+
+ /* don't bother processing IPIs anymore */
+ IPI_amo = 0;
+ }
+ }
+
+ return IPI_amo;
+}
+
+
+/*
+ * Allocate the local message queue and the notify queue.
+ */
+static enum xpc_retval
+xpc_allocate_local_msgqueue(struct xpc_channel *ch)
+{
+ unsigned long irq_flags;
+ int nentries;
+ size_t nbytes;
+
+
+ // >>> may want to check for ch->flags & XPC_C_DISCONNECTING between
+ // >>> iterations of the for-loop, bail if set?
+
+ // >>> should we impose a minumum #of entries? like 4 or 8?
+ for (nentries = ch->local_nentries; nentries > 0; nentries--) {
+
+ nbytes = nentries * ch->msg_size;
+ ch->local_msgqueue = xpc_kmalloc_cacheline_aligned(nbytes,
+ (GFP_KERNEL | GFP_DMA),
+ &ch->local_msgqueue_base);
+ if (ch->local_msgqueue == NULL) {
+ continue;
+ }
+ memset(ch->local_msgqueue, 0, nbytes);
+
+ nbytes = nentries * sizeof(struct xpc_notify);
+ ch->notify_queue = kmalloc(nbytes, (GFP_KERNEL | GFP_DMA));
+ if (ch->notify_queue == NULL) {
+ kfree(ch->local_msgqueue_base);
+ ch->local_msgqueue = NULL;
+ continue;
+ }
+ memset(ch->notify_queue, 0, nbytes);
+
+ spin_lock_irqsave(&ch->lock, irq_flags);
+ if (nentries < ch->local_nentries) {
+ dev_dbg(xpc_chan, "nentries=%d local_nentries=%d, "
+ "partid=%d, channel=%d\n", nentries,
+ ch->local_nentries, ch->partid, ch->number);
+
+ ch->local_nentries = nentries;
+ }
+ spin_unlock_irqrestore(&ch->lock, irq_flags);
+ return xpcSuccess;
+ }
+
+ dev_dbg(xpc_chan, "can't get memory for local message queue and notify "
+ "queue, partid=%d, channel=%d\n", ch->partid, ch->number);
+ return xpcNoMemory;
+}
+
+
+/*
+ * Allocate the cached remote message queue.
+ */
+static enum xpc_retval
+xpc_allocate_remote_msgqueue(struct xpc_channel *ch)
+{
+ unsigned long irq_flags;
+ int nentries;
+ size_t nbytes;
+
+
+ DBUG_ON(ch->remote_nentries <= 0);
+
+ // >>> may want to check for ch->flags & XPC_C_DISCONNECTING between
+ // >>> iterations of the for-loop, bail if set?
+
+ // >>> should we impose a minumum #of entries? like 4 or 8?
+ for (nentries = ch->remote_nentries; nentries > 0; nentries--) {
+
+ nbytes = nentries * ch->msg_size;
+ ch->remote_msgqueue = xpc_kmalloc_cacheline_aligned(nbytes,
+ (GFP_KERNEL | GFP_DMA),
+ &ch->remote_msgqueue_base);
+ if (ch->remote_msgqueue == NULL) {
+ continue;
+ }
+ memset(ch->remote_msgqueue, 0, nbytes);
+
+ spin_lock_irqsave(&ch->lock, irq_flags);
+ if (nentries < ch->remote_nentries) {
+ dev_dbg(xpc_chan, "nentries=%d remote_nentries=%d, "
+ "partid=%d, channel=%d\n", nentries,
+ ch->remote_nentries, ch->partid, ch->number);
+
+ ch->remote_nentries = nentries;
+ }
+ spin_unlock_irqrestore(&ch->lock, irq_flags);
+ return xpcSuccess;
+ }
+
+ dev_dbg(xpc_chan, "can't get memory for cached remote message queue, "
+ "partid=%d, channel=%d\n", ch->partid, ch->number);
+ return xpcNoMemory;
+}
+
+
+/*
+ * Allocate message queues and other stuff associated with a channel.
+ *
+ * Note: Assumes all of the channel sizes are filled in.
+ */
+static enum xpc_retval
+xpc_allocate_msgqueues(struct xpc_channel *ch)
+{
+ unsigned long irq_flags;
+ int i;
+ enum xpc_retval ret;
+
+
+ DBUG_ON(ch->flags & XPC_C_SETUP);
+
+ if ((ret = xpc_allocate_local_msgqueue(ch)) != xpcSuccess) {
+ return ret;
+ }
+
+ if ((ret = xpc_allocate_remote_msgqueue(ch)) != xpcSuccess) {
+ kfree(ch->local_msgqueue_base);
+ ch->local_msgqueue = NULL;
+ kfree(ch->notify_queue);
+ ch->notify_queue = NULL;
+ return ret;
+ }
+
+ for (i = 0; i < ch->local_nentries; i++) {
+ /* use a semaphore as an event wait queue */
+ sema_init(&ch->notify_queue[i].sema, 0);
+ }
+
+ sema_init(&ch->teardown_sema, 0); /* event wait */
+
+ spin_lock_irqsave(&ch->lock, irq_flags);
+ ch->flags |= XPC_C_SETUP;
+ spin_unlock_irqrestore(&ch->lock, irq_flags);
+
+ return xpcSuccess;
+}
+
+
+/*
+ * Process a connect message from a remote partition.
+ *
+ * Note: xpc_process_connect() is expecting to be called with the
+ * spin_lock_irqsave held and will leave it locked upon return.
+ */
+static void
+xpc_process_connect(struct xpc_channel *ch, unsigned long *irq_flags)
+{
+ enum xpc_retval ret;
+
+
+ DBUG_ON(!spin_is_locked(&ch->lock));
+
+ if (!(ch->flags & XPC_C_OPENREQUEST) ||
+ !(ch->flags & XPC_C_ROPENREQUEST)) {
+ /* nothing more to do for now */
+ return;
+ }
+ DBUG_ON(!(ch->flags & XPC_C_CONNECTING));
+
+ if (!(ch->flags & XPC_C_SETUP)) {
+ spin_unlock_irqrestore(&ch->lock, *irq_flags);
+ ret = xpc_allocate_msgqueues(ch);
+ spin_lock_irqsave(&ch->lock, *irq_flags);
+
+ if (ret != xpcSuccess) {
+ XPC_DISCONNECT_CHANNEL(ch, ret, irq_flags);
+ }
+ if (ch->flags & (XPC_C_CONNECTED | XPC_C_DISCONNECTING)) {
+ return;
+ }
+
+ DBUG_ON(!(ch->flags & XPC_C_SETUP));
+ DBUG_ON(ch->local_msgqueue == NULL);
+ DBUG_ON(ch->remote_msgqueue == NULL);
+ }
+
+ if (!(ch->flags & XPC_C_OPENREPLY)) {
+ ch->flags |= XPC_C_OPENREPLY;
+ xpc_IPI_send_openreply(ch, irq_flags);
+ }
+
+ if (!(ch->flags & XPC_C_ROPENREPLY)) {
+ return;
+ }
+
+ DBUG_ON(ch->remote_msgqueue_pa == 0);
+
+ ch->flags = (XPC_C_CONNECTED | XPC_C_SETUP); /* clear all else */
+
+ dev_info(xpc_chan, "channel %d to partition %d connected\n",
+ ch->number, ch->partid);
+
+ spin_unlock_irqrestore(&ch->lock, *irq_flags);
+ xpc_create_kthreads(ch, 1);
+ spin_lock_irqsave(&ch->lock, *irq_flags);
+}
+
+
+/*
+ * Free up message queues and other stuff that were allocated for the specified
+ * channel.
+ *
+ * Note: ch->reason and ch->reason_line are left set for debugging purposes,
+ * they're cleared when XPC_C_DISCONNECTED is cleared.
+ */
+static void
+xpc_free_msgqueues(struct xpc_channel *ch)
+{
+ DBUG_ON(!spin_is_locked(&ch->lock));
+ DBUG_ON(atomic_read(&ch->n_to_notify) != 0);
+
+ ch->remote_msgqueue_pa = 0;
+ ch->func = NULL;
+ ch->key = NULL;
+ ch->msg_size = 0;
+ ch->local_nentries = 0;
+ ch->remote_nentries = 0;
+ ch->kthreads_assigned_limit = 0;
+ ch->kthreads_idle_limit = 0;
+
+ ch->local_GP->get = 0;
+ ch->local_GP->put = 0;
+ ch->remote_GP.get = 0;
+ ch->remote_GP.put = 0;
+ ch->w_local_GP.get = 0;
+ ch->w_local_GP.put = 0;
+ ch->w_remote_GP.get = 0;
+ ch->w_remote_GP.put = 0;
+ ch->next_msg_to_pull = 0;
+
+ if (ch->flags & XPC_C_SETUP) {
+ ch->flags &= ~XPC_C_SETUP;
+
+ dev_dbg(xpc_chan, "ch->flags=0x%x, partid=%d, channel=%d\n",
+ ch->flags, ch->partid, ch->number);
+
+ kfree(ch->local_msgqueue_base);
+ ch->local_msgqueue = NULL;
+ kfree(ch->remote_msgqueue_base);
+ ch->remote_msgqueue = NULL;
+ kfree(ch->notify_queue);
+ ch->notify_queue = NULL;
+
+ /* in case someone is waiting for the teardown to complete */
+ up(&ch->teardown_sema);
+ }
+}
+
+
+/*
+ * spin_lock_irqsave() is expected to be held on entry.
+ */
+static void
+xpc_process_disconnect(struct xpc_channel *ch, unsigned long *irq_flags)
+{
+ struct xpc_partition *part = &xpc_partitions[ch->partid];
+ u32 ch_flags = ch->flags;
+
+
+ DBUG_ON(!spin_is_locked(&ch->lock));
+
+ if (!(ch->flags & XPC_C_DISCONNECTING)) {
+ return;
+ }
+
+ DBUG_ON(!(ch->flags & XPC_C_CLOSEREQUEST));
+
+ /* make sure all activity has settled down first */
+
+ if (atomic_read(&ch->references) > 0) {
+ return;
+ }
+ DBUG_ON(atomic_read(&ch->kthreads_assigned) != 0);
+
+ /* it's now safe to free the channel's message queues */
+
+ xpc_free_msgqueues(ch);
+ DBUG_ON(ch->flags & XPC_C_SETUP);
+
+ if (part->act_state != XPC_P_DEACTIVATING) {
+
+ /* as long as the other side is up do the full protocol */
+
+ if (!(ch->flags & XPC_C_RCLOSEREQUEST)) {
+ return;
+ }
+
+ if (!(ch->flags & XPC_C_CLOSEREPLY)) {
+ ch->flags |= XPC_C_CLOSEREPLY;
+ xpc_IPI_send_closereply(ch, irq_flags);
+ }
+
+ if (!(ch->flags & XPC_C_RCLOSEREPLY)) {
+ return;
+ }
+ }
+
+ /* both sides are disconnected now */
+
+ ch->flags = XPC_C_DISCONNECTED; /* clear all flags, but this one */
+
+ atomic_dec(&part->nchannels_active);
+
+ if (ch_flags & XPC_C_WASCONNECTED) {
+ dev_info(xpc_chan, "channel %d to partition %d disconnected, "
+ "reason=%d\n", ch->number, ch->partid, ch->reason);
+ }
+}
+
+
+/*
+ * Process a change in the channel's remote connection state.
+ */
+static void
+xpc_process_openclose_IPI(struct xpc_partition *part, int ch_number,
+ u8 IPI_flags)
+{
+ unsigned long irq_flags;
+ struct xpc_openclose_args *args =
+ &part->remote_openclose_args[ch_number];
+ struct xpc_channel *ch = &part->channels[ch_number];
+ enum xpc_retval reason;
+
+
+
+ spin_lock_irqsave(&ch->lock, irq_flags);
+
+
+ if (IPI_flags & XPC_IPI_CLOSEREQUEST) {
+
+ dev_dbg(xpc_chan, "XPC_IPI_CLOSEREQUEST (reason=%d) received "
+ "from partid=%d, channel=%d\n", args->reason,
+ ch->partid, ch->number);
+
+ /*
+ * If RCLOSEREQUEST is set, we're probably waiting for
+ * RCLOSEREPLY. We should find it and a ROPENREQUEST packed
+ * with this RCLOSEQREUQEST in the IPI_flags.
+ */
+
+ if (ch->flags & XPC_C_RCLOSEREQUEST) {
+ DBUG_ON(!(ch->flags & XPC_C_DISCONNECTING));
+ DBUG_ON(!(ch->flags & XPC_C_CLOSEREQUEST));
+ DBUG_ON(!(ch->flags & XPC_C_CLOSEREPLY));
+ DBUG_ON(ch->flags & XPC_C_RCLOSEREPLY);
+
+ DBUG_ON(!(IPI_flags & XPC_IPI_CLOSEREPLY));
+ IPI_flags &= ~XPC_IPI_CLOSEREPLY;
+ ch->flags |= XPC_C_RCLOSEREPLY;
+
+ /* both sides have finished disconnecting */
+ xpc_process_disconnect(ch, &irq_flags);
+ }
+
+ if (ch->flags & XPC_C_DISCONNECTED) {
+ // >>> explain this section
+
+ if (!(IPI_flags & XPC_IPI_OPENREQUEST)) {
+ DBUG_ON(part->act_state !=
+ XPC_P_DEACTIVATING);
+ spin_unlock_irqrestore(&ch->lock, irq_flags);
+ return;
+ }
+
+ XPC_SET_REASON(ch, 0, 0);
+ ch->flags &= ~XPC_C_DISCONNECTED;
+
+ atomic_inc(&part->nchannels_active);
+ ch->flags |= (XPC_C_CONNECTING | XPC_C_ROPENREQUEST);
+ }
+
+ IPI_flags &= ~(XPC_IPI_OPENREQUEST | XPC_IPI_OPENREPLY);
+
+ /*
+ * The meaningful CLOSEREQUEST connection state fields are:
+ * reason = reason connection is to be closed
+ */
+
+ ch->flags |= XPC_C_RCLOSEREQUEST;
+
+ if (!(ch->flags & XPC_C_DISCONNECTING)) {
+ reason = args->reason;
+ if (reason <= xpcSuccess || reason > xpcUnknownReason) {
+ reason = xpcUnknownReason;
+ } else if (reason == xpcUnregistering) {
+ reason = xpcOtherUnregistering;
+ }
+
+ XPC_DISCONNECT_CHANNEL(ch, reason, &irq_flags);
+ } else {
+ xpc_process_disconnect(ch, &irq_flags);
+ }
+ }
+
+
+ if (IPI_flags & XPC_IPI_CLOSEREPLY) {
+
+ dev_dbg(xpc_chan, "XPC_IPI_CLOSEREPLY received from partid=%d,"
+ " channel=%d\n", ch->partid, ch->number);
+
+ if (ch->flags & XPC_C_DISCONNECTED) {
+ DBUG_ON(part->act_state != XPC_P_DEACTIVATING);
+ spin_unlock_irqrestore(&ch->lock, irq_flags);
+ return;
+ }
+
+ DBUG_ON(!(ch->flags & XPC_C_CLOSEREQUEST));
+ DBUG_ON(!(ch->flags & XPC_C_RCLOSEREQUEST));
+
+ ch->flags |= XPC_C_RCLOSEREPLY;
+
+ if (ch->flags & XPC_C_CLOSEREPLY) {
+ /* both sides have finished disconnecting */
+ xpc_process_disconnect(ch, &irq_flags);
+ }
+ }
+
+
+ if (IPI_flags & XPC_IPI_OPENREQUEST) {
+
+ dev_dbg(xpc_chan, "XPC_IPI_OPENREQUEST (msg_size=%d, "
+ "local_nentries=%d) received from partid=%d, "
+ "channel=%d\n", args->msg_size, args->local_nentries,
+ ch->partid, ch->number);
+
+ if ((ch->flags & XPC_C_DISCONNECTING) ||
+ part->act_state == XPC_P_DEACTIVATING) {
+ spin_unlock_irqrestore(&ch->lock, irq_flags);
+ return;
+ }
+ DBUG_ON(!(ch->flags & (XPC_C_DISCONNECTED |
+ XPC_C_OPENREQUEST)));
+ DBUG_ON(ch->flags & (XPC_C_ROPENREQUEST | XPC_C_ROPENREPLY |
+ XPC_C_OPENREPLY | XPC_C_CONNECTED));
+
+ /*
+ * The meaningful OPENREQUEST connection state fields are:
+ * msg_size = size of channel's messages in bytes
+ * local_nentries = remote partition's local_nentries
+ */
+ DBUG_ON(args->msg_size == 0);
+ DBUG_ON(args->local_nentries == 0);
+
+ ch->flags |= (XPC_C_ROPENREQUEST | XPC_C_CONNECTING);
+ ch->remote_nentries = args->local_nentries;
+
+
+ if (ch->flags & XPC_C_OPENREQUEST) {
+ if (args->msg_size != ch->msg_size) {
+ XPC_DISCONNECT_CHANNEL(ch, xpcUnequalMsgSizes,
+ &irq_flags);
+ spin_unlock_irqrestore(&ch->lock, irq_flags);
+ return;
+ }
+ } else {
+ ch->msg_size = args->msg_size;
+
+ XPC_SET_REASON(ch, 0, 0);
+ ch->flags &= ~XPC_C_DISCONNECTED;
+
+ atomic_inc(&part->nchannels_active);
+ }
+
+ xpc_process_connect(ch, &irq_flags);
+ }
+
+
+ if (IPI_flags & XPC_IPI_OPENREPLY) {
+
+ dev_dbg(xpc_chan, "XPC_IPI_OPENREPLY (local_msgqueue_pa=0x%lx, "
+ "local_nentries=%d, remote_nentries=%d) received from "
+ "partid=%d, channel=%d\n", args->local_msgqueue_pa,
+ args->local_nentries, args->remote_nentries,
+ ch->partid, ch->number);
+
+ if (ch->flags & (XPC_C_DISCONNECTING | XPC_C_DISCONNECTED)) {
+ spin_unlock_irqrestore(&ch->lock, irq_flags);
+ return;
+ }
+ DBUG_ON(!(ch->flags & XPC_C_OPENREQUEST));
+ DBUG_ON(!(ch->flags & XPC_C_ROPENREQUEST));
+ DBUG_ON(ch->flags & XPC_C_CONNECTED);
+
+ /*
+ * The meaningful OPENREPLY connection state fields are:
+ * local_msgqueue_pa = physical address of remote
+ * partition's local_msgqueue
+ * local_nentries = remote partition's local_nentries
+ * remote_nentries = remote partition's remote_nentries
+ */
+ DBUG_ON(args->local_msgqueue_pa == 0);
+ DBUG_ON(args->local_nentries == 0);
+ DBUG_ON(args->remote_nentries == 0);
+
+ ch->flags |= XPC_C_ROPENREPLY;
+ ch->remote_msgqueue_pa = args->local_msgqueue_pa;
+
+ if (args->local_nentries < ch->remote_nentries) {
+ dev_dbg(xpc_chan, "XPC_IPI_OPENREPLY: new "
+ "remote_nentries=%d, old remote_nentries=%d, "
+ "partid=%d, channel=%d\n",
+ args->local_nentries, ch->remote_nentries,
+ ch->partid, ch->number);
+
+ ch->remote_nentries = args->local_nentries;
+ }
+ if (args->remote_nentries < ch->local_nentries) {
+ dev_dbg(xpc_chan, "XPC_IPI_OPENREPLY: new "
+ "local_nentries=%d, old local_nentries=%d, "
+ "partid=%d, channel=%d\n",
+ args->remote_nentries, ch->local_nentries,
+ ch->partid, ch->number);
+
+ ch->local_nentries = args->remote_nentries;
+ }
+
+ xpc_process_connect(ch, &irq_flags);
+ }
+
+ spin_unlock_irqrestore(&ch->lock, irq_flags);
+}
+
+
+/*
+ * Attempt to establish a channel connection to a remote partition.
+ */
+static enum xpc_retval
+xpc_connect_channel(struct xpc_channel *ch)
+{
+ unsigned long irq_flags;
+ struct xpc_registration *registration = &xpc_registrations[ch->number];
+
+
+ if (down_interruptible(&registration->sema) != 0) {
+ return xpcInterrupted;
+ }
+
+ if (!XPC_CHANNEL_REGISTERED(ch->number)) {
+ up(&registration->sema);
+ return xpcUnregistered;
+ }
+
+ spin_lock_irqsave(&ch->lock, irq_flags);
+
+ DBUG_ON(ch->flags & XPC_C_CONNECTED);
+ DBUG_ON(ch->flags & XPC_C_OPENREQUEST);
+
+ if (ch->flags & XPC_C_DISCONNECTING) {
+ spin_unlock_irqrestore(&ch->lock, irq_flags);
+ up(&registration->sema);
+ return ch->reason;
+ }
+
+
+ /* add info from the channel connect registration to the channel */
+
+ ch->kthreads_assigned_limit = registration->assigned_limit;
+ ch->kthreads_idle_limit = registration->idle_limit;
+ DBUG_ON(atomic_read(&ch->kthreads_assigned) != 0);
+ DBUG_ON(atomic_read(&ch->kthreads_idle) != 0);
+ DBUG_ON(atomic_read(&ch->kthreads_active) != 0);
+
+ ch->func = registration->func;
+ DBUG_ON(registration->func == NULL);
+ ch->key = registration->key;
+
+ ch->local_nentries = registration->nentries;
+
+ if (ch->flags & XPC_C_ROPENREQUEST) {
+ if (registration->msg_size != ch->msg_size) {
+ /* the local and remote sides aren't the same */
+
+ /*
+ * Because XPC_DISCONNECT_CHANNEL() can block we're
+ * forced to up the registration sema before we unlock
+ * the channel lock. But that's okay here because we're
+ * done with the part that required the registration
+ * sema. XPC_DISCONNECT_CHANNEL() requires that the
+ * channel lock be locked and will unlock and relock
+ * the channel lock as needed.
+ */
+ up(&registration->sema);
+ XPC_DISCONNECT_CHANNEL(ch, xpcUnequalMsgSizes,
+ &irq_flags);
+ spin_unlock_irqrestore(&ch->lock, irq_flags);
+ return xpcUnequalMsgSizes;
+ }
+ } else {
+ ch->msg_size = registration->msg_size;
+
+ XPC_SET_REASON(ch, 0, 0);
+ ch->flags &= ~XPC_C_DISCONNECTED;
+
+ atomic_inc(&xpc_partitions[ch->partid].nchannels_active);
+ }
+
+ up(&registration->sema);
+
+
+ /* initiate the connection */
+
+ ch->flags |= (XPC_C_OPENREQUEST | XPC_C_CONNECTING);
+ xpc_IPI_send_openrequest(ch, &irq_flags);
+
+ xpc_process_connect(ch, &irq_flags);
+
+ spin_unlock_irqrestore(&ch->lock, irq_flags);
+
+ return xpcSuccess;
+}
+
+
+/*
+ * Notify those who wanted to be notified upon delivery of their message.
+ */
+static void
+xpc_notify_senders(struct xpc_channel *ch, enum xpc_retval reason, s64 put)
+{
+ struct xpc_notify *notify;
+ u8 notify_type;
+ s64 get = ch->w_remote_GP.get - 1;
+
+
+ while (++get < put && atomic_read(&ch->n_to_notify) > 0) {
+
+ notify = &ch->notify_queue[get % ch->local_nentries];
+
+ /*
+ * See if the notify entry indicates it was associated with
+ * a message who's sender wants to be notified. It is possible
+ * that it is, but someone else is doing or has done the
+ * notification.
+ */
+ notify_type = notify->type;
+ if (notify_type == 0 ||
+ cmpxchg(&notify->type, notify_type, 0) !=
+ notify_type) {
+ continue;
+ }
+
+ DBUG_ON(notify_type != XPC_N_CALL);
+
+ atomic_dec(&ch->n_to_notify);
+
+ if (notify->func != NULL) {
+ dev_dbg(xpc_chan, "notify->func() called, notify=0x%p, "
+ "msg_number=%ld, partid=%d, channel=%d\n",
+ (void *) notify, get, ch->partid, ch->number);
+
+ notify->func(reason, ch->partid, ch->number,
+ notify->key);
+
+ dev_dbg(xpc_chan, "notify->func() returned, "
+ "notify=0x%p, msg_number=%ld, partid=%d, "
+ "channel=%d\n", (void *) notify, get,
+ ch->partid, ch->number);
+ }
+ }
+}
+
+
+/*
+ * Clear some of the msg flags in the local message queue.
+ */
+static inline void
+xpc_clear_local_msgqueue_flags(struct xpc_channel *ch)
+{
+ struct xpc_msg *msg;
+ s64 get;
+
+
+ get = ch->w_remote_GP.get;
+ do {
+ msg = (struct xpc_msg *) ((u64) ch->local_msgqueue +
+ (get % ch->local_nentries) * ch->msg_size);
+ msg->flags = 0;
+ } while (++get < (volatile s64) ch->remote_GP.get);
+}
+
+
+/*
+ * Clear some of the msg flags in the remote message queue.
+ */
+static inline void
+xpc_clear_remote_msgqueue_flags(struct xpc_channel *ch)
+{
+ struct xpc_msg *msg;
+ s64 put;
+
+
+ put = ch->w_remote_GP.put;
+ do {
+ msg = (struct xpc_msg *) ((u64) ch->remote_msgqueue +
+ (put % ch->remote_nentries) * ch->msg_size);
+ msg->flags = 0;
+ } while (++put < (volatile s64) ch->remote_GP.put);
+}
+
+
+static void
+xpc_process_msg_IPI(struct xpc_partition *part, int ch_number)
+{
+ struct xpc_channel *ch = &part->channels[ch_number];
+ int nmsgs_sent;
+
+
+ ch->remote_GP = part->remote_GPs[ch_number];
+
+
+ /* See what, if anything, has changed for each connected channel */
+
+ xpc_msgqueue_ref(ch);
+
+ if (ch->w_remote_GP.get == ch->remote_GP.get &&
+ ch->w_remote_GP.put == ch->remote_GP.put) {
+ /* nothing changed since GPs were last pulled */
+ xpc_msgqueue_deref(ch);
+ return;
+ }
+
+ if (!(ch->flags & XPC_C_CONNECTED)){
+ xpc_msgqueue_deref(ch);
+ return;
+ }
+
+
+ /*
+ * First check to see if messages recently sent by us have been
+ * received by the other side. (The remote GET value will have
+ * changed since we last looked at it.)
+ */
+
+ if (ch->w_remote_GP.get != ch->remote_GP.get) {
+
+ /*
+ * We need to notify any senders that want to be notified
+ * that their sent messages have been received by their
+ * intended recipients. We need to do this before updating
+ * w_remote_GP.get so that we don't allocate the same message
+ * queue entries prematurely (see xpc_allocate_msg()).
+ */
+ if (atomic_read(&ch->n_to_notify) > 0) {
+ /*
+ * Notify senders that messages sent have been
+ * received and delivered by the other side.
+ */
+ xpc_notify_senders(ch, xpcMsgDelivered,
+ ch->remote_GP.get);
+ }
+
+ /*
+ * Clear msg->flags in previously sent messages, so that
+ * they're ready for xpc_allocate_msg().
+ */
+ xpc_clear_local_msgqueue_flags(ch);
+
+ (volatile s64) ch->w_remote_GP.get = ch->remote_GP.get;
+
+ dev_dbg(xpc_chan, "w_remote_GP.get changed to %ld, partid=%d, "
+ "channel=%d\n", ch->w_remote_GP.get, ch->partid,
+ ch->number);
+
+ /*
+ * If anyone was waiting for message queue entries to become
+ * available, wake them up.
+ */
+ if (atomic_read(&ch->n_on_msg_allocate_wq) > 0) {
+ wake_up(&ch->msg_allocate_wq);
+ }
+ }
+
+
+ /*
+ * Now check for newly sent messages by the other side. (The remote
+ * PUT value will have changed since we last looked at it.)
+ */
+
+ if (ch->w_remote_GP.put != ch->remote_GP.put) {
+ /*
+ * Clear msg->flags in previously received messages, so that
+ * they're ready for xpc_get_deliverable_msg().
+ */
+ xpc_clear_remote_msgqueue_flags(ch);
+
+ (volatile s64) ch->w_remote_GP.put = ch->remote_GP.put;
+
+ dev_dbg(xpc_chan, "w_remote_GP.put changed to %ld, partid=%d, "
+ "channel=%d\n", ch->w_remote_GP.put, ch->partid,
+ ch->number);
+
+ nmsgs_sent = ch->w_remote_GP.put - ch->w_local_GP.get;
+ if (nmsgs_sent > 0) {
+ dev_dbg(xpc_chan, "msgs waiting to be copied and "
+ "delivered=%d, partid=%d, channel=%d\n",
+ nmsgs_sent, ch->partid, ch->number);
+
+ if (ch->flags & XPC_C_CONNECTCALLOUT) {
+ xpc_activate_kthreads(ch, nmsgs_sent);
+ }
+ }
+ }
+
+ xpc_msgqueue_deref(ch);
+}
+
+
+void
+xpc_process_channel_activity(struct xpc_partition *part)
+{
+ unsigned long irq_flags;
+ u64 IPI_amo, IPI_flags;
+ struct xpc_channel *ch;
+ int ch_number;
+
+
+ IPI_amo = xpc_get_IPI_flags(part);
+
+ /*
+ * Initiate channel connections for registered channels.
+ *
+ * For each connected channel that has pending messages activate idle
+ * kthreads and/or create new kthreads as needed.
+ */
+
+ for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
+ ch = &part->channels[ch_number];
+
+
+ /*
+ * Process any open or close related IPI flags, and then deal
+ * with connecting or disconnecting the channel as required.
+ */
+
+ IPI_flags = XPC_GET_IPI_FLAGS(IPI_amo, ch_number);
+
+ if (XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(IPI_flags)) {
+ xpc_process_openclose_IPI(part, ch_number, IPI_flags);
+ }
+
+
+ if (ch->flags & XPC_C_DISCONNECTING) {
+ spin_lock_irqsave(&ch->lock, irq_flags);
+ xpc_process_disconnect(ch, &irq_flags);
+ spin_unlock_irqrestore(&ch->lock, irq_flags);
+ continue;
+ }
+
+ if (part->act_state == XPC_P_DEACTIVATING) {
+ continue;
+ }
+
+ if (!(ch->flags & XPC_C_CONNECTED)) {
+ if (!(ch->flags & XPC_C_OPENREQUEST)) {
+ DBUG_ON(ch->flags & XPC_C_SETUP);
+ (void) xpc_connect_channel(ch);
+ } else {
+ spin_lock_irqsave(&ch->lock, irq_flags);
+ xpc_process_connect(ch, &irq_flags);
+ spin_unlock_irqrestore(&ch->lock, irq_flags);
+ }
+ continue;
+ }
+
+
+ /*
+ * Process any message related IPI flags, this may involve the
+ * activation of kthreads to deliver any pending messages sent
+ * from the other partition.
+ */
+
+ if (XPC_ANY_MSG_IPI_FLAGS_SET(IPI_flags)) {
+ xpc_process_msg_IPI(part, ch_number);
+ }
+ }
+}
+
+
+/*
+ * XPC's heartbeat code calls this function to inform XPC that a partition has
+ * gone down. XPC responds by tearing down the XPartition Communication
+ * infrastructure used for the just downed partition.
+ *
+ * XPC's heartbeat code will never call this function and xpc_partition_up()
+ * at the same time. Nor will it ever make multiple calls to either function
+ * at the same time.
+ */
+void
+xpc_partition_down(struct xpc_partition *part, enum xpc_retval reason)
+{
+ unsigned long irq_flags;
+ int ch_number;
+ struct xpc_channel *ch;
+
+
+ dev_dbg(xpc_chan, "deactivating partition %d, reason=%d\n",
+ XPC_PARTID(part), reason);
+
+ if (!xpc_part_ref(part)) {
+ /* infrastructure for this partition isn't currently set up */
+ return;
+ }
+
+
+ /* disconnect all channels associated with the downed partition */
+
+ for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
+ ch = &part->channels[ch_number];
+
+
+ xpc_msgqueue_ref(ch);
+ spin_lock_irqsave(&ch->lock, irq_flags);
+
+ XPC_DISCONNECT_CHANNEL(ch, reason, &irq_flags);
+
+ spin_unlock_irqrestore(&ch->lock, irq_flags);
+ xpc_msgqueue_deref(ch);
+ }
+
+ xpc_wakeup_channel_mgr(part);
+
+ xpc_part_deref(part);
+}
+
+
+/*
+ * Teardown the infrastructure necessary to support XPartition Communication
+ * between the specified remote partition and the local one.
+ */
+void
+xpc_teardown_infrastructure(struct xpc_partition *part)
+{
+ partid_t partid = XPC_PARTID(part);
+
+
+ /*
+ * We start off by making this partition inaccessible to local
+ * processes by marking it as no longer setup. Then we make it
+ * inaccessible to remote processes by clearing the XPC per partition
+ * specific variable's magic # (which indicates that these variables
+ * are no longer valid) and by ignoring all XPC notify IPIs sent to
+ * this partition.
+ */
+
+ DBUG_ON(atomic_read(&part->nchannels_active) != 0);
+ DBUG_ON(part->setup_state != XPC_P_SETUP);
+ part->setup_state = XPC_P_WTEARDOWN;
+
+ xpc_vars_part[partid].magic = 0;
+
+
+ free_irq(SGI_XPC_NOTIFY, (void *) (u64) partid);
+
+
+ /*
+ * Before proceding with the teardown we have to wait until all
+ * existing references cease.
+ */
+ wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
+
+
+ /* now we can begin tearing down the infrastructure */
+
+ part->setup_state = XPC_P_TORNDOWN;
+
+ /* in case we've still got outstanding timers registered... */
+ del_timer_sync(&part->dropped_IPI_timer);
+
+ kfree(part->remote_openclose_args_base);
+ part->remote_openclose_args = NULL;
+ kfree(part->local_openclose_args_base);
+ part->local_openclose_args = NULL;
+ kfree(part->remote_GPs_base);
+ part->remote_GPs = NULL;
+ kfree(part->local_GPs_base);
+ part->local_GPs = NULL;
+ kfree(part->channels);
+ part->channels = NULL;
+ part->local_IPI_amo_va = NULL;
+}
+
+
+/*
+ * Called by XP at the time of channel connection registration to cause
+ * XPC to establish connections to all currently active partitions.
+ */
+void
+xpc_initiate_connect(int ch_number)
+{
+ partid_t partid;
+ struct xpc_partition *part;
+ struct xpc_channel *ch;
+
+
+ DBUG_ON(ch_number < 0 || ch_number >= XPC_NCHANNELS);
+
+ for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) {
+ part = &xpc_partitions[partid];
+
+ if (xpc_part_ref(part)) {
+ ch = &part->channels[ch_number];
+
+ if (!(ch->flags & XPC_C_DISCONNECTING)) {
+ DBUG_ON(ch->flags & XPC_C_OPENREQUEST);
+ DBUG_ON(ch->flags & XPC_C_CONNECTED);
+ DBUG_ON(ch->flags & XPC_C_SETUP);
+
+ /*
+ * Initiate the establishment of a connection
+ * on the newly registered channel to the
+ * remote partition.
+ */
+ xpc_wakeup_channel_mgr(part);
+ }
+
+ xpc_part_deref(part);
+ }
+ }
+}
+
+
+void
+xpc_connected_callout(struct xpc_channel *ch)
+{
+ unsigned long irq_flags;
+
+
+ /* let the registerer know that a connection has been established */
+
+ if (ch->func != NULL) {
+ dev_dbg(xpc_chan, "ch->func() called, reason=xpcConnected, "
+ "partid=%d, channel=%d\n", ch->partid, ch->number);
+
+ ch->func(xpcConnected, ch->partid, ch->number,
+ (void *) (u64) ch->local_nentries, ch->key);
+
+ dev_dbg(xpc_chan, "ch->func() returned, reason=xpcConnected, "
+ "partid=%d, channel=%d\n", ch->partid, ch->number);
+ }
+
+ spin_lock_irqsave(&ch->lock, irq_flags);
+ ch->flags |= XPC_C_CONNECTCALLOUT;
+ spin_unlock_irqrestore(&ch->lock, irq_flags);
+}
+
+
+/*
+ * Called by XP at the time of channel connection unregistration to cause
+ * XPC to teardown all current connections for the specified channel.
+ *
+ * Before returning xpc_initiate_disconnect() will wait until all connections
+ * on the specified channel have been closed/torndown. So the caller can be
+ * assured that they will not be receiving any more callouts from XPC to the
+ * function they registered via xpc_connect().
+ *
+ * Arguments:
+ *
+ * ch_number - channel # to unregister.
+ */
+void
+xpc_initiate_disconnect(int ch_number)
+{
+ unsigned long irq_flags;
+ partid_t partid;
+ struct xpc_partition *part;
+ struct xpc_channel *ch;
+
+
+ DBUG_ON(ch_number < 0 || ch_number >= XPC_NCHANNELS);
+
+ /* initiate the channel disconnect for every active partition */
+ for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) {
+ part = &xpc_partitions[partid];
+
+ if (xpc_part_ref(part)) {
+ ch = &part->channels[ch_number];
+ xpc_msgqueue_ref(ch);
+
+ spin_lock_irqsave(&ch->lock, irq_flags);
+
+ XPC_DISCONNECT_CHANNEL(ch, xpcUnregistering,
+ &irq_flags);
+
+ spin_unlock_irqrestore(&ch->lock, irq_flags);
+
+ xpc_msgqueue_deref(ch);
+ xpc_part_deref(part);
+ }
+ }
+
+ xpc_disconnect_wait(ch_number);
+}
+
+
+/*
+ * To disconnect a channel, and reflect it back to all who may be waiting.
+ *
+ * >>> An OPEN is not allowed until XPC_C_DISCONNECTING is cleared by
+ * >>> xpc_free_msgqueues().
+ *
+ * THE CHANNEL IS TO BE LOCKED BY THE CALLER AND WILL REMAIN LOCKED UPON RETURN.
+ */
+void
+xpc_disconnect_channel(const int line, struct xpc_channel *ch,
+ enum xpc_retval reason, unsigned long *irq_flags)
+{
+ u32 flags;
+
+
+ DBUG_ON(!spin_is_locked(&ch->lock));
+
+ if (ch->flags & (XPC_C_DISCONNECTING | XPC_C_DISCONNECTED)) {
+ return;
+ }
+ DBUG_ON(!(ch->flags & (XPC_C_CONNECTING | XPC_C_CONNECTED)));
+
+ dev_dbg(xpc_chan, "reason=%d, line=%d, partid=%d, channel=%d\n",
+ reason, line, ch->partid, ch->number);
+
+ XPC_SET_REASON(ch, reason, line);
+
+ flags = ch->flags;
+ /* some of these may not have been set */
+ ch->flags &= ~(XPC_C_OPENREQUEST | XPC_C_OPENREPLY |
+ XPC_C_ROPENREQUEST | XPC_C_ROPENREPLY |
+ XPC_C_CONNECTING | XPC_C_CONNECTED);
+
+ ch->flags |= (XPC_C_CLOSEREQUEST | XPC_C_DISCONNECTING);
+ xpc_IPI_send_closerequest(ch, irq_flags);
+
+ if (flags & XPC_C_CONNECTED) {
+ ch->flags |= XPC_C_WASCONNECTED;
+ }
+
+ if (atomic_read(&ch->kthreads_idle) > 0) {
+ /* wake all idle kthreads so they can exit */
+ wake_up_all(&ch->idle_wq);
+ }
+
+ spin_unlock_irqrestore(&ch->lock, *irq_flags);
+
+
+ /* wake those waiting to allocate an entry from the local msg queue */
+
+ if (atomic_read(&ch->n_on_msg_allocate_wq) > 0) {
+ wake_up(&ch->msg_allocate_wq);
+ }
+
+ /* wake those waiting for notify completion */
+
+ if (atomic_read(&ch->n_to_notify) > 0) {
+ xpc_notify_senders(ch, reason, ch->w_local_GP.put);
+ }
+
+ spin_lock_irqsave(&ch->lock, *irq_flags);
+}
+
+
+void
+xpc_disconnected_callout(struct xpc_channel *ch)
+{
+ /*
+ * Let the channel's registerer know that the channel is now
+ * disconnected. We don't want to do this if the registerer was never
+ * informed of a connection being made, unless the disconnect was for
+ * abnormal reasons.
+ */
+
+ if (ch->func != NULL) {
+ dev_dbg(xpc_chan, "ch->func() called, reason=%d, partid=%d, "
+ "channel=%d\n", ch->reason, ch->partid, ch->number);
+
+ ch->func(ch->reason, ch->partid, ch->number, NULL, ch->key);
+
+ dev_dbg(xpc_chan, "ch->func() returned, reason=%d, partid=%d, "
+ "channel=%d\n", ch->reason, ch->partid, ch->number);
+ }
+}
+
+
+/*
+ * Wait for a message entry to become available for the specified channel,
+ * but don't wait any longer than 1 jiffy.
+ */
+static enum xpc_retval
+xpc_allocate_msg_wait(struct xpc_channel *ch)
+{
+ enum xpc_retval ret;
+
+
+ if (ch->flags & XPC_C_DISCONNECTING) {
+ DBUG_ON(ch->reason == xpcInterrupted); // >>> Is this true?
+ return ch->reason;
+ }
+
+ atomic_inc(&ch->n_on_msg_allocate_wq);
+ ret = interruptible_sleep_on_timeout(&ch->msg_allocate_wq, 1);
+ atomic_dec(&ch->n_on_msg_allocate_wq);
+
+ if (ch->flags & XPC_C_DISCONNECTING) {
+ ret = ch->reason;
+ DBUG_ON(ch->reason == xpcInterrupted); // >>> Is this true?
+ } else if (ret == 0) {
+ ret = xpcTimeout;
+ } else {
+ ret = xpcInterrupted;
+ }
+
+ return ret;
+}
+
+
+/*
+ * Allocate an entry for a message from the message queue associated with the
+ * specified channel.
+ */
+static enum xpc_retval
+xpc_allocate_msg(struct xpc_channel *ch, u32 flags,
+ struct xpc_msg **address_of_msg)
+{
+ struct xpc_msg *msg;
+ enum xpc_retval ret;
+ s64 put;
+
+
+ /* this reference will be dropped in xpc_send_msg() */
+ xpc_msgqueue_ref(ch);
+
+ if (ch->flags & XPC_C_DISCONNECTING) {
+ xpc_msgqueue_deref(ch);
+ return ch->reason;
+ }
+ if (!(ch->flags & XPC_C_CONNECTED)) {
+ xpc_msgqueue_deref(ch);
+ return xpcNotConnected;
+ }
+
+
+ /*
+ * Get the next available message entry from the local message queue.
+ * If none are available, we'll make sure that we grab the latest
+ * GP values.
+ */
+ ret = xpcTimeout;
+
+ while (1) {
+
+ put = (volatile s64) ch->w_local_GP.put;
+ if (put - (volatile s64) ch->w_remote_GP.get <
+ ch->local_nentries) {
+
+ /* There are available message entries. We need to try
+ * to secure one for ourselves. We'll do this by trying
+ * to increment w_local_GP.put as long as someone else
+ * doesn't beat us to it. If they do, we'll have to
+ * try again.
+ */
+ if (cmpxchg(&ch->w_local_GP.put, put, put + 1) ==
+ put) {
+ /* we got the entry referenced by put */
+ break;
+ }
+ continue; /* try again */
+ }
+
+
+ /*
+ * There aren't any available msg entries at this time.
+ *
+ * In waiting for a message entry to become available,
+ * we set a timeout in case the other side is not
+ * sending completion IPIs. This lets us fake an IPI
+ * that will cause the IPI handler to fetch the latest
+ * GP values as if an IPI was sent by the other side.
+ */
+ if (ret == xpcTimeout) {
+ xpc_IPI_send_local_msgrequest(ch);
+ }
+
+ if (flags & XPC_NOWAIT) {
+ xpc_msgqueue_deref(ch);
+ return xpcNoWait;
+ }
+
+ ret = xpc_allocate_msg_wait(ch);
+ if (ret != xpcInterrupted && ret != xpcTimeout) {
+ xpc_msgqueue_deref(ch);
+ return ret;
+ }
+ }
+
+
+ /* get the message's address and initialize it */
+ msg = (struct xpc_msg *) ((u64) ch->local_msgqueue +
+ (put % ch->local_nentries) * ch->msg_size);
+
+
+ DBUG_ON(msg->flags != 0);
+ msg->number = put;
+
+ dev_dbg(xpc_chan, "w_local_GP.put changed to %ld; msg=0x%p, "
+ "msg_number=%ld, partid=%d, channel=%d\n", put + 1,
+ (void *) msg, msg->number, ch->partid, ch->number);
+
+ *address_of_msg = msg;
+
+ return xpcSuccess;
+}
+
+
+/*
+ * Allocate an entry for a message from the message queue associated with the
+ * specified channel. NOTE that this routine can sleep waiting for a message
+ * entry to become available. To not sleep, pass in the XPC_NOWAIT flag.
+ *
+ * Arguments:
+ *
+ * partid - ID of partition to which the channel is connected.
+ * ch_number - channel #.
+ * flags - see xpc.h for valid flags.
+ * payload - address of the allocated payload area pointer (filled in on
+ * return) in which the user-defined message is constructed.
+ */
+enum xpc_retval
+xpc_initiate_allocate(partid_t partid, int ch_number, u32 flags, void **payload)
+{
+ struct xpc_partition *part = &xpc_partitions[partid];
+ enum xpc_retval ret = xpcUnknownReason;
+ struct xpc_msg *msg;
+
+
+ DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS);
+ DBUG_ON(ch_number < 0 || ch_number >= part->nchannels);
+
+ *payload = NULL;
+
+ if (xpc_part_ref(part)) {
+ ret = xpc_allocate_msg(&part->channels[ch_number], flags, &msg);
+ xpc_part_deref(part);
+
+ if (msg != NULL) {
+ *payload = &msg->payload;
+ }
+ }
+
+ return ret;
+}
+
+
+/*
+ * Now we actually send the messages that are ready to be sent by advancing
+ * the local message queue's Put value and then send an IPI to the recipient
+ * partition.
+ */
+static void
+xpc_send_msgs(struct xpc_channel *ch, s64 initial_put)
+{
+ struct xpc_msg *msg;
+ s64 put = initial_put + 1;
+ int send_IPI = 0;
+
+
+ while (1) {
+
+ while (1) {
+ if (put == (volatile s64) ch->w_local_GP.put) {
+ break;
+ }
+
+ msg = (struct xpc_msg *) ((u64) ch->local_msgqueue +
+ (put % ch->local_nentries) * ch->msg_size);
+
+ if (!(msg->flags & XPC_M_READY)) {
+ break;
+ }
+
+ put++;
+ }
+
+ if (put == initial_put) {
+ /* nothing's changed */
+ break;
+ }
+
+ if (cmpxchg_rel(&ch->local_GP->put, initial_put, put) !=
+ initial_put) {
+ /* someone else beat us to it */
+ DBUG_ON((volatile s64) ch->local_GP->put < initial_put);
+ break;
+ }
+
+ /* we just set the new value of local_GP->put */
+
+ dev_dbg(xpc_chan, "local_GP->put changed to %ld, partid=%d, "
+ "channel=%d\n", put, ch->partid, ch->number);
+
+ send_IPI = 1;
+
+ /*
+ * We need to ensure that the message referenced by
+ * local_GP->put is not XPC_M_READY or that local_GP->put
+ * equals w_local_GP.put, so we'll go have a look.
+ */
+ initial_put = put;
+ }
+
+ if (send_IPI) {
+ xpc_IPI_send_msgrequest(ch);
+ }
+}
+
+
+/*
+ * Common code that does the actual sending of the message by advancing the
+ * local message queue's Put value and sends an IPI to the partition the
+ * message is being sent to.
+ */
+static enum xpc_retval
+xpc_send_msg(struct xpc_channel *ch, struct xpc_msg *msg, u8 notify_type,
+ xpc_notify_func func, void *key)
+{
+ enum xpc_retval ret = xpcSuccess;
+ struct xpc_notify *notify = NULL; // >>> to keep the compiler happy!!
+ s64 put, msg_number = msg->number;
+
+
+ DBUG_ON(notify_type == XPC_N_CALL && func == NULL);
+ DBUG_ON((((u64) msg - (u64) ch->local_msgqueue) / ch->msg_size) !=
+ msg_number % ch->local_nentries);
+ DBUG_ON(msg->flags & XPC_M_READY);
+
+ if (ch->flags & XPC_C_DISCONNECTING) {
+ /* drop the reference grabbed in xpc_allocate_msg() */
+ xpc_msgqueue_deref(ch);
+ return ch->reason;
+ }
+
+ if (notify_type != 0) {
+ /*
+ * Tell the remote side to send an ACK interrupt when the
+ * message has been delivered.
+ */
+ msg->flags |= XPC_M_INTERRUPT;
+
+ atomic_inc(&ch->n_to_notify);
+
+ notify = &ch->notify_queue[msg_number % ch->local_nentries];
+ notify->func = func;
+ notify->key = key;
+ (volatile u8) notify->type = notify_type;
+
+ // >>> is a mb() needed here?
+
+ if (ch->flags & XPC_C_DISCONNECTING) {
+ /*
+ * An error occurred between our last error check and
+ * this one. We will try to clear the type field from
+ * the notify entry. If we succeed then
+ * xpc_disconnect_channel() didn't already process
+ * the notify entry.
+ */
+ if (cmpxchg(&notify->type, notify_type, 0) ==
+ notify_type) {
+ atomic_dec(&ch->n_to_notify);
+ ret = ch->reason;
+ }
+
+ /* drop the reference grabbed in xpc_allocate_msg() */
+ xpc_msgqueue_deref(ch);
+ return ret;
+ }
+ }
+
+ msg->flags |= XPC_M_READY;
+
+ /*
+ * The preceding store of msg->flags must occur before the following
+ * load of ch->local_GP->put.
+ */
+ mb();
+
+ /* see if the message is next in line to be sent, if so send it */
+
+ put = ch->local_GP->put;
+ if (put == msg_number) {
+ xpc_send_msgs(ch, put);
+ }
+
+ /* drop the reference grabbed in xpc_allocate_msg() */
+ xpc_msgqueue_deref(ch);
+ return ret;
+}
+
+
+/*
+ * Send a message previously allocated using xpc_initiate_allocate() on the
+ * specified channel connected to the specified partition.
+ *
+ * This routine will not wait for the message to be received, nor will
+ * notification be given when it does happen. Once this routine has returned
+ * the message entry allocated via xpc_initiate_allocate() is no longer
+ * accessable to the caller.
+ *
+ * This routine, although called by users, does not call xpc_part_ref() to
+ * ensure that the partition infrastructure is in place. It relies on the
+ * fact that we called xpc_msgqueue_ref() in xpc_allocate_msg().
+ *
+ * Arguments:
+ *
+ * partid - ID of partition to which the channel is connected.
+ * ch_number - channel # to send message on.
+ * payload - pointer to the payload area allocated via
+ * xpc_initiate_allocate().
+ */
+enum xpc_retval
+xpc_initiate_send(partid_t partid, int ch_number, void *payload)
+{
+ struct xpc_partition *part = &xpc_partitions[partid];
+ struct xpc_msg *msg = XPC_MSG_ADDRESS(payload);
+ enum xpc_retval ret;
+
+
+ dev_dbg(xpc_chan, "msg=0x%p, partid=%d, channel=%d\n", (void *) msg,
+ partid, ch_number);
+
+ DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS);
+ DBUG_ON(ch_number < 0 || ch_number >= part->nchannels);
+ DBUG_ON(msg == NULL);
+
+ ret = xpc_send_msg(&part->channels[ch_number], msg, 0, NULL, NULL);
+
+ return ret;
+}
+
+
+/*
+ * Send a message previously allocated using xpc_initiate_allocate on the
+ * specified channel connected to the specified partition.
+ *
+ * This routine will not wait for the message to be sent. Once this routine
+ * has returned the message entry allocated via xpc_initiate_allocate() is no
+ * longer accessable to the caller.
+ *
+ * Once the remote end of the channel has received the message, the function
+ * passed as an argument to xpc_initiate_send_notify() will be called. This
+ * allows the sender to free up or re-use any buffers referenced by the
+ * message, but does NOT mean the message has been processed at the remote
+ * end by a receiver.
+ *
+ * If this routine returns an error, the caller's function will NOT be called.
+ *
+ * This routine, although called by users, does not call xpc_part_ref() to
+ * ensure that the partition infrastructure is in place. It relies on the
+ * fact that we called xpc_msgqueue_ref() in xpc_allocate_msg().
+ *
+ * Arguments:
+ *
+ * partid - ID of partition to which the channel is connected.
+ * ch_number - channel # to send message on.
+ * payload - pointer to the payload area allocated via
+ * xpc_initiate_allocate().
+ * func - function to call with asynchronous notification of message
+ * receipt. THIS FUNCTION MUST BE NON-BLOCKING.
+ * key - user-defined key to be passed to the function when it's called.
+ */
+enum xpc_retval
+xpc_initiate_send_notify(partid_t partid, int ch_number, void *payload,
+ xpc_notify_func func, void *key)
+{
+ struct xpc_partition *part = &xpc_partitions[partid];
+ struct xpc_msg *msg = XPC_MSG_ADDRESS(payload);
+ enum xpc_retval ret;
+
+
+ dev_dbg(xpc_chan, "msg=0x%p, partid=%d, channel=%d\n", (void *) msg,
+ partid, ch_number);
+
+ DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS);
+ DBUG_ON(ch_number < 0 || ch_number >= part->nchannels);
+ DBUG_ON(msg == NULL);
+ DBUG_ON(func == NULL);
+
+ ret = xpc_send_msg(&part->channels[ch_number], msg, XPC_N_CALL,
+ func, key);
+ return ret;
+}
+
+
+static struct xpc_msg *
+xpc_pull_remote_msg(struct xpc_channel *ch, s64 get)
+{
+ struct xpc_partition *part = &xpc_partitions[ch->partid];
+ struct xpc_msg *remote_msg, *msg;
+ u32 msg_index, nmsgs;
+ u64 msg_offset;
+ enum xpc_retval ret;
+
+
+ if (down_interruptible(&ch->msg_to_pull_sema) != 0) {
+ /* we were interrupted by a signal */
+ return NULL;
+ }
+
+ while (get >= ch->next_msg_to_pull) {
+
+ /* pull as many messages as are ready and able to be pulled */
+
+ msg_index = ch->next_msg_to_pull % ch->remote_nentries;
+
+ DBUG_ON(ch->next_msg_to_pull >=
+ (volatile s64) ch->w_remote_GP.put);
+ nmsgs = (volatile s64) ch->w_remote_GP.put -
+ ch->next_msg_to_pull;
+ if (msg_index + nmsgs > ch->remote_nentries) {
+ /* ignore the ones that wrap the msg queue for now */
+ nmsgs = ch->remote_nentries - msg_index;
+ }
+
+ msg_offset = msg_index * ch->msg_size;
+ msg = (struct xpc_msg *) ((u64) ch->remote_msgqueue +
+ msg_offset);
+ remote_msg = (struct xpc_msg *) (ch->remote_msgqueue_pa +
+ msg_offset);
+
+ if ((ret = xpc_pull_remote_cachelines(part, msg, remote_msg,
+ nmsgs * ch->msg_size)) != xpcSuccess) {
+
+ dev_dbg(xpc_chan, "failed to pull %d msgs starting with"
+ " msg %ld from partition %d, channel=%d, "
+ "ret=%d\n", nmsgs, ch->next_msg_to_pull,
+ ch->partid, ch->number, ret);
+
+ XPC_DEACTIVATE_PARTITION(part, ret);
+
+ up(&ch->msg_to_pull_sema);
+ return NULL;
+ }
+
+ mb(); /* >>> this may not be needed, we're not sure */
+
+ ch->next_msg_to_pull += nmsgs;
+ }
+
+ up(&ch->msg_to_pull_sema);
+
+ /* return the message we were looking for */
+ msg_offset = (get % ch->remote_nentries) * ch->msg_size;
+ msg = (struct xpc_msg *) ((u64) ch->remote_msgqueue + msg_offset);
+
+ return msg;
+}
+
+
+/*
+ * Get a message to be delivered.
+ */
+static struct xpc_msg *
+xpc_get_deliverable_msg(struct xpc_channel *ch)
+{
+ struct xpc_msg *msg = NULL;
+ s64 get;
+
+
+ do {
+ if ((volatile u32) ch->flags & XPC_C_DISCONNECTING) {
+ break;
+ }
+
+ get = (volatile s64) ch->w_local_GP.get;
+ if (get == (volatile s64) ch->w_remote_GP.put) {
+ break;
+ }
+
+ /* There are messages waiting to be pulled and delivered.
+ * We need to try to secure one for ourselves. We'll do this
+ * by trying to increment w_local_GP.get and hope that no one
+ * else beats us to it. If they do, we'll we'll simply have
+ * to try again for the next one.
+ */
+
+ if (cmpxchg(&ch->w_local_GP.get, get, get + 1) == get) {
+ /* we got the entry referenced by get */
+
+ dev_dbg(xpc_chan, "w_local_GP.get changed to %ld, "
+ "partid=%d, channel=%d\n", get + 1,
+ ch->partid, ch->number);
+
+ /* pull the message from the remote partition */
+
+ msg = xpc_pull_remote_msg(ch, get);
+
+ DBUG_ON(msg != NULL && msg->number != get);
+ DBUG_ON(msg != NULL && (msg->flags & XPC_M_DONE));
+ DBUG_ON(msg != NULL && !(msg->flags & XPC_M_READY));
+
+ break;
+ }
+
+ } while (1);
+
+ return msg;
+}
+
+
+/*
+ * Deliver a message to its intended recipient.
+ */
+void
+xpc_deliver_msg(struct xpc_channel *ch)
+{
+ struct xpc_msg *msg;
+
+
+ if ((msg = xpc_get_deliverable_msg(ch)) != NULL) {
+
+ /*
+ * This ref is taken to protect the payload itself from being
+ * freed before the user is finished with it, which the user
+ * indicates by calling xpc_initiate_received().
+ */
+ xpc_msgqueue_ref(ch);
+
+ atomic_inc(&ch->kthreads_active);
+
+ if (ch->func != NULL) {
+ dev_dbg(xpc_chan, "ch->func() called, msg=0x%p, "
+ "msg_number=%ld, partid=%d, channel=%d\n",
+ (void *) msg, msg->number, ch->partid,
+ ch->number);
+
+ /* deliver the message to its intended recipient */
+ ch->func(xpcMsgReceived, ch->partid, ch->number,
+ &msg->payload, ch->key);
+
+ dev_dbg(xpc_chan, "ch->func() returned, msg=0x%p, "
+ "msg_number=%ld, partid=%d, channel=%d\n",
+ (void *) msg, msg->number, ch->partid,
+ ch->number);
+ }
+
+ atomic_dec(&ch->kthreads_active);
+ }
+}
+
+
+/*
+ * Now we actually acknowledge the messages that have been delivered and ack'd
+ * by advancing the cached remote message queue's Get value and if requested
+ * send an IPI to the message sender's partition.
+ */
+static void
+xpc_acknowledge_msgs(struct xpc_channel *ch, s64 initial_get, u8 msg_flags)
+{
+ struct xpc_msg *msg;
+ s64 get = initial_get + 1;
+ int send_IPI = 0;
+
+
+ while (1) {
+
+ while (1) {
+ if (get == (volatile s64) ch->w_local_GP.get) {
+ break;
+ }
+
+ msg = (struct xpc_msg *) ((u64) ch->remote_msgqueue +
+ (get % ch->remote_nentries) * ch->msg_size);
+
+ if (!(msg->flags & XPC_M_DONE)) {
+ break;
+ }
+
+ msg_flags |= msg->flags;
+ get++;
+ }
+
+ if (get == initial_get) {
+ /* nothing's changed */
+ break;
+ }
+
+ if (cmpxchg_rel(&ch->local_GP->get, initial_get, get) !=
+ initial_get) {
+ /* someone else beat us to it */
+ DBUG_ON((volatile s64) ch->local_GP->get <=
+ initial_get);
+ break;
+ }
+
+ /* we just set the new value of local_GP->get */
+
+ dev_dbg(xpc_chan, "local_GP->get changed to %ld, partid=%d, "
+ "channel=%d\n", get, ch->partid, ch->number);
+
+ send_IPI = (msg_flags & XPC_M_INTERRUPT);
+
+ /*
+ * We need to ensure that the message referenced by
+ * local_GP->get is not XPC_M_DONE or that local_GP->get
+ * equals w_local_GP.get, so we'll go have a look.
+ */
+ initial_get = get;
+ }
+
+ if (send_IPI) {
+ xpc_IPI_send_msgrequest(ch);
+ }
+}
+
+
+/*
+ * Acknowledge receipt of a delivered message.
+ *
+ * If a message has XPC_M_INTERRUPT set, send an interrupt to the partition
+ * that sent the message.
+ *
+ * This function, although called by users, does not call xpc_part_ref() to
+ * ensure that the partition infrastructure is in place. It relies on the
+ * fact that we called xpc_msgqueue_ref() in xpc_deliver_msg().
+ *
+ * Arguments:
+ *
+ * partid - ID of partition to which the channel is connected.
+ * ch_number - channel # message received on.
+ * payload - pointer to the payload area allocated via
+ * xpc_initiate_allocate().
+ */
+void
+xpc_initiate_received(partid_t partid, int ch_number, void *payload)
+{
+ struct xpc_partition *part = &xpc_partitions[partid];
+ struct xpc_channel *ch;
+ struct xpc_msg *msg = XPC_MSG_ADDRESS(payload);
+ s64 get, msg_number = msg->number;
+
+
+ DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS);
+ DBUG_ON(ch_number < 0 || ch_number >= part->nchannels);
+
+ ch = &part->channels[ch_number];
+
+ dev_dbg(xpc_chan, "msg=0x%p, msg_number=%ld, partid=%d, channel=%d\n",
+ (void *) msg, msg_number, ch->partid, ch->number);
+
+ DBUG_ON((((u64) msg - (u64) ch->remote_msgqueue) / ch->msg_size) !=
+ msg_number % ch->remote_nentries);
+ DBUG_ON(msg->flags & XPC_M_DONE);
+
+ msg->flags |= XPC_M_DONE;
+
+ /*
+ * The preceding store of msg->flags must occur before the following
+ * load of ch->local_GP->get.
+ */
+ mb();
+
+ /*
+ * See if this message is next in line to be acknowledged as having
+ * been delivered.
+ */
+ get = ch->local_GP->get;
+ if (get == msg_number) {
+ xpc_acknowledge_msgs(ch, get, msg->flags);
+ }
+
+ /* the call to xpc_msgqueue_ref() was done by xpc_deliver_msg() */
+ xpc_msgqueue_deref(ch);
+}
+
diff --git a/arch/ia64/sn/kernel/xpc_main.c b/arch/ia64/sn/kernel/xpc_main.c
new file mode 100644
index 000000000000..177ddb748ebe
--- /dev/null
+++ b/arch/ia64/sn/kernel/xpc_main.c
@@ -0,0 +1,1064 @@
+/*
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ * Copyright (c) 2004-2005 Silicon Graphics, Inc. All Rights Reserved.
+ */
+
+
+/*
+ * Cross Partition Communication (XPC) support - standard version.
+ *
+ * XPC provides a message passing capability that crosses partition
+ * boundaries. This module is made up of two parts:
+ *
+ * partition This part detects the presence/absence of other
+ * partitions. It provides a heartbeat and monitors
+ * the heartbeats of other partitions.
+ *
+ * channel This part manages the channels and sends/receives
+ * messages across them to/from other partitions.
+ *
+ * There are a couple of additional functions residing in XP, which
+ * provide an interface to XPC for its users.
+ *
+ *
+ * Caveats:
+ *
+ * . We currently have no way to determine which nasid an IPI came
+ * from. Thus, xpc_IPI_send() does a remote AMO write followed by
+ * an IPI. The AMO indicates where data is to be pulled from, so
+ * after the IPI arrives, the remote partition checks the AMO word.
+ * The IPI can actually arrive before the AMO however, so other code
+ * must periodically check for this case. Also, remote AMO operations
+ * do not reliably time out. Thus we do a remote PIO read solely to
+ * know whether the remote partition is down and whether we should
+ * stop sending IPIs to it. This remote PIO read operation is set up
+ * in a special nofault region so SAL knows to ignore (and cleanup)
+ * any errors due to the remote AMO write, PIO read, and/or PIO
+ * write operations.
+ *
+ * If/when new hardware solves this IPI problem, we should abandon
+ * the current approach.
+ *
+ */
+
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/sched.h>
+#include <linux/syscalls.h>
+#include <linux/cache.h>
+#include <linux/interrupt.h>
+#include <linux/slab.h>
+#include <asm/sn/intr.h>
+#include <asm/sn/sn_sal.h>
+#include <asm/uaccess.h>
+#include "xpc.h"
+
+
+/* define two XPC debug device structures to be used with dev_dbg() et al */
+
+struct device_driver xpc_dbg_name = {
+ .name = "xpc"
+};
+
+struct device xpc_part_dbg_subname = {
+ .bus_id = {0}, /* set to "part" at xpc_init() time */
+ .driver = &xpc_dbg_name
+};
+
+struct device xpc_chan_dbg_subname = {
+ .bus_id = {0}, /* set to "chan" at xpc_init() time */
+ .driver = &xpc_dbg_name
+};
+
+struct device *xpc_part = &xpc_part_dbg_subname;
+struct device *xpc_chan = &xpc_chan_dbg_subname;
+
+
+/* systune related variables for /proc/sys directories */
+
+static int xpc_hb_min = 1;
+static int xpc_hb_max = 10;
+
+static int xpc_hb_check_min = 10;
+static int xpc_hb_check_max = 120;
+
+static ctl_table xpc_sys_xpc_hb_dir[] = {
+ {
+ 1,
+ "hb_interval",
+ &xpc_hb_interval,
+ sizeof(int),
+ 0644,
+ NULL,
+ &proc_dointvec_minmax,
+ &sysctl_intvec,
+ NULL,
+ &xpc_hb_min, &xpc_hb_max
+ },
+ {
+ 2,
+ "hb_check_interval",
+ &xpc_hb_check_interval,
+ sizeof(int),
+ 0644,
+ NULL,
+ &proc_dointvec_minmax,
+ &sysctl_intvec,
+ NULL,
+ &xpc_hb_check_min, &xpc_hb_check_max
+ },
+ {0}
+};
+static ctl_table xpc_sys_xpc_dir[] = {
+ {
+ 1,
+ "hb",
+ NULL,
+ 0,
+ 0555,
+ xpc_sys_xpc_hb_dir
+ },
+ {0}
+};
+static ctl_table xpc_sys_dir[] = {
+ {
+ 1,
+ "xpc",
+ NULL,
+ 0,
+ 0555,
+ xpc_sys_xpc_dir
+ },
+ {0}
+};
+static struct ctl_table_header *xpc_sysctl;
+
+
+/* #of IRQs received */
+static atomic_t xpc_act_IRQ_rcvd;
+
+/* IRQ handler notifies this wait queue on receipt of an IRQ */
+static DECLARE_WAIT_QUEUE_HEAD(xpc_act_IRQ_wq);
+
+static unsigned long xpc_hb_check_timeout;
+
+/* xpc_hb_checker thread exited notification */
+static DECLARE_MUTEX_LOCKED(xpc_hb_checker_exited);
+
+/* xpc_discovery thread exited notification */
+static DECLARE_MUTEX_LOCKED(xpc_discovery_exited);
+
+
+static struct timer_list xpc_hb_timer;
+
+
+static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
+
+
+/*
+ * Notify the heartbeat check thread that an IRQ has been received.
+ */
+static irqreturn_t
+xpc_act_IRQ_handler(int irq, void *dev_id, struct pt_regs *regs)
+{
+ atomic_inc(&xpc_act_IRQ_rcvd);
+ wake_up_interruptible(&xpc_act_IRQ_wq);
+ return IRQ_HANDLED;
+}
+
+
+/*
+ * Timer to produce the heartbeat. The timer structures function is
+ * already set when this is initially called. A tunable is used to
+ * specify when the next timeout should occur.
+ */
+static void
+xpc_hb_beater(unsigned long dummy)
+{
+ xpc_vars->heartbeat++;
+
+ if (jiffies >= xpc_hb_check_timeout) {
+ wake_up_interruptible(&xpc_act_IRQ_wq);
+ }
+
+ xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
+ add_timer(&xpc_hb_timer);
+}
+
+
+/*
+ * This thread is responsible for nearly all of the partition
+ * activation/deactivation.
+ */
+static int
+xpc_hb_checker(void *ignore)
+{
+ int last_IRQ_count = 0;
+ int new_IRQ_count;
+ int force_IRQ=0;
+
+
+ /* this thread was marked active by xpc_hb_init() */
+
+ daemonize(XPC_HB_CHECK_THREAD_NAME);
+
+ set_cpus_allowed(current, cpumask_of_cpu(XPC_HB_CHECK_CPU));
+
+ xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
+
+ while (!(volatile int) xpc_exiting) {
+
+ /* wait for IRQ or timeout */
+ (void) wait_event_interruptible(xpc_act_IRQ_wq,
+ (last_IRQ_count < atomic_read(&xpc_act_IRQ_rcvd) ||
+ jiffies >= xpc_hb_check_timeout ||
+ (volatile int) xpc_exiting));
+
+ dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
+ "been received\n",
+ (int) (xpc_hb_check_timeout - jiffies),
+ atomic_read(&xpc_act_IRQ_rcvd) - last_IRQ_count);
+
+
+ /* checking of remote heartbeats is skewed by IRQ handling */
+ if (jiffies >= xpc_hb_check_timeout) {
+ dev_dbg(xpc_part, "checking remote heartbeats\n");
+ xpc_check_remote_hb();
+
+ /*
+ * We need to periodically recheck to ensure no
+ * IPI/AMO pairs have been missed. That check
+ * must always reset xpc_hb_check_timeout.
+ */
+ force_IRQ = 1;
+ }
+
+
+ new_IRQ_count = atomic_read(&xpc_act_IRQ_rcvd);
+ if (last_IRQ_count < new_IRQ_count || force_IRQ != 0) {
+ force_IRQ = 0;
+
+ dev_dbg(xpc_part, "found an IRQ to process; will be "
+ "resetting xpc_hb_check_timeout\n");
+
+ last_IRQ_count += xpc_identify_act_IRQ_sender();
+ if (last_IRQ_count < new_IRQ_count) {
+ /* retry once to help avoid missing AMO */
+ (void) xpc_identify_act_IRQ_sender();
+ }
+ last_IRQ_count = new_IRQ_count;
+
+ xpc_hb_check_timeout = jiffies +
+ (xpc_hb_check_interval * HZ);
+ }
+ }
+
+ dev_dbg(xpc_part, "heartbeat checker is exiting\n");
+
+
+ /* mark this thread as inactive */
+ up(&xpc_hb_checker_exited);
+ return 0;
+}
+
+
+/*
+ * This thread will attempt to discover other partitions to activate
+ * based on info provided by SAL. This new thread is short lived and
+ * will exit once discovery is complete.
+ */
+static int
+xpc_initiate_discovery(void *ignore)
+{
+ daemonize(XPC_DISCOVERY_THREAD_NAME);
+
+ xpc_discovery();
+
+ dev_dbg(xpc_part, "discovery thread is exiting\n");
+
+ /* mark this thread as inactive */
+ up(&xpc_discovery_exited);
+ return 0;
+}
+
+
+/*
+ * Establish first contact with the remote partititon. This involves pulling
+ * the XPC per partition variables from the remote partition and waiting for
+ * the remote partition to pull ours.
+ */
+static enum xpc_retval
+xpc_make_first_contact(struct xpc_partition *part)
+{
+ enum xpc_retval ret;
+
+
+ while ((ret = xpc_pull_remote_vars_part(part)) != xpcSuccess) {
+ if (ret != xpcRetry) {
+ XPC_DEACTIVATE_PARTITION(part, ret);
+ return ret;
+ }
+
+ dev_dbg(xpc_chan, "waiting to make first contact with "
+ "partition %d\n", XPC_PARTID(part));
+
+ /* wait a 1/4 of a second or so */
+ set_current_state(TASK_INTERRUPTIBLE);
+ (void) schedule_timeout(0.25 * HZ);
+
+ if (part->act_state == XPC_P_DEACTIVATING) {
+ return part->reason;
+ }
+ }
+
+ return xpc_mark_partition_active(part);
+}
+
+
+/*
+ * The first kthread assigned to a newly activated partition is the one
+ * created by XPC HB with which it calls xpc_partition_up(). XPC hangs on to
+ * that kthread until the partition is brought down, at which time that kthread
+ * returns back to XPC HB. (The return of that kthread will signify to XPC HB
+ * that XPC has dismantled all communication infrastructure for the associated
+ * partition.) This kthread becomes the channel manager for that partition.
+ *
+ * Each active partition has a channel manager, who, besides connecting and
+ * disconnecting channels, will ensure that each of the partition's connected
+ * channels has the required number of assigned kthreads to get the work done.
+ */
+static void
+xpc_channel_mgr(struct xpc_partition *part)
+{
+ while (part->act_state != XPC_P_DEACTIVATING ||
+ atomic_read(&part->nchannels_active) > 0) {
+
+ xpc_process_channel_activity(part);
+
+
+ /*
+ * Wait until we've been requested to activate kthreads or
+ * all of the channel's message queues have been torn down or
+ * a signal is pending.
+ *
+ * The channel_mgr_requests is set to 1 after being awakened,
+ * This is done to prevent the channel mgr from making one pass
+ * through the loop for each request, since he will
+ * be servicing all the requests in one pass. The reason it's
+ * set to 1 instead of 0 is so that other kthreads will know
+ * that the channel mgr is running and won't bother trying to
+ * wake him up.
+ */
+ atomic_dec(&part->channel_mgr_requests);
+ (void) wait_event_interruptible(part->channel_mgr_wq,
+ (atomic_read(&part->channel_mgr_requests) > 0 ||
+ (volatile u64) part->local_IPI_amo != 0 ||
+ ((volatile u8) part->act_state ==
+ XPC_P_DEACTIVATING &&
+ atomic_read(&part->nchannels_active) == 0)));
+ atomic_set(&part->channel_mgr_requests, 1);
+
+ // >>> Does it need to wakeup periodically as well? In case we
+ // >>> miscalculated the #of kthreads to wakeup or create?
+ }
+}
+
+
+/*
+ * When XPC HB determines that a partition has come up, it will create a new
+ * kthread and that kthread will call this function to attempt to set up the
+ * basic infrastructure used for Cross Partition Communication with the newly
+ * upped partition.
+ *
+ * The kthread that was created by XPC HB and which setup the XPC
+ * infrastructure will remain assigned to the partition until the partition
+ * goes down. At which time the kthread will teardown the XPC infrastructure
+ * and then exit.
+ *
+ * XPC HB will put the remote partition's XPC per partition specific variables
+ * physical address into xpc_partitions[partid].remote_vars_part_pa prior to
+ * calling xpc_partition_up().
+ */
+static void
+xpc_partition_up(struct xpc_partition *part)
+{
+ DBUG_ON(part->channels != NULL);
+
+ dev_dbg(xpc_chan, "activating partition %d\n", XPC_PARTID(part));
+
+ if (xpc_setup_infrastructure(part) != xpcSuccess) {
+ return;
+ }
+
+ /*
+ * The kthread that XPC HB called us with will become the
+ * channel manager for this partition. It will not return
+ * back to XPC HB until the partition's XPC infrastructure
+ * has been dismantled.
+ */
+
+ (void) xpc_part_ref(part); /* this will always succeed */
+
+ if (xpc_make_first_contact(part) == xpcSuccess) {
+ xpc_channel_mgr(part);
+ }
+
+ xpc_part_deref(part);
+
+ xpc_teardown_infrastructure(part);
+}
+
+
+static int
+xpc_activating(void *__partid)
+{
+ partid_t partid = (u64) __partid;
+ struct xpc_partition *part = &xpc_partitions[partid];
+ unsigned long irq_flags;
+ struct sched_param param = { sched_priority: MAX_USER_RT_PRIO - 1 };
+ int ret;
+
+
+ DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS);
+
+ spin_lock_irqsave(&part->act_lock, irq_flags);
+
+ if (part->act_state == XPC_P_DEACTIVATING) {
+ part->act_state = XPC_P_INACTIVE;
+ spin_unlock_irqrestore(&part->act_lock, irq_flags);
+ part->remote_rp_pa = 0;
+ return 0;
+ }
+
+ /* indicate the thread is activating */
+ DBUG_ON(part->act_state != XPC_P_ACTIVATION_REQ);
+ part->act_state = XPC_P_ACTIVATING;
+
+ XPC_SET_REASON(part, 0, 0);
+ spin_unlock_irqrestore(&part->act_lock, irq_flags);
+
+ dev_dbg(xpc_part, "bringing partition %d up\n", partid);
+
+ daemonize("xpc%02d", partid);
+
+ /*
+ * This thread needs to run at a realtime priority to prevent a
+ * significant performance degradation.
+ */
+ ret = sched_setscheduler(current, SCHED_FIFO, &param);
+ if (ret != 0) {
+ dev_warn(xpc_part, "unable to set pid %d to a realtime "
+ "priority, ret=%d\n", current->pid, ret);
+ }
+
+ /* allow this thread and its children to run on any CPU */
+ set_cpus_allowed(current, CPU_MASK_ALL);
+
+ /*
+ * Register the remote partition's AMOs with SAL so it can handle
+ * and cleanup errors within that address range should the remote
+ * partition go down. We don't unregister this range because it is
+ * difficult to tell when outstanding writes to the remote partition
+ * are finished and thus when it is safe to unregister. This should
+ * not result in wasted space in the SAL xp_addr_region table because
+ * we should get the same page for remote_amos_page_pa after module
+ * reloads and system reboots.
+ */
+ if (sn_register_xp_addr_region(part->remote_amos_page_pa,
+ PAGE_SIZE, 1) < 0) {
+ dev_warn(xpc_part, "xpc_partition_up(%d) failed to register "
+ "xp_addr region\n", partid);
+
+ spin_lock_irqsave(&part->act_lock, irq_flags);
+ part->act_state = XPC_P_INACTIVE;
+ XPC_SET_REASON(part, xpcPhysAddrRegFailed, __LINE__);
+ spin_unlock_irqrestore(&part->act_lock, irq_flags);
+ part->remote_rp_pa = 0;
+ return 0;
+ }
+
+ XPC_ALLOW_HB(partid, xpc_vars);
+ xpc_IPI_send_activated(part);
+
+
+ /*
+ * xpc_partition_up() holds this thread and marks this partition as
+ * XPC_P_ACTIVE by calling xpc_hb_mark_active().
+ */
+ (void) xpc_partition_up(part);
+
+ xpc_mark_partition_inactive(part);
+
+ if (part->reason == xpcReactivating) {
+ /* interrupting ourselves results in activating partition */
+ xpc_IPI_send_reactivate(part);
+ }
+
+ return 0;
+}
+
+
+void
+xpc_activate_partition(struct xpc_partition *part)
+{
+ partid_t partid = XPC_PARTID(part);
+ unsigned long irq_flags;
+ pid_t pid;
+
+
+ spin_lock_irqsave(&part->act_lock, irq_flags);
+
+ pid = kernel_thread(xpc_activating, (void *) ((u64) partid), 0);
+
+ DBUG_ON(part->act_state != XPC_P_INACTIVE);
+
+ if (pid > 0) {
+ part->act_state = XPC_P_ACTIVATION_REQ;
+ XPC_SET_REASON(part, xpcCloneKThread, __LINE__);
+ } else {
+ XPC_SET_REASON(part, xpcCloneKThreadFailed, __LINE__);
+ }
+
+ spin_unlock_irqrestore(&part->act_lock, irq_flags);
+}
+
+
+/*
+ * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified
+ * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more
+ * than one partition, we use an AMO_t structure per partition to indicate
+ * whether a partition has sent an IPI or not. >>> If it has, then wake up the
+ * associated kthread to handle it.
+ *
+ * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IPIs sent by XPC
+ * running on other partitions.
+ *
+ * Noteworthy Arguments:
+ *
+ * irq - Interrupt ReQuest number. NOT USED.
+ *
+ * dev_id - partid of IPI's potential sender.
+ *
+ * regs - processor's context before the processor entered
+ * interrupt code. NOT USED.
+ */
+irqreturn_t
+xpc_notify_IRQ_handler(int irq, void *dev_id, struct pt_regs *regs)
+{
+ partid_t partid = (partid_t) (u64) dev_id;
+ struct xpc_partition *part = &xpc_partitions[partid];
+
+
+ DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS);
+
+ if (xpc_part_ref(part)) {
+ xpc_check_for_channel_activity(part);
+
+ xpc_part_deref(part);
+ }
+ return IRQ_HANDLED;
+}
+
+
+/*
+ * Check to see if xpc_notify_IRQ_handler() dropped any IPIs on the floor
+ * because the write to their associated IPI amo completed after the IRQ/IPI
+ * was received.
+ */
+void
+xpc_dropped_IPI_check(struct xpc_partition *part)
+{
+ if (xpc_part_ref(part)) {
+ xpc_check_for_channel_activity(part);
+
+ part->dropped_IPI_timer.expires = jiffies +
+ XPC_P_DROPPED_IPI_WAIT;
+ add_timer(&part->dropped_IPI_timer);
+ xpc_part_deref(part);
+ }
+}
+
+
+void
+xpc_activate_kthreads(struct xpc_channel *ch, int needed)
+{
+ int idle = atomic_read(&ch->kthreads_idle);
+ int assigned = atomic_read(&ch->kthreads_assigned);
+ int wakeup;
+
+
+ DBUG_ON(needed <= 0);
+
+ if (idle > 0) {
+ wakeup = (needed > idle) ? idle : needed;
+ needed -= wakeup;
+
+ dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
+ "channel=%d\n", wakeup, ch->partid, ch->number);
+
+ /* only wakeup the requested number of kthreads */
+ wake_up_nr(&ch->idle_wq, wakeup);
+ }
+
+ if (needed <= 0) {
+ return;
+ }
+
+ if (needed + assigned > ch->kthreads_assigned_limit) {
+ needed = ch->kthreads_assigned_limit - assigned;
+ // >>>should never be less than 0
+ if (needed <= 0) {
+ return;
+ }
+ }
+
+ dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
+ needed, ch->partid, ch->number);
+
+ xpc_create_kthreads(ch, needed);
+}
+
+
+/*
+ * This function is where XPC's kthreads wait for messages to deliver.
+ */
+static void
+xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
+{
+ do {
+ /* deliver messages to their intended recipients */
+
+ while ((volatile s64) ch->w_local_GP.get <
+ (volatile s64) ch->w_remote_GP.put &&
+ !((volatile u32) ch->flags &
+ XPC_C_DISCONNECTING)) {
+ xpc_deliver_msg(ch);
+ }
+
+ if (atomic_inc_return(&ch->kthreads_idle) >
+ ch->kthreads_idle_limit) {
+ /* too many idle kthreads on this channel */
+ atomic_dec(&ch->kthreads_idle);
+ break;
+ }
+
+ dev_dbg(xpc_chan, "idle kthread calling "
+ "wait_event_interruptible_exclusive()\n");
+
+ (void) wait_event_interruptible_exclusive(ch->idle_wq,
+ ((volatile s64) ch->w_local_GP.get <
+ (volatile s64) ch->w_remote_GP.put ||
+ ((volatile u32) ch->flags &
+ XPC_C_DISCONNECTING)));
+
+ atomic_dec(&ch->kthreads_idle);
+
+ } while (!((volatile u32) ch->flags & XPC_C_DISCONNECTING));
+}
+
+
+static int
+xpc_daemonize_kthread(void *args)
+{
+ partid_t partid = XPC_UNPACK_ARG1(args);
+ u16 ch_number = XPC_UNPACK_ARG2(args);
+ struct xpc_partition *part = &xpc_partitions[partid];
+ struct xpc_channel *ch;
+ int n_needed;
+
+
+ daemonize("xpc%02dc%d", partid, ch_number);
+
+ dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
+ partid, ch_number);
+
+ ch = &part->channels[ch_number];
+
+ if (!(ch->flags & XPC_C_DISCONNECTING)) {
+ DBUG_ON(!(ch->flags & XPC_C_CONNECTED));
+
+ /* let registerer know that connection has been established */
+
+ if (atomic_read(&ch->kthreads_assigned) == 1) {
+ xpc_connected_callout(ch);
+
+ /*
+ * It is possible that while the callout was being
+ * made that the remote partition sent some messages.
+ * If that is the case, we may need to activate
+ * additional kthreads to help deliver them. We only
+ * need one less than total #of messages to deliver.
+ */
+ n_needed = ch->w_remote_GP.put - ch->w_local_GP.get - 1;
+ if (n_needed > 0 &&
+ !(ch->flags & XPC_C_DISCONNECTING)) {
+ xpc_activate_kthreads(ch, n_needed);
+ }
+ }
+
+ xpc_kthread_waitmsgs(part, ch);
+ }
+
+ if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
+ ((ch->flags & XPC_C_CONNECTCALLOUT) ||
+ (ch->reason != xpcUnregistering &&
+ ch->reason != xpcOtherUnregistering))) {
+ xpc_disconnected_callout(ch);
+ }
+
+
+ xpc_msgqueue_deref(ch);
+
+ dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
+ partid, ch_number);
+
+ xpc_part_deref(part);
+ return 0;
+}
+
+
+/*
+ * For each partition that XPC has established communications with, there is
+ * a minimum of one kernel thread assigned to perform any operation that
+ * may potentially sleep or block (basically the callouts to the asynchronous
+ * functions registered via xpc_connect()).
+ *
+ * Additional kthreads are created and destroyed by XPC as the workload
+ * demands.
+ *
+ * A kthread is assigned to one of the active channels that exists for a given
+ * partition.
+ */
+void
+xpc_create_kthreads(struct xpc_channel *ch, int needed)
+{
+ unsigned long irq_flags;
+ pid_t pid;
+ u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
+
+
+ while (needed-- > 0) {
+ pid = kernel_thread(xpc_daemonize_kthread, (void *) args, 0);
+ if (pid < 0) {
+ /* the fork failed */
+
+ if (atomic_read(&ch->kthreads_assigned) <
+ ch->kthreads_idle_limit) {
+ /*
+ * Flag this as an error only if we have an
+ * insufficient #of kthreads for the channel
+ * to function.
+ *
+ * No xpc_msgqueue_ref() is needed here since
+ * the channel mgr is doing this.
+ */
+ spin_lock_irqsave(&ch->lock, irq_flags);
+ XPC_DISCONNECT_CHANNEL(ch, xpcLackOfResources,
+ &irq_flags);
+ spin_unlock_irqrestore(&ch->lock, irq_flags);
+ }
+ break;
+ }
+
+ /*
+ * The following is done on behalf of the newly created
+ * kthread. That kthread is responsible for doing the
+ * counterpart to the following before it exits.
+ */
+ (void) xpc_part_ref(&xpc_partitions[ch->partid]);
+ xpc_msgqueue_ref(ch);
+ atomic_inc(&ch->kthreads_assigned);
+ ch->kthreads_created++; // >>> temporary debug only!!!
+ }
+}
+
+
+void
+xpc_disconnect_wait(int ch_number)
+{
+ partid_t partid;
+ struct xpc_partition *part;
+ struct xpc_channel *ch;
+
+
+ /* now wait for all callouts to the caller's function to cease */
+ for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) {
+ part = &xpc_partitions[partid];
+
+ if (xpc_part_ref(part)) {
+ ch = &part->channels[ch_number];
+
+// >>> how do we keep from falling into the window between our check and going
+// >>> down and coming back up where sema is re-inited?
+ if (ch->flags & XPC_C_SETUP) {
+ (void) down(&ch->teardown_sema);
+ }
+
+ xpc_part_deref(part);
+ }
+ }
+}
+
+
+static void
+xpc_do_exit(void)
+{
+ partid_t partid;
+ int active_part_count;
+ struct xpc_partition *part;
+
+
+ /* now it's time to eliminate our heartbeat */
+ del_timer_sync(&xpc_hb_timer);
+ xpc_vars->heartbeating_to_mask = 0;
+
+ /* indicate to others that our reserved page is uninitialized */
+ xpc_rsvd_page->vars_pa = 0;
+
+ /*
+ * Ignore all incoming interrupts. Without interupts the heartbeat
+ * checker won't activate any new partitions that may come up.
+ */
+ free_irq(SGI_XPC_ACTIVATE, NULL);
+
+ /*
+ * Cause the heartbeat checker and the discovery threads to exit.
+ * We don't want them attempting to activate new partitions as we
+ * try to deactivate the existing ones.
+ */
+ xpc_exiting = 1;
+ wake_up_interruptible(&xpc_act_IRQ_wq);
+
+ /* wait for the heartbeat checker thread to mark itself inactive */
+ down(&xpc_hb_checker_exited);
+
+ /* wait for the discovery thread to mark itself inactive */
+ down(&xpc_discovery_exited);
+
+
+ set_current_state(TASK_INTERRUPTIBLE);
+ schedule_timeout(0.3 * HZ);
+ set_current_state(TASK_RUNNING);
+
+
+ /* wait for all partitions to become inactive */
+
+ do {
+ active_part_count = 0;
+
+ for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) {
+ part = &xpc_partitions[partid];
+ if (part->act_state != XPC_P_INACTIVE) {
+ active_part_count++;
+
+ XPC_DEACTIVATE_PARTITION(part, xpcUnloading);
+ }
+ }
+
+ if (active_part_count) {
+ set_current_state(TASK_INTERRUPTIBLE);
+ schedule_timeout(0.3 * HZ);
+ set_current_state(TASK_RUNNING);
+ }
+
+ } while (active_part_count > 0);
+
+
+ /* close down protections for IPI operations */
+ xpc_restrict_IPI_ops();
+
+
+ /* clear the interface to XPC's functions */
+ xpc_clear_interface();
+
+ if (xpc_sysctl) {
+ unregister_sysctl_table(xpc_sysctl);
+ }
+}
+
+
+int __init
+xpc_init(void)
+{
+ int ret;
+ partid_t partid;
+ struct xpc_partition *part;
+ pid_t pid;
+
+
+ /*
+ * xpc_remote_copy_buffer is used as a temporary buffer for bte_copy'ng
+ * both a partition's reserved page and its XPC variables. Its size was
+ * based on the size of a reserved page. So we need to ensure that the
+ * XPC variables will fit as well.
+ */
+ if (XPC_VARS_ALIGNED_SIZE > XPC_RSVD_PAGE_ALIGNED_SIZE) {
+ dev_err(xpc_part, "xpc_remote_copy_buffer is not big enough\n");
+ return -EPERM;
+ }
+ DBUG_ON((u64) xpc_remote_copy_buffer !=
+ L1_CACHE_ALIGN((u64) xpc_remote_copy_buffer));
+
+ snprintf(xpc_part->bus_id, BUS_ID_SIZE, "part");
+ snprintf(xpc_chan->bus_id, BUS_ID_SIZE, "chan");
+
+ xpc_sysctl = register_sysctl_table(xpc_sys_dir, 1);
+
+ /*
+ * The first few fields of each entry of xpc_partitions[] need to
+ * be initialized now so that calls to xpc_connect() and
+ * xpc_disconnect() can be made prior to the activation of any remote
+ * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
+ * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
+ * PARTITION HAS BEEN ACTIVATED.
+ */
+ for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) {
+ part = &xpc_partitions[partid];
+
+ DBUG_ON((u64) part != L1_CACHE_ALIGN((u64) part));
+
+ part->act_IRQ_rcvd = 0;
+ spin_lock_init(&part->act_lock);
+ part->act_state = XPC_P_INACTIVE;
+ XPC_SET_REASON(part, 0, 0);
+ part->setup_state = XPC_P_UNSET;
+ init_waitqueue_head(&part->teardown_wq);
+ atomic_set(&part->references, 0);
+ }
+
+ /*
+ * Open up protections for IPI operations (and AMO operations on
+ * Shub 1.1 systems).
+ */
+ xpc_allow_IPI_ops();
+
+ /*
+ * Interrupts being processed will increment this atomic variable and
+ * awaken the heartbeat thread which will process the interrupts.
+ */
+ atomic_set(&xpc_act_IRQ_rcvd, 0);
+
+ /*
+ * This is safe to do before the xpc_hb_checker thread has started
+ * because the handler releases a wait queue. If an interrupt is
+ * received before the thread is waiting, it will not go to sleep,
+ * but rather immediately process the interrupt.
+ */
+ ret = request_irq(SGI_XPC_ACTIVATE, xpc_act_IRQ_handler, 0,
+ "xpc hb", NULL);
+ if (ret != 0) {
+ dev_err(xpc_part, "can't register ACTIVATE IRQ handler, "
+ "errno=%d\n", -ret);
+
+ xpc_restrict_IPI_ops();
+
+ if (xpc_sysctl) {
+ unregister_sysctl_table(xpc_sysctl);
+ }
+ return -EBUSY;
+ }
+
+ /*
+ * Fill the partition reserved page with the information needed by
+ * other partitions to discover we are alive and establish initial
+ * communications.
+ */
+ xpc_rsvd_page = xpc_rsvd_page_init();
+ if (xpc_rsvd_page == NULL) {
+ dev_err(xpc_part, "could not setup our reserved page\n");
+
+ free_irq(SGI_XPC_ACTIVATE, NULL);
+ xpc_restrict_IPI_ops();
+
+ if (xpc_sysctl) {
+ unregister_sysctl_table(xpc_sysctl);
+ }
+ return -EBUSY;
+ }
+
+
+ /*
+ * Set the beating to other partitions into motion. This is
+ * the last requirement for other partitions' discovery to
+ * initiate communications with us.
+ */
+ init_timer(&xpc_hb_timer);
+ xpc_hb_timer.function = xpc_hb_beater;
+ xpc_hb_beater(0);
+
+
+ /*
+ * The real work-horse behind xpc. This processes incoming
+ * interrupts and monitors remote heartbeats.
+ */
+ pid = kernel_thread(xpc_hb_checker, NULL, 0);
+ if (pid < 0) {
+ dev_err(xpc_part, "failed while forking hb check thread\n");
+
+ /* indicate to others that our reserved page is uninitialized */
+ xpc_rsvd_page->vars_pa = 0;
+
+ del_timer_sync(&xpc_hb_timer);
+ free_irq(SGI_XPC_ACTIVATE, NULL);
+ xpc_restrict_IPI_ops();
+
+ if (xpc_sysctl) {
+ unregister_sysctl_table(xpc_sysctl);
+ }
+ return -EBUSY;
+ }
+
+
+ /*
+ * Startup a thread that will attempt to discover other partitions to
+ * activate based on info provided by SAL. This new thread is short
+ * lived and will exit once discovery is complete.
+ */
+ pid = kernel_thread(xpc_initiate_discovery, NULL, 0);
+ if (pid < 0) {
+ dev_err(xpc_part, "failed while forking discovery thread\n");
+
+ /* mark this new thread as a non-starter */
+ up(&xpc_discovery_exited);
+
+ xpc_do_exit();
+ return -EBUSY;
+ }
+
+
+ /* set the interface to point at XPC's functions */
+ xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
+ xpc_initiate_allocate, xpc_initiate_send,
+ xpc_initiate_send_notify, xpc_initiate_received,
+ xpc_initiate_partid_to_nasids);
+
+ return 0;
+}
+module_init(xpc_init);
+
+
+void __exit
+xpc_exit(void)
+{
+ xpc_do_exit();
+}
+module_exit(xpc_exit);
+
+
+MODULE_AUTHOR("Silicon Graphics, Inc.");
+MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
+MODULE_LICENSE("GPL");
+
+module_param(xpc_hb_interval, int, 0);
+MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
+ "heartbeat increments.");
+
+module_param(xpc_hb_check_interval, int, 0);
+MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
+ "heartbeat checks.");
+
diff --git a/arch/ia64/sn/kernel/xpc_partition.c b/arch/ia64/sn/kernel/xpc_partition.c
new file mode 100644
index 000000000000..2c3c4a8af553
--- /dev/null
+++ b/arch/ia64/sn/kernel/xpc_partition.c
@@ -0,0 +1,984 @@
+/*
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ * Copyright (c) 2004-2005 Silicon Graphics, Inc. All Rights Reserved.
+ */
+
+
+/*
+ * Cross Partition Communication (XPC) partition support.
+ *
+ * This is the part of XPC that detects the presence/absence of
+ * other partitions. It provides a heartbeat and monitors the
+ * heartbeats of other partitions.
+ *
+ */
+
+
+#include <linux/kernel.h>
+#include <linux/sysctl.h>
+#include <linux/cache.h>
+#include <linux/mmzone.h>
+#include <linux/nodemask.h>
+#include <asm/sn/bte.h>
+#include <asm/sn/intr.h>
+#include <asm/sn/sn_sal.h>
+#include <asm/sn/nodepda.h>
+#include <asm/sn/addrs.h>
+#include "xpc.h"
+
+
+/* XPC is exiting flag */
+int xpc_exiting;
+
+
+/* SH_IPI_ACCESS shub register value on startup */
+static u64 xpc_sh1_IPI_access;
+static u64 xpc_sh2_IPI_access0;
+static u64 xpc_sh2_IPI_access1;
+static u64 xpc_sh2_IPI_access2;
+static u64 xpc_sh2_IPI_access3;
+
+
+/* original protection values for each node */
+u64 xpc_prot_vec[MAX_COMPACT_NODES];
+
+
+/* this partition's reserved page */
+struct xpc_rsvd_page *xpc_rsvd_page;
+
+/* this partition's XPC variables (within the reserved page) */
+struct xpc_vars *xpc_vars;
+struct xpc_vars_part *xpc_vars_part;
+
+
+/*
+ * For performance reasons, each entry of xpc_partitions[] is cacheline
+ * aligned. And xpc_partitions[] is padded with an additional entry at the
+ * end so that the last legitimate entry doesn't share its cacheline with
+ * another variable.
+ */
+struct xpc_partition xpc_partitions[XP_MAX_PARTITIONS + 1];
+
+
+/*
+ * Generic buffer used to store a local copy of the remote partitions
+ * reserved page or XPC variables.
+ *
+ * xpc_discovery runs only once and is a seperate thread that is
+ * very likely going to be processing in parallel with receiving
+ * interrupts.
+ */
+char ____cacheline_aligned
+ xpc_remote_copy_buffer[XPC_RSVD_PAGE_ALIGNED_SIZE];
+
+
+/* systune related variables */
+int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
+int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_TIMEOUT;
+
+
+/*
+ * Given a nasid, get the physical address of the partition's reserved page
+ * for that nasid. This function returns 0 on any error.
+ */
+static u64
+xpc_get_rsvd_page_pa(int nasid, u64 buf, u64 buf_size)
+{
+ bte_result_t bte_res;
+ s64 status;
+ u64 cookie = 0;
+ u64 rp_pa = nasid; /* seed with nasid */
+ u64 len = 0;
+
+
+ while (1) {
+
+ status = sn_partition_reserved_page_pa(buf, &cookie, &rp_pa,
+ &len);
+
+ dev_dbg(xpc_part, "SAL returned with status=%li, cookie="
+ "0x%016lx, address=0x%016lx, len=0x%016lx\n",
+ status, cookie, rp_pa, len);
+
+ if (status != SALRET_MORE_PASSES) {
+ break;
+ }
+
+ if (len > buf_size) {
+ dev_err(xpc_part, "len (=0x%016lx) > buf_size\n", len);
+ status = SALRET_ERROR;
+ break;
+ }
+
+ bte_res = xp_bte_copy(rp_pa, ia64_tpa(buf), buf_size,
+ (BTE_NOTIFY | BTE_WACQUIRE), NULL);
+ if (bte_res != BTE_SUCCESS) {
+ dev_dbg(xpc_part, "xp_bte_copy failed %i\n", bte_res);
+ status = SALRET_ERROR;
+ break;
+ }
+ }
+
+ if (status != SALRET_OK) {
+ rp_pa = 0;
+ }
+ dev_dbg(xpc_part, "reserved page at phys address 0x%016lx\n", rp_pa);
+ return rp_pa;
+}
+
+
+/*
+ * Fill the partition reserved page with the information needed by
+ * other partitions to discover we are alive and establish initial
+ * communications.
+ */
+struct xpc_rsvd_page *
+xpc_rsvd_page_init(void)
+{
+ struct xpc_rsvd_page *rp;
+ AMO_t *amos_page;
+ u64 rp_pa, next_cl, nasid_array = 0;
+ int i, ret;
+
+
+ /* get the local reserved page's address */
+
+ rp_pa = xpc_get_rsvd_page_pa(cnodeid_to_nasid(0),
+ (u64) xpc_remote_copy_buffer,
+ XPC_RSVD_PAGE_ALIGNED_SIZE);
+ if (rp_pa == 0) {
+ dev_err(xpc_part, "SAL failed to locate the reserved page\n");
+ return NULL;
+ }
+ rp = (struct xpc_rsvd_page *) __va(rp_pa);
+
+ if (rp->partid != sn_partition_id) {
+ dev_err(xpc_part, "the reserved page's partid of %d should be "
+ "%d\n", rp->partid, sn_partition_id);
+ return NULL;
+ }
+
+ rp->version = XPC_RP_VERSION;
+
+ /*
+ * Place the XPC variables on the cache line following the
+ * reserved page structure.
+ */
+ next_cl = (u64) rp + XPC_RSVD_PAGE_ALIGNED_SIZE;
+ xpc_vars = (struct xpc_vars *) next_cl;
+
+ /*
+ * Before clearing xpc_vars, see if a page of AMOs had been previously
+ * allocated. If not we'll need to allocate one and set permissions
+ * so that cross-partition AMOs are allowed.
+ *
+ * The allocated AMO page needs MCA reporting to remain disabled after
+ * XPC has unloaded. To make this work, we keep a copy of the pointer
+ * to this page (i.e., amos_page) in the struct xpc_vars structure,
+ * which is pointed to by the reserved page, and re-use that saved copy
+ * on subsequent loads of XPC. This AMO page is never freed, and its
+ * memory protections are never restricted.
+ */
+ if ((amos_page = xpc_vars->amos_page) == NULL) {
+ amos_page = (AMO_t *) mspec_kalloc_page(0);
+ if (amos_page == NULL) {
+ dev_err(xpc_part, "can't allocate page of AMOs\n");
+ return NULL;
+ }
+
+ /*
+ * Open up AMO-R/W to cpu. This is done for Shub 1.1 systems
+ * when xpc_allow_IPI_ops() is called via xpc_hb_init().
+ */
+ if (!enable_shub_wars_1_1()) {
+ ret = sn_change_memprotect(ia64_tpa((u64) amos_page),
+ PAGE_SIZE, SN_MEMPROT_ACCESS_CLASS_1,
+ &nasid_array);
+ if (ret != 0) {
+ dev_err(xpc_part, "can't change memory "
+ "protections\n");
+ mspec_kfree_page((unsigned long) amos_page);
+ return NULL;
+ }
+ }
+ } else if (!IS_AMO_ADDRESS((u64) amos_page)) {
+ /*
+ * EFI's XPBOOT can also set amos_page in the reserved page,
+ * but it happens to leave it as an uncached physical address
+ * and we need it to be an uncached virtual, so we'll have to
+ * convert it.
+ */
+ if (!IS_AMO_PHYS_ADDRESS((u64) amos_page)) {
+ dev_err(xpc_part, "previously used amos_page address "
+ "is bad = 0x%p\n", (void *) amos_page);
+ return NULL;
+ }
+ amos_page = (AMO_t *) TO_AMO((u64) amos_page);
+ }
+
+ memset(xpc_vars, 0, sizeof(struct xpc_vars));
+
+ /*
+ * Place the XPC per partition specific variables on the cache line
+ * following the XPC variables structure.
+ */
+ next_cl += XPC_VARS_ALIGNED_SIZE;
+ memset((u64 *) next_cl, 0, sizeof(struct xpc_vars_part) *
+ XP_MAX_PARTITIONS);
+ xpc_vars_part = (struct xpc_vars_part *) next_cl;
+ xpc_vars->vars_part_pa = __pa(next_cl);
+
+ xpc_vars->version = XPC_V_VERSION;
+ xpc_vars->act_nasid = cpuid_to_nasid(0);
+ xpc_vars->act_phys_cpuid = cpu_physical_id(0);
+ xpc_vars->amos_page = amos_page; /* save for next load of XPC */
+
+
+ /*
+ * Initialize the activation related AMO variables.
+ */
+ xpc_vars->act_amos = xpc_IPI_init(XP_MAX_PARTITIONS);
+ for (i = 1; i < XP_NASID_MASK_WORDS; i++) {
+ xpc_IPI_init(i + XP_MAX_PARTITIONS);
+ }
+ /* export AMO page's physical address to other partitions */
+ xpc_vars->amos_page_pa = ia64_tpa((u64) xpc_vars->amos_page);
+
+ /*
+ * This signifies to the remote partition that our reserved
+ * page is initialized.
+ */
+ (volatile u64) rp->vars_pa = __pa(xpc_vars);
+
+ return rp;
+}
+
+
+/*
+ * Change protections to allow IPI operations (and AMO operations on
+ * Shub 1.1 systems).
+ */
+void
+xpc_allow_IPI_ops(void)
+{
+ int node;
+ int nasid;
+
+
+ // >>> Change SH_IPI_ACCESS code to use SAL call once it is available.
+
+ if (is_shub2()) {
+ xpc_sh2_IPI_access0 =
+ (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS0));
+ xpc_sh2_IPI_access1 =
+ (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS1));
+ xpc_sh2_IPI_access2 =
+ (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS2));
+ xpc_sh2_IPI_access3 =
+ (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS3));
+
+ for_each_online_node(node) {
+ nasid = cnodeid_to_nasid(node);
+ HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
+ -1UL);
+ HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
+ -1UL);
+ HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
+ -1UL);
+ HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
+ -1UL);
+ }
+
+ } else {
+ xpc_sh1_IPI_access =
+ (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH1_IPI_ACCESS));
+
+ for_each_online_node(node) {
+ nasid = cnodeid_to_nasid(node);
+ HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
+ -1UL);
+
+ /*
+ * Since the BIST collides with memory operations on
+ * SHUB 1.1 sn_change_memprotect() cannot be used.
+ */
+ if (enable_shub_wars_1_1()) {
+ /* open up everything */
+ xpc_prot_vec[node] = (u64) HUB_L((u64 *)
+ GLOBAL_MMR_ADDR(nasid,
+ SH1_MD_DQLP_MMR_DIR_PRIVEC0));
+ HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid,
+ SH1_MD_DQLP_MMR_DIR_PRIVEC0),
+ -1UL);
+ HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid,
+ SH1_MD_DQRP_MMR_DIR_PRIVEC0),
+ -1UL);
+ }
+ }
+ }
+}
+
+
+/*
+ * Restrict protections to disallow IPI operations (and AMO operations on
+ * Shub 1.1 systems).
+ */
+void
+xpc_restrict_IPI_ops(void)
+{
+ int node;
+ int nasid;
+
+
+ // >>> Change SH_IPI_ACCESS code to use SAL call once it is available.
+
+ if (is_shub2()) {
+
+ for_each_online_node(node) {
+ nasid = cnodeid_to_nasid(node);
+ HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
+ xpc_sh2_IPI_access0);
+ HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
+ xpc_sh2_IPI_access1);
+ HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
+ xpc_sh2_IPI_access2);
+ HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
+ xpc_sh2_IPI_access3);
+ }
+
+ } else {
+
+ for_each_online_node(node) {
+ nasid = cnodeid_to_nasid(node);
+ HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
+ xpc_sh1_IPI_access);
+
+ if (enable_shub_wars_1_1()) {
+ HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid,
+ SH1_MD_DQLP_MMR_DIR_PRIVEC0),
+ xpc_prot_vec[node]);
+ HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid,
+ SH1_MD_DQRP_MMR_DIR_PRIVEC0),
+ xpc_prot_vec[node]);
+ }
+ }
+ }
+}
+
+
+/*
+ * At periodic intervals, scan through all active partitions and ensure
+ * their heartbeat is still active. If not, the partition is deactivated.
+ */
+void
+xpc_check_remote_hb(void)
+{
+ struct xpc_vars *remote_vars;
+ struct xpc_partition *part;
+ partid_t partid;
+ bte_result_t bres;
+
+
+ remote_vars = (struct xpc_vars *) xpc_remote_copy_buffer;
+
+ for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) {
+ if (partid == sn_partition_id) {
+ continue;
+ }
+
+ part = &xpc_partitions[partid];
+
+ if (part->act_state == XPC_P_INACTIVE ||
+ part->act_state == XPC_P_DEACTIVATING) {
+ continue;
+ }
+
+ /* pull the remote_hb cache line */
+ bres = xp_bte_copy(part->remote_vars_pa,
+ ia64_tpa((u64) remote_vars),
+ XPC_VARS_ALIGNED_SIZE,
+ (BTE_NOTIFY | BTE_WACQUIRE), NULL);
+ if (bres != BTE_SUCCESS) {
+ XPC_DEACTIVATE_PARTITION(part,
+ xpc_map_bte_errors(bres));
+ continue;
+ }
+
+ dev_dbg(xpc_part, "partid = %d, heartbeat = %ld, last_heartbeat"
+ " = %ld, kdb_status = %ld, HB_mask = 0x%lx\n", partid,
+ remote_vars->heartbeat, part->last_heartbeat,
+ remote_vars->kdb_status,
+ remote_vars->heartbeating_to_mask);
+
+ if (((remote_vars->heartbeat == part->last_heartbeat) &&
+ (remote_vars->kdb_status == 0)) ||
+ !XPC_HB_ALLOWED(sn_partition_id, remote_vars)) {
+
+ XPC_DEACTIVATE_PARTITION(part, xpcNoHeartbeat);
+ continue;
+ }
+
+ part->last_heartbeat = remote_vars->heartbeat;
+ }
+}
+
+
+/*
+ * Get a copy of the remote partition's rsvd page.
+ *
+ * remote_rp points to a buffer that is cacheline aligned for BTE copies and
+ * assumed to be of size XPC_RSVD_PAGE_ALIGNED_SIZE.
+ */
+static enum xpc_retval
+xpc_get_remote_rp(int nasid, u64 *discovered_nasids,
+ struct xpc_rsvd_page *remote_rp, u64 *remote_rsvd_page_pa)
+{
+ int bres, i;
+
+
+ /* get the reserved page's physical address */
+
+ *remote_rsvd_page_pa = xpc_get_rsvd_page_pa(nasid, (u64) remote_rp,
+ XPC_RSVD_PAGE_ALIGNED_SIZE);
+ if (*remote_rsvd_page_pa == 0) {
+ return xpcNoRsvdPageAddr;
+ }
+
+
+ /* pull over the reserved page structure */
+
+ bres = xp_bte_copy(*remote_rsvd_page_pa, ia64_tpa((u64) remote_rp),
+ XPC_RSVD_PAGE_ALIGNED_SIZE,
+ (BTE_NOTIFY | BTE_WACQUIRE), NULL);
+ if (bres != BTE_SUCCESS) {
+ return xpc_map_bte_errors(bres);
+ }
+
+
+ if (discovered_nasids != NULL) {
+ for (i = 0; i < XP_NASID_MASK_WORDS; i++) {
+ discovered_nasids[i] |= remote_rp->part_nasids[i];
+ }
+ }
+
+
+ /* check that the partid is for another partition */
+
+ if (remote_rp->partid < 1 ||
+ remote_rp->partid > (XP_MAX_PARTITIONS - 1)) {
+ return xpcInvalidPartid;
+ }
+
+ if (remote_rp->partid == sn_partition_id) {
+ return xpcLocalPartid;
+ }
+
+
+ if (XPC_VERSION_MAJOR(remote_rp->version) !=
+ XPC_VERSION_MAJOR(XPC_RP_VERSION)) {
+ return xpcBadVersion;
+ }
+
+ return xpcSuccess;
+}
+
+
+/*
+ * Get a copy of the remote partition's XPC variables.
+ *
+ * remote_vars points to a buffer that is cacheline aligned for BTE copies and
+ * assumed to be of size XPC_VARS_ALIGNED_SIZE.
+ */
+static enum xpc_retval
+xpc_get_remote_vars(u64 remote_vars_pa, struct xpc_vars *remote_vars)
+{
+ int bres;
+
+
+ if (remote_vars_pa == 0) {
+ return xpcVarsNotSet;
+ }
+
+
+ /* pull over the cross partition variables */
+
+ bres = xp_bte_copy(remote_vars_pa, ia64_tpa((u64) remote_vars),
+ XPC_VARS_ALIGNED_SIZE,
+ (BTE_NOTIFY | BTE_WACQUIRE), NULL);
+ if (bres != BTE_SUCCESS) {
+ return xpc_map_bte_errors(bres);
+ }
+
+ if (XPC_VERSION_MAJOR(remote_vars->version) !=
+ XPC_VERSION_MAJOR(XPC_V_VERSION)) {
+ return xpcBadVersion;
+ }
+
+ return xpcSuccess;
+}
+
+
+/*
+ * Prior code has determine the nasid which generated an IPI. Inspect
+ * that nasid to determine if its partition needs to be activated or
+ * deactivated.
+ *
+ * A partition is consider "awaiting activation" if our partition
+ * flags indicate it is not active and it has a heartbeat. A
+ * partition is considered "awaiting deactivation" if our partition
+ * flags indicate it is active but it has no heartbeat or it is not
+ * sending its heartbeat to us.
+ *
+ * To determine the heartbeat, the remote nasid must have a properly
+ * initialized reserved page.
+ */
+static void
+xpc_identify_act_IRQ_req(int nasid)
+{
+ struct xpc_rsvd_page *remote_rp;
+ struct xpc_vars *remote_vars;
+ u64 remote_rsvd_page_pa;
+ u64 remote_vars_pa;
+ partid_t partid;
+ struct xpc_partition *part;
+ enum xpc_retval ret;
+
+
+ /* pull over the reserved page structure */
+
+ remote_rp = (struct xpc_rsvd_page *) xpc_remote_copy_buffer;
+
+ ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rsvd_page_pa);
+ if (ret != xpcSuccess) {
+ dev_warn(xpc_part, "unable to get reserved page from nasid %d, "
+ "which sent interrupt, reason=%d\n", nasid, ret);
+ return;
+ }
+
+ remote_vars_pa = remote_rp->vars_pa;
+ partid = remote_rp->partid;
+ part = &xpc_partitions[partid];
+
+
+ /* pull over the cross partition variables */
+
+ remote_vars = (struct xpc_vars *) xpc_remote_copy_buffer;
+
+ ret = xpc_get_remote_vars(remote_vars_pa, remote_vars);
+ if (ret != xpcSuccess) {
+
+ dev_warn(xpc_part, "unable to get XPC variables from nasid %d, "
+ "which sent interrupt, reason=%d\n", nasid, ret);
+
+ XPC_DEACTIVATE_PARTITION(part, ret);
+ return;
+ }
+
+
+ part->act_IRQ_rcvd++;
+
+ dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = "
+ "%ld:0x%lx\n", (int) nasid, (int) partid, part->act_IRQ_rcvd,
+ remote_vars->heartbeat, remote_vars->heartbeating_to_mask);
+
+
+ if (part->act_state == XPC_P_INACTIVE) {
+
+ part->remote_rp_pa = remote_rsvd_page_pa;
+ dev_dbg(xpc_part, " remote_rp_pa = 0x%016lx\n",
+ part->remote_rp_pa);
+
+ part->remote_vars_pa = remote_vars_pa;
+ dev_dbg(xpc_part, " remote_vars_pa = 0x%016lx\n",
+ part->remote_vars_pa);
+
+ part->last_heartbeat = remote_vars->heartbeat;
+ dev_dbg(xpc_part, " last_heartbeat = 0x%016lx\n",
+ part->last_heartbeat);
+
+ part->remote_vars_part_pa = remote_vars->vars_part_pa;
+ dev_dbg(xpc_part, " remote_vars_part_pa = 0x%016lx\n",
+ part->remote_vars_part_pa);
+
+ part->remote_act_nasid = remote_vars->act_nasid;
+ dev_dbg(xpc_part, " remote_act_nasid = 0x%x\n",
+ part->remote_act_nasid);
+
+ part->remote_act_phys_cpuid = remote_vars->act_phys_cpuid;
+ dev_dbg(xpc_part, " remote_act_phys_cpuid = 0x%x\n",
+ part->remote_act_phys_cpuid);
+
+ part->remote_amos_page_pa = remote_vars->amos_page_pa;
+ dev_dbg(xpc_part, " remote_amos_page_pa = 0x%lx\n",
+ part->remote_amos_page_pa);
+
+ xpc_activate_partition(part);
+
+ } else if (part->remote_amos_page_pa != remote_vars->amos_page_pa ||
+ !XPC_HB_ALLOWED(sn_partition_id, remote_vars)) {
+
+ part->reactivate_nasid = nasid;
+ XPC_DEACTIVATE_PARTITION(part, xpcReactivating);
+ }
+}
+
+
+/*
+ * Loop through the activation AMO variables and process any bits
+ * which are set. Each bit indicates a nasid sending a partition
+ * activation or deactivation request.
+ *
+ * Return #of IRQs detected.
+ */
+int
+xpc_identify_act_IRQ_sender(void)
+{
+ int word, bit;
+ u64 nasid_mask;
+ u64 nasid; /* remote nasid */
+ int n_IRQs_detected = 0;
+ AMO_t *act_amos;
+ struct xpc_rsvd_page *rp = (struct xpc_rsvd_page *) xpc_rsvd_page;
+
+
+ act_amos = xpc_vars->act_amos;
+
+
+ /* scan through act AMO variable looking for non-zero entries */
+ for (word = 0; word < XP_NASID_MASK_WORDS; word++) {
+
+ nasid_mask = xpc_IPI_receive(&act_amos[word]);
+ if (nasid_mask == 0) {
+ /* no IRQs from nasids in this variable */
+ continue;
+ }
+
+ dev_dbg(xpc_part, "AMO[%d] gave back 0x%lx\n", word,
+ nasid_mask);
+
+
+ /*
+ * If this nasid has been added to the machine since
+ * our partition was reset, this will retain the
+ * remote nasid in our reserved pages machine mask.
+ * This is used in the event of module reload.
+ */
+ rp->mach_nasids[word] |= nasid_mask;
+
+
+ /* locate the nasid(s) which sent interrupts */
+
+ for (bit = 0; bit < (8 * sizeof(u64)); bit++) {
+ if (nasid_mask & (1UL << bit)) {
+ n_IRQs_detected++;
+ nasid = XPC_NASID_FROM_W_B(word, bit);
+ dev_dbg(xpc_part, "interrupt from nasid %ld\n",
+ nasid);
+ xpc_identify_act_IRQ_req(nasid);
+ }
+ }
+ }
+ return n_IRQs_detected;
+}
+
+
+/*
+ * Mark specified partition as active.
+ */
+enum xpc_retval
+xpc_mark_partition_active(struct xpc_partition *part)
+{
+ unsigned long irq_flags;
+ enum xpc_retval ret;
+
+
+ dev_dbg(xpc_part, "setting partition %d to ACTIVE\n", XPC_PARTID(part));
+
+ spin_lock_irqsave(&part->act_lock, irq_flags);
+ if (part->act_state == XPC_P_ACTIVATING) {
+ part->act_state = XPC_P_ACTIVE;
+ ret = xpcSuccess;
+ } else {
+ DBUG_ON(part->reason == xpcSuccess);
+ ret = part->reason;
+ }
+ spin_unlock_irqrestore(&part->act_lock, irq_flags);
+
+ return ret;
+}
+
+
+/*
+ * Notify XPC that the partition is down.
+ */
+void
+xpc_deactivate_partition(const int line, struct xpc_partition *part,
+ enum xpc_retval reason)
+{
+ unsigned long irq_flags;
+ partid_t partid = XPC_PARTID(part);
+
+
+ spin_lock_irqsave(&part->act_lock, irq_flags);
+
+ if (part->act_state == XPC_P_INACTIVE) {
+ XPC_SET_REASON(part, reason, line);
+ spin_unlock_irqrestore(&part->act_lock, irq_flags);
+ if (reason == xpcReactivating) {
+ /* we interrupt ourselves to reactivate partition */
+ xpc_IPI_send_reactivate(part);
+ }
+ return;
+ }
+ if (part->act_state == XPC_P_DEACTIVATING) {
+ if ((part->reason == xpcUnloading && reason != xpcUnloading) ||
+ reason == xpcReactivating) {
+ XPC_SET_REASON(part, reason, line);
+ }
+ spin_unlock_irqrestore(&part->act_lock, irq_flags);
+ return;
+ }
+
+ part->act_state = XPC_P_DEACTIVATING;
+ XPC_SET_REASON(part, reason, line);
+
+ spin_unlock_irqrestore(&part->act_lock, irq_flags);
+
+ XPC_DISALLOW_HB(partid, xpc_vars);
+
+ dev_dbg(xpc_part, "bringing partition %d down, reason = %d\n", partid,
+ reason);
+
+ xpc_partition_down(part, reason);
+}
+
+
+/*
+ * Mark specified partition as active.
+ */
+void
+xpc_mark_partition_inactive(struct xpc_partition *part)
+{
+ unsigned long irq_flags;
+
+
+ dev_dbg(xpc_part, "setting partition %d to INACTIVE\n",
+ XPC_PARTID(part));
+
+ spin_lock_irqsave(&part->act_lock, irq_flags);
+ part->act_state = XPC_P_INACTIVE;
+ spin_unlock_irqrestore(&part->act_lock, irq_flags);
+ part->remote_rp_pa = 0;
+}
+
+
+/*
+ * SAL has provided a partition and machine mask. The partition mask
+ * contains a bit for each even nasid in our partition. The machine
+ * mask contains a bit for each even nasid in the entire machine.
+ *
+ * Using those two bit arrays, we can determine which nasids are
+ * known in the machine. Each should also have a reserved page
+ * initialized if they are available for partitioning.
+ */
+void
+xpc_discovery(void)
+{
+ void *remote_rp_base;
+ struct xpc_rsvd_page *remote_rp;
+ struct xpc_vars *remote_vars;
+ u64 remote_rsvd_page_pa;
+ u64 remote_vars_pa;
+ int region;
+ int max_regions;
+ int nasid;
+ struct xpc_rsvd_page *rp;
+ partid_t partid;
+ struct xpc_partition *part;
+ u64 *discovered_nasids;
+ enum xpc_retval ret;
+
+
+ remote_rp = xpc_kmalloc_cacheline_aligned(XPC_RSVD_PAGE_ALIGNED_SIZE,
+ GFP_KERNEL, &remote_rp_base);
+ if (remote_rp == NULL) {
+ return;
+ }
+ remote_vars = (struct xpc_vars *) remote_rp;
+
+
+ discovered_nasids = kmalloc(sizeof(u64) * XP_NASID_MASK_WORDS,
+ GFP_KERNEL);
+ if (discovered_nasids == NULL) {
+ kfree(remote_rp_base);
+ return;
+ }
+ memset(discovered_nasids, 0, sizeof(u64) * XP_NASID_MASK_WORDS);
+
+ rp = (struct xpc_rsvd_page *) xpc_rsvd_page;
+
+ /*
+ * The term 'region' in this context refers to the minimum number of
+ * nodes that can comprise an access protection grouping. The access
+ * protection is in regards to memory, IOI and IPI.
+ */
+//>>> move the next two #defines into either include/asm-ia64/sn/arch.h or
+//>>> include/asm-ia64/sn/addrs.h
+#define SH1_MAX_REGIONS 64
+#define SH2_MAX_REGIONS 256
+ max_regions = is_shub2() ? SH2_MAX_REGIONS : SH1_MAX_REGIONS;
+
+ for (region = 0; region < max_regions; region++) {
+
+ if ((volatile int) xpc_exiting) {
+ break;
+ }
+
+ dev_dbg(xpc_part, "searching region %d\n", region);
+
+ for (nasid = (region * sn_region_size * 2);
+ nasid < ((region + 1) * sn_region_size * 2);
+ nasid += 2) {
+
+ if ((volatile int) xpc_exiting) {
+ break;
+ }
+
+ dev_dbg(xpc_part, "checking nasid %d\n", nasid);
+
+
+ if (XPC_NASID_IN_ARRAY(nasid, rp->part_nasids)) {
+ dev_dbg(xpc_part, "PROM indicates Nasid %d is "
+ "part of the local partition; skipping "
+ "region\n", nasid);
+ break;
+ }
+
+ if (!(XPC_NASID_IN_ARRAY(nasid, rp->mach_nasids))) {
+ dev_dbg(xpc_part, "PROM indicates Nasid %d was "
+ "not on Numa-Link network at reset\n",
+ nasid);
+ continue;
+ }
+
+ if (XPC_NASID_IN_ARRAY(nasid, discovered_nasids)) {
+ dev_dbg(xpc_part, "Nasid %d is part of a "
+ "partition which was previously "
+ "discovered\n", nasid);
+ continue;
+ }
+
+
+ /* pull over the reserved page structure */
+
+ ret = xpc_get_remote_rp(nasid, discovered_nasids,
+ remote_rp, &remote_rsvd_page_pa);
+ if (ret != xpcSuccess) {
+ dev_dbg(xpc_part, "unable to get reserved page "
+ "from nasid %d, reason=%d\n", nasid,
+ ret);
+
+ if (ret == xpcLocalPartid) {
+ break;
+ }
+ continue;
+ }
+
+ remote_vars_pa = remote_rp->vars_pa;
+
+ partid = remote_rp->partid;
+ part = &xpc_partitions[partid];
+
+
+ /* pull over the cross partition variables */
+
+ ret = xpc_get_remote_vars(remote_vars_pa, remote_vars);
+ if (ret != xpcSuccess) {
+ dev_dbg(xpc_part, "unable to get XPC variables "
+ "from nasid %d, reason=%d\n", nasid,
+ ret);
+
+ XPC_DEACTIVATE_PARTITION(part, ret);
+ continue;
+ }
+
+ if (part->act_state != XPC_P_INACTIVE) {
+ dev_dbg(xpc_part, "partition %d on nasid %d is "
+ "already activating\n", partid, nasid);
+ break;
+ }
+
+ /*
+ * Register the remote partition's AMOs with SAL so it
+ * can handle and cleanup errors within that address
+ * range should the remote partition go down. We don't
+ * unregister this range because it is difficult to
+ * tell when outstanding writes to the remote partition
+ * are finished and thus when it is thus safe to
+ * unregister. This should not result in wasted space
+ * in the SAL xp_addr_region table because we should
+ * get the same page for remote_act_amos_pa after
+ * module reloads and system reboots.
+ */
+ if (sn_register_xp_addr_region(
+ remote_vars->amos_page_pa,
+ PAGE_SIZE, 1) < 0) {
+ dev_dbg(xpc_part, "partition %d failed to "
+ "register xp_addr region 0x%016lx\n",
+ partid, remote_vars->amos_page_pa);
+
+ XPC_SET_REASON(part, xpcPhysAddrRegFailed,
+ __LINE__);
+ break;
+ }
+
+ /*
+ * The remote nasid is valid and available.
+ * Send an interrupt to that nasid to notify
+ * it that we are ready to begin activation.
+ */
+ dev_dbg(xpc_part, "sending an interrupt to AMO 0x%lx, "
+ "nasid %d, phys_cpuid 0x%x\n",
+ remote_vars->amos_page_pa,
+ remote_vars->act_nasid,
+ remote_vars->act_phys_cpuid);
+
+ xpc_IPI_send_activate(remote_vars);
+ }
+ }
+
+ kfree(discovered_nasids);
+ kfree(remote_rp_base);
+}
+
+
+/*
+ * Given a partid, get the nasids owned by that partition from the
+ * remote partition's reserved page.
+ */
+enum xpc_retval
+xpc_initiate_partid_to_nasids(partid_t partid, void *nasid_mask)
+{
+ struct xpc_partition *part;
+ u64 part_nasid_pa;
+ int bte_res;
+
+
+ part = &xpc_partitions[partid];
+ if (part->remote_rp_pa == 0) {
+ return xpcPartitionDown;
+ }
+
+ part_nasid_pa = part->remote_rp_pa +
+ (u64) &((struct xpc_rsvd_page *) 0)->part_nasids;
+
+ bte_res = xp_bte_copy(part_nasid_pa, ia64_tpa((u64) nasid_mask),
+ L1_CACHE_ALIGN(XP_NASID_MASK_BYTES),
+ (BTE_NOTIFY | BTE_WACQUIRE), NULL);
+
+ return xpc_map_bte_errors(bte_res);
+}
+
diff --git a/arch/ia64/sn/kernel/xpnet.c b/arch/ia64/sn/kernel/xpnet.c
new file mode 100644
index 000000000000..78c13d676fa6
--- /dev/null
+++ b/arch/ia64/sn/kernel/xpnet.c
@@ -0,0 +1,715 @@
+/*
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ * Copyright (C) 1999,2001-2005 Silicon Graphics, Inc. All rights reserved.
+ */
+
+
+/*
+ * Cross Partition Network Interface (XPNET) support
+ *
+ * XPNET provides a virtual network layered on top of the Cross
+ * Partition communication layer.
+ *
+ * XPNET provides direct point-to-point and broadcast-like support
+ * for an ethernet-like device. The ethernet broadcast medium is
+ * replaced with a point-to-point message structure which passes
+ * pointers to a DMA-capable block that a remote partition should
+ * retrieve and pass to the upper level networking layer.
+ *
+ */
+
+
+#include <linux/config.h>
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/pci.h>
+#include <linux/init.h>
+#include <linux/ioport.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/delay.h>
+#include <linux/ethtool.h>
+#include <linux/mii.h>
+#include <linux/smp.h>
+#include <linux/string.h>
+#include <asm/sn/bte.h>
+#include <asm/sn/io.h>
+#include <asm/sn/sn_sal.h>
+#include <asm/types.h>
+#include <asm/atomic.h>
+#include <asm/sn/xp.h>
+
+
+/*
+ * The message payload transferred by XPC.
+ *
+ * buf_pa is the physical address where the DMA should pull from.
+ *
+ * NOTE: for performance reasons, buf_pa should _ALWAYS_ begin on a
+ * cacheline boundary. To accomplish this, we record the number of
+ * bytes from the beginning of the first cacheline to the first useful
+ * byte of the skb (leadin_ignore) and the number of bytes from the
+ * last useful byte of the skb to the end of the last cacheline
+ * (tailout_ignore).
+ *
+ * size is the number of bytes to transfer which includes the skb->len
+ * (useful bytes of the senders skb) plus the leadin and tailout
+ */
+struct xpnet_message {
+ u16 version; /* Version for this message */
+ u16 embedded_bytes; /* #of bytes embedded in XPC message */
+ u32 magic; /* Special number indicating this is xpnet */
+ u64 buf_pa; /* phys address of buffer to retrieve */
+ u32 size; /* #of bytes in buffer */
+ u8 leadin_ignore; /* #of bytes to ignore at the beginning */
+ u8 tailout_ignore; /* #of bytes to ignore at the end */
+ unsigned char data; /* body of small packets */
+};
+
+/*
+ * Determine the size of our message, the cacheline aligned size,
+ * and then the number of message will request from XPC.
+ *
+ * XPC expects each message to exist in an individual cacheline.
+ */
+#define XPNET_MSG_SIZE (L1_CACHE_BYTES - XPC_MSG_PAYLOAD_OFFSET)
+#define XPNET_MSG_DATA_MAX \
+ (XPNET_MSG_SIZE - (u64)(&((struct xpnet_message *)0)->data))
+#define XPNET_MSG_ALIGNED_SIZE (L1_CACHE_ALIGN(XPNET_MSG_SIZE))
+#define XPNET_MSG_NENTRIES (PAGE_SIZE / XPNET_MSG_ALIGNED_SIZE)
+
+
+#define XPNET_MAX_KTHREADS (XPNET_MSG_NENTRIES + 1)
+#define XPNET_MAX_IDLE_KTHREADS (XPNET_MSG_NENTRIES + 1)
+
+/*
+ * Version number of XPNET implementation. XPNET can always talk to versions
+ * with same major #, and never talk to versions with a different version.
+ */
+#define _XPNET_VERSION(_major, _minor) (((_major) << 4) | (_minor))
+#define XPNET_VERSION_MAJOR(_v) ((_v) >> 4)
+#define XPNET_VERSION_MINOR(_v) ((_v) & 0xf)
+
+#define XPNET_VERSION _XPNET_VERSION(1,0) /* version 1.0 */
+#define XPNET_VERSION_EMBED _XPNET_VERSION(1,1) /* version 1.1 */
+#define XPNET_MAGIC 0x88786984 /* "XNET" */
+
+#define XPNET_VALID_MSG(_m) \
+ ((XPNET_VERSION_MAJOR(_m->version) == XPNET_VERSION_MAJOR(XPNET_VERSION)) \
+ && (msg->magic == XPNET_MAGIC))
+
+#define XPNET_DEVICE_NAME "xp0"
+
+
+/*
+ * When messages are queued with xpc_send_notify, a kmalloc'd buffer
+ * of the following type is passed as a notification cookie. When the
+ * notification function is called, we use the cookie to decide
+ * whether all outstanding message sends have completed. The skb can
+ * then be released.
+ */
+struct xpnet_pending_msg {
+ struct list_head free_list;
+ struct sk_buff *skb;
+ atomic_t use_count;
+};
+
+/* driver specific structure pointed to by the device structure */
+struct xpnet_dev_private {
+ struct net_device_stats stats;
+};
+
+struct net_device *xpnet_device;
+
+/*
+ * When we are notified of other partitions activating, we add them to
+ * our bitmask of partitions to which we broadcast.
+ */
+static u64 xpnet_broadcast_partitions;
+/* protect above */
+static spinlock_t xpnet_broadcast_lock = SPIN_LOCK_UNLOCKED;
+
+/*
+ * Since the Block Transfer Engine (BTE) is being used for the transfer
+ * and it relies upon cache-line size transfers, we need to reserve at
+ * least one cache-line for head and tail alignment. The BTE is
+ * limited to 8MB transfers.
+ *
+ * Testing has shown that changing MTU to greater than 64KB has no effect
+ * on TCP as the two sides negotiate a Max Segment Size that is limited
+ * to 64K. Other protocols May use packets greater than this, but for
+ * now, the default is 64KB.
+ */
+#define XPNET_MAX_MTU (0x800000UL - L1_CACHE_BYTES)
+/* 32KB has been determined to be the ideal */
+#define XPNET_DEF_MTU (0x8000UL)
+
+
+/*
+ * The partition id is encapsulated in the MAC address. The following
+ * define locates the octet the partid is in.
+ */
+#define XPNET_PARTID_OCTET 1
+#define XPNET_LICENSE_OCTET 2
+
+
+/*
+ * Define the XPNET debug device structure that is to be used with dev_dbg(),
+ * dev_err(), dev_warn(), and dev_info().
+ */
+struct device_driver xpnet_dbg_name = {
+ .name = "xpnet"
+};
+
+struct device xpnet_dbg_subname = {
+ .bus_id = {0}, /* set to "" */
+ .driver = &xpnet_dbg_name
+};
+
+struct device *xpnet = &xpnet_dbg_subname;
+
+/*
+ * Packet was recevied by XPC and forwarded to us.
+ */
+static void
+xpnet_receive(partid_t partid, int channel, struct xpnet_message *msg)
+{
+ struct sk_buff *skb;
+ bte_result_t bret;
+ struct xpnet_dev_private *priv =
+ (struct xpnet_dev_private *) xpnet_device->priv;
+
+
+ if (!XPNET_VALID_MSG(msg)) {
+ /*
+ * Packet with a different XPC version. Ignore.
+ */
+ xpc_received(partid, channel, (void *) msg);
+
+ priv->stats.rx_errors++;
+
+ return;
+ }
+ dev_dbg(xpnet, "received 0x%lx, %d, %d, %d\n", msg->buf_pa, msg->size,
+ msg->leadin_ignore, msg->tailout_ignore);
+
+
+ /* reserve an extra cache line */
+ skb = dev_alloc_skb(msg->size + L1_CACHE_BYTES);
+ if (!skb) {
+ dev_err(xpnet, "failed on dev_alloc_skb(%d)\n",
+ msg->size + L1_CACHE_BYTES);
+
+ xpc_received(partid, channel, (void *) msg);
+
+ priv->stats.rx_errors++;
+
+ return;
+ }
+
+ /*
+ * The allocated skb has some reserved space.
+ * In order to use bte_copy, we need to get the
+ * skb->data pointer moved forward.
+ */
+ skb_reserve(skb, (L1_CACHE_BYTES - ((u64)skb->data &
+ (L1_CACHE_BYTES - 1)) +
+ msg->leadin_ignore));
+
+ /*
+ * Update the tail pointer to indicate data actually
+ * transferred.
+ */
+ skb_put(skb, (msg->size - msg->leadin_ignore - msg->tailout_ignore));
+
+ /*
+ * Move the data over from the the other side.
+ */
+ if ((XPNET_VERSION_MINOR(msg->version) == 1) &&
+ (msg->embedded_bytes != 0)) {
+ dev_dbg(xpnet, "copying embedded message. memcpy(0x%p, 0x%p, "
+ "%lu)\n", skb->data, &msg->data,
+ (size_t) msg->embedded_bytes);
+
+ memcpy(skb->data, &msg->data, (size_t) msg->embedded_bytes);
+ } else {
+ dev_dbg(xpnet, "transferring buffer to the skb->data area;\n\t"
+ "bte_copy(0x%p, 0x%p, %hu)\n", (void *)msg->buf_pa,
+ (void *)__pa((u64)skb->data & ~(L1_CACHE_BYTES - 1)),
+ msg->size);
+
+ bret = bte_copy(msg->buf_pa,
+ __pa((u64)skb->data & ~(L1_CACHE_BYTES - 1)),
+ msg->size, (BTE_NOTIFY | BTE_WACQUIRE), NULL);
+
+ if (bret != BTE_SUCCESS) {
+ // >>> Need better way of cleaning skb. Currently skb
+ // >>> appears in_use and we can't just call
+ // >>> dev_kfree_skb.
+ dev_err(xpnet, "bte_copy(0x%p, 0x%p, 0x%hx) returned "
+ "error=0x%x\n", (void *)msg->buf_pa,
+ (void *)__pa((u64)skb->data &
+ ~(L1_CACHE_BYTES - 1)),
+ msg->size, bret);
+
+ xpc_received(partid, channel, (void *) msg);
+
+ priv->stats.rx_errors++;
+
+ return;
+ }
+ }
+
+ dev_dbg(xpnet, "<skb->head=0x%p skb->data=0x%p skb->tail=0x%p "
+ "skb->end=0x%p skb->len=%d\n", (void *) skb->head,
+ (void *) skb->data, (void *) skb->tail, (void *) skb->end,
+ skb->len);
+
+ skb->dev = xpnet_device;
+ skb->protocol = eth_type_trans(skb, xpnet_device);
+ skb->ip_summed = CHECKSUM_UNNECESSARY;
+
+ dev_dbg(xpnet, "passing skb to network layer; \n\tskb->head=0x%p "
+ "skb->data=0x%p skb->tail=0x%p skb->end=0x%p skb->len=%d\n",
+ (void *) skb->head, (void *) skb->data, (void *) skb->tail,
+ (void *) skb->end, skb->len);
+
+
+ xpnet_device->last_rx = jiffies;
+ priv->stats.rx_packets++;
+ priv->stats.rx_bytes += skb->len + ETH_HLEN;
+
+ netif_rx_ni(skb);
+ xpc_received(partid, channel, (void *) msg);
+}
+
+
+/*
+ * This is the handler which XPC calls during any sort of change in
+ * state or message reception on a connection.
+ */
+static void
+xpnet_connection_activity(enum xpc_retval reason, partid_t partid, int channel,
+ void *data, void *key)
+{
+ long bp;
+
+
+ DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS);
+ DBUG_ON(channel != XPC_NET_CHANNEL);
+
+ switch(reason) {
+ case xpcMsgReceived: /* message received */
+ DBUG_ON(data == NULL);
+
+ xpnet_receive(partid, channel, (struct xpnet_message *) data);
+ break;
+
+ case xpcConnected: /* connection completed to a partition */
+ spin_lock_bh(&xpnet_broadcast_lock);
+ xpnet_broadcast_partitions |= 1UL << (partid -1 );
+ bp = xpnet_broadcast_partitions;
+ spin_unlock_bh(&xpnet_broadcast_lock);
+
+ netif_carrier_on(xpnet_device);
+
+ dev_dbg(xpnet, "%s connection created to partition %d; "
+ "xpnet_broadcast_partitions=0x%lx\n",
+ xpnet_device->name, partid, bp);
+ break;
+
+ default:
+ spin_lock_bh(&xpnet_broadcast_lock);
+ xpnet_broadcast_partitions &= ~(1UL << (partid -1 ));
+ bp = xpnet_broadcast_partitions;
+ spin_unlock_bh(&xpnet_broadcast_lock);
+
+ if (bp == 0) {
+ netif_carrier_off(xpnet_device);
+ }
+
+ dev_dbg(xpnet, "%s disconnected from partition %d; "
+ "xpnet_broadcast_partitions=0x%lx\n",
+ xpnet_device->name, partid, bp);
+ break;
+
+ }
+}
+
+
+static int
+xpnet_dev_open(struct net_device *dev)
+{
+ enum xpc_retval ret;
+
+
+ dev_dbg(xpnet, "calling xpc_connect(%d, 0x%p, NULL, %ld, %ld, %d, "
+ "%d)\n", XPC_NET_CHANNEL, xpnet_connection_activity,
+ XPNET_MSG_SIZE, XPNET_MSG_NENTRIES, XPNET_MAX_KTHREADS,
+ XPNET_MAX_IDLE_KTHREADS);
+
+ ret = xpc_connect(XPC_NET_CHANNEL, xpnet_connection_activity, NULL,
+ XPNET_MSG_SIZE, XPNET_MSG_NENTRIES,
+ XPNET_MAX_KTHREADS, XPNET_MAX_IDLE_KTHREADS);
+ if (ret != xpcSuccess) {
+ dev_err(xpnet, "ifconfig up of %s failed on XPC connect, "
+ "ret=%d\n", dev->name, ret);
+
+ return -ENOMEM;
+ }
+
+ dev_dbg(xpnet, "ifconfig up of %s; XPC connected\n", dev->name);
+
+ return 0;
+}
+
+
+static int
+xpnet_dev_stop(struct net_device *dev)
+{
+ xpc_disconnect(XPC_NET_CHANNEL);
+
+ dev_dbg(xpnet, "ifconfig down of %s; XPC disconnected\n", dev->name);
+
+ return 0;
+}
+
+
+static int
+xpnet_dev_change_mtu(struct net_device *dev, int new_mtu)
+{
+ /* 68 comes from min TCP+IP+MAC header */
+ if ((new_mtu < 68) || (new_mtu > XPNET_MAX_MTU)) {
+ dev_err(xpnet, "ifconfig %s mtu %d failed; value must be "
+ "between 68 and %ld\n", dev->name, new_mtu,
+ XPNET_MAX_MTU);
+ return -EINVAL;
+ }
+
+ dev->mtu = new_mtu;
+ dev_dbg(xpnet, "ifconfig %s mtu set to %d\n", dev->name, new_mtu);
+ return 0;
+}
+
+
+/*
+ * Required for the net_device structure.
+ */
+static int
+xpnet_dev_set_config(struct net_device *dev, struct ifmap *new_map)
+{
+ return 0;
+}
+
+
+/*
+ * Return statistics to the caller.
+ */
+static struct net_device_stats *
+xpnet_dev_get_stats(struct net_device *dev)
+{
+ struct xpnet_dev_private *priv;
+
+
+ priv = (struct xpnet_dev_private *) dev->priv;
+
+ return &priv->stats;
+}
+
+
+/*
+ * Notification that the other end has received the message and
+ * DMA'd the skb information. At this point, they are done with
+ * our side. When all recipients are done processing, we
+ * release the skb and then release our pending message structure.
+ */
+static void
+xpnet_send_completed(enum xpc_retval reason, partid_t partid, int channel,
+ void *__qm)
+{
+ struct xpnet_pending_msg *queued_msg =
+ (struct xpnet_pending_msg *) __qm;
+
+
+ DBUG_ON(queued_msg == NULL);
+
+ dev_dbg(xpnet, "message to %d notified with reason %d\n",
+ partid, reason);
+
+ if (atomic_dec_return(&queued_msg->use_count) == 0) {
+ dev_dbg(xpnet, "all acks for skb->head=-x%p\n",
+ (void *) queued_msg->skb->head);
+
+ dev_kfree_skb_any(queued_msg->skb);
+ kfree(queued_msg);
+ }
+}
+
+
+/*
+ * Network layer has formatted a packet (skb) and is ready to place it
+ * "on the wire". Prepare and send an xpnet_message to all partitions
+ * which have connected with us and are targets of this packet.
+ *
+ * MAC-NOTE: For the XPNET driver, the MAC address contains the
+ * destination partition_id. If the destination partition id word
+ * is 0xff, this packet is to broadcast to all partitions.
+ */
+static int
+xpnet_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
+{
+ struct xpnet_pending_msg *queued_msg;
+ enum xpc_retval ret;
+ struct xpnet_message *msg;
+ u64 start_addr, end_addr;
+ long dp;
+ u8 second_mac_octet;
+ partid_t dest_partid;
+ struct xpnet_dev_private *priv;
+ u16 embedded_bytes;
+
+
+ priv = (struct xpnet_dev_private *) dev->priv;
+
+
+ dev_dbg(xpnet, ">skb->head=0x%p skb->data=0x%p skb->tail=0x%p "
+ "skb->end=0x%p skb->len=%d\n", (void *) skb->head,
+ (void *) skb->data, (void *) skb->tail, (void *) skb->end,
+ skb->len);
+
+
+ /*
+ * The xpnet_pending_msg tracks how many outstanding
+ * xpc_send_notifies are relying on this skb. When none
+ * remain, release the skb.
+ */
+ queued_msg = kmalloc(sizeof(struct xpnet_pending_msg), GFP_ATOMIC);
+ if (queued_msg == NULL) {
+ dev_warn(xpnet, "failed to kmalloc %ld bytes; dropping "
+ "packet\n", sizeof(struct xpnet_pending_msg));
+
+ priv->stats.tx_errors++;
+
+ return -ENOMEM;
+ }
+
+
+ /* get the beginning of the first cacheline and end of last */
+ start_addr = ((u64) skb->data & ~(L1_CACHE_BYTES - 1));
+ end_addr = L1_CACHE_ALIGN((u64) skb->tail);
+
+ /* calculate how many bytes to embed in the XPC message */
+ embedded_bytes = 0;
+ if (unlikely(skb->len <= XPNET_MSG_DATA_MAX)) {
+ /* skb->data does fit so embed */
+ embedded_bytes = skb->len;
+ }
+
+
+ /*
+ * Since the send occurs asynchronously, we set the count to one
+ * and begin sending. Any sends that happen to complete before
+ * we are done sending will not free the skb. We will be left
+ * with that task during exit. This also handles the case of
+ * a packet destined for a partition which is no longer up.
+ */
+ atomic_set(&queued_msg->use_count, 1);
+ queued_msg->skb = skb;
+
+
+ second_mac_octet = skb->data[XPNET_PARTID_OCTET];
+ if (second_mac_octet == 0xff) {
+ /* we are being asked to broadcast to all partitions */
+ dp = xpnet_broadcast_partitions;
+ } else if (second_mac_octet != 0) {
+ dp = xpnet_broadcast_partitions &
+ (1UL << (second_mac_octet - 1));
+ } else {
+ /* 0 is an invalid partid. Ignore */
+ dp = 0;
+ }
+ dev_dbg(xpnet, "destination Partitions mask (dp) = 0x%lx\n", dp);
+
+ /*
+ * If we wanted to allow promiscous mode to work like an
+ * unswitched network, this would be a good point to OR in a
+ * mask of partitions which should be receiving all packets.
+ */
+
+ /*
+ * Main send loop.
+ */
+ for (dest_partid = 1; dp && dest_partid < XP_MAX_PARTITIONS;
+ dest_partid++) {
+
+
+ if (!(dp & (1UL << (dest_partid - 1)))) {
+ /* not destined for this partition */
+ continue;
+ }
+
+ /* remove this partition from the destinations mask */
+ dp &= ~(1UL << (dest_partid - 1));
+
+
+ /* found a partition to send to */
+
+ ret = xpc_allocate(dest_partid, XPC_NET_CHANNEL,
+ XPC_NOWAIT, (void **)&msg);
+ if (unlikely(ret != xpcSuccess)) {
+ continue;
+ }
+
+ msg->embedded_bytes = embedded_bytes;
+ if (unlikely(embedded_bytes != 0)) {
+ msg->version = XPNET_VERSION_EMBED;
+ dev_dbg(xpnet, "calling memcpy(0x%p, 0x%p, 0x%lx)\n",
+ &msg->data, skb->data, (size_t) embedded_bytes);
+ memcpy(&msg->data, skb->data, (size_t) embedded_bytes);
+ } else {
+ msg->version = XPNET_VERSION;
+ }
+ msg->magic = XPNET_MAGIC;
+ msg->size = end_addr - start_addr;
+ msg->leadin_ignore = (u64) skb->data - start_addr;
+ msg->tailout_ignore = end_addr - (u64) skb->tail;
+ msg->buf_pa = __pa(start_addr);
+
+ dev_dbg(xpnet, "sending XPC message to %d:%d\nmsg->buf_pa="
+ "0x%lx, msg->size=%u, msg->leadin_ignore=%u, "
+ "msg->tailout_ignore=%u\n", dest_partid,
+ XPC_NET_CHANNEL, msg->buf_pa, msg->size,
+ msg->leadin_ignore, msg->tailout_ignore);
+
+
+ atomic_inc(&queued_msg->use_count);
+
+ ret = xpc_send_notify(dest_partid, XPC_NET_CHANNEL, msg,
+ xpnet_send_completed, queued_msg);
+ if (unlikely(ret != xpcSuccess)) {
+ atomic_dec(&queued_msg->use_count);
+ continue;
+ }
+
+ }
+
+ if (atomic_dec_return(&queued_msg->use_count) == 0) {
+ dev_dbg(xpnet, "no partitions to receive packet destined for "
+ "%d\n", dest_partid);
+
+
+ dev_kfree_skb(skb);
+ kfree(queued_msg);
+ }
+
+ priv->stats.tx_packets++;
+ priv->stats.tx_bytes += skb->len;
+
+ return 0;
+}
+
+
+/*
+ * Deal with transmit timeouts coming from the network layer.
+ */
+static void
+xpnet_dev_tx_timeout (struct net_device *dev)
+{
+ struct xpnet_dev_private *priv;
+
+
+ priv = (struct xpnet_dev_private *) dev->priv;
+
+ priv->stats.tx_errors++;
+ return;
+}
+
+
+static int __init
+xpnet_init(void)
+{
+ int i;
+ u32 license_num;
+ int result = -ENOMEM;
+
+
+ dev_info(xpnet, "registering network device %s\n", XPNET_DEVICE_NAME);
+
+ /*
+ * use ether_setup() to init the majority of our device
+ * structure and then override the necessary pieces.
+ */
+ xpnet_device = alloc_netdev(sizeof(struct xpnet_dev_private),
+ XPNET_DEVICE_NAME, ether_setup);
+ if (xpnet_device == NULL) {
+ return -ENOMEM;
+ }
+
+ netif_carrier_off(xpnet_device);
+
+ xpnet_device->mtu = XPNET_DEF_MTU;
+ xpnet_device->change_mtu = xpnet_dev_change_mtu;
+ xpnet_device->open = xpnet_dev_open;
+ xpnet_device->get_stats = xpnet_dev_get_stats;
+ xpnet_device->stop = xpnet_dev_stop;
+ xpnet_device->hard_start_xmit = xpnet_dev_hard_start_xmit;
+ xpnet_device->tx_timeout = xpnet_dev_tx_timeout;
+ xpnet_device->set_config = xpnet_dev_set_config;
+
+ /*
+ * Multicast assumes the LSB of the first octet is set for multicast
+ * MAC addresses. We chose the first octet of the MAC to be unlikely
+ * to collide with any vendor's officially issued MAC.
+ */
+ xpnet_device->dev_addr[0] = 0xfe;
+ xpnet_device->dev_addr[XPNET_PARTID_OCTET] = sn_partition_id;
+ license_num = sn_partition_serial_number_val();
+ for (i = 3; i >= 0; i--) {
+ xpnet_device->dev_addr[XPNET_LICENSE_OCTET + i] =
+ license_num & 0xff;
+ license_num = license_num >> 8;
+ }
+
+ /*
+ * ether_setup() sets this to a multicast device. We are
+ * really not supporting multicast at this time.
+ */
+ xpnet_device->flags &= ~IFF_MULTICAST;
+
+ /*
+ * No need to checksum as it is a DMA transfer. The BTE will
+ * report an error if the data is not retrievable and the
+ * packet will be dropped.
+ */
+ xpnet_device->features = NETIF_F_NO_CSUM;
+
+ result = register_netdev(xpnet_device);
+ if (result != 0) {
+ free_netdev(xpnet_device);
+ }
+
+ return result;
+}
+module_init(xpnet_init);
+
+
+static void __exit
+xpnet_exit(void)
+{
+ dev_info(xpnet, "unregistering network device %s\n",
+ xpnet_device[0].name);
+
+ unregister_netdev(xpnet_device);
+
+ free_netdev(xpnet_device);
+}
+module_exit(xpnet_exit);
+
+
+MODULE_AUTHOR("Silicon Graphics, Inc.");
+MODULE_DESCRIPTION("Cross Partition Network adapter (XPNET)");
+MODULE_LICENSE("GPL");
+
diff --git a/arch/ia64/sn/pci/pcibr/pcibr_dma.c b/arch/ia64/sn/pci/pcibr/pcibr_dma.c
index c90685985d81..64af2b2c1787 100644
--- a/arch/ia64/sn/pci/pcibr/pcibr_dma.c
+++ b/arch/ia64/sn/pci/pcibr/pcibr_dma.c
@@ -301,7 +301,7 @@ void sn_dma_flush(uint64_t addr)
spin_lock_irqsave(&((struct sn_flush_device_list *)p)->
sfdl_flush_lock, flags);
- p->sfdl_flush_value = 0;
+ *p->sfdl_flush_addr = 0;
/* force an interrupt. */
*(volatile uint32_t *)(p->sfdl_force_int_addr) = 1;
diff --git a/arch/ia64/sn/pci/tioca_provider.c b/arch/ia64/sn/pci/tioca_provider.c
index 54a0dd447e76..8dae9eb45456 100644
--- a/arch/ia64/sn/pci/tioca_provider.c
+++ b/arch/ia64/sn/pci/tioca_provider.c
@@ -431,7 +431,7 @@ tioca_dma_mapped(struct pci_dev *pdev, uint64_t paddr, size_t req_size)
ca_dmamap->cad_dma_addr = bus_addr;
ca_dmamap->cad_gart_size = entries;
ca_dmamap->cad_gart_entry = entry;
- list_add(&ca_dmamap->cad_list, &tioca_kern->ca_list);
+ list_add(&ca_dmamap->cad_list, &tioca_kern->ca_dmamaps);
if (xio_addr % ps) {
tioca_kern->ca_pcigart[entry] = tioca_paddr_to_gart(xio_addr);
diff --git a/drivers/char/Kconfig b/drivers/char/Kconfig
index 2d5a19f6378d..5ed6515ae01f 100644
--- a/drivers/char/Kconfig
+++ b/drivers/char/Kconfig
@@ -408,7 +408,7 @@ config SGI_TIOCX
config SGI_MBCS
tristate "SGI FPGA Core Services driver support"
- depends on (IA64_SGI_SN2 || IA64_GENERIC)
+ depends on SGI_TIOCX
help
If you have an SGI Altix with an attached SABrick
say Y or M here, otherwise say N.
diff --git a/include/asm-ia64/sn/addrs.h b/include/asm-ia64/sn/addrs.h
index 960d626ee589..1bfdfb4d7b01 100644
--- a/include/asm-ia64/sn/addrs.h
+++ b/include/asm-ia64/sn/addrs.h
@@ -136,6 +136,7 @@
*/
#define CAC_BASE (CACHED | AS_CAC_SPACE)
#define AMO_BASE (UNCACHED | AS_AMO_SPACE)
+#define AMO_PHYS_BASE (UNCACHED_PHYS | AS_AMO_SPACE)
#define GET_BASE (CACHED | AS_GET_SPACE)
/*
@@ -161,6 +162,13 @@
/*
+ * Macros to test for address type.
+ */
+#define IS_AMO_ADDRESS(x) (((u64)(x) & (REGION_BITS | AS_MASK)) == AMO_BASE)
+#define IS_AMO_PHYS_ADDRESS(x) (((u64)(x) & (REGION_BITS | AS_MASK)) == AMO_PHYS_BASE)
+
+
+/*
* The following definitions pertain to the IO special address
* space. They define the location of the big and little windows
* of any given node.
diff --git a/include/asm-ia64/sn/arch.h b/include/asm-ia64/sn/arch.h
index 7c349f07916a..635fdce854a8 100644
--- a/include/asm-ia64/sn/arch.h
+++ b/include/asm-ia64/sn/arch.h
@@ -5,7 +5,7 @@
*
* SGI specific setup.
*
- * Copyright (C) 1995-1997,1999,2001-2004 Silicon Graphics, Inc. All rights reserved.
+ * Copyright (C) 1995-1997,1999,2001-2005 Silicon Graphics, Inc. All rights reserved.
* Copyright (C) 1999 Ralf Baechle (ralf@gnu.org)
*/
#ifndef _ASM_IA64_SN_ARCH_H
@@ -47,6 +47,21 @@ DECLARE_PER_CPU(struct sn_hub_info_s, __sn_hub_info);
#define MAX_COMPACT_NODES 2048
#define CPUS_PER_NODE 4
+
+/*
+ * Compact node ID to nasid mappings kept in the per-cpu data areas of each
+ * cpu.
+ */
+DECLARE_PER_CPU(short, __sn_cnodeid_to_nasid[MAX_NUMNODES]);
+#define sn_cnodeid_to_nasid (&__get_cpu_var(__sn_cnodeid_to_nasid[0]))
+
+
+
+extern u8 sn_partition_id;
+extern u8 sn_system_size;
+extern u8 sn_sharing_domain_size;
+extern u8 sn_region_size;
+
extern void sn_flush_all_caches(long addr, long bytes);
#endif /* _ASM_IA64_SN_ARCH_H */
diff --git a/include/asm-ia64/sn/fetchop.h b/include/asm-ia64/sn/fetchop.h
deleted file mode 100644
index 5f4ad8f4b5d2..000000000000
--- a/include/asm-ia64/sn/fetchop.h
+++ /dev/null
@@ -1,85 +0,0 @@
-/*
- *
- * This file is subject to the terms and conditions of the GNU General Public
- * License. See the file "COPYING" in the main directory of this archive
- * for more details.
- *
- * Copyright (c) 2001-2004 Silicon Graphics, Inc. All rights reserved.
- */
-
-#ifndef _ASM_IA64_SN_FETCHOP_H
-#define _ASM_IA64_SN_FETCHOP_H
-
-#include <linux/config.h>
-
-#define FETCHOP_BASENAME "sgi_fetchop"
-#define FETCHOP_FULLNAME "/dev/sgi_fetchop"
-
-
-
-#define FETCHOP_VAR_SIZE 64 /* 64 byte per fetchop variable */
-
-#define FETCHOP_LOAD 0
-#define FETCHOP_INCREMENT 8
-#define FETCHOP_DECREMENT 16
-#define FETCHOP_CLEAR 24
-
-#define FETCHOP_STORE 0
-#define FETCHOP_AND 24
-#define FETCHOP_OR 32
-
-#define FETCHOP_CLEAR_CACHE 56
-
-#define FETCHOP_LOAD_OP(addr, op) ( \
- *(volatile long *)((char*) (addr) + (op)))
-
-#define FETCHOP_STORE_OP(addr, op, x) ( \
- *(volatile long *)((char*) (addr) + (op)) = (long) (x))
-
-#ifdef __KERNEL__
-
-/*
- * Convert a region 6 (kaddr) address to the address of the fetchop variable
- */
-#define FETCHOP_KADDR_TO_MSPEC_ADDR(kaddr) TO_MSPEC(kaddr)
-
-
-/*
- * Each Atomic Memory Operation (AMO formerly known as fetchop)
- * variable is 64 bytes long. The first 8 bytes are used. The
- * remaining 56 bytes are unaddressable due to the operation taking
- * that portion of the address.
- *
- * NOTE: The AMO_t _MUST_ be placed in either the first or second half
- * of the cache line. The cache line _MUST NOT_ be used for anything
- * other than additional AMO_t entries. This is because there are two
- * addresses which reference the same physical cache line. One will
- * be a cached entry with the memory type bits all set. This address
- * may be loaded into processor cache. The AMO_t will be referenced
- * uncached via the memory special memory type. If any portion of the
- * cached cache-line is modified, when that line is flushed, it will
- * overwrite the uncached value in physical memory and lead to
- * inconsistency.
- */
-typedef struct {
- u64 variable;
- u64 unused[7];
-} AMO_t;
-
-
-/*
- * The following APIs are externalized to the kernel to allocate/free pages of
- * fetchop variables.
- * fetchop_kalloc_page - Allocate/initialize 1 fetchop page on the
- * specified cnode.
- * fetchop_kfree_page - Free a previously allocated fetchop page
- */
-
-unsigned long fetchop_kalloc_page(int nid);
-void fetchop_kfree_page(unsigned long maddr);
-
-
-#endif /* __KERNEL__ */
-
-#endif /* _ASM_IA64_SN_FETCHOP_H */
-
diff --git a/include/asm-ia64/sn/l1.h b/include/asm-ia64/sn/l1.h
index d5dbd55e44b5..08050d37b662 100644
--- a/include/asm-ia64/sn/l1.h
+++ b/include/asm-ia64/sn/l1.h
@@ -29,8 +29,9 @@
#define L1_BRICKTYPE_CHI_CG 0x76 /* v */
#define L1_BRICKTYPE_X 0x78 /* x */
#define L1_BRICKTYPE_X2 0x79 /* y */
-#define L1_BRICKTYPE_SA 0x5e /* ^ */ /* TIO bringup brick */
+#define L1_BRICKTYPE_SA 0x5e /* ^ */
#define L1_BRICKTYPE_PA 0x6a /* j */
#define L1_BRICKTYPE_IA 0x6b /* k */
+#define L1_BRICKTYPE_ATHENA 0x2b /* + */
#endif /* _ASM_IA64_SN_L1_H */
diff --git a/include/asm-ia64/sn/nodepda.h b/include/asm-ia64/sn/nodepda.h
index 13cc1002b294..7138b1eafd6b 100644
--- a/include/asm-ia64/sn/nodepda.h
+++ b/include/asm-ia64/sn/nodepda.h
@@ -13,7 +13,6 @@
#include <asm/irq.h>
#include <asm/sn/arch.h>
#include <asm/sn/intr.h>
-#include <asm/sn/pda.h>
#include <asm/sn/bte.h>
/*
@@ -67,20 +66,18 @@ typedef struct nodepda_s nodepda_t;
* The next set of definitions provides this.
* Routines are expected to use
*
- * nodepda -> to access node PDA for the node on which code is running
- * subnodepda -> to access subnode PDA for the subnode on which code is running
- *
- * NODEPDA(cnode) -> to access node PDA for cnodeid
- * SUBNODEPDA(cnode,sn) -> to access subnode PDA for cnodeid/subnode
+ * sn_nodepda - to access node PDA for the node on which code is running
+ * NODEPDA(cnodeid) - to access node PDA for cnodeid
*/
-#define nodepda pda->p_nodepda /* Ptr to this node's PDA */
-#define NODEPDA(cnode) (nodepda->pernode_pdaindr[cnode])
+DECLARE_PER_CPU(struct nodepda_s *, __sn_nodepda);
+#define sn_nodepda (__get_cpu_var(__sn_nodepda))
+#define NODEPDA(cnodeid) (sn_nodepda->pernode_pdaindr[cnodeid])
/*
* Check if given a compact node id the corresponding node has all the
* cpus disabled.
*/
-#define is_headless_node(cnode) (nr_cpus_node(cnode) == 0)
+#define is_headless_node(cnodeid) (nr_cpus_node(cnodeid) == 0)
#endif /* _ASM_IA64_SN_NODEPDA_H */
diff --git a/include/asm-ia64/sn/pda.h b/include/asm-ia64/sn/pda.h
index cd19f17bf91a..ea5590c76ca4 100644
--- a/include/asm-ia64/sn/pda.h
+++ b/include/asm-ia64/sn/pda.h
@@ -24,14 +24,6 @@
typedef struct pda_s {
- /* Having a pointer in the begining of PDA tends to increase
- * the chance of having this pointer in cache. (Yes something
- * else gets pushed out). Doing this reduces the number of memory
- * access to all nodepda variables to be one
- */
- struct nodepda_s *p_nodepda; /* Pointer to Per node PDA */
- struct subnodepda_s *p_subnodepda; /* Pointer to CPU subnode PDA */
-
/*
* Support for SN LEDs
*/
@@ -49,7 +41,6 @@ typedef struct pda_s {
unsigned long sn_soft_irr[4];
unsigned long sn_in_service_ivecs[4];
- short cnodeid_to_nasid_table[MAX_NUMNODES];
int sn_lb_int_war_ticks;
int sn_last_irq;
int sn_first_irq;
diff --git a/include/asm-ia64/sn/shub_mmr.h b/include/asm-ia64/sn/shub_mmr.h
index 2f885088e095..323fa0cd8d83 100644
--- a/include/asm-ia64/sn/shub_mmr.h
+++ b/include/asm-ia64/sn/shub_mmr.h
@@ -385,6 +385,17 @@
#define SH_EVENT_OCCURRED_RTC3_INT_MASK 0x0000000004000000
/* ==================================================================== */
+/* Register "SH_IPI_ACCESS" */
+/* CPU interrupt Access Permission Bits */
+/* ==================================================================== */
+
+#define SH1_IPI_ACCESS 0x0000000110060480
+#define SH2_IPI_ACCESS0 0x0000000010060c00
+#define SH2_IPI_ACCESS1 0x0000000010060c80
+#define SH2_IPI_ACCESS2 0x0000000010060d00
+#define SH2_IPI_ACCESS3 0x0000000010060d80
+
+/* ==================================================================== */
/* Register "SH_INT_CMPB" */
/* RTC Compare Value for Processor B */
/* ==================================================================== */
@@ -429,6 +440,19 @@
#define SH_INT_CMPD_REAL_TIME_CMPD_SHFT 0
#define SH_INT_CMPD_REAL_TIME_CMPD_MASK 0x007fffffffffffff
+/* ==================================================================== */
+/* Register "SH_MD_DQLP_MMR_DIR_PRIVEC0" */
+/* privilege vector for acc=0 */
+/* ==================================================================== */
+
+#define SH1_MD_DQLP_MMR_DIR_PRIVEC0 0x0000000100030300
+
+/* ==================================================================== */
+/* Register "SH_MD_DQRP_MMR_DIR_PRIVEC0" */
+/* privilege vector for acc=0 */
+/* ==================================================================== */
+
+#define SH1_MD_DQRP_MMR_DIR_PRIVEC0 0x0000000100050300
/* ==================================================================== */
/* Some MMRs are functionally identical (or close enough) on both SHUB1 */
diff --git a/include/asm-ia64/sn/shubio.h b/include/asm-ia64/sn/shubio.h
index fbd880e6bb96..831b72111fdc 100644
--- a/include/asm-ia64/sn/shubio.h
+++ b/include/asm-ia64/sn/shubio.h
@@ -3,292 +3,287 @@
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
- * Copyright (C) 1992 - 1997, 2000-2004 Silicon Graphics, Inc. All rights reserved.
+ * Copyright (C) 1992 - 1997, 2000-2005 Silicon Graphics, Inc. All rights reserved.
*/
#ifndef _ASM_IA64_SN_SHUBIO_H
#define _ASM_IA64_SN_SHUBIO_H
-#define HUB_WIDGET_ID_MAX 0xf
-#define IIO_NUM_ITTES 7
-#define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1)
-
-#define IIO_WID 0x00400000 /* Crosstalk Widget Identification */
- /* This register is also accessible from
- * Crosstalk at address 0x0. */
-#define IIO_WSTAT 0x00400008 /* Crosstalk Widget Status */
-#define IIO_WCR 0x00400020 /* Crosstalk Widget Control Register */
-#define IIO_ILAPR 0x00400100 /* IO Local Access Protection Register */
-#define IIO_ILAPO 0x00400108 /* IO Local Access Protection Override */
-#define IIO_IOWA 0x00400110 /* IO Outbound Widget Access */
-#define IIO_IIWA 0x00400118 /* IO Inbound Widget Access */
-#define IIO_IIDEM 0x00400120 /* IO Inbound Device Error Mask */
-#define IIO_ILCSR 0x00400128 /* IO LLP Control and Status Register */
-#define IIO_ILLR 0x00400130 /* IO LLP Log Register */
-#define IIO_IIDSR 0x00400138 /* IO Interrupt Destination */
-
-#define IIO_IGFX0 0x00400140 /* IO Graphics Node-Widget Map 0 */
-#define IIO_IGFX1 0x00400148 /* IO Graphics Node-Widget Map 1 */
-
-#define IIO_ISCR0 0x00400150 /* IO Scratch Register 0 */
-#define IIO_ISCR1 0x00400158 /* IO Scratch Register 1 */
-
-#define IIO_ITTE1 0x00400160 /* IO Translation Table Entry 1 */
-#define IIO_ITTE2 0x00400168 /* IO Translation Table Entry 2 */
-#define IIO_ITTE3 0x00400170 /* IO Translation Table Entry 3 */
-#define IIO_ITTE4 0x00400178 /* IO Translation Table Entry 4 */
-#define IIO_ITTE5 0x00400180 /* IO Translation Table Entry 5 */
-#define IIO_ITTE6 0x00400188 /* IO Translation Table Entry 6 */
-#define IIO_ITTE7 0x00400190 /* IO Translation Table Entry 7 */
-
-#define IIO_IPRB0 0x00400198 /* IO PRB Entry 0 */
-#define IIO_IPRB8 0x004001A0 /* IO PRB Entry 8 */
-#define IIO_IPRB9 0x004001A8 /* IO PRB Entry 9 */
-#define IIO_IPRBA 0x004001B0 /* IO PRB Entry A */
-#define IIO_IPRBB 0x004001B8 /* IO PRB Entry B */
-#define IIO_IPRBC 0x004001C0 /* IO PRB Entry C */
-#define IIO_IPRBD 0x004001C8 /* IO PRB Entry D */
-#define IIO_IPRBE 0x004001D0 /* IO PRB Entry E */
-#define IIO_IPRBF 0x004001D8 /* IO PRB Entry F */
-
-#define IIO_IXCC 0x004001E0 /* IO Crosstalk Credit Count Timeout */
-#define IIO_IMEM 0x004001E8 /* IO Miscellaneous Error Mask */
-#define IIO_IXTT 0x004001F0 /* IO Crosstalk Timeout Threshold */
-#define IIO_IECLR 0x004001F8 /* IO Error Clear Register */
-#define IIO_IBCR 0x00400200 /* IO BTE Control Register */
-
-#define IIO_IXSM 0x00400208 /* IO Crosstalk Spurious Message */
-#define IIO_IXSS 0x00400210 /* IO Crosstalk Spurious Sideband */
-
-#define IIO_ILCT 0x00400218 /* IO LLP Channel Test */
-
-#define IIO_IIEPH1 0x00400220 /* IO Incoming Error Packet Header, Part 1 */
-#define IIO_IIEPH2 0x00400228 /* IO Incoming Error Packet Header, Part 2 */
-
-
-#define IIO_ISLAPR 0x00400230 /* IO SXB Local Access Protection Regster */
-#define IIO_ISLAPO 0x00400238 /* IO SXB Local Access Protection Override */
-
-#define IIO_IWI 0x00400240 /* IO Wrapper Interrupt Register */
-#define IIO_IWEL 0x00400248 /* IO Wrapper Error Log Register */
-#define IIO_IWC 0x00400250 /* IO Wrapper Control Register */
-#define IIO_IWS 0x00400258 /* IO Wrapper Status Register */
-#define IIO_IWEIM 0x00400260 /* IO Wrapper Error Interrupt Masking Register */
-
-#define IIO_IPCA 0x00400300 /* IO PRB Counter Adjust */
-
-#define IIO_IPRTE0_A 0x00400308 /* IO PIO Read Address Table Entry 0, Part A */
-#define IIO_IPRTE1_A 0x00400310 /* IO PIO Read Address Table Entry 1, Part A */
-#define IIO_IPRTE2_A 0x00400318 /* IO PIO Read Address Table Entry 2, Part A */
-#define IIO_IPRTE3_A 0x00400320 /* IO PIO Read Address Table Entry 3, Part A */
-#define IIO_IPRTE4_A 0x00400328 /* IO PIO Read Address Table Entry 4, Part A */
-#define IIO_IPRTE5_A 0x00400330 /* IO PIO Read Address Table Entry 5, Part A */
-#define IIO_IPRTE6_A 0x00400338 /* IO PIO Read Address Table Entry 6, Part A */
-#define IIO_IPRTE7_A 0x00400340 /* IO PIO Read Address Table Entry 7, Part A */
-
-#define IIO_IPRTE0_B 0x00400348 /* IO PIO Read Address Table Entry 0, Part B */
-#define IIO_IPRTE1_B 0x00400350 /* IO PIO Read Address Table Entry 1, Part B */
-#define IIO_IPRTE2_B 0x00400358 /* IO PIO Read Address Table Entry 2, Part B */
-#define IIO_IPRTE3_B 0x00400360 /* IO PIO Read Address Table Entry 3, Part B */
-#define IIO_IPRTE4_B 0x00400368 /* IO PIO Read Address Table Entry 4, Part B */
-#define IIO_IPRTE5_B 0x00400370 /* IO PIO Read Address Table Entry 5, Part B */
-#define IIO_IPRTE6_B 0x00400378 /* IO PIO Read Address Table Entry 6, Part B */
-#define IIO_IPRTE7_B 0x00400380 /* IO PIO Read Address Table Entry 7, Part B */
-
-#define IIO_IPDR 0x00400388 /* IO PIO Deallocation Register */
-#define IIO_ICDR 0x00400390 /* IO CRB Entry Deallocation Register */
-#define IIO_IFDR 0x00400398 /* IO IOQ FIFO Depth Register */
-#define IIO_IIAP 0x004003A0 /* IO IIQ Arbitration Parameters */
-#define IIO_ICMR 0x004003A8 /* IO CRB Management Register */
-#define IIO_ICCR 0x004003B0 /* IO CRB Control Register */
-#define IIO_ICTO 0x004003B8 /* IO CRB Timeout */
-#define IIO_ICTP 0x004003C0 /* IO CRB Timeout Prescalar */
-
-#define IIO_ICRB0_A 0x00400400 /* IO CRB Entry 0_A */
-#define IIO_ICRB0_B 0x00400408 /* IO CRB Entry 0_B */
-#define IIO_ICRB0_C 0x00400410 /* IO CRB Entry 0_C */
-#define IIO_ICRB0_D 0x00400418 /* IO CRB Entry 0_D */
-#define IIO_ICRB0_E 0x00400420 /* IO CRB Entry 0_E */
-
-#define IIO_ICRB1_A 0x00400430 /* IO CRB Entry 1_A */
-#define IIO_ICRB1_B 0x00400438 /* IO CRB Entry 1_B */
-#define IIO_ICRB1_C 0x00400440 /* IO CRB Entry 1_C */
-#define IIO_ICRB1_D 0x00400448 /* IO CRB Entry 1_D */
-#define IIO_ICRB1_E 0x00400450 /* IO CRB Entry 1_E */
-
-#define IIO_ICRB2_A 0x00400460 /* IO CRB Entry 2_A */
-#define IIO_ICRB2_B 0x00400468 /* IO CRB Entry 2_B */
-#define IIO_ICRB2_C 0x00400470 /* IO CRB Entry 2_C */
-#define IIO_ICRB2_D 0x00400478 /* IO CRB Entry 2_D */
-#define IIO_ICRB2_E 0x00400480 /* IO CRB Entry 2_E */
-
-#define IIO_ICRB3_A 0x00400490 /* IO CRB Entry 3_A */
-#define IIO_ICRB3_B 0x00400498 /* IO CRB Entry 3_B */
-#define IIO_ICRB3_C 0x004004a0 /* IO CRB Entry 3_C */
-#define IIO_ICRB3_D 0x004004a8 /* IO CRB Entry 3_D */
-#define IIO_ICRB3_E 0x004004b0 /* IO CRB Entry 3_E */
-
-#define IIO_ICRB4_A 0x004004c0 /* IO CRB Entry 4_A */
-#define IIO_ICRB4_B 0x004004c8 /* IO CRB Entry 4_B */
-#define IIO_ICRB4_C 0x004004d0 /* IO CRB Entry 4_C */
-#define IIO_ICRB4_D 0x004004d8 /* IO CRB Entry 4_D */
-#define IIO_ICRB4_E 0x004004e0 /* IO CRB Entry 4_E */
-
-#define IIO_ICRB5_A 0x004004f0 /* IO CRB Entry 5_A */
-#define IIO_ICRB5_B 0x004004f8 /* IO CRB Entry 5_B */
-#define IIO_ICRB5_C 0x00400500 /* IO CRB Entry 5_C */
-#define IIO_ICRB5_D 0x00400508 /* IO CRB Entry 5_D */
-#define IIO_ICRB5_E 0x00400510 /* IO CRB Entry 5_E */
-
-#define IIO_ICRB6_A 0x00400520 /* IO CRB Entry 6_A */
-#define IIO_ICRB6_B 0x00400528 /* IO CRB Entry 6_B */
-#define IIO_ICRB6_C 0x00400530 /* IO CRB Entry 6_C */
-#define IIO_ICRB6_D 0x00400538 /* IO CRB Entry 6_D */
-#define IIO_ICRB6_E 0x00400540 /* IO CRB Entry 6_E */
-
-#define IIO_ICRB7_A 0x00400550 /* IO CRB Entry 7_A */
-#define IIO_ICRB7_B 0x00400558 /* IO CRB Entry 7_B */
-#define IIO_ICRB7_C 0x00400560 /* IO CRB Entry 7_C */
-#define IIO_ICRB7_D 0x00400568 /* IO CRB Entry 7_D */
-#define IIO_ICRB7_E 0x00400570 /* IO CRB Entry 7_E */
-
-#define IIO_ICRB8_A 0x00400580 /* IO CRB Entry 8_A */
-#define IIO_ICRB8_B 0x00400588 /* IO CRB Entry 8_B */
-#define IIO_ICRB8_C 0x00400590 /* IO CRB Entry 8_C */
-#define IIO_ICRB8_D 0x00400598 /* IO CRB Entry 8_D */
-#define IIO_ICRB8_E 0x004005a0 /* IO CRB Entry 8_E */
-
-#define IIO_ICRB9_A 0x004005b0 /* IO CRB Entry 9_A */
-#define IIO_ICRB9_B 0x004005b8 /* IO CRB Entry 9_B */
-#define IIO_ICRB9_C 0x004005c0 /* IO CRB Entry 9_C */
-#define IIO_ICRB9_D 0x004005c8 /* IO CRB Entry 9_D */
-#define IIO_ICRB9_E 0x004005d0 /* IO CRB Entry 9_E */
-
-#define IIO_ICRBA_A 0x004005e0 /* IO CRB Entry A_A */
-#define IIO_ICRBA_B 0x004005e8 /* IO CRB Entry A_B */
-#define IIO_ICRBA_C 0x004005f0 /* IO CRB Entry A_C */
-#define IIO_ICRBA_D 0x004005f8 /* IO CRB Entry A_D */
-#define IIO_ICRBA_E 0x00400600 /* IO CRB Entry A_E */
-
-#define IIO_ICRBB_A 0x00400610 /* IO CRB Entry B_A */
-#define IIO_ICRBB_B 0x00400618 /* IO CRB Entry B_B */
-#define IIO_ICRBB_C 0x00400620 /* IO CRB Entry B_C */
-#define IIO_ICRBB_D 0x00400628 /* IO CRB Entry B_D */
-#define IIO_ICRBB_E 0x00400630 /* IO CRB Entry B_E */
-
-#define IIO_ICRBC_A 0x00400640 /* IO CRB Entry C_A */
-#define IIO_ICRBC_B 0x00400648 /* IO CRB Entry C_B */
-#define IIO_ICRBC_C 0x00400650 /* IO CRB Entry C_C */
-#define IIO_ICRBC_D 0x00400658 /* IO CRB Entry C_D */
-#define IIO_ICRBC_E 0x00400660 /* IO CRB Entry C_E */
-
-#define IIO_ICRBD_A 0x00400670 /* IO CRB Entry D_A */
-#define IIO_ICRBD_B 0x00400678 /* IO CRB Entry D_B */
-#define IIO_ICRBD_C 0x00400680 /* IO CRB Entry D_C */
-#define IIO_ICRBD_D 0x00400688 /* IO CRB Entry D_D */
-#define IIO_ICRBD_E 0x00400690 /* IO CRB Entry D_E */
-
-#define IIO_ICRBE_A 0x004006a0 /* IO CRB Entry E_A */
-#define IIO_ICRBE_B 0x004006a8 /* IO CRB Entry E_B */
-#define IIO_ICRBE_C 0x004006b0 /* IO CRB Entry E_C */
-#define IIO_ICRBE_D 0x004006b8 /* IO CRB Entry E_D */
-#define IIO_ICRBE_E 0x004006c0 /* IO CRB Entry E_E */
-
-#define IIO_ICSML 0x00400700 /* IO CRB Spurious Message Low */
-#define IIO_ICSMM 0x00400708 /* IO CRB Spurious Message Middle */
-#define IIO_ICSMH 0x00400710 /* IO CRB Spurious Message High */
-
-#define IIO_IDBSS 0x00400718 /* IO Debug Submenu Select */
-
-#define IIO_IBLS0 0x00410000 /* IO BTE Length Status 0 */
-#define IIO_IBSA0 0x00410008 /* IO BTE Source Address 0 */
-#define IIO_IBDA0 0x00410010 /* IO BTE Destination Address 0 */
-#define IIO_IBCT0 0x00410018 /* IO BTE Control Terminate 0 */
-#define IIO_IBNA0 0x00410020 /* IO BTE Notification Address 0 */
-#define IIO_IBIA0 0x00410028 /* IO BTE Interrupt Address 0 */
-#define IIO_IBLS1 0x00420000 /* IO BTE Length Status 1 */
-#define IIO_IBSA1 0x00420008 /* IO BTE Source Address 1 */
-#define IIO_IBDA1 0x00420010 /* IO BTE Destination Address 1 */
-#define IIO_IBCT1 0x00420018 /* IO BTE Control Terminate 1 */
-#define IIO_IBNA1 0x00420020 /* IO BTE Notification Address 1 */
-#define IIO_IBIA1 0x00420028 /* IO BTE Interrupt Address 1 */
-
-#define IIO_IPCR 0x00430000 /* IO Performance Control */
-#define IIO_IPPR 0x00430008 /* IO Performance Profiling */
-
-
-/************************************************************************
- * *
+#define HUB_WIDGET_ID_MAX 0xf
+#define IIO_NUM_ITTES 7
+#define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1)
+
+#define IIO_WID 0x00400000 /* Crosstalk Widget Identification */
+ /* This register is also accessible from
+ * Crosstalk at address 0x0. */
+#define IIO_WSTAT 0x00400008 /* Crosstalk Widget Status */
+#define IIO_WCR 0x00400020 /* Crosstalk Widget Control Register */
+#define IIO_ILAPR 0x00400100 /* IO Local Access Protection Register */
+#define IIO_ILAPO 0x00400108 /* IO Local Access Protection Override */
+#define IIO_IOWA 0x00400110 /* IO Outbound Widget Access */
+#define IIO_IIWA 0x00400118 /* IO Inbound Widget Access */
+#define IIO_IIDEM 0x00400120 /* IO Inbound Device Error Mask */
+#define IIO_ILCSR 0x00400128 /* IO LLP Control and Status Register */
+#define IIO_ILLR 0x00400130 /* IO LLP Log Register */
+#define IIO_IIDSR 0x00400138 /* IO Interrupt Destination */
+
+#define IIO_IGFX0 0x00400140 /* IO Graphics Node-Widget Map 0 */
+#define IIO_IGFX1 0x00400148 /* IO Graphics Node-Widget Map 1 */
+
+#define IIO_ISCR0 0x00400150 /* IO Scratch Register 0 */
+#define IIO_ISCR1 0x00400158 /* IO Scratch Register 1 */
+
+#define IIO_ITTE1 0x00400160 /* IO Translation Table Entry 1 */
+#define IIO_ITTE2 0x00400168 /* IO Translation Table Entry 2 */
+#define IIO_ITTE3 0x00400170 /* IO Translation Table Entry 3 */
+#define IIO_ITTE4 0x00400178 /* IO Translation Table Entry 4 */
+#define IIO_ITTE5 0x00400180 /* IO Translation Table Entry 5 */
+#define IIO_ITTE6 0x00400188 /* IO Translation Table Entry 6 */
+#define IIO_ITTE7 0x00400190 /* IO Translation Table Entry 7 */
+
+#define IIO_IPRB0 0x00400198 /* IO PRB Entry 0 */
+#define IIO_IPRB8 0x004001A0 /* IO PRB Entry 8 */
+#define IIO_IPRB9 0x004001A8 /* IO PRB Entry 9 */
+#define IIO_IPRBA 0x004001B0 /* IO PRB Entry A */
+#define IIO_IPRBB 0x004001B8 /* IO PRB Entry B */
+#define IIO_IPRBC 0x004001C0 /* IO PRB Entry C */
+#define IIO_IPRBD 0x004001C8 /* IO PRB Entry D */
+#define IIO_IPRBE 0x004001D0 /* IO PRB Entry E */
+#define IIO_IPRBF 0x004001D8 /* IO PRB Entry F */
+
+#define IIO_IXCC 0x004001E0 /* IO Crosstalk Credit Count Timeout */
+#define IIO_IMEM 0x004001E8 /* IO Miscellaneous Error Mask */
+#define IIO_IXTT 0x004001F0 /* IO Crosstalk Timeout Threshold */
+#define IIO_IECLR 0x004001F8 /* IO Error Clear Register */
+#define IIO_IBCR 0x00400200 /* IO BTE Control Register */
+
+#define IIO_IXSM 0x00400208 /* IO Crosstalk Spurious Message */
+#define IIO_IXSS 0x00400210 /* IO Crosstalk Spurious Sideband */
+
+#define IIO_ILCT 0x00400218 /* IO LLP Channel Test */
+
+#define IIO_IIEPH1 0x00400220 /* IO Incoming Error Packet Header, Part 1 */
+#define IIO_IIEPH2 0x00400228 /* IO Incoming Error Packet Header, Part 2 */
+
+#define IIO_ISLAPR 0x00400230 /* IO SXB Local Access Protection Regster */
+#define IIO_ISLAPO 0x00400238 /* IO SXB Local Access Protection Override */
+
+#define IIO_IWI 0x00400240 /* IO Wrapper Interrupt Register */
+#define IIO_IWEL 0x00400248 /* IO Wrapper Error Log Register */
+#define IIO_IWC 0x00400250 /* IO Wrapper Control Register */
+#define IIO_IWS 0x00400258 /* IO Wrapper Status Register */
+#define IIO_IWEIM 0x00400260 /* IO Wrapper Error Interrupt Masking Register */
+
+#define IIO_IPCA 0x00400300 /* IO PRB Counter Adjust */
+
+#define IIO_IPRTE0_A 0x00400308 /* IO PIO Read Address Table Entry 0, Part A */
+#define IIO_IPRTE1_A 0x00400310 /* IO PIO Read Address Table Entry 1, Part A */
+#define IIO_IPRTE2_A 0x00400318 /* IO PIO Read Address Table Entry 2, Part A */
+#define IIO_IPRTE3_A 0x00400320 /* IO PIO Read Address Table Entry 3, Part A */
+#define IIO_IPRTE4_A 0x00400328 /* IO PIO Read Address Table Entry 4, Part A */
+#define IIO_IPRTE5_A 0x00400330 /* IO PIO Read Address Table Entry 5, Part A */
+#define IIO_IPRTE6_A 0x00400338 /* IO PIO Read Address Table Entry 6, Part A */
+#define IIO_IPRTE7_A 0x00400340 /* IO PIO Read Address Table Entry 7, Part A */
+
+#define IIO_IPRTE0_B 0x00400348 /* IO PIO Read Address Table Entry 0, Part B */
+#define IIO_IPRTE1_B 0x00400350 /* IO PIO Read Address Table Entry 1, Part B */
+#define IIO_IPRTE2_B 0x00400358 /* IO PIO Read Address Table Entry 2, Part B */
+#define IIO_IPRTE3_B 0x00400360 /* IO PIO Read Address Table Entry 3, Part B */
+#define IIO_IPRTE4_B 0x00400368 /* IO PIO Read Address Table Entry 4, Part B */
+#define IIO_IPRTE5_B 0x00400370 /* IO PIO Read Address Table Entry 5, Part B */
+#define IIO_IPRTE6_B 0x00400378 /* IO PIO Read Address Table Entry 6, Part B */
+#define IIO_IPRTE7_B 0x00400380 /* IO PIO Read Address Table Entry 7, Part B */
+
+#define IIO_IPDR 0x00400388 /* IO PIO Deallocation Register */
+#define IIO_ICDR 0x00400390 /* IO CRB Entry Deallocation Register */
+#define IIO_IFDR 0x00400398 /* IO IOQ FIFO Depth Register */
+#define IIO_IIAP 0x004003A0 /* IO IIQ Arbitration Parameters */
+#define IIO_ICMR 0x004003A8 /* IO CRB Management Register */
+#define IIO_ICCR 0x004003B0 /* IO CRB Control Register */
+#define IIO_ICTO 0x004003B8 /* IO CRB Timeout */
+#define IIO_ICTP 0x004003C0 /* IO CRB Timeout Prescalar */
+
+#define IIO_ICRB0_A 0x00400400 /* IO CRB Entry 0_A */
+#define IIO_ICRB0_B 0x00400408 /* IO CRB Entry 0_B */
+#define IIO_ICRB0_C 0x00400410 /* IO CRB Entry 0_C */
+#define IIO_ICRB0_D 0x00400418 /* IO CRB Entry 0_D */
+#define IIO_ICRB0_E 0x00400420 /* IO CRB Entry 0_E */
+
+#define IIO_ICRB1_A 0x00400430 /* IO CRB Entry 1_A */
+#define IIO_ICRB1_B 0x00400438 /* IO CRB Entry 1_B */
+#define IIO_ICRB1_C 0x00400440 /* IO CRB Entry 1_C */
+#define IIO_ICRB1_D 0x00400448 /* IO CRB Entry 1_D */
+#define IIO_ICRB1_E 0x00400450 /* IO CRB Entry 1_E */
+
+#define IIO_ICRB2_A 0x00400460 /* IO CRB Entry 2_A */
+#define IIO_ICRB2_B 0x00400468 /* IO CRB Entry 2_B */
+#define IIO_ICRB2_C 0x00400470 /* IO CRB Entry 2_C */
+#define IIO_ICRB2_D 0x00400478 /* IO CRB Entry 2_D */
+#define IIO_ICRB2_E 0x00400480 /* IO CRB Entry 2_E */
+
+#define IIO_ICRB3_A 0x00400490 /* IO CRB Entry 3_A */
+#define IIO_ICRB3_B 0x00400498 /* IO CRB Entry 3_B */
+#define IIO_ICRB3_C 0x004004a0 /* IO CRB Entry 3_C */
+#define IIO_ICRB3_D 0x004004a8 /* IO CRB Entry 3_D */
+#define IIO_ICRB3_E 0x004004b0 /* IO CRB Entry 3_E */
+
+#define IIO_ICRB4_A 0x004004c0 /* IO CRB Entry 4_A */
+#define IIO_ICRB4_B 0x004004c8 /* IO CRB Entry 4_B */
+#define IIO_ICRB4_C 0x004004d0 /* IO CRB Entry 4_C */
+#define IIO_ICRB4_D 0x004004d8 /* IO CRB Entry 4_D */
+#define IIO_ICRB4_E 0x004004e0 /* IO CRB Entry 4_E */
+
+#define IIO_ICRB5_A 0x004004f0 /* IO CRB Entry 5_A */
+#define IIO_ICRB5_B 0x004004f8 /* IO CRB Entry 5_B */
+#define IIO_ICRB5_C 0x00400500 /* IO CRB Entry 5_C */
+#define IIO_ICRB5_D 0x00400508 /* IO CRB Entry 5_D */
+#define IIO_ICRB5_E 0x00400510 /* IO CRB Entry 5_E */
+
+#define IIO_ICRB6_A 0x00400520 /* IO CRB Entry 6_A */
+#define IIO_ICRB6_B 0x00400528 /* IO CRB Entry 6_B */
+#define IIO_ICRB6_C 0x00400530 /* IO CRB Entry 6_C */
+#define IIO_ICRB6_D 0x00400538 /* IO CRB Entry 6_D */
+#define IIO_ICRB6_E 0x00400540 /* IO CRB Entry 6_E */
+
+#define IIO_ICRB7_A 0x00400550 /* IO CRB Entry 7_A */
+#define IIO_ICRB7_B 0x00400558 /* IO CRB Entry 7_B */
+#define IIO_ICRB7_C 0x00400560 /* IO CRB Entry 7_C */
+#define IIO_ICRB7_D 0x00400568 /* IO CRB Entry 7_D */
+#define IIO_ICRB7_E 0x00400570 /* IO CRB Entry 7_E */
+
+#define IIO_ICRB8_A 0x00400580 /* IO CRB Entry 8_A */
+#define IIO_ICRB8_B 0x00400588 /* IO CRB Entry 8_B */
+#define IIO_ICRB8_C 0x00400590 /* IO CRB Entry 8_C */
+#define IIO_ICRB8_D 0x00400598 /* IO CRB Entry 8_D */
+#define IIO_ICRB8_E 0x004005a0 /* IO CRB Entry 8_E */
+
+#define IIO_ICRB9_A 0x004005b0 /* IO CRB Entry 9_A */
+#define IIO_ICRB9_B 0x004005b8 /* IO CRB Entry 9_B */
+#define IIO_ICRB9_C 0x004005c0 /* IO CRB Entry 9_C */
+#define IIO_ICRB9_D 0x004005c8 /* IO CRB Entry 9_D */
+#define IIO_ICRB9_E 0x004005d0 /* IO CRB Entry 9_E */
+
+#define IIO_ICRBA_A 0x004005e0 /* IO CRB Entry A_A */
+#define IIO_ICRBA_B 0x004005e8 /* IO CRB Entry A_B */
+#define IIO_ICRBA_C 0x004005f0 /* IO CRB Entry A_C */
+#define IIO_ICRBA_D 0x004005f8 /* IO CRB Entry A_D */
+#define IIO_ICRBA_E 0x00400600 /* IO CRB Entry A_E */
+
+#define IIO_ICRBB_A 0x00400610 /* IO CRB Entry B_A */
+#define IIO_ICRBB_B 0x00400618 /* IO CRB Entry B_B */
+#define IIO_ICRBB_C 0x00400620 /* IO CRB Entry B_C */
+#define IIO_ICRBB_D 0x00400628 /* IO CRB Entry B_D */
+#define IIO_ICRBB_E 0x00400630 /* IO CRB Entry B_E */
+
+#define IIO_ICRBC_A 0x00400640 /* IO CRB Entry C_A */
+#define IIO_ICRBC_B 0x00400648 /* IO CRB Entry C_B */
+#define IIO_ICRBC_C 0x00400650 /* IO CRB Entry C_C */
+#define IIO_ICRBC_D 0x00400658 /* IO CRB Entry C_D */
+#define IIO_ICRBC_E 0x00400660 /* IO CRB Entry C_E */
+
+#define IIO_ICRBD_A 0x00400670 /* IO CRB Entry D_A */
+#define IIO_ICRBD_B 0x00400678 /* IO CRB Entry D_B */
+#define IIO_ICRBD_C 0x00400680 /* IO CRB Entry D_C */
+#define IIO_ICRBD_D 0x00400688 /* IO CRB Entry D_D */
+#define IIO_ICRBD_E 0x00400690 /* IO CRB Entry D_E */
+
+#define IIO_ICRBE_A 0x004006a0 /* IO CRB Entry E_A */
+#define IIO_ICRBE_B 0x004006a8 /* IO CRB Entry E_B */
+#define IIO_ICRBE_C 0x004006b0 /* IO CRB Entry E_C */
+#define IIO_ICRBE_D 0x004006b8 /* IO CRB Entry E_D */
+#define IIO_ICRBE_E 0x004006c0 /* IO CRB Entry E_E */
+
+#define IIO_ICSML 0x00400700 /* IO CRB Spurious Message Low */
+#define IIO_ICSMM 0x00400708 /* IO CRB Spurious Message Middle */
+#define IIO_ICSMH 0x00400710 /* IO CRB Spurious Message High */
+
+#define IIO_IDBSS 0x00400718 /* IO Debug Submenu Select */
+
+#define IIO_IBLS0 0x00410000 /* IO BTE Length Status 0 */
+#define IIO_IBSA0 0x00410008 /* IO BTE Source Address 0 */
+#define IIO_IBDA0 0x00410010 /* IO BTE Destination Address 0 */
+#define IIO_IBCT0 0x00410018 /* IO BTE Control Terminate 0 */
+#define IIO_IBNA0 0x00410020 /* IO BTE Notification Address 0 */
+#define IIO_IBIA0 0x00410028 /* IO BTE Interrupt Address 0 */
+#define IIO_IBLS1 0x00420000 /* IO BTE Length Status 1 */
+#define IIO_IBSA1 0x00420008 /* IO BTE Source Address 1 */
+#define IIO_IBDA1 0x00420010 /* IO BTE Destination Address 1 */
+#define IIO_IBCT1 0x00420018 /* IO BTE Control Terminate 1 */
+#define IIO_IBNA1 0x00420020 /* IO BTE Notification Address 1 */
+#define IIO_IBIA1 0x00420028 /* IO BTE Interrupt Address 1 */
+
+#define IIO_IPCR 0x00430000 /* IO Performance Control */
+#define IIO_IPPR 0x00430008 /* IO Performance Profiling */
+
+/************************************************************************
+ * *
* Description: This register echoes some information from the *
* LB_REV_ID register. It is available through Crosstalk as described *
* above. The REV_NUM and MFG_NUM fields receive their values from *
* the REVISION and MANUFACTURER fields in the LB_REV_ID register. *
* The PART_NUM field's value is the Crosstalk device ID number that *
* Steve Miller assigned to the SHub chip. *
- * *
+ * *
************************************************************************/
typedef union ii_wid_u {
- uint64_t ii_wid_regval;
- struct {
- uint64_t w_rsvd_1 : 1;
- uint64_t w_mfg_num : 11;
- uint64_t w_part_num : 16;
- uint64_t w_rev_num : 4;
- uint64_t w_rsvd : 32;
+ uint64_t ii_wid_regval;
+ struct {
+ uint64_t w_rsvd_1:1;
+ uint64_t w_mfg_num:11;
+ uint64_t w_part_num:16;
+ uint64_t w_rev_num:4;
+ uint64_t w_rsvd:32;
} ii_wid_fld_s;
} ii_wid_u_t;
-
/************************************************************************
- * *
+ * *
* The fields in this register are set upon detection of an error *
* and cleared by various mechanisms, as explained in the *
* description. *
- * *
+ * *
************************************************************************/
typedef union ii_wstat_u {
- uint64_t ii_wstat_regval;
- struct {
- uint64_t w_pending : 4;
- uint64_t w_xt_crd_to : 1;
- uint64_t w_xt_tail_to : 1;
- uint64_t w_rsvd_3 : 3;
- uint64_t w_tx_mx_rty : 1;
- uint64_t w_rsvd_2 : 6;
- uint64_t w_llp_tx_cnt : 8;
- uint64_t w_rsvd_1 : 8;
- uint64_t w_crazy : 1;
- uint64_t w_rsvd : 31;
+ uint64_t ii_wstat_regval;
+ struct {
+ uint64_t w_pending:4;
+ uint64_t w_xt_crd_to:1;
+ uint64_t w_xt_tail_to:1;
+ uint64_t w_rsvd_3:3;
+ uint64_t w_tx_mx_rty:1;
+ uint64_t w_rsvd_2:6;
+ uint64_t w_llp_tx_cnt:8;
+ uint64_t w_rsvd_1:8;
+ uint64_t w_crazy:1;
+ uint64_t w_rsvd:31;
} ii_wstat_fld_s;
} ii_wstat_u_t;
-
/************************************************************************
- * *
+ * *
* Description: This is a read-write enabled register. It controls *
* various aspects of the Crosstalk flow control. *
- * *
+ * *
************************************************************************/
typedef union ii_wcr_u {
- uint64_t ii_wcr_regval;
- struct {
- uint64_t w_wid : 4;
- uint64_t w_tag : 1;
- uint64_t w_rsvd_1 : 8;
- uint64_t w_dst_crd : 3;
- uint64_t w_f_bad_pkt : 1;
- uint64_t w_dir_con : 1;
- uint64_t w_e_thresh : 5;
- uint64_t w_rsvd : 41;
+ uint64_t ii_wcr_regval;
+ struct {
+ uint64_t w_wid:4;
+ uint64_t w_tag:1;
+ uint64_t w_rsvd_1:8;
+ uint64_t w_dst_crd:3;
+ uint64_t w_f_bad_pkt:1;
+ uint64_t w_dir_con:1;
+ uint64_t w_e_thresh:5;
+ uint64_t w_rsvd:41;
} ii_wcr_fld_s;
} ii_wcr_u_t;
-
/************************************************************************
- * *
+ * *
* Description: This register's value is a bit vector that guards *
* access to local registers within the II as well as to external *
* Crosstalk widgets. Each bit in the register corresponds to a *
@@ -311,21 +306,18 @@ typedef union ii_wcr_u {
* region ID bits are enabled in this same register. It can also be *
* accessed through the IAlias space by the local processors. *
* The reset value of this register allows access by all nodes. *
- * *
+ * *
************************************************************************/
typedef union ii_ilapr_u {
- uint64_t ii_ilapr_regval;
- struct {
- uint64_t i_region : 64;
+ uint64_t ii_ilapr_regval;
+ struct {
+ uint64_t i_region:64;
} ii_ilapr_fld_s;
} ii_ilapr_u_t;
-
-
-
/************************************************************************
- * *
+ * *
* Description: A write to this register of the 64-bit value *
* "SGIrules" in ASCII, will cause the bit in the ILAPR register *
* corresponding to the region of the requestor to be set (allow *
@@ -334,59 +326,54 @@ typedef union ii_ilapr_u {
* This register can also be accessed through the IAlias space. *
* However, this access will not change the access permissions in the *
* ILAPR. *
- * *
+ * *
************************************************************************/
typedef union ii_ilapo_u {
- uint64_t ii_ilapo_regval;
- struct {
- uint64_t i_io_ovrride : 64;
+ uint64_t ii_ilapo_regval;
+ struct {
+ uint64_t i_io_ovrride:64;
} ii_ilapo_fld_s;
} ii_ilapo_u_t;
-
-
/************************************************************************
- * *
+ * *
* This register qualifies all the PIO and Graphics writes launched *
* from the SHUB towards a widget. *
- * *
+ * *
************************************************************************/
typedef union ii_iowa_u {
- uint64_t ii_iowa_regval;
- struct {
- uint64_t i_w0_oac : 1;
- uint64_t i_rsvd_1 : 7;
- uint64_t i_wx_oac : 8;
- uint64_t i_rsvd : 48;
+ uint64_t ii_iowa_regval;
+ struct {
+ uint64_t i_w0_oac:1;
+ uint64_t i_rsvd_1:7;
+ uint64_t i_wx_oac:8;
+ uint64_t i_rsvd:48;
} ii_iowa_fld_s;
} ii_iowa_u_t;
-
/************************************************************************
- * *
+ * *
* Description: This register qualifies all the requests launched *
* from a widget towards the Shub. This register is intended to be *
* used by software in case of misbehaving widgets. *
- * *
- * *
+ * *
+ * *
************************************************************************/
typedef union ii_iiwa_u {
- uint64_t ii_iiwa_regval;
- struct {
- uint64_t i_w0_iac : 1;
- uint64_t i_rsvd_1 : 7;
- uint64_t i_wx_iac : 8;
- uint64_t i_rsvd : 48;
+ uint64_t ii_iiwa_regval;
+ struct {
+ uint64_t i_w0_iac:1;
+ uint64_t i_rsvd_1:7;
+ uint64_t i_wx_iac:8;
+ uint64_t i_rsvd:48;
} ii_iiwa_fld_s;
} ii_iiwa_u_t;
-
-
/************************************************************************
- * *
+ * *
* Description: This register qualifies all the operations launched *
* from a widget towards the SHub. It allows individual access *
* control for up to 8 devices per widget. A device refers to *
@@ -401,72 +388,69 @@ typedef union ii_iiwa_u {
* The bits in this field are set by writing a 1 to them. Incoming *
* replies from Crosstalk are not subject to this access control *
* mechanism. *
- * *
+ * *
************************************************************************/
typedef union ii_iidem_u {
- uint64_t ii_iidem_regval;
- struct {
- uint64_t i_w8_dxs : 8;
- uint64_t i_w9_dxs : 8;
- uint64_t i_wa_dxs : 8;
- uint64_t i_wb_dxs : 8;
- uint64_t i_wc_dxs : 8;
- uint64_t i_wd_dxs : 8;
- uint64_t i_we_dxs : 8;
- uint64_t i_wf_dxs : 8;
+ uint64_t ii_iidem_regval;
+ struct {
+ uint64_t i_w8_dxs:8;
+ uint64_t i_w9_dxs:8;
+ uint64_t i_wa_dxs:8;
+ uint64_t i_wb_dxs:8;
+ uint64_t i_wc_dxs:8;
+ uint64_t i_wd_dxs:8;
+ uint64_t i_we_dxs:8;
+ uint64_t i_wf_dxs:8;
} ii_iidem_fld_s;
} ii_iidem_u_t;
-
/************************************************************************
- * *
+ * *
* This register contains the various programmable fields necessary *
* for controlling and observing the LLP signals. *
- * *
+ * *
************************************************************************/
typedef union ii_ilcsr_u {
- uint64_t ii_ilcsr_regval;
- struct {
- uint64_t i_nullto : 6;
- uint64_t i_rsvd_4 : 2;
- uint64_t i_wrmrst : 1;
- uint64_t i_rsvd_3 : 1;
- uint64_t i_llp_en : 1;
- uint64_t i_bm8 : 1;
- uint64_t i_llp_stat : 2;
- uint64_t i_remote_power : 1;
- uint64_t i_rsvd_2 : 1;
- uint64_t i_maxrtry : 10;
- uint64_t i_d_avail_sel : 2;
- uint64_t i_rsvd_1 : 4;
- uint64_t i_maxbrst : 10;
- uint64_t i_rsvd : 22;
+ uint64_t ii_ilcsr_regval;
+ struct {
+ uint64_t i_nullto:6;
+ uint64_t i_rsvd_4:2;
+ uint64_t i_wrmrst:1;
+ uint64_t i_rsvd_3:1;
+ uint64_t i_llp_en:1;
+ uint64_t i_bm8:1;
+ uint64_t i_llp_stat:2;
+ uint64_t i_remote_power:1;
+ uint64_t i_rsvd_2:1;
+ uint64_t i_maxrtry:10;
+ uint64_t i_d_avail_sel:2;
+ uint64_t i_rsvd_1:4;
+ uint64_t i_maxbrst:10;
+ uint64_t i_rsvd:22;
} ii_ilcsr_fld_s;
} ii_ilcsr_u_t;
-
/************************************************************************
- * *
+ * *
* This is simply a status registers that monitors the LLP error *
- * rate. *
- * *
+ * rate. *
+ * *
************************************************************************/
typedef union ii_illr_u {
- uint64_t ii_illr_regval;
- struct {
- uint64_t i_sn_cnt : 16;
- uint64_t i_cb_cnt : 16;
- uint64_t i_rsvd : 32;
+ uint64_t ii_illr_regval;
+ struct {
+ uint64_t i_sn_cnt:16;
+ uint64_t i_cb_cnt:16;
+ uint64_t i_rsvd:32;
} ii_illr_fld_s;
} ii_illr_u_t;
-
/************************************************************************
- * *
+ * *
* Description: All II-detected non-BTE error interrupts are *
* specified via this register. *
* NOTE: The PI interrupt register address is hardcoded in the II. If *
@@ -476,107 +460,100 @@ typedef union ii_illr_u {
* PI_ID==1, then the II sends the interrupt request to address *
* offset 0x01A0_0090 within the local register address space of PI1 *
* on the node specified by the NODE field. *
- * *
+ * *
************************************************************************/
typedef union ii_iidsr_u {
- uint64_t ii_iidsr_regval;
- struct {
- uint64_t i_level : 8;
- uint64_t i_pi_id : 1;
- uint64_t i_node : 11;
- uint64_t i_rsvd_3 : 4;
- uint64_t i_enable : 1;
- uint64_t i_rsvd_2 : 3;
- uint64_t i_int_sent : 2;
- uint64_t i_rsvd_1 : 2;
- uint64_t i_pi0_forward_int : 1;
- uint64_t i_pi1_forward_int : 1;
- uint64_t i_rsvd : 30;
+ uint64_t ii_iidsr_regval;
+ struct {
+ uint64_t i_level:8;
+ uint64_t i_pi_id:1;
+ uint64_t i_node:11;
+ uint64_t i_rsvd_3:4;
+ uint64_t i_enable:1;
+ uint64_t i_rsvd_2:3;
+ uint64_t i_int_sent:2;
+ uint64_t i_rsvd_1:2;
+ uint64_t i_pi0_forward_int:1;
+ uint64_t i_pi1_forward_int:1;
+ uint64_t i_rsvd:30;
} ii_iidsr_fld_s;
} ii_iidsr_u_t;
-
-
/************************************************************************
- * *
+ * *
* There are two instances of this register. This register is used *
* for matching up the incoming responses from the graphics widget to *
* the processor that initiated the graphics operation. The *
* write-responses are converted to graphics credits and returned to *
* the processor so that the processor interface can manage the flow *
* control. *
- * *
+ * *
************************************************************************/
typedef union ii_igfx0_u {
- uint64_t ii_igfx0_regval;
- struct {
- uint64_t i_w_num : 4;
- uint64_t i_pi_id : 1;
- uint64_t i_n_num : 12;
- uint64_t i_p_num : 1;
- uint64_t i_rsvd : 46;
+ uint64_t ii_igfx0_regval;
+ struct {
+ uint64_t i_w_num:4;
+ uint64_t i_pi_id:1;
+ uint64_t i_n_num:12;
+ uint64_t i_p_num:1;
+ uint64_t i_rsvd:46;
} ii_igfx0_fld_s;
} ii_igfx0_u_t;
-
/************************************************************************
- * *
+ * *
* There are two instances of this register. This register is used *
* for matching up the incoming responses from the graphics widget to *
* the processor that initiated the graphics operation. The *
* write-responses are converted to graphics credits and returned to *
* the processor so that the processor interface can manage the flow *
* control. *
- * *
+ * *
************************************************************************/
typedef union ii_igfx1_u {
- uint64_t ii_igfx1_regval;
- struct {
- uint64_t i_w_num : 4;
- uint64_t i_pi_id : 1;
- uint64_t i_n_num : 12;
- uint64_t i_p_num : 1;
- uint64_t i_rsvd : 46;
+ uint64_t ii_igfx1_regval;
+ struct {
+ uint64_t i_w_num:4;
+ uint64_t i_pi_id:1;
+ uint64_t i_n_num:12;
+ uint64_t i_p_num:1;
+ uint64_t i_rsvd:46;
} ii_igfx1_fld_s;
} ii_igfx1_u_t;
-
/************************************************************************
- * *
+ * *
* There are two instances of this registers. These registers are *
* used as scratch registers for software use. *
- * *
+ * *
************************************************************************/
typedef union ii_iscr0_u {
- uint64_t ii_iscr0_regval;
- struct {
- uint64_t i_scratch : 64;
+ uint64_t ii_iscr0_regval;
+ struct {
+ uint64_t i_scratch:64;
} ii_iscr0_fld_s;
} ii_iscr0_u_t;
-
-
/************************************************************************
- * *
+ * *
* There are two instances of this registers. These registers are *
* used as scratch registers for software use. *
- * *
+ * *
************************************************************************/
typedef union ii_iscr1_u {
- uint64_t ii_iscr1_regval;
- struct {
- uint64_t i_scratch : 64;
+ uint64_t ii_iscr1_regval;
+ struct {
+ uint64_t i_scratch:64;
} ii_iscr1_fld_s;
} ii_iscr1_u_t;
-
/************************************************************************
- * *
+ * *
* Description: There are seven instances of translation table entry *
* registers. Each register maps a Shub Big Window to a 48-bit *
* address on Crosstalk. *
@@ -599,23 +576,22 @@ typedef union ii_iscr1_u {
* Crosstalk space addressable by the Shub is thus the lower *
* 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
* of this space can be accessed. *
- * *
+ * *
************************************************************************/
typedef union ii_itte1_u {
- uint64_t ii_itte1_regval;
- struct {
- uint64_t i_offset : 5;
- uint64_t i_rsvd_1 : 3;
- uint64_t i_w_num : 4;
- uint64_t i_iosp : 1;
- uint64_t i_rsvd : 51;
+ uint64_t ii_itte1_regval;
+ struct {
+ uint64_t i_offset:5;
+ uint64_t i_rsvd_1:3;
+ uint64_t i_w_num:4;
+ uint64_t i_iosp:1;
+ uint64_t i_rsvd:51;
} ii_itte1_fld_s;
} ii_itte1_u_t;
-
/************************************************************************
- * *
+ * *
* Description: There are seven instances of translation table entry *
* registers. Each register maps a Shub Big Window to a 48-bit *
* address on Crosstalk. *
@@ -638,23 +614,22 @@ typedef union ii_itte1_u {
* Crosstalk space addressable by the Shub is thus the lower *
* 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
* of this space can be accessed. *
- * *
+ * *
************************************************************************/
typedef union ii_itte2_u {
- uint64_t ii_itte2_regval;
- struct {
- uint64_t i_offset : 5;
- uint64_t i_rsvd_1 : 3;
- uint64_t i_w_num : 4;
- uint64_t i_iosp : 1;
- uint64_t i_rsvd : 51;
+ uint64_t ii_itte2_regval;
+ struct {
+ uint64_t i_offset:5;
+ uint64_t i_rsvd_1:3;
+ uint64_t i_w_num:4;
+ uint64_t i_iosp:1;
+ uint64_t i_rsvd:51;
} ii_itte2_fld_s;
} ii_itte2_u_t;
-
/************************************************************************
- * *
+ * *
* Description: There are seven instances of translation table entry *
* registers. Each register maps a Shub Big Window to a 48-bit *
* address on Crosstalk. *
@@ -677,23 +652,22 @@ typedef union ii_itte2_u {
* Crosstalk space addressable by the SHub is thus the lower *
* 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
* of this space can be accessed. *
- * *
+ * *
************************************************************************/
typedef union ii_itte3_u {
- uint64_t ii_itte3_regval;
- struct {
- uint64_t i_offset : 5;
- uint64_t i_rsvd_1 : 3;
- uint64_t i_w_num : 4;
- uint64_t i_iosp : 1;
- uint64_t i_rsvd : 51;
+ uint64_t ii_itte3_regval;
+ struct {
+ uint64_t i_offset:5;
+ uint64_t i_rsvd_1:3;
+ uint64_t i_w_num:4;
+ uint64_t i_iosp:1;
+ uint64_t i_rsvd:51;
} ii_itte3_fld_s;
} ii_itte3_u_t;
-
/************************************************************************
- * *
+ * *
* Description: There are seven instances of translation table entry *
* registers. Each register maps a SHub Big Window to a 48-bit *
* address on Crosstalk. *
@@ -716,23 +690,22 @@ typedef union ii_itte3_u {
* Crosstalk space addressable by the SHub is thus the lower *
* 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
* of this space can be accessed. *
- * *
+ * *
************************************************************************/
typedef union ii_itte4_u {
- uint64_t ii_itte4_regval;
- struct {
- uint64_t i_offset : 5;
- uint64_t i_rsvd_1 : 3;
- uint64_t i_w_num : 4;
- uint64_t i_iosp : 1;
- uint64_t i_rsvd : 51;
+ uint64_t ii_itte4_regval;
+ struct {
+ uint64_t i_offset:5;
+ uint64_t i_rsvd_1:3;
+ uint64_t i_w_num:4;
+ uint64_t i_iosp:1;
+ uint64_t i_rsvd:51;
} ii_itte4_fld_s;
} ii_itte4_u_t;
-
/************************************************************************
- * *
+ * *
* Description: There are seven instances of translation table entry *
* registers. Each register maps a SHub Big Window to a 48-bit *
* address on Crosstalk. *
@@ -755,23 +728,22 @@ typedef union ii_itte4_u {
* Crosstalk space addressable by the Shub is thus the lower *
* 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
* of this space can be accessed. *
- * *
+ * *
************************************************************************/
typedef union ii_itte5_u {
- uint64_t ii_itte5_regval;
- struct {
- uint64_t i_offset : 5;
- uint64_t i_rsvd_1 : 3;
- uint64_t i_w_num : 4;
- uint64_t i_iosp : 1;
- uint64_t i_rsvd : 51;
+ uint64_t ii_itte5_regval;
+ struct {
+ uint64_t i_offset:5;
+ uint64_t i_rsvd_1:3;
+ uint64_t i_w_num:4;
+ uint64_t i_iosp:1;
+ uint64_t i_rsvd:51;
} ii_itte5_fld_s;
} ii_itte5_u_t;
-
/************************************************************************
- * *
+ * *
* Description: There are seven instances of translation table entry *
* registers. Each register maps a Shub Big Window to a 48-bit *
* address on Crosstalk. *
@@ -794,23 +766,22 @@ typedef union ii_itte5_u {
* Crosstalk space addressable by the Shub is thus the lower *
* 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
* of this space can be accessed. *
- * *
+ * *
************************************************************************/
typedef union ii_itte6_u {
- uint64_t ii_itte6_regval;
- struct {
- uint64_t i_offset : 5;
- uint64_t i_rsvd_1 : 3;
- uint64_t i_w_num : 4;
- uint64_t i_iosp : 1;
- uint64_t i_rsvd : 51;
+ uint64_t ii_itte6_regval;
+ struct {
+ uint64_t i_offset:5;
+ uint64_t i_rsvd_1:3;
+ uint64_t i_w_num:4;
+ uint64_t i_iosp:1;
+ uint64_t i_rsvd:51;
} ii_itte6_fld_s;
} ii_itte6_u_t;
-
/************************************************************************
- * *
+ * *
* Description: There are seven instances of translation table entry *
* registers. Each register maps a Shub Big Window to a 48-bit *
* address on Crosstalk. *
@@ -833,23 +804,22 @@ typedef union ii_itte6_u {
* Crosstalk space addressable by the SHub is thus the lower *
* 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
* of this space can be accessed. *
- * *
+ * *
************************************************************************/
typedef union ii_itte7_u {
- uint64_t ii_itte7_regval;
- struct {
- uint64_t i_offset : 5;
- uint64_t i_rsvd_1 : 3;
- uint64_t i_w_num : 4;
- uint64_t i_iosp : 1;
- uint64_t i_rsvd : 51;
+ uint64_t ii_itte7_regval;
+ struct {
+ uint64_t i_offset:5;
+ uint64_t i_rsvd_1:3;
+ uint64_t i_w_num:4;
+ uint64_t i_iosp:1;
+ uint64_t i_rsvd:51;
} ii_itte7_fld_s;
} ii_itte7_u_t;
-
/************************************************************************
- * *
+ * *
* Description: There are 9 instances of this register, one per *
* actual widget in this implementation of SHub and Crossbow. *
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
@@ -868,33 +838,32 @@ typedef union ii_itte7_u {
* register; the write will correct the C field and capture its new *
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
- * . *
- * *
+ * . *
+ * *
************************************************************************/
typedef union ii_iprb0_u {
- uint64_t ii_iprb0_regval;
- struct {
- uint64_t i_c : 8;
- uint64_t i_na : 14;
- uint64_t i_rsvd_2 : 2;
- uint64_t i_nb : 14;
- uint64_t i_rsvd_1 : 2;
- uint64_t i_m : 2;
- uint64_t i_f : 1;
- uint64_t i_of_cnt : 5;
- uint64_t i_error : 1;
- uint64_t i_rd_to : 1;
- uint64_t i_spur_wr : 1;
- uint64_t i_spur_rd : 1;
- uint64_t i_rsvd : 11;
- uint64_t i_mult_err : 1;
+ uint64_t ii_iprb0_regval;
+ struct {
+ uint64_t i_c:8;
+ uint64_t i_na:14;
+ uint64_t i_rsvd_2:2;
+ uint64_t i_nb:14;
+ uint64_t i_rsvd_1:2;
+ uint64_t i_m:2;
+ uint64_t i_f:1;
+ uint64_t i_of_cnt:5;
+ uint64_t i_error:1;
+ uint64_t i_rd_to:1;
+ uint64_t i_spur_wr:1;
+ uint64_t i_spur_rd:1;
+ uint64_t i_rsvd:11;
+ uint64_t i_mult_err:1;
} ii_iprb0_fld_s;
} ii_iprb0_u_t;
-
/************************************************************************
- * *
+ * *
* Description: There are 9 instances of this register, one per *
* actual widget in this implementation of SHub and Crossbow. *
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
@@ -913,33 +882,32 @@ typedef union ii_iprb0_u {
* register; the write will correct the C field and capture its new *
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
- * . *
- * *
+ * . *
+ * *
************************************************************************/
typedef union ii_iprb8_u {
- uint64_t ii_iprb8_regval;
- struct {
- uint64_t i_c : 8;
- uint64_t i_na : 14;
- uint64_t i_rsvd_2 : 2;
- uint64_t i_nb : 14;
- uint64_t i_rsvd_1 : 2;
- uint64_t i_m : 2;
- uint64_t i_f : 1;
- uint64_t i_of_cnt : 5;
- uint64_t i_error : 1;
- uint64_t i_rd_to : 1;
- uint64_t i_spur_wr : 1;
- uint64_t i_spur_rd : 1;
- uint64_t i_rsvd : 11;
- uint64_t i_mult_err : 1;
+ uint64_t ii_iprb8_regval;
+ struct {
+ uint64_t i_c:8;
+ uint64_t i_na:14;
+ uint64_t i_rsvd_2:2;
+ uint64_t i_nb:14;
+ uint64_t i_rsvd_1:2;
+ uint64_t i_m:2;
+ uint64_t i_f:1;
+ uint64_t i_of_cnt:5;
+ uint64_t i_error:1;
+ uint64_t i_rd_to:1;
+ uint64_t i_spur_wr:1;
+ uint64_t i_spur_rd:1;
+ uint64_t i_rsvd:11;
+ uint64_t i_mult_err:1;
} ii_iprb8_fld_s;
} ii_iprb8_u_t;
-
/************************************************************************
- * *
+ * *
* Description: There are 9 instances of this register, one per *
* actual widget in this implementation of SHub and Crossbow. *
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
@@ -958,33 +926,32 @@ typedef union ii_iprb8_u {
* register; the write will correct the C field and capture its new *
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
- * . *
- * *
+ * . *
+ * *
************************************************************************/
typedef union ii_iprb9_u {
- uint64_t ii_iprb9_regval;
- struct {
- uint64_t i_c : 8;
- uint64_t i_na : 14;
- uint64_t i_rsvd_2 : 2;
- uint64_t i_nb : 14;
- uint64_t i_rsvd_1 : 2;
- uint64_t i_m : 2;
- uint64_t i_f : 1;
- uint64_t i_of_cnt : 5;
- uint64_t i_error : 1;
- uint64_t i_rd_to : 1;
- uint64_t i_spur_wr : 1;
- uint64_t i_spur_rd : 1;
- uint64_t i_rsvd : 11;
- uint64_t i_mult_err : 1;
+ uint64_t ii_iprb9_regval;
+ struct {
+ uint64_t i_c:8;
+ uint64_t i_na:14;
+ uint64_t i_rsvd_2:2;
+ uint64_t i_nb:14;
+ uint64_t i_rsvd_1:2;
+ uint64_t i_m:2;
+ uint64_t i_f:1;
+ uint64_t i_of_cnt:5;
+ uint64_t i_error:1;
+ uint64_t i_rd_to:1;
+ uint64_t i_spur_wr:1;
+ uint64_t i_spur_rd:1;
+ uint64_t i_rsvd:11;
+ uint64_t i_mult_err:1;
} ii_iprb9_fld_s;
} ii_iprb9_u_t;
-
/************************************************************************
- * *
+ * *
* Description: There are 9 instances of this register, one per *
* actual widget in this implementation of SHub and Crossbow. *
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
@@ -1003,33 +970,32 @@ typedef union ii_iprb9_u {
* register; the write will correct the C field and capture its new *
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
- * *
- * *
+ * *
+ * *
************************************************************************/
typedef union ii_iprba_u {
- uint64_t ii_iprba_regval;
- struct {
- uint64_t i_c : 8;
- uint64_t i_na : 14;
- uint64_t i_rsvd_2 : 2;
- uint64_t i_nb : 14;
- uint64_t i_rsvd_1 : 2;
- uint64_t i_m : 2;
- uint64_t i_f : 1;
- uint64_t i_of_cnt : 5;
- uint64_t i_error : 1;
- uint64_t i_rd_to : 1;
- uint64_t i_spur_wr : 1;
- uint64_t i_spur_rd : 1;
- uint64_t i_rsvd : 11;
- uint64_t i_mult_err : 1;
+ uint64_t ii_iprba_regval;
+ struct {
+ uint64_t i_c:8;
+ uint64_t i_na:14;
+ uint64_t i_rsvd_2:2;
+ uint64_t i_nb:14;
+ uint64_t i_rsvd_1:2;
+ uint64_t i_m:2;
+ uint64_t i_f:1;
+ uint64_t i_of_cnt:5;
+ uint64_t i_error:1;
+ uint64_t i_rd_to:1;
+ uint64_t i_spur_wr:1;
+ uint64_t i_spur_rd:1;
+ uint64_t i_rsvd:11;
+ uint64_t i_mult_err:1;
} ii_iprba_fld_s;
} ii_iprba_u_t;
-
/************************************************************************
- * *
+ * *
* Description: There are 9 instances of this register, one per *
* actual widget in this implementation of SHub and Crossbow. *
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
@@ -1048,33 +1014,32 @@ typedef union ii_iprba_u {
* register; the write will correct the C field and capture its new *
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
- * . *
- * *
+ * . *
+ * *
************************************************************************/
typedef union ii_iprbb_u {
- uint64_t ii_iprbb_regval;
- struct {
- uint64_t i_c : 8;
- uint64_t i_na : 14;
- uint64_t i_rsvd_2 : 2;
- uint64_t i_nb : 14;
- uint64_t i_rsvd_1 : 2;
- uint64_t i_m : 2;
- uint64_t i_f : 1;
- uint64_t i_of_cnt : 5;
- uint64_t i_error : 1;
- uint64_t i_rd_to : 1;
- uint64_t i_spur_wr : 1;
- uint64_t i_spur_rd : 1;
- uint64_t i_rsvd : 11;
- uint64_t i_mult_err : 1;
+ uint64_t ii_iprbb_regval;
+ struct {
+ uint64_t i_c:8;
+ uint64_t i_na:14;
+ uint64_t i_rsvd_2:2;
+ uint64_t i_nb:14;
+ uint64_t i_rsvd_1:2;
+ uint64_t i_m:2;
+ uint64_t i_f:1;
+ uint64_t i_of_cnt:5;
+ uint64_t i_error:1;
+ uint64_t i_rd_to:1;
+ uint64_t i_spur_wr:1;
+ uint64_t i_spur_rd:1;
+ uint64_t i_rsvd:11;
+ uint64_t i_mult_err:1;
} ii_iprbb_fld_s;
} ii_iprbb_u_t;
-
/************************************************************************
- * *
+ * *
* Description: There are 9 instances of this register, one per *
* actual widget in this implementation of SHub and Crossbow. *
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
@@ -1093,33 +1058,32 @@ typedef union ii_iprbb_u {
* register; the write will correct the C field and capture its new *
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
- * . *
- * *
+ * . *
+ * *
************************************************************************/
typedef union ii_iprbc_u {
- uint64_t ii_iprbc_regval;
- struct {
- uint64_t i_c : 8;
- uint64_t i_na : 14;
- uint64_t i_rsvd_2 : 2;
- uint64_t i_nb : 14;
- uint64_t i_rsvd_1 : 2;
- uint64_t i_m : 2;
- uint64_t i_f : 1;
- uint64_t i_of_cnt : 5;
- uint64_t i_error : 1;
- uint64_t i_rd_to : 1;
- uint64_t i_spur_wr : 1;
- uint64_t i_spur_rd : 1;
- uint64_t i_rsvd : 11;
- uint64_t i_mult_err : 1;
+ uint64_t ii_iprbc_regval;
+ struct {
+ uint64_t i_c:8;
+ uint64_t i_na:14;
+ uint64_t i_rsvd_2:2;
+ uint64_t i_nb:14;
+ uint64_t i_rsvd_1:2;
+ uint64_t i_m:2;
+ uint64_t i_f:1;
+ uint64_t i_of_cnt:5;
+ uint64_t i_error:1;
+ uint64_t i_rd_to:1;
+ uint64_t i_spur_wr:1;
+ uint64_t i_spur_rd:1;
+ uint64_t i_rsvd:11;
+ uint64_t i_mult_err:1;
} ii_iprbc_fld_s;
} ii_iprbc_u_t;
-
/************************************************************************
- * *
+ * *
* Description: There are 9 instances of this register, one per *
* actual widget in this implementation of SHub and Crossbow. *
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
@@ -1138,33 +1102,32 @@ typedef union ii_iprbc_u {
* register; the write will correct the C field and capture its new *
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
- * . *
- * *
+ * . *
+ * *
************************************************************************/
typedef union ii_iprbd_u {
- uint64_t ii_iprbd_regval;
- struct {
- uint64_t i_c : 8;
- uint64_t i_na : 14;
- uint64_t i_rsvd_2 : 2;
- uint64_t i_nb : 14;
- uint64_t i_rsvd_1 : 2;
- uint64_t i_m : 2;
- uint64_t i_f : 1;
- uint64_t i_of_cnt : 5;
- uint64_t i_error : 1;
- uint64_t i_rd_to : 1;
- uint64_t i_spur_wr : 1;
- uint64_t i_spur_rd : 1;
- uint64_t i_rsvd : 11;
- uint64_t i_mult_err : 1;
+ uint64_t ii_iprbd_regval;
+ struct {
+ uint64_t i_c:8;
+ uint64_t i_na:14;
+ uint64_t i_rsvd_2:2;
+ uint64_t i_nb:14;
+ uint64_t i_rsvd_1:2;
+ uint64_t i_m:2;
+ uint64_t i_f:1;
+ uint64_t i_of_cnt:5;
+ uint64_t i_error:1;
+ uint64_t i_rd_to:1;
+ uint64_t i_spur_wr:1;
+ uint64_t i_spur_rd:1;
+ uint64_t i_rsvd:11;
+ uint64_t i_mult_err:1;
} ii_iprbd_fld_s;
} ii_iprbd_u_t;
-
/************************************************************************
- * *
+ * *
* Description: There are 9 instances of this register, one per *
* actual widget in this implementation of SHub and Crossbow. *
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
@@ -1183,33 +1146,32 @@ typedef union ii_iprbd_u {
* register; the write will correct the C field and capture its new *
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
- * . *
- * *
+ * . *
+ * *
************************************************************************/
typedef union ii_iprbe_u {
- uint64_t ii_iprbe_regval;
- struct {
- uint64_t i_c : 8;
- uint64_t i_na : 14;
- uint64_t i_rsvd_2 : 2;
- uint64_t i_nb : 14;
- uint64_t i_rsvd_1 : 2;
- uint64_t i_m : 2;
- uint64_t i_f : 1;
- uint64_t i_of_cnt : 5;
- uint64_t i_error : 1;
- uint64_t i_rd_to : 1;
- uint64_t i_spur_wr : 1;
- uint64_t i_spur_rd : 1;
- uint64_t i_rsvd : 11;
- uint64_t i_mult_err : 1;
+ uint64_t ii_iprbe_regval;
+ struct {
+ uint64_t i_c:8;
+ uint64_t i_na:14;
+ uint64_t i_rsvd_2:2;
+ uint64_t i_nb:14;
+ uint64_t i_rsvd_1:2;
+ uint64_t i_m:2;
+ uint64_t i_f:1;
+ uint64_t i_of_cnt:5;
+ uint64_t i_error:1;
+ uint64_t i_rd_to:1;
+ uint64_t i_spur_wr:1;
+ uint64_t i_spur_rd:1;
+ uint64_t i_rsvd:11;
+ uint64_t i_mult_err:1;
} ii_iprbe_fld_s;
} ii_iprbe_u_t;
-
/************************************************************************
- * *
+ * *
* Description: There are 9 instances of this register, one per *
* actual widget in this implementation of Shub and Crossbow. *
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
@@ -1228,33 +1190,32 @@ typedef union ii_iprbe_u {
* register; the write will correct the C field and capture its new *
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
- * . *
- * *
+ * . *
+ * *
************************************************************************/
typedef union ii_iprbf_u {
- uint64_t ii_iprbf_regval;
- struct {
- uint64_t i_c : 8;
- uint64_t i_na : 14;
- uint64_t i_rsvd_2 : 2;
- uint64_t i_nb : 14;
- uint64_t i_rsvd_1 : 2;
- uint64_t i_m : 2;
- uint64_t i_f : 1;
- uint64_t i_of_cnt : 5;
- uint64_t i_error : 1;
- uint64_t i_rd_to : 1;
- uint64_t i_spur_wr : 1;
- uint64_t i_spur_rd : 1;
- uint64_t i_rsvd : 11;
- uint64_t i_mult_err : 1;
- } ii_iprbe_fld_s;
+ uint64_t ii_iprbf_regval;
+ struct {
+ uint64_t i_c:8;
+ uint64_t i_na:14;
+ uint64_t i_rsvd_2:2;
+ uint64_t i_nb:14;
+ uint64_t i_rsvd_1:2;
+ uint64_t i_m:2;
+ uint64_t i_f:1;
+ uint64_t i_of_cnt:5;
+ uint64_t i_error:1;
+ uint64_t i_rd_to:1;
+ uint64_t i_spur_wr:1;
+ uint64_t i_spur_rd:1;
+ uint64_t i_rsvd:11;
+ uint64_t i_mult_err:1;
+ } ii_iprbe_fld_s;
} ii_iprbf_u_t;
-
/************************************************************************
- * *
+ * *
* This register specifies the timeout value to use for monitoring *
* Crosstalk credits which are used outbound to Crosstalk. An *
* internal counter called the Crosstalk Credit Timeout Counter *
@@ -1267,20 +1228,19 @@ typedef union ii_iprbf_u {
* Crosstalk Credit Timeout has occurred. The internal counter is not *
* readable from software, and stops counting at its maximum value, *
* so it cannot cause more than one interrupt. *
- * *
+ * *
************************************************************************/
typedef union ii_ixcc_u {
- uint64_t ii_ixcc_regval;
- struct {
- uint64_t i_time_out : 26;
- uint64_t i_rsvd : 38;
+ uint64_t ii_ixcc_regval;
+ struct {
+ uint64_t i_time_out:26;
+ uint64_t i_rsvd:38;
} ii_ixcc_fld_s;
} ii_ixcc_u_t;
-
/************************************************************************
- * *
+ * *
* Description: This register qualifies all the PIO and DMA *
* operations launched from widget 0 towards the SHub. In *
* addition, it also qualifies accesses by the BTE streams. *
@@ -1292,27 +1252,25 @@ typedef union ii_ixcc_u {
* the Wx_IAC field. The bits in this field are set by writing a 1 to *
* them. Incoming replies from Crosstalk are not subject to this *
* access control mechanism. *
- * *
+ * *
************************************************************************/
typedef union ii_imem_u {
- uint64_t ii_imem_regval;
- struct {
- uint64_t i_w0_esd : 1;
- uint64_t i_rsvd_3 : 3;
- uint64_t i_b0_esd : 1;
- uint64_t i_rsvd_2 : 3;
- uint64_t i_b1_esd : 1;
- uint64_t i_rsvd_1 : 3;
- uint64_t i_clr_precise : 1;
- uint64_t i_rsvd : 51;
+ uint64_t ii_imem_regval;
+ struct {
+ uint64_t i_w0_esd:1;
+ uint64_t i_rsvd_3:3;
+ uint64_t i_b0_esd:1;
+ uint64_t i_rsvd_2:3;
+ uint64_t i_b1_esd:1;
+ uint64_t i_rsvd_1:3;
+ uint64_t i_clr_precise:1;
+ uint64_t i_rsvd:51;
} ii_imem_fld_s;
} ii_imem_u_t;
-
-
/************************************************************************
- * *
+ * *
* Description: This register specifies the timeout value to use for *
* monitoring Crosstalk tail flits coming into the Shub in the *
* TAIL_TO field. An internal counter associated with this register *
@@ -1332,90 +1290,87 @@ typedef union ii_imem_u {
* the value in the RRSP_TO field, a Read Response Timeout has *
* occurred, and error handling occurs as described in the Error *
* Handling section of this document. *
- * *
+ * *
************************************************************************/
typedef union ii_ixtt_u {
- uint64_t ii_ixtt_regval;
- struct {
- uint64_t i_tail_to : 26;
- uint64_t i_rsvd_1 : 6;
- uint64_t i_rrsp_ps : 23;
- uint64_t i_rrsp_to : 5;
- uint64_t i_rsvd : 4;
+ uint64_t ii_ixtt_regval;
+ struct {
+ uint64_t i_tail_to:26;
+ uint64_t i_rsvd_1:6;
+ uint64_t i_rrsp_ps:23;
+ uint64_t i_rrsp_to:5;
+ uint64_t i_rsvd:4;
} ii_ixtt_fld_s;
} ii_ixtt_u_t;
-
/************************************************************************
- * *
+ * *
* Writing a 1 to the fields of this register clears the appropriate *
* error bits in other areas of SHub. Note that when the *
* E_PRB_x bits are used to clear error bits in PRB registers, *
* SPUR_RD and SPUR_WR may persist, because they require additional *
* action to clear them. See the IPRBx and IXSS Register *
* specifications. *
- * *
+ * *
************************************************************************/
typedef union ii_ieclr_u {
- uint64_t ii_ieclr_regval;
- struct {
- uint64_t i_e_prb_0 : 1;
- uint64_t i_rsvd : 7;
- uint64_t i_e_prb_8 : 1;
- uint64_t i_e_prb_9 : 1;
- uint64_t i_e_prb_a : 1;
- uint64_t i_e_prb_b : 1;
- uint64_t i_e_prb_c : 1;
- uint64_t i_e_prb_d : 1;
- uint64_t i_e_prb_e : 1;
- uint64_t i_e_prb_f : 1;
- uint64_t i_e_crazy : 1;
- uint64_t i_e_bte_0 : 1;
- uint64_t i_e_bte_1 : 1;
- uint64_t i_reserved_1 : 10;
- uint64_t i_spur_rd_hdr : 1;
- uint64_t i_cam_intr_to : 1;
- uint64_t i_cam_overflow : 1;
- uint64_t i_cam_read_miss : 1;
- uint64_t i_ioq_rep_underflow : 1;
- uint64_t i_ioq_req_underflow : 1;
- uint64_t i_ioq_rep_overflow : 1;
- uint64_t i_ioq_req_overflow : 1;
- uint64_t i_iiq_rep_overflow : 1;
- uint64_t i_iiq_req_overflow : 1;
- uint64_t i_ii_xn_rep_cred_overflow : 1;
- uint64_t i_ii_xn_req_cred_overflow : 1;
- uint64_t i_ii_xn_invalid_cmd : 1;
- uint64_t i_xn_ii_invalid_cmd : 1;
- uint64_t i_reserved_2 : 21;
+ uint64_t ii_ieclr_regval;
+ struct {
+ uint64_t i_e_prb_0:1;
+ uint64_t i_rsvd:7;
+ uint64_t i_e_prb_8:1;
+ uint64_t i_e_prb_9:1;
+ uint64_t i_e_prb_a:1;
+ uint64_t i_e_prb_b:1;
+ uint64_t i_e_prb_c:1;
+ uint64_t i_e_prb_d:1;
+ uint64_t i_e_prb_e:1;
+ uint64_t i_e_prb_f:1;
+ uint64_t i_e_crazy:1;
+ uint64_t i_e_bte_0:1;
+ uint64_t i_e_bte_1:1;
+ uint64_t i_reserved_1:10;
+ uint64_t i_spur_rd_hdr:1;
+ uint64_t i_cam_intr_to:1;
+ uint64_t i_cam_overflow:1;
+ uint64_t i_cam_read_miss:1;
+ uint64_t i_ioq_rep_underflow:1;
+ uint64_t i_ioq_req_underflow:1;
+ uint64_t i_ioq_rep_overflow:1;
+ uint64_t i_ioq_req_overflow:1;
+ uint64_t i_iiq_rep_overflow:1;
+ uint64_t i_iiq_req_overflow:1;
+ uint64_t i_ii_xn_rep_cred_overflow:1;
+ uint64_t i_ii_xn_req_cred_overflow:1;
+ uint64_t i_ii_xn_invalid_cmd:1;
+ uint64_t i_xn_ii_invalid_cmd:1;
+ uint64_t i_reserved_2:21;
} ii_ieclr_fld_s;
} ii_ieclr_u_t;
-
/************************************************************************
- * *
+ * *
* This register controls both BTEs. SOFT_RESET is intended for *
* recovery after an error. COUNT controls the total number of CRBs *
* that both BTEs (combined) can use, which affects total BTE *
* bandwidth. *
- * *
+ * *
************************************************************************/
typedef union ii_ibcr_u {
- uint64_t ii_ibcr_regval;
- struct {
- uint64_t i_count : 4;
- uint64_t i_rsvd_1 : 4;
- uint64_t i_soft_reset : 1;
- uint64_t i_rsvd : 55;
+ uint64_t ii_ibcr_regval;
+ struct {
+ uint64_t i_count:4;
+ uint64_t i_rsvd_1:4;
+ uint64_t i_soft_reset:1;
+ uint64_t i_rsvd:55;
} ii_ibcr_fld_s;
} ii_ibcr_u_t;
-
/************************************************************************
- * *
+ * *
* This register contains the header of a spurious read response *
* received from Crosstalk. A spurious read response is defined as a *
* read response received by II from a widget for which (1) the SIDN *
@@ -1440,49 +1395,47 @@ typedef union ii_ibcr_u {
* will be set. Any SPUR_RD bits in any other PRB registers indicate *
* spurious messages from other widets which were detected after the *
* header was captured.. *
- * *
+ * *
************************************************************************/
typedef union ii_ixsm_u {
- uint64_t ii_ixsm_regval;
- struct {
- uint64_t i_byte_en : 32;
- uint64_t i_reserved : 1;
- uint64_t i_tag : 3;
- uint64_t i_alt_pactyp : 4;
- uint64_t i_bo : 1;
- uint64_t i_error : 1;
- uint64_t i_vbpm : 1;
- uint64_t i_gbr : 1;
- uint64_t i_ds : 2;
- uint64_t i_ct : 1;
- uint64_t i_tnum : 5;
- uint64_t i_pactyp : 4;
- uint64_t i_sidn : 4;
- uint64_t i_didn : 4;
+ uint64_t ii_ixsm_regval;
+ struct {
+ uint64_t i_byte_en:32;
+ uint64_t i_reserved:1;
+ uint64_t i_tag:3;
+ uint64_t i_alt_pactyp:4;
+ uint64_t i_bo:1;
+ uint64_t i_error:1;
+ uint64_t i_vbpm:1;
+ uint64_t i_gbr:1;
+ uint64_t i_ds:2;
+ uint64_t i_ct:1;
+ uint64_t i_tnum:5;
+ uint64_t i_pactyp:4;
+ uint64_t i_sidn:4;
+ uint64_t i_didn:4;
} ii_ixsm_fld_s;
} ii_ixsm_u_t;
-
/************************************************************************
- * *
+ * *
* This register contains the sideband bits of a spurious read *
* response received from Crosstalk. *
- * *
+ * *
************************************************************************/
typedef union ii_ixss_u {
- uint64_t ii_ixss_regval;
- struct {
- uint64_t i_sideband : 8;
- uint64_t i_rsvd : 55;
- uint64_t i_valid : 1;
+ uint64_t ii_ixss_regval;
+ struct {
+ uint64_t i_sideband:8;
+ uint64_t i_rsvd:55;
+ uint64_t i_valid:1;
} ii_ixss_fld_s;
} ii_ixss_u_t;
-
/************************************************************************
- * *
+ * *
* This register enables software to access the II LLP's test port. *
* Refer to the LLP 2.5 documentation for an explanation of the test *
* port. Software can write to this register to program the values *
@@ -1490,27 +1443,26 @@ typedef union ii_ixss_u {
* TestMask and TestSeed). Similarly, software can read from this *
* register to obtain the values of the test port's status outputs *
* (TestCBerr, TestValid and TestData). *
- * *
+ * *
************************************************************************/
typedef union ii_ilct_u {
- uint64_t ii_ilct_regval;
- struct {
- uint64_t i_test_seed : 20;
- uint64_t i_test_mask : 8;
- uint64_t i_test_data : 20;
- uint64_t i_test_valid : 1;
- uint64_t i_test_cberr : 1;
- uint64_t i_test_flit : 3;
- uint64_t i_test_clear : 1;
- uint64_t i_test_err_capture : 1;
- uint64_t i_rsvd : 9;
+ uint64_t ii_ilct_regval;
+ struct {
+ uint64_t i_test_seed:20;
+ uint64_t i_test_mask:8;
+ uint64_t i_test_data:20;
+ uint64_t i_test_valid:1;
+ uint64_t i_test_cberr:1;
+ uint64_t i_test_flit:3;
+ uint64_t i_test_clear:1;
+ uint64_t i_test_err_capture:1;
+ uint64_t i_rsvd:9;
} ii_ilct_fld_s;
} ii_ilct_u_t;
-
/************************************************************************
- * *
+ * *
* If the II detects an illegal incoming Duplonet packet (request or *
* reply) when VALID==0 in the IIEPH1 register, then it saves the *
* contents of the packet's header flit in the IIEPH1 and IIEPH2 *
@@ -1526,575 +1478,549 @@ typedef union ii_ilct_u {
* packet when VALID==1 in the IIEPH1 register, then it merely sets *
* the OVERRUN bit to indicate that a subsequent error has happened, *
* and does nothing further. *
- * *
+ * *
************************************************************************/
typedef union ii_iieph1_u {
- uint64_t ii_iieph1_regval;
- struct {
- uint64_t i_command : 7;
- uint64_t i_rsvd_5 : 1;
- uint64_t i_suppl : 14;
- uint64_t i_rsvd_4 : 1;
- uint64_t i_source : 14;
- uint64_t i_rsvd_3 : 1;
- uint64_t i_err_type : 4;
- uint64_t i_rsvd_2 : 4;
- uint64_t i_overrun : 1;
- uint64_t i_rsvd_1 : 3;
- uint64_t i_valid : 1;
- uint64_t i_rsvd : 13;
+ uint64_t ii_iieph1_regval;
+ struct {
+ uint64_t i_command:7;
+ uint64_t i_rsvd_5:1;
+ uint64_t i_suppl:14;
+ uint64_t i_rsvd_4:1;
+ uint64_t i_source:14;
+ uint64_t i_rsvd_3:1;
+ uint64_t i_err_type:4;
+ uint64_t i_rsvd_2:4;
+ uint64_t i_overrun:1;
+ uint64_t i_rsvd_1:3;
+ uint64_t i_valid:1;
+ uint64_t i_rsvd:13;
} ii_iieph1_fld_s;
} ii_iieph1_u_t;
-
/************************************************************************
- * *
+ * *
* This register holds the Address field from the header flit of an *
* incoming erroneous Duplonet packet, along with the tail bit which *
* accompanied this header flit. This register is essentially an *
* extension of IIEPH1. Two registers were necessary because the 64 *
* bits available in only a single register were insufficient to *
* capture the entire header flit of an erroneous packet. *
- * *
+ * *
************************************************************************/
typedef union ii_iieph2_u {
- uint64_t ii_iieph2_regval;
- struct {
- uint64_t i_rsvd_0 : 3;
- uint64_t i_address : 47;
- uint64_t i_rsvd_1 : 10;
- uint64_t i_tail : 1;
- uint64_t i_rsvd : 3;
+ uint64_t ii_iieph2_regval;
+ struct {
+ uint64_t i_rsvd_0:3;
+ uint64_t i_address:47;
+ uint64_t i_rsvd_1:10;
+ uint64_t i_tail:1;
+ uint64_t i_rsvd:3;
} ii_iieph2_fld_s;
} ii_iieph2_u_t;
-
/******************************/
-
-
/************************************************************************
- * *
+ * *
* This register's value is a bit vector that guards access from SXBs *
* to local registers within the II as well as to external Crosstalk *
* widgets *
- * *
+ * *
************************************************************************/
typedef union ii_islapr_u {
- uint64_t ii_islapr_regval;
- struct {
- uint64_t i_region : 64;
+ uint64_t ii_islapr_regval;
+ struct {
+ uint64_t i_region:64;
} ii_islapr_fld_s;
} ii_islapr_u_t;
-
/************************************************************************
- * *
+ * *
* A write to this register of the 56-bit value "Pup+Bun" will cause *
* the bit in the ISLAPR register corresponding to the region of the *
* requestor to be set (access allowed). (
- * *
+ * *
************************************************************************/
typedef union ii_islapo_u {
- uint64_t ii_islapo_regval;
- struct {
- uint64_t i_io_sbx_ovrride : 56;
- uint64_t i_rsvd : 8;
+ uint64_t ii_islapo_regval;
+ struct {
+ uint64_t i_io_sbx_ovrride:56;
+ uint64_t i_rsvd:8;
} ii_islapo_fld_s;
} ii_islapo_u_t;
/************************************************************************
- * *
+ * *
* Determines how long the wrapper will wait aftr an interrupt is *
* initially issued from the II before it times out the outstanding *
* interrupt and drops it from the interrupt queue. *
- * *
+ * *
************************************************************************/
typedef union ii_iwi_u {
- uint64_t ii_iwi_regval;
- struct {
- uint64_t i_prescale : 24;
- uint64_t i_rsvd : 8;
- uint64_t i_timeout : 8;
- uint64_t i_rsvd1 : 8;
- uint64_t i_intrpt_retry_period : 8;
- uint64_t i_rsvd2 : 8;
+ uint64_t ii_iwi_regval;
+ struct {
+ uint64_t i_prescale:24;
+ uint64_t i_rsvd:8;
+ uint64_t i_timeout:8;
+ uint64_t i_rsvd1:8;
+ uint64_t i_intrpt_retry_period:8;
+ uint64_t i_rsvd2:8;
} ii_iwi_fld_s;
} ii_iwi_u_t;
/************************************************************************
- * *
+ * *
* Log errors which have occurred in the II wrapper. The errors are *
* cleared by writing to the IECLR register. *
- * *
+ * *
************************************************************************/
typedef union ii_iwel_u {
- uint64_t ii_iwel_regval;
- struct {
- uint64_t i_intr_timed_out : 1;
- uint64_t i_rsvd : 7;
- uint64_t i_cam_overflow : 1;
- uint64_t i_cam_read_miss : 1;
- uint64_t i_rsvd1 : 2;
- uint64_t i_ioq_rep_underflow : 1;
- uint64_t i_ioq_req_underflow : 1;
- uint64_t i_ioq_rep_overflow : 1;
- uint64_t i_ioq_req_overflow : 1;
- uint64_t i_iiq_rep_overflow : 1;
- uint64_t i_iiq_req_overflow : 1;
- uint64_t i_rsvd2 : 6;
- uint64_t i_ii_xn_rep_cred_over_under: 1;
- uint64_t i_ii_xn_req_cred_over_under: 1;
- uint64_t i_rsvd3 : 6;
- uint64_t i_ii_xn_invalid_cmd : 1;
- uint64_t i_xn_ii_invalid_cmd : 1;
- uint64_t i_rsvd4 : 30;
+ uint64_t ii_iwel_regval;
+ struct {
+ uint64_t i_intr_timed_out:1;
+ uint64_t i_rsvd:7;
+ uint64_t i_cam_overflow:1;
+ uint64_t i_cam_read_miss:1;
+ uint64_t i_rsvd1:2;
+ uint64_t i_ioq_rep_underflow:1;
+ uint64_t i_ioq_req_underflow:1;
+ uint64_t i_ioq_rep_overflow:1;
+ uint64_t i_ioq_req_overflow:1;
+ uint64_t i_iiq_rep_overflow:1;
+ uint64_t i_iiq_req_overflow:1;
+ uint64_t i_rsvd2:6;
+ uint64_t i_ii_xn_rep_cred_over_under:1;
+ uint64_t i_ii_xn_req_cred_over_under:1;
+ uint64_t i_rsvd3:6;
+ uint64_t i_ii_xn_invalid_cmd:1;
+ uint64_t i_xn_ii_invalid_cmd:1;
+ uint64_t i_rsvd4:30;
} ii_iwel_fld_s;
} ii_iwel_u_t;
/************************************************************************
- * *
+ * *
* Controls the II wrapper. *
- * *
+ * *
************************************************************************/
typedef union ii_iwc_u {
- uint64_t ii_iwc_regval;
- struct {
- uint64_t i_dma_byte_swap : 1;
- uint64_t i_rsvd : 3;
- uint64_t i_cam_read_lines_reset : 1;
- uint64_t i_rsvd1 : 3;
- uint64_t i_ii_xn_cred_over_under_log: 1;
- uint64_t i_rsvd2 : 19;
- uint64_t i_xn_rep_iq_depth : 5;
- uint64_t i_rsvd3 : 3;
- uint64_t i_xn_req_iq_depth : 5;
- uint64_t i_rsvd4 : 3;
- uint64_t i_iiq_depth : 6;
- uint64_t i_rsvd5 : 12;
- uint64_t i_force_rep_cred : 1;
- uint64_t i_force_req_cred : 1;
+ uint64_t ii_iwc_regval;
+ struct {
+ uint64_t i_dma_byte_swap:1;
+ uint64_t i_rsvd:3;
+ uint64_t i_cam_read_lines_reset:1;
+ uint64_t i_rsvd1:3;
+ uint64_t i_ii_xn_cred_over_under_log:1;
+ uint64_t i_rsvd2:19;
+ uint64_t i_xn_rep_iq_depth:5;
+ uint64_t i_rsvd3:3;
+ uint64_t i_xn_req_iq_depth:5;
+ uint64_t i_rsvd4:3;
+ uint64_t i_iiq_depth:6;
+ uint64_t i_rsvd5:12;
+ uint64_t i_force_rep_cred:1;
+ uint64_t i_force_req_cred:1;
} ii_iwc_fld_s;
} ii_iwc_u_t;
/************************************************************************
- * *
+ * *
* Status in the II wrapper. *
- * *
+ * *
************************************************************************/
typedef union ii_iws_u {
- uint64_t ii_iws_regval;
- struct {
- uint64_t i_xn_rep_iq_credits : 5;
- uint64_t i_rsvd : 3;
- uint64_t i_xn_req_iq_credits : 5;
- uint64_t i_rsvd1 : 51;
+ uint64_t ii_iws_regval;
+ struct {
+ uint64_t i_xn_rep_iq_credits:5;
+ uint64_t i_rsvd:3;
+ uint64_t i_xn_req_iq_credits:5;
+ uint64_t i_rsvd1:51;
} ii_iws_fld_s;
} ii_iws_u_t;
/************************************************************************
- * *
+ * *
* Masks errors in the IWEL register. *
- * *
+ * *
************************************************************************/
typedef union ii_iweim_u {
- uint64_t ii_iweim_regval;
- struct {
- uint64_t i_intr_timed_out : 1;
- uint64_t i_rsvd : 7;
- uint64_t i_cam_overflow : 1;
- uint64_t i_cam_read_miss : 1;
- uint64_t i_rsvd1 : 2;
- uint64_t i_ioq_rep_underflow : 1;
- uint64_t i_ioq_req_underflow : 1;
- uint64_t i_ioq_rep_overflow : 1;
- uint64_t i_ioq_req_overflow : 1;
- uint64_t i_iiq_rep_overflow : 1;
- uint64_t i_iiq_req_overflow : 1;
- uint64_t i_rsvd2 : 6;
- uint64_t i_ii_xn_rep_cred_overflow : 1;
- uint64_t i_ii_xn_req_cred_overflow : 1;
- uint64_t i_rsvd3 : 6;
- uint64_t i_ii_xn_invalid_cmd : 1;
- uint64_t i_xn_ii_invalid_cmd : 1;
- uint64_t i_rsvd4 : 30;
+ uint64_t ii_iweim_regval;
+ struct {
+ uint64_t i_intr_timed_out:1;
+ uint64_t i_rsvd:7;
+ uint64_t i_cam_overflow:1;
+ uint64_t i_cam_read_miss:1;
+ uint64_t i_rsvd1:2;
+ uint64_t i_ioq_rep_underflow:1;
+ uint64_t i_ioq_req_underflow:1;
+ uint64_t i_ioq_rep_overflow:1;
+ uint64_t i_ioq_req_overflow:1;
+ uint64_t i_iiq_rep_overflow:1;
+ uint64_t i_iiq_req_overflow:1;
+ uint64_t i_rsvd2:6;
+ uint64_t i_ii_xn_rep_cred_overflow:1;
+ uint64_t i_ii_xn_req_cred_overflow:1;
+ uint64_t i_rsvd3:6;
+ uint64_t i_ii_xn_invalid_cmd:1;
+ uint64_t i_xn_ii_invalid_cmd:1;
+ uint64_t i_rsvd4:30;
} ii_iweim_fld_s;
} ii_iweim_u_t;
-
/************************************************************************
- * *
+ * *
* A write to this register causes a particular field in the *
* corresponding widget's PRB entry to be adjusted up or down by 1. *
* This counter should be used when recovering from error and reset *
* conditions. Note that software would be capable of causing *
* inadvertent overflow or underflow of these counters. *
- * *
+ * *
************************************************************************/
typedef union ii_ipca_u {
- uint64_t ii_ipca_regval;
- struct {
- uint64_t i_wid : 4;
- uint64_t i_adjust : 1;
- uint64_t i_rsvd_1 : 3;
- uint64_t i_field : 2;
- uint64_t i_rsvd : 54;
+ uint64_t ii_ipca_regval;
+ struct {
+ uint64_t i_wid:4;
+ uint64_t i_adjust:1;
+ uint64_t i_rsvd_1:3;
+ uint64_t i_field:2;
+ uint64_t i_rsvd:54;
} ii_ipca_fld_s;
} ii_ipca_u_t;
-
/************************************************************************
- * *
+ * *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
- * *
+ * *
************************************************************************/
-
typedef union ii_iprte0a_u {
- uint64_t ii_iprte0a_regval;
- struct {
- uint64_t i_rsvd_1 : 54;
- uint64_t i_widget : 4;
- uint64_t i_to_cnt : 5;
- uint64_t i_vld : 1;
+ uint64_t ii_iprte0a_regval;
+ struct {
+ uint64_t i_rsvd_1:54;
+ uint64_t i_widget:4;
+ uint64_t i_to_cnt:5;
+ uint64_t i_vld:1;
} ii_iprte0a_fld_s;
} ii_iprte0a_u_t;
-
/************************************************************************
- * *
+ * *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
- * *
+ * *
************************************************************************/
typedef union ii_iprte1a_u {
- uint64_t ii_iprte1a_regval;
- struct {
- uint64_t i_rsvd_1 : 54;
- uint64_t i_widget : 4;
- uint64_t i_to_cnt : 5;
- uint64_t i_vld : 1;
+ uint64_t ii_iprte1a_regval;
+ struct {
+ uint64_t i_rsvd_1:54;
+ uint64_t i_widget:4;
+ uint64_t i_to_cnt:5;
+ uint64_t i_vld:1;
} ii_iprte1a_fld_s;
} ii_iprte1a_u_t;
-
/************************************************************************
- * *
+ * *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
- * *
+ * *
************************************************************************/
typedef union ii_iprte2a_u {
- uint64_t ii_iprte2a_regval;
- struct {
- uint64_t i_rsvd_1 : 54;
- uint64_t i_widget : 4;
- uint64_t i_to_cnt : 5;
- uint64_t i_vld : 1;
+ uint64_t ii_iprte2a_regval;
+ struct {
+ uint64_t i_rsvd_1:54;
+ uint64_t i_widget:4;
+ uint64_t i_to_cnt:5;
+ uint64_t i_vld:1;
} ii_iprte2a_fld_s;
} ii_iprte2a_u_t;
-
/************************************************************************
- * *
+ * *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
- * *
+ * *
************************************************************************/
typedef union ii_iprte3a_u {
- uint64_t ii_iprte3a_regval;
- struct {
- uint64_t i_rsvd_1 : 54;
- uint64_t i_widget : 4;
- uint64_t i_to_cnt : 5;
- uint64_t i_vld : 1;
+ uint64_t ii_iprte3a_regval;
+ struct {
+ uint64_t i_rsvd_1:54;
+ uint64_t i_widget:4;
+ uint64_t i_to_cnt:5;
+ uint64_t i_vld:1;
} ii_iprte3a_fld_s;
} ii_iprte3a_u_t;
-
/************************************************************************
- * *
+ * *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
- * *
+ * *
************************************************************************/
typedef union ii_iprte4a_u {
- uint64_t ii_iprte4a_regval;
- struct {
- uint64_t i_rsvd_1 : 54;
- uint64_t i_widget : 4;
- uint64_t i_to_cnt : 5;
- uint64_t i_vld : 1;
+ uint64_t ii_iprte4a_regval;
+ struct {
+ uint64_t i_rsvd_1:54;
+ uint64_t i_widget:4;
+ uint64_t i_to_cnt:5;
+ uint64_t i_vld:1;
} ii_iprte4a_fld_s;
} ii_iprte4a_u_t;
-
/************************************************************************
- * *
+ * *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
- * *
+ * *
************************************************************************/
typedef union ii_iprte5a_u {
- uint64_t ii_iprte5a_regval;
- struct {
- uint64_t i_rsvd_1 : 54;
- uint64_t i_widget : 4;
- uint64_t i_to_cnt : 5;
- uint64_t i_vld : 1;
+ uint64_t ii_iprte5a_regval;
+ struct {
+ uint64_t i_rsvd_1:54;
+ uint64_t i_widget:4;
+ uint64_t i_to_cnt:5;
+ uint64_t i_vld:1;
} ii_iprte5a_fld_s;
} ii_iprte5a_u_t;
-
/************************************************************************
- * *
+ * *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
- * *
+ * *
************************************************************************/
typedef union ii_iprte6a_u {
- uint64_t ii_iprte6a_regval;
- struct {
- uint64_t i_rsvd_1 : 54;
- uint64_t i_widget : 4;
- uint64_t i_to_cnt : 5;
- uint64_t i_vld : 1;
+ uint64_t ii_iprte6a_regval;
+ struct {
+ uint64_t i_rsvd_1:54;
+ uint64_t i_widget:4;
+ uint64_t i_to_cnt:5;
+ uint64_t i_vld:1;
} ii_iprte6a_fld_s;
} ii_iprte6a_u_t;
-
/************************************************************************
- * *
+ * *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
- * *
+ * *
************************************************************************/
typedef union ii_iprte7a_u {
- uint64_t ii_iprte7a_regval;
- struct {
- uint64_t i_rsvd_1 : 54;
- uint64_t i_widget : 4;
- uint64_t i_to_cnt : 5;
- uint64_t i_vld : 1;
- } ii_iprtea7_fld_s;
+ uint64_t ii_iprte7a_regval;
+ struct {
+ uint64_t i_rsvd_1:54;
+ uint64_t i_widget:4;
+ uint64_t i_to_cnt:5;
+ uint64_t i_vld:1;
+ } ii_iprtea7_fld_s;
} ii_iprte7a_u_t;
-
-
/************************************************************************
- * *
+ * *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
- * *
+ * *
************************************************************************/
-
typedef union ii_iprte0b_u {
- uint64_t ii_iprte0b_regval;
- struct {
- uint64_t i_rsvd_1 : 3;
- uint64_t i_address : 47;
- uint64_t i_init : 3;
- uint64_t i_source : 11;
+ uint64_t ii_iprte0b_regval;
+ struct {
+ uint64_t i_rsvd_1:3;
+ uint64_t i_address:47;
+ uint64_t i_init:3;
+ uint64_t i_source:11;
} ii_iprte0b_fld_s;
} ii_iprte0b_u_t;
-
/************************************************************************
- * *
+ * *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
- * *
+ * *
************************************************************************/
typedef union ii_iprte1b_u {
- uint64_t ii_iprte1b_regval;
- struct {
- uint64_t i_rsvd_1 : 3;
- uint64_t i_address : 47;
- uint64_t i_init : 3;
- uint64_t i_source : 11;
+ uint64_t ii_iprte1b_regval;
+ struct {
+ uint64_t i_rsvd_1:3;
+ uint64_t i_address:47;
+ uint64_t i_init:3;
+ uint64_t i_source:11;
} ii_iprte1b_fld_s;
} ii_iprte1b_u_t;
-
/************************************************************************
- * *
+ * *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
- * *
+ * *
************************************************************************/
typedef union ii_iprte2b_u {
- uint64_t ii_iprte2b_regval;
- struct {
- uint64_t i_rsvd_1 : 3;
- uint64_t i_address : 47;
- uint64_t i_init : 3;
- uint64_t i_source : 11;
+ uint64_t ii_iprte2b_regval;
+ struct {
+ uint64_t i_rsvd_1:3;
+ uint64_t i_address:47;
+ uint64_t i_init:3;
+ uint64_t i_source:11;
} ii_iprte2b_fld_s;
} ii_iprte2b_u_t;
-
/************************************************************************
- * *
+ * *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
- * *
+ * *
************************************************************************/
typedef union ii_iprte3b_u {
- uint64_t ii_iprte3b_regval;
- struct {
- uint64_t i_rsvd_1 : 3;
- uint64_t i_address : 47;
- uint64_t i_init : 3;
- uint64_t i_source : 11;
+ uint64_t ii_iprte3b_regval;
+ struct {
+ uint64_t i_rsvd_1:3;
+ uint64_t i_address:47;
+ uint64_t i_init:3;
+ uint64_t i_source:11;
} ii_iprte3b_fld_s;
} ii_iprte3b_u_t;
-
/************************************************************************
- * *
+ * *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
- * *
+ * *
************************************************************************/
typedef union ii_iprte4b_u {
- uint64_t ii_iprte4b_regval;
- struct {
- uint64_t i_rsvd_1 : 3;
- uint64_t i_address : 47;
- uint64_t i_init : 3;
- uint64_t i_source : 11;
+ uint64_t ii_iprte4b_regval;
+ struct {
+ uint64_t i_rsvd_1:3;
+ uint64_t i_address:47;
+ uint64_t i_init:3;
+ uint64_t i_source:11;
} ii_iprte4b_fld_s;
} ii_iprte4b_u_t;
-
/************************************************************************
- * *
+ * *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
- * *
+ * *
************************************************************************/
typedef union ii_iprte5b_u {
- uint64_t ii_iprte5b_regval;
- struct {
- uint64_t i_rsvd_1 : 3;
- uint64_t i_address : 47;
- uint64_t i_init : 3;
- uint64_t i_source : 11;
+ uint64_t ii_iprte5b_regval;
+ struct {
+ uint64_t i_rsvd_1:3;
+ uint64_t i_address:47;
+ uint64_t i_init:3;
+ uint64_t i_source:11;
} ii_iprte5b_fld_s;
} ii_iprte5b_u_t;
-
/************************************************************************
- * *
+ * *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
- * *
+ * *
************************************************************************/
typedef union ii_iprte6b_u {
- uint64_t ii_iprte6b_regval;
- struct {
- uint64_t i_rsvd_1 : 3;
- uint64_t i_address : 47;
- uint64_t i_init : 3;
- uint64_t i_source : 11;
+ uint64_t ii_iprte6b_regval;
+ struct {
+ uint64_t i_rsvd_1:3;
+ uint64_t i_address:47;
+ uint64_t i_init:3;
+ uint64_t i_source:11;
} ii_iprte6b_fld_s;
} ii_iprte6b_u_t;
-
/************************************************************************
- * *
+ * *
* There are 8 instances of this register. This register contains *
* the information that the II has to remember once it has launched a *
* PIO Read operation. The contents are used to form the correct *
* Router Network packet and direct the Crosstalk reply to the *
* appropriate processor. *
- * *
+ * *
************************************************************************/
typedef union ii_iprte7b_u {
- uint64_t ii_iprte7b_regval;
- struct {
- uint64_t i_rsvd_1 : 3;
- uint64_t i_address : 47;
- uint64_t i_init : 3;
- uint64_t i_source : 11;
- } ii_iprte7b_fld_s;
+ uint64_t ii_iprte7b_regval;
+ struct {
+ uint64_t i_rsvd_1:3;
+ uint64_t i_address:47;
+ uint64_t i_init:3;
+ uint64_t i_source:11;
+ } ii_iprte7b_fld_s;
} ii_iprte7b_u_t;
-
/************************************************************************
- * *
+ * *
* Description: SHub II contains a feature which did not exist in *
* the Hub which automatically cleans up after a Read Response *
* timeout, including deallocation of the IPRTE and recovery of IBuf *
@@ -2108,23 +2034,22 @@ typedef union ii_iprte7b_u {
* Note that this register does not affect the contents of the IPRTE *
* registers. The Valid bits in those registers have to be *
* specifically turned off by software. *
- * *
+ * *
************************************************************************/
typedef union ii_ipdr_u {
- uint64_t ii_ipdr_regval;
- struct {
- uint64_t i_te : 3;
- uint64_t i_rsvd_1 : 1;
- uint64_t i_pnd : 1;
- uint64_t i_init_rpcnt : 1;
- uint64_t i_rsvd : 58;
+ uint64_t ii_ipdr_regval;
+ struct {
+ uint64_t i_te:3;
+ uint64_t i_rsvd_1:1;
+ uint64_t i_pnd:1;
+ uint64_t i_init_rpcnt:1;
+ uint64_t i_rsvd:58;
} ii_ipdr_fld_s;
} ii_ipdr_u_t;
-
/************************************************************************
- * *
+ * *
* A write to this register causes a CRB entry to be returned to the *
* queue of free CRBs. The entry should have previously been cleared *
* (mark bit) via backdoor access to the pertinent CRB entry. This *
@@ -2137,21 +2062,20 @@ typedef union ii_ipdr_u {
* software clears the mark bit, and finally 4) software writes to *
* the ICDR register to return the CRB entry to the list of free CRB *
* entries. *
- * *
+ * *
************************************************************************/
typedef union ii_icdr_u {
- uint64_t ii_icdr_regval;
- struct {
- uint64_t i_crb_num : 4;
- uint64_t i_pnd : 1;
- uint64_t i_rsvd : 59;
+ uint64_t ii_icdr_regval;
+ struct {
+ uint64_t i_crb_num:4;
+ uint64_t i_pnd:1;
+ uint64_t i_rsvd:59;
} ii_icdr_fld_s;
} ii_icdr_u_t;
-
/************************************************************************
- * *
+ * *
* This register provides debug access to two FIFOs inside of II. *
* Both IOQ_MAX* fields of this register contain the instantaneous *
* depth (in units of the number of available entries) of the *
@@ -2164,130 +2088,124 @@ typedef union ii_icdr_u {
* this register is written. If there are any active entries in any *
* of these FIFOs when this register is written, the results are *
* undefined. *
- * *
+ * *
************************************************************************/
typedef union ii_ifdr_u {
- uint64_t ii_ifdr_regval;
- struct {
- uint64_t i_ioq_max_rq : 7;
- uint64_t i_set_ioq_rq : 1;
- uint64_t i_ioq_max_rp : 7;
- uint64_t i_set_ioq_rp : 1;
- uint64_t i_rsvd : 48;
+ uint64_t ii_ifdr_regval;
+ struct {
+ uint64_t i_ioq_max_rq:7;
+ uint64_t i_set_ioq_rq:1;
+ uint64_t i_ioq_max_rp:7;
+ uint64_t i_set_ioq_rp:1;
+ uint64_t i_rsvd:48;
} ii_ifdr_fld_s;
} ii_ifdr_u_t;
-
/************************************************************************
- * *
+ * *
* This register allows the II to become sluggish in removing *
* messages from its inbound queue (IIQ). This will cause messages to *
* back up in either virtual channel. Disabling the "molasses" mode *
* subsequently allows the II to be tested under stress. In the *
* sluggish ("Molasses") mode, the localized effects of congestion *
* can be observed. *
- * *
+ * *
************************************************************************/
typedef union ii_iiap_u {
- uint64_t ii_iiap_regval;
- struct {
- uint64_t i_rq_mls : 6;
- uint64_t i_rsvd_1 : 2;
- uint64_t i_rp_mls : 6;
- uint64_t i_rsvd : 50;
- } ii_iiap_fld_s;
+ uint64_t ii_iiap_regval;
+ struct {
+ uint64_t i_rq_mls:6;
+ uint64_t i_rsvd_1:2;
+ uint64_t i_rp_mls:6;
+ uint64_t i_rsvd:50;
+ } ii_iiap_fld_s;
} ii_iiap_u_t;
-
/************************************************************************
- * *
+ * *
* This register allows several parameters of CRB operation to be *
* set. Note that writing to this register can have catastrophic side *
* effects, if the CRB is not quiescent, i.e. if the CRB is *
* processing protocol messages when the write occurs. *
- * *
+ * *
************************************************************************/
typedef union ii_icmr_u {
- uint64_t ii_icmr_regval;
- struct {
- uint64_t i_sp_msg : 1;
- uint64_t i_rd_hdr : 1;
- uint64_t i_rsvd_4 : 2;
- uint64_t i_c_cnt : 4;
- uint64_t i_rsvd_3 : 4;
- uint64_t i_clr_rqpd : 1;
- uint64_t i_clr_rppd : 1;
- uint64_t i_rsvd_2 : 2;
- uint64_t i_fc_cnt : 4;
- uint64_t i_crb_vld : 15;
- uint64_t i_crb_mark : 15;
- uint64_t i_rsvd_1 : 2;
- uint64_t i_precise : 1;
- uint64_t i_rsvd : 11;
+ uint64_t ii_icmr_regval;
+ struct {
+ uint64_t i_sp_msg:1;
+ uint64_t i_rd_hdr:1;
+ uint64_t i_rsvd_4:2;
+ uint64_t i_c_cnt:4;
+ uint64_t i_rsvd_3:4;
+ uint64_t i_clr_rqpd:1;
+ uint64_t i_clr_rppd:1;
+ uint64_t i_rsvd_2:2;
+ uint64_t i_fc_cnt:4;
+ uint64_t i_crb_vld:15;
+ uint64_t i_crb_mark:15;
+ uint64_t i_rsvd_1:2;
+ uint64_t i_precise:1;
+ uint64_t i_rsvd:11;
} ii_icmr_fld_s;
} ii_icmr_u_t;
-
/************************************************************************
- * *
+ * *
* This register allows control of the table portion of the CRB *
* logic via software. Control operations from this register have *
* priority over all incoming Crosstalk or BTE requests. *
- * *
+ * *
************************************************************************/
typedef union ii_iccr_u {
- uint64_t ii_iccr_regval;
- struct {
- uint64_t i_crb_num : 4;
- uint64_t i_rsvd_1 : 4;
- uint64_t i_cmd : 8;
- uint64_t i_pending : 1;
- uint64_t i_rsvd : 47;
+ uint64_t ii_iccr_regval;
+ struct {
+ uint64_t i_crb_num:4;
+ uint64_t i_rsvd_1:4;
+ uint64_t i_cmd:8;
+ uint64_t i_pending:1;
+ uint64_t i_rsvd:47;
} ii_iccr_fld_s;
} ii_iccr_u_t;
-
/************************************************************************
- * *
+ * *
* This register allows the maximum timeout value to be programmed. *
- * *
+ * *
************************************************************************/
typedef union ii_icto_u {
- uint64_t ii_icto_regval;
- struct {
- uint64_t i_timeout : 8;
- uint64_t i_rsvd : 56;
+ uint64_t ii_icto_regval;
+ struct {
+ uint64_t i_timeout:8;
+ uint64_t i_rsvd:56;
} ii_icto_fld_s;
} ii_icto_u_t;
-
/************************************************************************
- * *
+ * *
* This register allows the timeout prescalar to be programmed. An *
* internal counter is associated with this register. When the *
* internal counter reaches the value of the PRESCALE field, the *
* timer registers in all valid CRBs are incremented (CRBx_D[TIMEOUT] *
* field). The internal counter resets to zero, and then continues *
* counting. *
- * *
+ * *
************************************************************************/
typedef union ii_ictp_u {
- uint64_t ii_ictp_regval;
- struct {
- uint64_t i_prescale : 24;
- uint64_t i_rsvd : 40;
+ uint64_t ii_ictp_regval;
+ struct {
+ uint64_t i_prescale:24;
+ uint64_t i_rsvd:40;
} ii_ictp_fld_s;
} ii_ictp_u_t;
-
/************************************************************************
- * *
+ * *
* Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
* used for Crosstalk operations (both cacheline and partial *
* operations) or BTE/IO. Because the CRB entries are very wide, five *
@@ -2306,243 +2224,234 @@ typedef union ii_ictp_u {
* recovering any potential error state from before the reset). *
* The following four tables summarize the format for the four *
* registers that are used for each ICRB# Entry. *
- * *
+ * *
************************************************************************/
typedef union ii_icrb0_a_u {
- uint64_t ii_icrb0_a_regval;
- struct {
- uint64_t ia_iow : 1;
- uint64_t ia_vld : 1;
- uint64_t ia_addr : 47;
- uint64_t ia_tnum : 5;
- uint64_t ia_sidn : 4;
- uint64_t ia_rsvd : 6;
+ uint64_t ii_icrb0_a_regval;
+ struct {
+ uint64_t ia_iow:1;
+ uint64_t ia_vld:1;
+ uint64_t ia_addr:47;
+ uint64_t ia_tnum:5;
+ uint64_t ia_sidn:4;
+ uint64_t ia_rsvd:6;
} ii_icrb0_a_fld_s;
} ii_icrb0_a_u_t;
-
/************************************************************************
- * *
+ * *
* Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
* used for Crosstalk operations (both cacheline and partial *
* operations) or BTE/IO. Because the CRB entries are very wide, five *
* registers (_A to _E) are required to read and write each entry. *
- * *
+ * *
************************************************************************/
typedef union ii_icrb0_b_u {
- uint64_t ii_icrb0_b_regval;
- struct {
- uint64_t ib_xt_err : 1;
- uint64_t ib_mark : 1;
- uint64_t ib_ln_uce : 1;
- uint64_t ib_errcode : 3;
- uint64_t ib_error : 1;
- uint64_t ib_stall__bte_1 : 1;
- uint64_t ib_stall__bte_0 : 1;
- uint64_t ib_stall__intr : 1;
- uint64_t ib_stall_ib : 1;
- uint64_t ib_intvn : 1;
- uint64_t ib_wb : 1;
- uint64_t ib_hold : 1;
- uint64_t ib_ack : 1;
- uint64_t ib_resp : 1;
- uint64_t ib_ack_cnt : 11;
- uint64_t ib_rsvd : 7;
- uint64_t ib_exc : 5;
- uint64_t ib_init : 3;
- uint64_t ib_imsg : 8;
- uint64_t ib_imsgtype : 2;
- uint64_t ib_use_old : 1;
- uint64_t ib_rsvd_1 : 11;
+ uint64_t ii_icrb0_b_regval;
+ struct {
+ uint64_t ib_xt_err:1;
+ uint64_t ib_mark:1;
+ uint64_t ib_ln_uce:1;
+ uint64_t ib_errcode:3;
+ uint64_t ib_error:1;
+ uint64_t ib_stall__bte_1:1;
+ uint64_t ib_stall__bte_0:1;
+ uint64_t ib_stall__intr:1;
+ uint64_t ib_stall_ib:1;
+ uint64_t ib_intvn:1;
+ uint64_t ib_wb:1;
+ uint64_t ib_hold:1;
+ uint64_t ib_ack:1;
+ uint64_t ib_resp:1;
+ uint64_t ib_ack_cnt:11;
+ uint64_t ib_rsvd:7;
+ uint64_t ib_exc:5;
+ uint64_t ib_init:3;
+ uint64_t ib_imsg:8;
+ uint64_t ib_imsgtype:2;
+ uint64_t ib_use_old:1;
+ uint64_t ib_rsvd_1:11;
} ii_icrb0_b_fld_s;
} ii_icrb0_b_u_t;
-
/************************************************************************
- * *
+ * *
* Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
* used for Crosstalk operations (both cacheline and partial *
* operations) or BTE/IO. Because the CRB entries are very wide, five *
* registers (_A to _E) are required to read and write each entry. *
- * *
+ * *
************************************************************************/
typedef union ii_icrb0_c_u {
- uint64_t ii_icrb0_c_regval;
- struct {
- uint64_t ic_source : 15;
- uint64_t ic_size : 2;
- uint64_t ic_ct : 1;
- uint64_t ic_bte_num : 1;
- uint64_t ic_gbr : 1;
- uint64_t ic_resprqd : 1;
- uint64_t ic_bo : 1;
- uint64_t ic_suppl : 15;
- uint64_t ic_rsvd : 27;
+ uint64_t ii_icrb0_c_regval;
+ struct {
+ uint64_t ic_source:15;
+ uint64_t ic_size:2;
+ uint64_t ic_ct:1;
+ uint64_t ic_bte_num:1;
+ uint64_t ic_gbr:1;
+ uint64_t ic_resprqd:1;
+ uint64_t ic_bo:1;
+ uint64_t ic_suppl:15;
+ uint64_t ic_rsvd:27;
} ii_icrb0_c_fld_s;
} ii_icrb0_c_u_t;
-
/************************************************************************
- * *
+ * *
* Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
* used for Crosstalk operations (both cacheline and partial *
* operations) or BTE/IO. Because the CRB entries are very wide, five *
* registers (_A to _E) are required to read and write each entry. *
- * *
+ * *
************************************************************************/
typedef union ii_icrb0_d_u {
- uint64_t ii_icrb0_d_regval;
- struct {
- uint64_t id_pa_be : 43;
- uint64_t id_bte_op : 1;
- uint64_t id_pr_psc : 4;
- uint64_t id_pr_cnt : 4;
- uint64_t id_sleep : 1;
- uint64_t id_rsvd : 11;
+ uint64_t ii_icrb0_d_regval;
+ struct {
+ uint64_t id_pa_be:43;
+ uint64_t id_bte_op:1;
+ uint64_t id_pr_psc:4;
+ uint64_t id_pr_cnt:4;
+ uint64_t id_sleep:1;
+ uint64_t id_rsvd:11;
} ii_icrb0_d_fld_s;
} ii_icrb0_d_u_t;
-
/************************************************************************
- * *
+ * *
* Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
* used for Crosstalk operations (both cacheline and partial *
* operations) or BTE/IO. Because the CRB entries are very wide, five *
* registers (_A to _E) are required to read and write each entry. *
- * *
+ * *
************************************************************************/
typedef union ii_icrb0_e_u {
- uint64_t ii_icrb0_e_regval;
- struct {
- uint64_t ie_timeout : 8;
- uint64_t ie_context : 15;
- uint64_t ie_rsvd : 1;
- uint64_t ie_tvld : 1;
- uint64_t ie_cvld : 1;
- uint64_t ie_rsvd_0 : 38;
+ uint64_t ii_icrb0_e_regval;
+ struct {
+ uint64_t ie_timeout:8;
+ uint64_t ie_context:15;
+ uint64_t ie_rsvd:1;
+ uint64_t ie_tvld:1;
+ uint64_t ie_cvld:1;
+ uint64_t ie_rsvd_0:38;
} ii_icrb0_e_fld_s;
} ii_icrb0_e_u_t;
-
/************************************************************************
- * *
+ * *
* This register contains the lower 64 bits of the header of the *
* spurious message captured by II. Valid when the SP_MSG bit in ICMR *
* register is set. *
- * *
+ * *
************************************************************************/
typedef union ii_icsml_u {
- uint64_t ii_icsml_regval;
- struct {
- uint64_t i_tt_addr : 47;
- uint64_t i_newsuppl_ex : 14;
- uint64_t i_reserved : 2;
- uint64_t i_overflow : 1;
+ uint64_t ii_icsml_regval;
+ struct {
+ uint64_t i_tt_addr:47;
+ uint64_t i_newsuppl_ex:14;
+ uint64_t i_reserved:2;
+ uint64_t i_overflow:1;
} ii_icsml_fld_s;
} ii_icsml_u_t;
-
/************************************************************************
- * *
+ * *
* This register contains the middle 64 bits of the header of the *
* spurious message captured by II. Valid when the SP_MSG bit in ICMR *
* register is set. *
- * *
+ * *
************************************************************************/
typedef union ii_icsmm_u {
- uint64_t ii_icsmm_regval;
- struct {
- uint64_t i_tt_ack_cnt : 11;
- uint64_t i_reserved : 53;
+ uint64_t ii_icsmm_regval;
+ struct {
+ uint64_t i_tt_ack_cnt:11;
+ uint64_t i_reserved:53;
} ii_icsmm_fld_s;
} ii_icsmm_u_t;
-
/************************************************************************
- * *
+ * *
* This register contains the microscopic state, all the inputs to *
* the protocol table, captured with the spurious message. Valid when *
* the SP_MSG bit in the ICMR register is set. *
- * *
+ * *
************************************************************************/
typedef union ii_icsmh_u {
- uint64_t ii_icsmh_regval;
- struct {
- uint64_t i_tt_vld : 1;
- uint64_t i_xerr : 1;
- uint64_t i_ft_cwact_o : 1;
- uint64_t i_ft_wact_o : 1;
- uint64_t i_ft_active_o : 1;
- uint64_t i_sync : 1;
- uint64_t i_mnusg : 1;
- uint64_t i_mnusz : 1;
- uint64_t i_plusz : 1;
- uint64_t i_plusg : 1;
- uint64_t i_tt_exc : 5;
- uint64_t i_tt_wb : 1;
- uint64_t i_tt_hold : 1;
- uint64_t i_tt_ack : 1;
- uint64_t i_tt_resp : 1;
- uint64_t i_tt_intvn : 1;
- uint64_t i_g_stall_bte1 : 1;
- uint64_t i_g_stall_bte0 : 1;
- uint64_t i_g_stall_il : 1;
- uint64_t i_g_stall_ib : 1;
- uint64_t i_tt_imsg : 8;
- uint64_t i_tt_imsgtype : 2;
- uint64_t i_tt_use_old : 1;
- uint64_t i_tt_respreqd : 1;
- uint64_t i_tt_bte_num : 1;
- uint64_t i_cbn : 1;
- uint64_t i_match : 1;
- uint64_t i_rpcnt_lt_34 : 1;
- uint64_t i_rpcnt_ge_34 : 1;
- uint64_t i_rpcnt_lt_18 : 1;
- uint64_t i_rpcnt_ge_18 : 1;
- uint64_t i_rpcnt_lt_2 : 1;
- uint64_t i_rpcnt_ge_2 : 1;
- uint64_t i_rqcnt_lt_18 : 1;
- uint64_t i_rqcnt_ge_18 : 1;
- uint64_t i_rqcnt_lt_2 : 1;
- uint64_t i_rqcnt_ge_2 : 1;
- uint64_t i_tt_device : 7;
- uint64_t i_tt_init : 3;
- uint64_t i_reserved : 5;
+ uint64_t ii_icsmh_regval;
+ struct {
+ uint64_t i_tt_vld:1;
+ uint64_t i_xerr:1;
+ uint64_t i_ft_cwact_o:1;
+ uint64_t i_ft_wact_o:1;
+ uint64_t i_ft_active_o:1;
+ uint64_t i_sync:1;
+ uint64_t i_mnusg:1;
+ uint64_t i_mnusz:1;
+ uint64_t i_plusz:1;
+ uint64_t i_plusg:1;
+ uint64_t i_tt_exc:5;
+ uint64_t i_tt_wb:1;
+ uint64_t i_tt_hold:1;
+ uint64_t i_tt_ack:1;
+ uint64_t i_tt_resp:1;
+ uint64_t i_tt_intvn:1;
+ uint64_t i_g_stall_bte1:1;
+ uint64_t i_g_stall_bte0:1;
+ uint64_t i_g_stall_il:1;
+ uint64_t i_g_stall_ib:1;
+ uint64_t i_tt_imsg:8;
+ uint64_t i_tt_imsgtype:2;
+ uint64_t i_tt_use_old:1;
+ uint64_t i_tt_respreqd:1;
+ uint64_t i_tt_bte_num:1;
+ uint64_t i_cbn:1;
+ uint64_t i_match:1;
+ uint64_t i_rpcnt_lt_34:1;
+ uint64_t i_rpcnt_ge_34:1;
+ uint64_t i_rpcnt_lt_18:1;
+ uint64_t i_rpcnt_ge_18:1;
+ uint64_t i_rpcnt_lt_2:1;
+ uint64_t i_rpcnt_ge_2:1;
+ uint64_t i_rqcnt_lt_18:1;
+ uint64_t i_rqcnt_ge_18:1;
+ uint64_t i_rqcnt_lt_2:1;
+ uint64_t i_rqcnt_ge_2:1;
+ uint64_t i_tt_device:7;
+ uint64_t i_tt_init:3;
+ uint64_t i_reserved:5;
} ii_icsmh_fld_s;
} ii_icsmh_u_t;
-
/************************************************************************
- * *
+ * *
* The Shub DEBUG unit provides a 3-bit selection signal to the *
* II core and a 3-bit selection signal to the fsbclk domain in the II *
* wrapper. *
- * *
+ * *
************************************************************************/
typedef union ii_idbss_u {
- uint64_t ii_idbss_regval;
- struct {
- uint64_t i_iioclk_core_submenu : 3;
- uint64_t i_rsvd : 5;
- uint64_t i_fsbclk_wrapper_submenu : 3;
- uint64_t i_rsvd_1 : 5;
- uint64_t i_iioclk_menu : 5;
- uint64_t i_rsvd_2 : 43;
+ uint64_t ii_idbss_regval;
+ struct {
+ uint64_t i_iioclk_core_submenu:3;
+ uint64_t i_rsvd:5;
+ uint64_t i_fsbclk_wrapper_submenu:3;
+ uint64_t i_rsvd_1:5;
+ uint64_t i_iioclk_menu:5;
+ uint64_t i_rsvd_2:43;
} ii_idbss_fld_s;
} ii_idbss_u_t;
-
/************************************************************************
- * *
+ * *
* Description: This register is used to set up the length for a *
* transfer and then to monitor the progress of that transfer. This *
* register needs to be initialized before a transfer is started. A *
@@ -2553,63 +2462,60 @@ typedef union ii_idbss_u {
* transfer completes, hardware will clear the Busy bit. The length *
* field will also contain the number of cache lines left to be *
* transferred. *
- * *
+ * *
************************************************************************/
typedef union ii_ibls0_u {
- uint64_t ii_ibls0_regval;
- struct {
- uint64_t i_length : 16;
- uint64_t i_error : 1;
- uint64_t i_rsvd_1 : 3;
- uint64_t i_busy : 1;
- uint64_t i_rsvd : 43;
+ uint64_t ii_ibls0_regval;
+ struct {
+ uint64_t i_length:16;
+ uint64_t i_error:1;
+ uint64_t i_rsvd_1:3;
+ uint64_t i_busy:1;
+ uint64_t i_rsvd:43;
} ii_ibls0_fld_s;
} ii_ibls0_u_t;
-
/************************************************************************
- * *
+ * *
* This register should be loaded before a transfer is started. The *
* address to be loaded in bits 39:0 is the 40-bit TRex+ physical *
* address as described in Section 1.3, Figure2 and Figure3. Since *
* the bottom 7 bits of the address are always taken to be zero, BTE *
* transfers are always cacheline-aligned. *
- * *
+ * *
************************************************************************/
typedef union ii_ibsa0_u {
- uint64_t ii_ibsa0_regval;
- struct {
- uint64_t i_rsvd_1 : 7;
- uint64_t i_addr : 42;
- uint64_t i_rsvd : 15;
+ uint64_t ii_ibsa0_regval;
+ struct {
+ uint64_t i_rsvd_1:7;
+ uint64_t i_addr:42;
+ uint64_t i_rsvd:15;
} ii_ibsa0_fld_s;
} ii_ibsa0_u_t;
-
/************************************************************************
- * *
+ * *
* This register should be loaded before a transfer is started. The *
* address to be loaded in bits 39:0 is the 40-bit TRex+ physical *
* address as described in Section 1.3, Figure2 and Figure3. Since *
* the bottom 7 bits of the address are always taken to be zero, BTE *
* transfers are always cacheline-aligned. *
- * *
+ * *
************************************************************************/
typedef union ii_ibda0_u {
- uint64_t ii_ibda0_regval;
- struct {
- uint64_t i_rsvd_1 : 7;
- uint64_t i_addr : 42;
- uint64_t i_rsvd : 15;
+ uint64_t ii_ibda0_regval;
+ struct {
+ uint64_t i_rsvd_1:7;
+ uint64_t i_addr:42;
+ uint64_t i_rsvd:15;
} ii_ibda0_fld_s;
} ii_ibda0_u_t;
-
/************************************************************************
- * *
+ * *
* Writing to this register sets up the attributes of the transfer *
* and initiates the transfer operation. Reading this register has *
* the side effect of terminating any transfer in progress. Note: *
@@ -2617,61 +2523,58 @@ typedef union ii_ibda0_u {
* other BTE. If a BTE stream has to be stopped (due to error *
* handling for example), both BTE streams should be stopped and *
* their transfers discarded. *
- * *
+ * *
************************************************************************/
typedef union ii_ibct0_u {
- uint64_t ii_ibct0_regval;
- struct {
- uint64_t i_zerofill : 1;
- uint64_t i_rsvd_2 : 3;
- uint64_t i_notify : 1;
- uint64_t i_rsvd_1 : 3;
- uint64_t i_poison : 1;
- uint64_t i_rsvd : 55;
+ uint64_t ii_ibct0_regval;
+ struct {
+ uint64_t i_zerofill:1;
+ uint64_t i_rsvd_2:3;
+ uint64_t i_notify:1;
+ uint64_t i_rsvd_1:3;
+ uint64_t i_poison:1;
+ uint64_t i_rsvd:55;
} ii_ibct0_fld_s;
} ii_ibct0_u_t;
-
/************************************************************************
- * *
+ * *
* This register contains the address to which the WINV is sent. *
* This address has to be cache line aligned. *
- * *
+ * *
************************************************************************/
typedef union ii_ibna0_u {
- uint64_t ii_ibna0_regval;
- struct {
- uint64_t i_rsvd_1 : 7;
- uint64_t i_addr : 42;
- uint64_t i_rsvd : 15;
+ uint64_t ii_ibna0_regval;
+ struct {
+ uint64_t i_rsvd_1:7;
+ uint64_t i_addr:42;
+ uint64_t i_rsvd:15;
} ii_ibna0_fld_s;
} ii_ibna0_u_t;
-
/************************************************************************
- * *
+ * *
* This register contains the programmable level as well as the node *
* ID and PI unit of the processor to which the interrupt will be *
- * sent. *
- * *
+ * sent. *
+ * *
************************************************************************/
typedef union ii_ibia0_u {
- uint64_t ii_ibia0_regval;
- struct {
- uint64_t i_rsvd_2 : 1;
- uint64_t i_node_id : 11;
- uint64_t i_rsvd_1 : 4;
- uint64_t i_level : 7;
- uint64_t i_rsvd : 41;
+ uint64_t ii_ibia0_regval;
+ struct {
+ uint64_t i_rsvd_2:1;
+ uint64_t i_node_id:11;
+ uint64_t i_rsvd_1:4;
+ uint64_t i_level:7;
+ uint64_t i_rsvd:41;
} ii_ibia0_fld_s;
} ii_ibia0_u_t;
-
/************************************************************************
- * *
+ * *
* Description: This register is used to set up the length for a *
* transfer and then to monitor the progress of that transfer. This *
* register needs to be initialized before a transfer is started. A *
@@ -2682,63 +2585,60 @@ typedef union ii_ibia0_u {
* transfer completes, hardware will clear the Busy bit. The length *
* field will also contain the number of cache lines left to be *
* transferred. *
- * *
+ * *
************************************************************************/
typedef union ii_ibls1_u {
- uint64_t ii_ibls1_regval;
- struct {
- uint64_t i_length : 16;
- uint64_t i_error : 1;
- uint64_t i_rsvd_1 : 3;
- uint64_t i_busy : 1;
- uint64_t i_rsvd : 43;
+ uint64_t ii_ibls1_regval;
+ struct {
+ uint64_t i_length:16;
+ uint64_t i_error:1;
+ uint64_t i_rsvd_1:3;
+ uint64_t i_busy:1;
+ uint64_t i_rsvd:43;
} ii_ibls1_fld_s;
} ii_ibls1_u_t;
-
/************************************************************************
- * *
+ * *
* This register should be loaded before a transfer is started. The *
* address to be loaded in bits 39:0 is the 40-bit TRex+ physical *
* address as described in Section 1.3, Figure2 and Figure3. Since *
* the bottom 7 bits of the address are always taken to be zero, BTE *
* transfers are always cacheline-aligned. *
- * *
+ * *
************************************************************************/
typedef union ii_ibsa1_u {
- uint64_t ii_ibsa1_regval;
- struct {
- uint64_t i_rsvd_1 : 7;
- uint64_t i_addr : 33;
- uint64_t i_rsvd : 24;
+ uint64_t ii_ibsa1_regval;
+ struct {
+ uint64_t i_rsvd_1:7;
+ uint64_t i_addr:33;
+ uint64_t i_rsvd:24;
} ii_ibsa1_fld_s;
} ii_ibsa1_u_t;
-
/************************************************************************
- * *
+ * *
* This register should be loaded before a transfer is started. The *
* address to be loaded in bits 39:0 is the 40-bit TRex+ physical *
* address as described in Section 1.3, Figure2 and Figure3. Since *
* the bottom 7 bits of the address are always taken to be zero, BTE *
* transfers are always cacheline-aligned. *
- * *
+ * *
************************************************************************/
typedef union ii_ibda1_u {
- uint64_t ii_ibda1_regval;
- struct {
- uint64_t i_rsvd_1 : 7;
- uint64_t i_addr : 33;
- uint64_t i_rsvd : 24;
+ uint64_t ii_ibda1_regval;
+ struct {
+ uint64_t i_rsvd_1:7;
+ uint64_t i_addr:33;
+ uint64_t i_rsvd:24;
} ii_ibda1_fld_s;
} ii_ibda1_u_t;
-
/************************************************************************
- * *
+ * *
* Writing to this register sets up the attributes of the transfer *
* and initiates the transfer operation. Reading this register has *
* the side effect of terminating any transfer in progress. Note: *
@@ -2746,61 +2646,58 @@ typedef union ii_ibda1_u {
* other BTE. If a BTE stream has to be stopped (due to error *
* handling for example), both BTE streams should be stopped and *
* their transfers discarded. *
- * *
+ * *
************************************************************************/
typedef union ii_ibct1_u {
- uint64_t ii_ibct1_regval;
- struct {
- uint64_t i_zerofill : 1;
- uint64_t i_rsvd_2 : 3;
- uint64_t i_notify : 1;
- uint64_t i_rsvd_1 : 3;
- uint64_t i_poison : 1;
- uint64_t i_rsvd : 55;
+ uint64_t ii_ibct1_regval;
+ struct {
+ uint64_t i_zerofill:1;
+ uint64_t i_rsvd_2:3;
+ uint64_t i_notify:1;
+ uint64_t i_rsvd_1:3;
+ uint64_t i_poison:1;
+ uint64_t i_rsvd:55;
} ii_ibct1_fld_s;
} ii_ibct1_u_t;
-
/************************************************************************
- * *
+ * *
* This register contains the address to which the WINV is sent. *
* This address has to be cache line aligned. *
- * *
+ * *
************************************************************************/
typedef union ii_ibna1_u {
- uint64_t ii_ibna1_regval;
- struct {
- uint64_t i_rsvd_1 : 7;
- uint64_t i_addr : 33;
- uint64_t i_rsvd : 24;
+ uint64_t ii_ibna1_regval;
+ struct {
+ uint64_t i_rsvd_1:7;
+ uint64_t i_addr:33;
+ uint64_t i_rsvd:24;
} ii_ibna1_fld_s;
} ii_ibna1_u_t;
-
/************************************************************************
- * *
+ * *
* This register contains the programmable level as well as the node *
* ID and PI unit of the processor to which the interrupt will be *
- * sent. *
- * *
+ * sent. *
+ * *
************************************************************************/
typedef union ii_ibia1_u {
- uint64_t ii_ibia1_regval;
- struct {
- uint64_t i_pi_id : 1;
- uint64_t i_node_id : 8;
- uint64_t i_rsvd_1 : 7;
- uint64_t i_level : 7;
- uint64_t i_rsvd : 41;
+ uint64_t ii_ibia1_regval;
+ struct {
+ uint64_t i_pi_id:1;
+ uint64_t i_node_id:8;
+ uint64_t i_rsvd_1:7;
+ uint64_t i_level:7;
+ uint64_t i_rsvd:41;
} ii_ibia1_fld_s;
} ii_ibia1_u_t;
-
/************************************************************************
- * *
+ * *
* This register defines the resources that feed information into *
* the two performance counters located in the IO Performance *
* Profiling Register. There are 17 different quantities that can be *
@@ -2811,133 +2708,129 @@ typedef union ii_ibia1_u {
* other is available from the other performance counter. Hence, the *
* II supports all 17*16=272 possible combinations of quantities to *
* measure. *
- * *
+ * *
************************************************************************/
typedef union ii_ipcr_u {
- uint64_t ii_ipcr_regval;
- struct {
- uint64_t i_ippr0_c : 4;
- uint64_t i_ippr1_c : 4;
- uint64_t i_icct : 8;
- uint64_t i_rsvd : 48;
+ uint64_t ii_ipcr_regval;
+ struct {
+ uint64_t i_ippr0_c:4;
+ uint64_t i_ippr1_c:4;
+ uint64_t i_icct:8;
+ uint64_t i_rsvd:48;
} ii_ipcr_fld_s;
} ii_ipcr_u_t;
-
/************************************************************************
- * *
- * *
- * *
+ * *
+ * *
+ * *
************************************************************************/
typedef union ii_ippr_u {
- uint64_t ii_ippr_regval;
- struct {
- uint64_t i_ippr0 : 32;
- uint64_t i_ippr1 : 32;
+ uint64_t ii_ippr_regval;
+ struct {
+ uint64_t i_ippr0:32;
+ uint64_t i_ippr1:32;
} ii_ippr_fld_s;
} ii_ippr_u_t;
-
-
-/**************************************************************************
- * *
- * The following defines which were not formed into structures are *
- * probably indentical to another register, and the name of the *
- * register is provided against each of these registers. This *
- * information needs to be checked carefully *
- * *
- * IIO_ICRB1_A IIO_ICRB0_A *
- * IIO_ICRB1_B IIO_ICRB0_B *
- * IIO_ICRB1_C IIO_ICRB0_C *
- * IIO_ICRB1_D IIO_ICRB0_D *
- * IIO_ICRB1_E IIO_ICRB0_E *
- * IIO_ICRB2_A IIO_ICRB0_A *
- * IIO_ICRB2_B IIO_ICRB0_B *
- * IIO_ICRB2_C IIO_ICRB0_C *
- * IIO_ICRB2_D IIO_ICRB0_D *
- * IIO_ICRB2_E IIO_ICRB0_E *
- * IIO_ICRB3_A IIO_ICRB0_A *
- * IIO_ICRB3_B IIO_ICRB0_B *
- * IIO_ICRB3_C IIO_ICRB0_C *
- * IIO_ICRB3_D IIO_ICRB0_D *
- * IIO_ICRB3_E IIO_ICRB0_E *
- * IIO_ICRB4_A IIO_ICRB0_A *
- * IIO_ICRB4_B IIO_ICRB0_B *
- * IIO_ICRB4_C IIO_ICRB0_C *
- * IIO_ICRB4_D IIO_ICRB0_D *
- * IIO_ICRB4_E IIO_ICRB0_E *
- * IIO_ICRB5_A IIO_ICRB0_A *
- * IIO_ICRB5_B IIO_ICRB0_B *
- * IIO_ICRB5_C IIO_ICRB0_C *
- * IIO_ICRB5_D IIO_ICRB0_D *
- * IIO_ICRB5_E IIO_ICRB0_E *
- * IIO_ICRB6_A IIO_ICRB0_A *
- * IIO_ICRB6_B IIO_ICRB0_B *
- * IIO_ICRB6_C IIO_ICRB0_C *
- * IIO_ICRB6_D IIO_ICRB0_D *
- * IIO_ICRB6_E IIO_ICRB0_E *
- * IIO_ICRB7_A IIO_ICRB0_A *
- * IIO_ICRB7_B IIO_ICRB0_B *
- * IIO_ICRB7_C IIO_ICRB0_C *
- * IIO_ICRB7_D IIO_ICRB0_D *
- * IIO_ICRB7_E IIO_ICRB0_E *
- * IIO_ICRB8_A IIO_ICRB0_A *
- * IIO_ICRB8_B IIO_ICRB0_B *
- * IIO_ICRB8_C IIO_ICRB0_C *
- * IIO_ICRB8_D IIO_ICRB0_D *
- * IIO_ICRB8_E IIO_ICRB0_E *
- * IIO_ICRB9_A IIO_ICRB0_A *
- * IIO_ICRB9_B IIO_ICRB0_B *
- * IIO_ICRB9_C IIO_ICRB0_C *
- * IIO_ICRB9_D IIO_ICRB0_D *
- * IIO_ICRB9_E IIO_ICRB0_E *
- * IIO_ICRBA_A IIO_ICRB0_A *
- * IIO_ICRBA_B IIO_ICRB0_B *
- * IIO_ICRBA_C IIO_ICRB0_C *
- * IIO_ICRBA_D IIO_ICRB0_D *
- * IIO_ICRBA_E IIO_ICRB0_E *
- * IIO_ICRBB_A IIO_ICRB0_A *
- * IIO_ICRBB_B IIO_ICRB0_B *
- * IIO_ICRBB_C IIO_ICRB0_C *
- * IIO_ICRBB_D IIO_ICRB0_D *
- * IIO_ICRBB_E IIO_ICRB0_E *
- * IIO_ICRBC_A IIO_ICRB0_A *
- * IIO_ICRBC_B IIO_ICRB0_B *
- * IIO_ICRBC_C IIO_ICRB0_C *
- * IIO_ICRBC_D IIO_ICRB0_D *
- * IIO_ICRBC_E IIO_ICRB0_E *
- * IIO_ICRBD_A IIO_ICRB0_A *
- * IIO_ICRBD_B IIO_ICRB0_B *
- * IIO_ICRBD_C IIO_ICRB0_C *
- * IIO_ICRBD_D IIO_ICRB0_D *
- * IIO_ICRBD_E IIO_ICRB0_E *
- * IIO_ICRBE_A IIO_ICRB0_A *
- * IIO_ICRBE_B IIO_ICRB0_B *
- * IIO_ICRBE_C IIO_ICRB0_C *
- * IIO_ICRBE_D IIO_ICRB0_D *
- * IIO_ICRBE_E IIO_ICRB0_E *
- * *
- **************************************************************************/
-
+/************************************************************************
+ * *
+ * The following defines which were not formed into structures are *
+ * probably indentical to another register, and the name of the *
+ * register is provided against each of these registers. This *
+ * information needs to be checked carefully *
+ * *
+ * IIO_ICRB1_A IIO_ICRB0_A *
+ * IIO_ICRB1_B IIO_ICRB0_B *
+ * IIO_ICRB1_C IIO_ICRB0_C *
+ * IIO_ICRB1_D IIO_ICRB0_D *
+ * IIO_ICRB1_E IIO_ICRB0_E *
+ * IIO_ICRB2_A IIO_ICRB0_A *
+ * IIO_ICRB2_B IIO_ICRB0_B *
+ * IIO_ICRB2_C IIO_ICRB0_C *
+ * IIO_ICRB2_D IIO_ICRB0_D *
+ * IIO_ICRB2_E IIO_ICRB0_E *
+ * IIO_ICRB3_A IIO_ICRB0_A *
+ * IIO_ICRB3_B IIO_ICRB0_B *
+ * IIO_ICRB3_C IIO_ICRB0_C *
+ * IIO_ICRB3_D IIO_ICRB0_D *
+ * IIO_ICRB3_E IIO_ICRB0_E *
+ * IIO_ICRB4_A IIO_ICRB0_A *
+ * IIO_ICRB4_B IIO_ICRB0_B *
+ * IIO_ICRB4_C IIO_ICRB0_C *
+ * IIO_ICRB4_D IIO_ICRB0_D *
+ * IIO_ICRB4_E IIO_ICRB0_E *
+ * IIO_ICRB5_A IIO_ICRB0_A *
+ * IIO_ICRB5_B IIO_ICRB0_B *
+ * IIO_ICRB5_C IIO_ICRB0_C *
+ * IIO_ICRB5_D IIO_ICRB0_D *
+ * IIO_ICRB5_E IIO_ICRB0_E *
+ * IIO_ICRB6_A IIO_ICRB0_A *
+ * IIO_ICRB6_B IIO_ICRB0_B *
+ * IIO_ICRB6_C IIO_ICRB0_C *
+ * IIO_ICRB6_D IIO_ICRB0_D *
+ * IIO_ICRB6_E IIO_ICRB0_E *
+ * IIO_ICRB7_A IIO_ICRB0_A *
+ * IIO_ICRB7_B IIO_ICRB0_B *
+ * IIO_ICRB7_C IIO_ICRB0_C *
+ * IIO_ICRB7_D IIO_ICRB0_D *
+ * IIO_ICRB7_E IIO_ICRB0_E *
+ * IIO_ICRB8_A IIO_ICRB0_A *
+ * IIO_ICRB8_B IIO_ICRB0_B *
+ * IIO_ICRB8_C IIO_ICRB0_C *
+ * IIO_ICRB8_D IIO_ICRB0_D *
+ * IIO_ICRB8_E IIO_ICRB0_E *
+ * IIO_ICRB9_A IIO_ICRB0_A *
+ * IIO_ICRB9_B IIO_ICRB0_B *
+ * IIO_ICRB9_C IIO_ICRB0_C *
+ * IIO_ICRB9_D IIO_ICRB0_D *
+ * IIO_ICRB9_E IIO_ICRB0_E *
+ * IIO_ICRBA_A IIO_ICRB0_A *
+ * IIO_ICRBA_B IIO_ICRB0_B *
+ * IIO_ICRBA_C IIO_ICRB0_C *
+ * IIO_ICRBA_D IIO_ICRB0_D *
+ * IIO_ICRBA_E IIO_ICRB0_E *
+ * IIO_ICRBB_A IIO_ICRB0_A *
+ * IIO_ICRBB_B IIO_ICRB0_B *
+ * IIO_ICRBB_C IIO_ICRB0_C *
+ * IIO_ICRBB_D IIO_ICRB0_D *
+ * IIO_ICRBB_E IIO_ICRB0_E *
+ * IIO_ICRBC_A IIO_ICRB0_A *
+ * IIO_ICRBC_B IIO_ICRB0_B *
+ * IIO_ICRBC_C IIO_ICRB0_C *
+ * IIO_ICRBC_D IIO_ICRB0_D *
+ * IIO_ICRBC_E IIO_ICRB0_E *
+ * IIO_ICRBD_A IIO_ICRB0_A *
+ * IIO_ICRBD_B IIO_ICRB0_B *
+ * IIO_ICRBD_C IIO_ICRB0_C *
+ * IIO_ICRBD_D IIO_ICRB0_D *
+ * IIO_ICRBD_E IIO_ICRB0_E *
+ * IIO_ICRBE_A IIO_ICRB0_A *
+ * IIO_ICRBE_B IIO_ICRB0_B *
+ * IIO_ICRBE_C IIO_ICRB0_C *
+ * IIO_ICRBE_D IIO_ICRB0_D *
+ * IIO_ICRBE_E IIO_ICRB0_E *
+ * *
+ ************************************************************************/
/*
* Slightly friendlier names for some common registers.
*/
-#define IIO_WIDGET IIO_WID /* Widget identification */
-#define IIO_WIDGET_STAT IIO_WSTAT /* Widget status register */
-#define IIO_WIDGET_CTRL IIO_WCR /* Widget control register */
-#define IIO_PROTECT IIO_ILAPR /* IO interface protection */
-#define IIO_PROTECT_OVRRD IIO_ILAPO /* IO protect override */
-#define IIO_OUTWIDGET_ACCESS IIO_IOWA /* Outbound widget access */
-#define IIO_INWIDGET_ACCESS IIO_IIWA /* Inbound widget access */
-#define IIO_INDEV_ERR_MASK IIO_IIDEM /* Inbound device error mask */
-#define IIO_LLP_CSR IIO_ILCSR /* LLP control and status */
-#define IIO_LLP_LOG IIO_ILLR /* LLP log */
-#define IIO_XTALKCC_TOUT IIO_IXCC /* Xtalk credit count timeout*/
-#define IIO_XTALKTT_TOUT IIO_IXTT /* Xtalk tail timeout */
-#define IIO_IO_ERR_CLR IIO_IECLR /* IO error clear */
+#define IIO_WIDGET IIO_WID /* Widget identification */
+#define IIO_WIDGET_STAT IIO_WSTAT /* Widget status register */
+#define IIO_WIDGET_CTRL IIO_WCR /* Widget control register */
+#define IIO_PROTECT IIO_ILAPR /* IO interface protection */
+#define IIO_PROTECT_OVRRD IIO_ILAPO /* IO protect override */
+#define IIO_OUTWIDGET_ACCESS IIO_IOWA /* Outbound widget access */
+#define IIO_INWIDGET_ACCESS IIO_IIWA /* Inbound widget access */
+#define IIO_INDEV_ERR_MASK IIO_IIDEM /* Inbound device error mask */
+#define IIO_LLP_CSR IIO_ILCSR /* LLP control and status */
+#define IIO_LLP_LOG IIO_ILLR /* LLP log */
+#define IIO_XTALKCC_TOUT IIO_IXCC /* Xtalk credit count timeout */
+#define IIO_XTALKTT_TOUT IIO_IXTT /* Xtalk tail timeout */
+#define IIO_IO_ERR_CLR IIO_IECLR /* IO error clear */
#define IIO_IGFX_0 IIO_IGFX0
#define IIO_IGFX_1 IIO_IGFX1
#define IIO_IBCT_0 IIO_IBCT0
@@ -2957,12 +2850,12 @@ typedef union ii_ippr_u {
#define IIO_PRTE_A(_x) (IIO_IPRTE0_A + (8 * (_x)))
#define IIO_PRTE_B(_x) (IIO_IPRTE0_B + (8 * (_x)))
#define IIO_NUM_PRTES 8 /* Total number of PRB table entries */
-#define IIO_WIDPRTE_A(x) IIO_PRTE_A(((x) - 8)) /* widget ID to its PRTE num */
-#define IIO_WIDPRTE_B(x) IIO_PRTE_B(((x) - 8)) /* widget ID to its PRTE num */
+#define IIO_WIDPRTE_A(x) IIO_PRTE_A(((x) - 8)) /* widget ID to its PRTE num */
+#define IIO_WIDPRTE_B(x) IIO_PRTE_B(((x) - 8)) /* widget ID to its PRTE num */
-#define IIO_NUM_IPRBS (9)
+#define IIO_NUM_IPRBS 9
-#define IIO_LLP_CSR_IS_UP 0x00002000
+#define IIO_LLP_CSR_IS_UP 0x00002000
#define IIO_LLP_CSR_LLP_STAT_MASK 0x00003000
#define IIO_LLP_CSR_LLP_STAT_SHFT 12
@@ -2970,30 +2863,29 @@ typedef union ii_ippr_u {
#define IIO_LLP_SN_MAX 0xffff /* in ILLR SN_CNT, Max Sequence Number errors */
/* key to IIO_PROTECT_OVRRD */
-#define IIO_PROTECT_OVRRD_KEY 0x53474972756c6573ull /* "SGIrules" */
+#define IIO_PROTECT_OVRRD_KEY 0x53474972756c6573ull /* "SGIrules" */
/* BTE register names */
-#define IIO_BTE_STAT_0 IIO_IBLS_0 /* Also BTE length/status 0 */
-#define IIO_BTE_SRC_0 IIO_IBSA_0 /* Also BTE source address 0 */
-#define IIO_BTE_DEST_0 IIO_IBDA_0 /* Also BTE dest. address 0 */
-#define IIO_BTE_CTRL_0 IIO_IBCT_0 /* Also BTE control/terminate 0 */
-#define IIO_BTE_NOTIFY_0 IIO_IBNA_0 /* Also BTE notification 0 */
-#define IIO_BTE_INT_0 IIO_IBIA_0 /* Also BTE interrupt 0 */
-#define IIO_BTE_OFF_0 0 /* Base offset from BTE 0 regs. */
-#define IIO_BTE_OFF_1 (IIO_IBLS_1 - IIO_IBLS_0) /* Offset from base to BTE 1 */
+#define IIO_BTE_STAT_0 IIO_IBLS_0 /* Also BTE length/status 0 */
+#define IIO_BTE_SRC_0 IIO_IBSA_0 /* Also BTE source address 0 */
+#define IIO_BTE_DEST_0 IIO_IBDA_0 /* Also BTE dest. address 0 */
+#define IIO_BTE_CTRL_0 IIO_IBCT_0 /* Also BTE control/terminate 0 */
+#define IIO_BTE_NOTIFY_0 IIO_IBNA_0 /* Also BTE notification 0 */
+#define IIO_BTE_INT_0 IIO_IBIA_0 /* Also BTE interrupt 0 */
+#define IIO_BTE_OFF_0 0 /* Base offset from BTE 0 regs. */
+#define IIO_BTE_OFF_1 (IIO_IBLS_1 - IIO_IBLS_0) /* Offset from base to BTE 1 */
/* BTE register offsets from base */
#define BTEOFF_STAT 0
-#define BTEOFF_SRC (IIO_BTE_SRC_0 - IIO_BTE_STAT_0)
-#define BTEOFF_DEST (IIO_BTE_DEST_0 - IIO_BTE_STAT_0)
-#define BTEOFF_CTRL (IIO_BTE_CTRL_0 - IIO_BTE_STAT_0)
-#define BTEOFF_NOTIFY (IIO_BTE_NOTIFY_0 - IIO_BTE_STAT_0)
-#define BTEOFF_INT (IIO_BTE_INT_0 - IIO_BTE_STAT_0)
-
+#define BTEOFF_SRC (IIO_BTE_SRC_0 - IIO_BTE_STAT_0)
+#define BTEOFF_DEST (IIO_BTE_DEST_0 - IIO_BTE_STAT_0)
+#define BTEOFF_CTRL (IIO_BTE_CTRL_0 - IIO_BTE_STAT_0)
+#define BTEOFF_NOTIFY (IIO_BTE_NOTIFY_0 - IIO_BTE_STAT_0)
+#define BTEOFF_INT (IIO_BTE_INT_0 - IIO_BTE_STAT_0)
/* names used in shub diags */
-#define IIO_BASE_BTE0 IIO_IBLS_0
-#define IIO_BASE_BTE1 IIO_IBLS_1
+#define IIO_BASE_BTE0 IIO_IBLS_0
+#define IIO_BASE_BTE1 IIO_IBLS_1
/*
* Macro which takes the widget number, and returns the
@@ -3001,10 +2893,9 @@ typedef union ii_ippr_u {
* value _x is expected to be a widget number in the range
* 0, 8 - 0xF
*/
-#define IIO_IOPRB(_x) (IIO_IOPRB_0 + ( ( (_x) < HUB_WIDGET_ID_MIN ? \
- (_x) : \
- (_x) - (HUB_WIDGET_ID_MIN-1)) << 3) )
-
+#define IIO_IOPRB(_x) (IIO_IOPRB_0 + ( ( (_x) < HUB_WIDGET_ID_MIN ? \
+ (_x) : \
+ (_x) - (HUB_WIDGET_ID_MIN-1)) << 3) )
/* GFX Flow Control Node/Widget Register */
#define IIO_IGFX_W_NUM_BITS 4 /* size of widget num field */
@@ -3025,7 +2916,6 @@ typedef union ii_ippr_u {
(((node) & IIO_IGFX_N_NUM_MASK) << IIO_IGFX_N_NUM_SHIFT) | \
(((cpu) & IIO_IGFX_P_NUM_MASK) << IIO_IGFX_P_NUM_SHIFT))
-
/* Scratch registers (all bits available) */
#define IIO_SCRATCH_REG0 IIO_ISCR0
#define IIO_SCRATCH_REG1 IIO_ISCR1
@@ -3046,21 +2936,21 @@ typedef union ii_ippr_u {
#define IIO_SCRATCH_BIT1_0 0x0000000000000001UL
#define IIO_SCRATCH_BIT1_1 0x0000000000000002UL
/* IO Translation Table Entries */
-#define IIO_NUM_ITTES 7 /* ITTEs numbered 0..6 */
- /* Hw manuals number them 1..7! */
+#define IIO_NUM_ITTES 7 /* ITTEs numbered 0..6 */
+ /* Hw manuals number them 1..7! */
/*
* IIO_IMEM Register fields.
*/
-#define IIO_IMEM_W0ESD 0x1UL /* Widget 0 shut down due to error */
-#define IIO_IMEM_B0ESD (1UL << 4) /* BTE 0 shut down due to error */
-#define IIO_IMEM_B1ESD (1UL << 8) /* BTE 1 Shut down due to error */
+#define IIO_IMEM_W0ESD 0x1UL /* Widget 0 shut down due to error */
+#define IIO_IMEM_B0ESD (1UL << 4) /* BTE 0 shut down due to error */
+#define IIO_IMEM_B1ESD (1UL << 8) /* BTE 1 Shut down due to error */
/*
* As a permanent workaround for a bug in the PI side of the shub, we've
* redefined big window 7 as small window 0.
XXX does this still apply for SN1??
*/
-#define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1)
+#define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1)
/*
* Use the top big window as a surrogate for the first small window
@@ -3071,11 +2961,11 @@ typedef union ii_ippr_u {
/*
* CRB manipulation macros
- * The CRB macros are slightly complicated, since there are up to
- * four registers associated with each CRB entry.
+ * The CRB macros are slightly complicated, since there are up to
+ * four registers associated with each CRB entry.
*/
-#define IIO_NUM_CRBS 15 /* Number of CRBs */
-#define IIO_NUM_PC_CRBS 4 /* Number of partial cache CRBs */
+#define IIO_NUM_CRBS 15 /* Number of CRBs */
+#define IIO_NUM_PC_CRBS 4 /* Number of partial cache CRBs */
#define IIO_ICRB_OFFSET 8
#define IIO_ICRB_0 IIO_ICRB0_A
#define IIO_ICRB_ADDR_SHFT 2 /* Shift to get proper address */
@@ -3083,43 +2973,43 @@ typedef union ii_ippr_u {
#define IIO_FIRST_PC_ENTRY 12
*/
-#define IIO_ICRB_A(_x) ((u64)(IIO_ICRB_0 + (6 * IIO_ICRB_OFFSET * (_x))))
-#define IIO_ICRB_B(_x) ((u64)((char *)IIO_ICRB_A(_x) + 1*IIO_ICRB_OFFSET))
-#define IIO_ICRB_C(_x) ((u64)((char *)IIO_ICRB_A(_x) + 2*IIO_ICRB_OFFSET))
-#define IIO_ICRB_D(_x) ((u64)((char *)IIO_ICRB_A(_x) + 3*IIO_ICRB_OFFSET))
-#define IIO_ICRB_E(_x) ((u64)((char *)IIO_ICRB_A(_x) + 4*IIO_ICRB_OFFSET))
+#define IIO_ICRB_A(_x) ((u64)(IIO_ICRB_0 + (6 * IIO_ICRB_OFFSET * (_x))))
+#define IIO_ICRB_B(_x) ((u64)((char *)IIO_ICRB_A(_x) + 1*IIO_ICRB_OFFSET))
+#define IIO_ICRB_C(_x) ((u64)((char *)IIO_ICRB_A(_x) + 2*IIO_ICRB_OFFSET))
+#define IIO_ICRB_D(_x) ((u64)((char *)IIO_ICRB_A(_x) + 3*IIO_ICRB_OFFSET))
+#define IIO_ICRB_E(_x) ((u64)((char *)IIO_ICRB_A(_x) + 4*IIO_ICRB_OFFSET))
#define TNUM_TO_WIDGET_DEV(_tnum) (_tnum & 0x7)
/*
* values for "ecode" field
*/
-#define IIO_ICRB_ECODE_DERR 0 /* Directory error due to IIO access */
-#define IIO_ICRB_ECODE_PERR 1 /* Poison error on IO access */
-#define IIO_ICRB_ECODE_WERR 2 /* Write error by IIO access
- * e.g. WINV to a Read only line. */
-#define IIO_ICRB_ECODE_AERR 3 /* Access error caused by IIO access */
-#define IIO_ICRB_ECODE_PWERR 4 /* Error on partial write */
-#define IIO_ICRB_ECODE_PRERR 5 /* Error on partial read */
-#define IIO_ICRB_ECODE_TOUT 6 /* CRB timeout before deallocating */
-#define IIO_ICRB_ECODE_XTERR 7 /* Incoming xtalk pkt had error bit */
+#define IIO_ICRB_ECODE_DERR 0 /* Directory error due to IIO access */
+#define IIO_ICRB_ECODE_PERR 1 /* Poison error on IO access */
+#define IIO_ICRB_ECODE_WERR 2 /* Write error by IIO access
+ * e.g. WINV to a Read only line. */
+#define IIO_ICRB_ECODE_AERR 3 /* Access error caused by IIO access */
+#define IIO_ICRB_ECODE_PWERR 4 /* Error on partial write */
+#define IIO_ICRB_ECODE_PRERR 5 /* Error on partial read */
+#define IIO_ICRB_ECODE_TOUT 6 /* CRB timeout before deallocating */
+#define IIO_ICRB_ECODE_XTERR 7 /* Incoming xtalk pkt had error bit */
/*
* Values for field imsgtype
*/
-#define IIO_ICRB_IMSGT_XTALK 0 /* Incoming Meessage from Xtalk */
-#define IIO_ICRB_IMSGT_BTE 1 /* Incoming message from BTE */
-#define IIO_ICRB_IMSGT_SN1NET 2 /* Incoming message from SN1 net */
-#define IIO_ICRB_IMSGT_CRB 3 /* Incoming message from CRB ??? */
+#define IIO_ICRB_IMSGT_XTALK 0 /* Incoming Meessage from Xtalk */
+#define IIO_ICRB_IMSGT_BTE 1 /* Incoming message from BTE */
+#define IIO_ICRB_IMSGT_SN1NET 2 /* Incoming message from SN1 net */
+#define IIO_ICRB_IMSGT_CRB 3 /* Incoming message from CRB ??? */
/*
* values for field initiator.
*/
-#define IIO_ICRB_INIT_XTALK 0 /* Message originated in xtalk */
-#define IIO_ICRB_INIT_BTE0 0x1 /* Message originated in BTE 0 */
-#define IIO_ICRB_INIT_SN1NET 0x2 /* Message originated in SN1net */
-#define IIO_ICRB_INIT_CRB 0x3 /* Message originated in CRB ? */
-#define IIO_ICRB_INIT_BTE1 0x5 /* MEssage originated in BTE 1 */
+#define IIO_ICRB_INIT_XTALK 0 /* Message originated in xtalk */
+#define IIO_ICRB_INIT_BTE0 0x1 /* Message originated in BTE 0 */
+#define IIO_ICRB_INIT_SN1NET 0x2 /* Message originated in SN1net */
+#define IIO_ICRB_INIT_CRB 0x3 /* Message originated in CRB ? */
+#define IIO_ICRB_INIT_BTE1 0x5 /* MEssage originated in BTE 1 */
/*
* Number of credits Hub widget has while sending req/response to
@@ -3127,8 +3017,8 @@ typedef union ii_ippr_u {
* Value of 3 is required by Xbow 1.1
* We may be able to increase this to 4 with Xbow 1.2.
*/
-#define HUBII_XBOW_CREDIT 3
-#define HUBII_XBOW_REV2_CREDIT 4
+#define HUBII_XBOW_CREDIT 3
+#define HUBII_XBOW_REV2_CREDIT 4
/*
* Number of credits that xtalk devices should use when communicating
@@ -3159,28 +3049,28 @@ typedef union ii_ippr_u {
*/
#define IIO_ICMR_CRB_VLD_SHFT 20
-#define IIO_ICMR_CRB_VLD_MASK (0x7fffUL << IIO_ICMR_CRB_VLD_SHFT)
+#define IIO_ICMR_CRB_VLD_MASK (0x7fffUL << IIO_ICMR_CRB_VLD_SHFT)
#define IIO_ICMR_FC_CNT_SHFT 16
-#define IIO_ICMR_FC_CNT_MASK (0xf << IIO_ICMR_FC_CNT_SHFT)
+#define IIO_ICMR_FC_CNT_MASK (0xf << IIO_ICMR_FC_CNT_SHFT)
#define IIO_ICMR_C_CNT_SHFT 4
-#define IIO_ICMR_C_CNT_MASK (0xf << IIO_ICMR_C_CNT_SHFT)
+#define IIO_ICMR_C_CNT_MASK (0xf << IIO_ICMR_C_CNT_SHFT)
-#define IIO_ICMR_PRECISE (1UL << 52)
-#define IIO_ICMR_CLR_RPPD (1UL << 13)
-#define IIO_ICMR_CLR_RQPD (1UL << 12)
+#define IIO_ICMR_PRECISE (1UL << 52)
+#define IIO_ICMR_CLR_RPPD (1UL << 13)
+#define IIO_ICMR_CLR_RQPD (1UL << 12)
/*
* IIO PIO Deallocation register field masks : (IIO_IPDR)
XXX present but not needed in bedrock? See the manual.
*/
-#define IIO_IPDR_PND (1 << 4)
+#define IIO_IPDR_PND (1 << 4)
/*
* IIO CRB deallocation register field masks: (IIO_ICDR)
*/
-#define IIO_ICDR_PND (1 << 4)
+#define IIO_ICDR_PND (1 << 4)
/*
* IO BTE Length/Status (IIO_IBLS) register bit field definitions
@@ -3223,35 +3113,35 @@ typedef union ii_ippr_u {
/*
* IO Error Clear register bit field definitions
*/
-#define IECLR_PI1_FWD_INT (1UL << 31) /* clear PI1_FORWARD_INT in iidsr */
-#define IECLR_PI0_FWD_INT (1UL << 30) /* clear PI0_FORWARD_INT in iidsr */
-#define IECLR_SPUR_RD_HDR (1UL << 29) /* clear valid bit in ixss reg */
-#define IECLR_BTE1 (1UL << 18) /* clear bte error 1 */
-#define IECLR_BTE0 (1UL << 17) /* clear bte error 0 */
-#define IECLR_CRAZY (1UL << 16) /* clear crazy bit in wstat reg */
-#define IECLR_PRB_F (1UL << 15) /* clear err bit in PRB_F reg */
-#define IECLR_PRB_E (1UL << 14) /* clear err bit in PRB_E reg */
-#define IECLR_PRB_D (1UL << 13) /* clear err bit in PRB_D reg */
-#define IECLR_PRB_C (1UL << 12) /* clear err bit in PRB_C reg */
-#define IECLR_PRB_B (1UL << 11) /* clear err bit in PRB_B reg */
-#define IECLR_PRB_A (1UL << 10) /* clear err bit in PRB_A reg */
-#define IECLR_PRB_9 (1UL << 9) /* clear err bit in PRB_9 reg */
-#define IECLR_PRB_8 (1UL << 8) /* clear err bit in PRB_8 reg */
-#define IECLR_PRB_0 (1UL << 0) /* clear err bit in PRB_0 reg */
+#define IECLR_PI1_FWD_INT (1UL << 31) /* clear PI1_FORWARD_INT in iidsr */
+#define IECLR_PI0_FWD_INT (1UL << 30) /* clear PI0_FORWARD_INT in iidsr */
+#define IECLR_SPUR_RD_HDR (1UL << 29) /* clear valid bit in ixss reg */
+#define IECLR_BTE1 (1UL << 18) /* clear bte error 1 */
+#define IECLR_BTE0 (1UL << 17) /* clear bte error 0 */
+#define IECLR_CRAZY (1UL << 16) /* clear crazy bit in wstat reg */
+#define IECLR_PRB_F (1UL << 15) /* clear err bit in PRB_F reg */
+#define IECLR_PRB_E (1UL << 14) /* clear err bit in PRB_E reg */
+#define IECLR_PRB_D (1UL << 13) /* clear err bit in PRB_D reg */
+#define IECLR_PRB_C (1UL << 12) /* clear err bit in PRB_C reg */
+#define IECLR_PRB_B (1UL << 11) /* clear err bit in PRB_B reg */
+#define IECLR_PRB_A (1UL << 10) /* clear err bit in PRB_A reg */
+#define IECLR_PRB_9 (1UL << 9) /* clear err bit in PRB_9 reg */
+#define IECLR_PRB_8 (1UL << 8) /* clear err bit in PRB_8 reg */
+#define IECLR_PRB_0 (1UL << 0) /* clear err bit in PRB_0 reg */
/*
* IIO CRB control register Fields: IIO_ICCR
*/
-#define IIO_ICCR_PENDING (0x10000)
-#define IIO_ICCR_CMD_MASK (0xFF)
-#define IIO_ICCR_CMD_SHFT (7)
-#define IIO_ICCR_CMD_NOP (0x0) /* No Op */
-#define IIO_ICCR_CMD_WAKE (0x100) /* Reactivate CRB entry and process */
-#define IIO_ICCR_CMD_TIMEOUT (0x200) /* Make CRB timeout & mark invalid */
-#define IIO_ICCR_CMD_EJECT (0x400) /* Contents of entry written to memory
+#define IIO_ICCR_PENDING 0x10000
+#define IIO_ICCR_CMD_MASK 0xFF
+#define IIO_ICCR_CMD_SHFT 7
+#define IIO_ICCR_CMD_NOP 0x0 /* No Op */
+#define IIO_ICCR_CMD_WAKE 0x100 /* Reactivate CRB entry and process */
+#define IIO_ICCR_CMD_TIMEOUT 0x200 /* Make CRB timeout & mark invalid */
+#define IIO_ICCR_CMD_EJECT 0x400 /* Contents of entry written to memory
* via a WB
*/
-#define IIO_ICCR_CMD_FLUSH (0x800)
+#define IIO_ICCR_CMD_FLUSH 0x800
/*
*
@@ -3283,8 +3173,8 @@ typedef union ii_ippr_u {
* Easy access macros for CRBs, all 5 registers (A-E)
*/
typedef ii_icrb0_a_u_t icrba_t;
-#define a_sidn ii_icrb0_a_fld_s.ia_sidn
-#define a_tnum ii_icrb0_a_fld_s.ia_tnum
+#define a_sidn ii_icrb0_a_fld_s.ia_sidn
+#define a_tnum ii_icrb0_a_fld_s.ia_tnum
#define a_addr ii_icrb0_a_fld_s.ia_addr
#define a_valid ii_icrb0_a_fld_s.ia_vld
#define a_iow ii_icrb0_a_fld_s.ia_iow
@@ -3324,14 +3214,13 @@ typedef ii_icrb0_c_u_t icrbc_t;
#define c_source ii_icrb0_c_fld_s.ic_source
#define c_regvalue ii_icrb0_c_regval
-
typedef ii_icrb0_d_u_t icrbd_t;
#define d_sleep ii_icrb0_d_fld_s.id_sleep
#define d_pricnt ii_icrb0_d_fld_s.id_pr_cnt
#define d_pripsc ii_icrb0_d_fld_s.id_pr_psc
#define d_bteop ii_icrb0_d_fld_s.id_bte_op
-#define d_bteaddr ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names*/
-#define d_benable ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names*/
+#define d_bteaddr ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names */
+#define d_benable ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names */
#define d_regvalue ii_icrb0_d_regval
typedef ii_icrb0_e_u_t icrbe_t;
@@ -3341,7 +3230,6 @@ typedef ii_icrb0_e_u_t icrbe_t;
#define icrbe_timeout ii_icrb0_e_fld_s.ie_timeout
#define e_regvalue ii_icrb0_e_regval
-
/* Number of widgets supported by shub */
#define HUB_NUM_WIDGET 9
#define HUB_WIDGET_ID_MIN 0x8
@@ -3367,27 +3255,27 @@ typedef ii_icrb0_e_u_t icrbe_t;
#define LNK_STAT_WORKING 0x2 /* LLP is working */
-#define IIO_WSTAT_ECRAZY (1ULL << 32) /* Hub gone crazy */
-#define IIO_WSTAT_TXRETRY (1ULL << 9) /* Hub Tx Retry timeout */
-#define IIO_WSTAT_TXRETRY_MASK (0x7F) /* should be 0xFF?? */
-#define IIO_WSTAT_TXRETRY_SHFT (16)
-#define IIO_WSTAT_TXRETRY_CNT(w) (((w) >> IIO_WSTAT_TXRETRY_SHFT) & \
- IIO_WSTAT_TXRETRY_MASK)
+#define IIO_WSTAT_ECRAZY (1ULL << 32) /* Hub gone crazy */
+#define IIO_WSTAT_TXRETRY (1ULL << 9) /* Hub Tx Retry timeout */
+#define IIO_WSTAT_TXRETRY_MASK 0x7F /* should be 0xFF?? */
+#define IIO_WSTAT_TXRETRY_SHFT 16
+#define IIO_WSTAT_TXRETRY_CNT(w) (((w) >> IIO_WSTAT_TXRETRY_SHFT) & \
+ IIO_WSTAT_TXRETRY_MASK)
/* Number of II perf. counters we can multiplex at once */
#define IO_PERF_SETS 32
/* Bit for the widget in inbound access register */
-#define IIO_IIWA_WIDGET(_w) ((uint64_t)(1ULL << _w))
+#define IIO_IIWA_WIDGET(_w) ((uint64_t)(1ULL << _w))
/* Bit for the widget in outbound access register */
-#define IIO_IOWA_WIDGET(_w) ((uint64_t)(1ULL << _w))
+#define IIO_IOWA_WIDGET(_w) ((uint64_t)(1ULL << _w))
/* NOTE: The following define assumes that we are going to get
* widget numbers from 8 thru F and the device numbers within
* widget from 0 thru 7.
*/
-#define IIO_IIDEM_WIDGETDEV_MASK(w, d) ((uint64_t)(1ULL << (8 * ((w) - 8) + (d))))
+#define IIO_IIDEM_WIDGETDEV_MASK(w, d) ((uint64_t)(1ULL << (8 * ((w) - 8) + (d))))
/* IO Interrupt Destination Register */
#define IIO_IIDSR_SENT_SHIFT 28
@@ -3402,11 +3290,11 @@ typedef ii_icrb0_e_u_t icrbe_t;
#define IIO_IIDSR_LVL_MASK 0x000000ff
/* Xtalk timeout threshhold register (IIO_IXTT) */
-#define IXTT_RRSP_TO_SHFT 55 /* read response timeout */
+#define IXTT_RRSP_TO_SHFT 55 /* read response timeout */
#define IXTT_RRSP_TO_MASK (0x1FULL << IXTT_RRSP_TO_SHFT)
-#define IXTT_RRSP_PS_SHFT 32 /* read responsed TO prescalar */
+#define IXTT_RRSP_PS_SHFT 32 /* read responsed TO prescalar */
#define IXTT_RRSP_PS_MASK (0x7FFFFFULL << IXTT_RRSP_PS_SHFT)
-#define IXTT_TAIL_TO_SHFT 0 /* tail timeout counter threshold */
+#define IXTT_TAIL_TO_SHFT 0 /* tail timeout counter threshold */
#define IXTT_TAIL_TO_MASK (0x3FFFFFFULL << IXTT_TAIL_TO_SHFT)
/*
@@ -3414,17 +3302,17 @@ typedef ii_icrb0_e_u_t icrbe_t;
*/
typedef union hubii_wcr_u {
- uint64_t wcr_reg_value;
- struct {
- uint64_t wcr_widget_id: 4, /* LLP crossbar credit */
- wcr_tag_mode: 1, /* Tag mode */
- wcr_rsvd1: 8, /* Reserved */
- wcr_xbar_crd: 3, /* LLP crossbar credit */
- wcr_f_bad_pkt: 1, /* Force bad llp pkt enable */
- wcr_dir_con: 1, /* widget direct connect */
- wcr_e_thresh: 5, /* elasticity threshold */
- wcr_rsvd: 41; /* unused */
- } wcr_fields_s;
+ uint64_t wcr_reg_value;
+ struct {
+ uint64_t wcr_widget_id:4, /* LLP crossbar credit */
+ wcr_tag_mode:1, /* Tag mode */
+ wcr_rsvd1:8, /* Reserved */
+ wcr_xbar_crd:3, /* LLP crossbar credit */
+ wcr_f_bad_pkt:1, /* Force bad llp pkt enable */
+ wcr_dir_con:1, /* widget direct connect */
+ wcr_e_thresh:5, /* elasticity threshold */
+ wcr_rsvd:41; /* unused */
+ } wcr_fields_s;
} hubii_wcr_t;
#define iwcr_dir_con wcr_fields_s.wcr_dir_con
@@ -3436,41 +3324,35 @@ performance registers */
performed */
typedef union io_perf_sel {
- uint64_t perf_sel_reg;
- struct {
- uint64_t perf_ippr0 : 4,
- perf_ippr1 : 4,
- perf_icct : 8,
- perf_rsvd : 48;
- } perf_sel_bits;
+ uint64_t perf_sel_reg;
+ struct {
+ uint64_t perf_ippr0:4, perf_ippr1:4, perf_icct:8, perf_rsvd:48;
+ } perf_sel_bits;
} io_perf_sel_t;
/* io_perf_cnt is to extract the count from the shub registers. Due to
hardware problems there is only one counter, not two. */
typedef union io_perf_cnt {
- uint64_t perf_cnt;
- struct {
- uint64_t perf_cnt : 20,
- perf_rsvd2 : 12,
- perf_rsvd1 : 32;
- } perf_cnt_bits;
+ uint64_t perf_cnt;
+ struct {
+ uint64_t perf_cnt:20, perf_rsvd2:12, perf_rsvd1:32;
+ } perf_cnt_bits;
} io_perf_cnt_t;
typedef union iprte_a {
- uint64_t entry;
- struct {
- uint64_t i_rsvd_1 : 3;
- uint64_t i_addr : 38;
- uint64_t i_init : 3;
- uint64_t i_source : 8;
- uint64_t i_rsvd : 2;
- uint64_t i_widget : 4;
- uint64_t i_to_cnt : 5;
- uint64_t i_vld : 1;
+ uint64_t entry;
+ struct {
+ uint64_t i_rsvd_1:3;
+ uint64_t i_addr:38;
+ uint64_t i_init:3;
+ uint64_t i_source:8;
+ uint64_t i_rsvd:2;
+ uint64_t i_widget:4;
+ uint64_t i_to_cnt:5;
+ uint64_t i_vld:1;
} iprte_fields;
} iprte_a_t;
-#endif /* _ASM_IA64_SN_SHUBIO_H */
-
+#endif /* _ASM_IA64_SN_SHUBIO_H */
diff --git a/include/asm-ia64/sn/sn_cpuid.h b/include/asm-ia64/sn/sn_cpuid.h
index 685435af170d..20b300187669 100644
--- a/include/asm-ia64/sn/sn_cpuid.h
+++ b/include/asm-ia64/sn/sn_cpuid.h
@@ -4,7 +4,7 @@
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
- * Copyright (C) 2000-2004 Silicon Graphics, Inc. All rights reserved.
+ * Copyright (C) 2000-2005 Silicon Graphics, Inc. All rights reserved.
*/
@@ -92,24 +92,24 @@
* NOTE: on non-MP systems, only cpuid 0 exists
*/
-extern short physical_node_map[]; /* indexed by nasid to get cnode */
+extern short physical_node_map[]; /* indexed by nasid to get cnode */
/*
* Macros for retrieving info about current cpu
*/
-#define get_nasid() (nodepda->phys_cpuid[smp_processor_id()].nasid)
-#define get_subnode() (nodepda->phys_cpuid[smp_processor_id()].subnode)
-#define get_slice() (nodepda->phys_cpuid[smp_processor_id()].slice)
-#define get_cnode() (nodepda->phys_cpuid[smp_processor_id()].cnode)
-#define get_sapicid() ((ia64_getreg(_IA64_REG_CR_LID) >> 16) & 0xffff)
+#define get_nasid() (sn_nodepda->phys_cpuid[smp_processor_id()].nasid)
+#define get_subnode() (sn_nodepda->phys_cpuid[smp_processor_id()].subnode)
+#define get_slice() (sn_nodepda->phys_cpuid[smp_processor_id()].slice)
+#define get_cnode() (sn_nodepda->phys_cpuid[smp_processor_id()].cnode)
+#define get_sapicid() ((ia64_getreg(_IA64_REG_CR_LID) >> 16) & 0xffff)
/*
* Macros for retrieving info about an arbitrary cpu
* cpuid - logical cpu id
*/
-#define cpuid_to_nasid(cpuid) (nodepda->phys_cpuid[cpuid].nasid)
-#define cpuid_to_subnode(cpuid) (nodepda->phys_cpuid[cpuid].subnode)
-#define cpuid_to_slice(cpuid) (nodepda->phys_cpuid[cpuid].slice)
+#define cpuid_to_nasid(cpuid) (sn_nodepda->phys_cpuid[cpuid].nasid)
+#define cpuid_to_subnode(cpuid) (sn_nodepda->phys_cpuid[cpuid].subnode)
+#define cpuid_to_slice(cpuid) (sn_nodepda->phys_cpuid[cpuid].slice)
#define cpuid_to_cnodeid(cpuid) (physical_node_map[cpuid_to_nasid(cpuid)])
@@ -123,11 +123,8 @@ extern int nasid_slice_to_cpuid(int, int);
/*
* cnodeid_to_nasid - convert a cnodeid to a NASID
- * Macro relies on pg_data for a node being on the node itself.
- * Just extract the NASID from the pointer.
- *
*/
-#define cnodeid_to_nasid(cnodeid) pda->cnodeid_to_nasid_table[cnodeid]
+#define cnodeid_to_nasid(cnodeid) (sn_cnodeid_to_nasid[cnodeid])
/*
* nasid_to_cnodeid - convert a NASID to a cnodeid
diff --git a/include/asm-ia64/sn/sn_fru.h b/include/asm-ia64/sn/sn_fru.h
deleted file mode 100644
index 8c21ac3f0156..000000000000
--- a/include/asm-ia64/sn/sn_fru.h
+++ /dev/null
@@ -1,44 +0,0 @@
-/*
- * This file is subject to the terms and conditions of the GNU General Public
- * License. See the file "COPYING" in the main directory of this archive
- * for more details.
- *
- * Copyright (C) 1992-1997,1999-2004 Silicon Graphics, Inc. All rights reserved.
- */
-#ifndef _ASM_IA64_SN_SN_FRU_H
-#define _ASM_IA64_SN_SN_FRU_H
-
-#define MAX_DIMMS 8 /* max # of dimm banks */
-#define MAX_PCIDEV 8 /* max # of pci devices on a pci bus */
-
-typedef unsigned char confidence_t;
-
-typedef struct kf_mem_s {
- confidence_t km_confidence; /* confidence level that the memory is bad
- * is this necessary ?
- */
- confidence_t km_dimm[MAX_DIMMS];
- /* confidence level that dimm[i] is bad
- *I think this is the right number
- */
-
-} kf_mem_t;
-
-typedef struct kf_cpu_s {
- confidence_t kc_confidence; /* confidence level that cpu is bad */
- confidence_t kc_icache; /* confidence level that instr. cache is bad */
- confidence_t kc_dcache; /* confidence level that data cache is bad */
- confidence_t kc_scache; /* confidence level that sec. cache is bad */
- confidence_t kc_sysbus; /* confidence level that sysad/cmd/state bus is bad */
-} kf_cpu_t;
-
-
-typedef struct kf_pci_bus_s {
- confidence_t kpb_belief; /* confidence level that the pci bus is bad */
- confidence_t kpb_pcidev_belief[MAX_PCIDEV];
- /* confidence level that the pci dev is bad */
-} kf_pci_bus_t;
-
-
-#endif /* _ASM_IA64_SN_SN_FRU_H */
-
diff --git a/include/asm-ia64/sn/sn_sal.h b/include/asm-ia64/sn/sn_sal.h
index f914f6da077c..56d74ca76b5d 100644
--- a/include/asm-ia64/sn/sn_sal.h
+++ b/include/asm-ia64/sn/sn_sal.h
@@ -557,7 +557,8 @@ static inline u64
ia64_sn_partition_serial_get(void)
{
struct ia64_sal_retval ret_stuff;
- SAL_CALL(ret_stuff, SN_SAL_PARTITION_SERIAL_GET, 0, 0, 0, 0, 0, 0, 0);
+ ia64_sal_oemcall_reentrant(&ret_stuff, SN_SAL_PARTITION_SERIAL_GET, 0,
+ 0, 0, 0, 0, 0, 0);
if (ret_stuff.status != 0)
return 0;
return ret_stuff.v0;
@@ -565,11 +566,10 @@ ia64_sn_partition_serial_get(void)
static inline u64
sn_partition_serial_number_val(void) {
- if (sn_partition_serial_number) {
- return(sn_partition_serial_number);
- } else {
- return(sn_partition_serial_number = ia64_sn_partition_serial_get());
+ if (unlikely(sn_partition_serial_number == 0)) {
+ sn_partition_serial_number = ia64_sn_partition_serial_get();
}
+ return sn_partition_serial_number;
}
/*
@@ -580,8 +580,8 @@ static inline partid_t
ia64_sn_sysctl_partition_get(nasid_t nasid)
{
struct ia64_sal_retval ret_stuff;
- SAL_CALL(ret_stuff, SN_SAL_SYSCTL_PARTITION_GET, nasid,
- 0, 0, 0, 0, 0, 0);
+ ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_SYSCTL_PARTITION_GET, nasid,
+ 0, 0, 0, 0, 0, 0);
if (ret_stuff.status != 0)
return INVALID_PARTID;
return ((partid_t)ret_stuff.v0);
@@ -595,11 +595,38 @@ extern partid_t sn_partid;
static inline partid_t
sn_local_partid(void) {
- if (sn_partid < 0) {
- return (sn_partid = ia64_sn_sysctl_partition_get(cpuid_to_nasid(smp_processor_id())));
- } else {
- return sn_partid;
+ if (unlikely(sn_partid < 0)) {
+ sn_partid = ia64_sn_sysctl_partition_get(cpuid_to_nasid(smp_processor_id()));
}
+ return sn_partid;
+}
+
+/*
+ * Returns the physical address of the partition's reserved page through
+ * an iterative number of calls.
+ *
+ * On first call, 'cookie' and 'len' should be set to 0, and 'addr'
+ * set to the nasid of the partition whose reserved page's address is
+ * being sought.
+ * On subsequent calls, pass the values, that were passed back on the
+ * previous call.
+ *
+ * While the return status equals SALRET_MORE_PASSES, keep calling
+ * this function after first copying 'len' bytes starting at 'addr'
+ * into 'buf'. Once the return status equals SALRET_OK, 'addr' will
+ * be the physical address of the partition's reserved page. If the
+ * return status equals neither of these, an error as occurred.
+ */
+static inline s64
+sn_partition_reserved_page_pa(u64 buf, u64 *cookie, u64 *addr, u64 *len)
+{
+ struct ia64_sal_retval rv;
+ ia64_sal_oemcall_reentrant(&rv, SN_SAL_GET_PARTITION_ADDR, *cookie,
+ *addr, buf, *len, 0, 0, 0);
+ *cookie = rv.v0;
+ *addr = rv.v1;
+ *len = rv.v2;
+ return rv.status;
}
/*
@@ -621,8 +648,8 @@ static inline int
sn_register_xp_addr_region(u64 paddr, u64 len, int operation)
{
struct ia64_sal_retval ret_stuff;
- SAL_CALL(ret_stuff, SN_SAL_XP_ADDR_REGION, paddr, len, (u64)operation,
- 0, 0, 0, 0);
+ ia64_sal_oemcall(&ret_stuff, SN_SAL_XP_ADDR_REGION, paddr, len,
+ (u64)operation, 0, 0, 0, 0);
return ret_stuff.status;
}
@@ -646,8 +673,8 @@ sn_register_nofault_code(u64 start_addr, u64 end_addr, u64 return_addr,
} else {
call = SN_SAL_NO_FAULT_ZONE_PHYSICAL;
}
- SAL_CALL(ret_stuff, call, start_addr, end_addr, return_addr, (u64)1,
- 0, 0, 0);
+ ia64_sal_oemcall(&ret_stuff, call, start_addr, end_addr, return_addr,
+ (u64)1, 0, 0, 0);
return ret_stuff.status;
}
@@ -668,8 +695,8 @@ static inline int
sn_change_coherence(u64 *new_domain, u64 *old_domain)
{
struct ia64_sal_retval ret_stuff;
- SAL_CALL(ret_stuff, SN_SAL_COHERENCE, new_domain, old_domain, 0, 0,
- 0, 0, 0);
+ ia64_sal_oemcall(&ret_stuff, SN_SAL_COHERENCE, (u64)new_domain,
+ (u64)old_domain, 0, 0, 0, 0, 0);
return ret_stuff.status;
}
@@ -688,8 +715,8 @@ sn_change_memprotect(u64 paddr, u64 len, u64 perms, u64 *nasid_array)
cnodeid = nasid_to_cnodeid(get_node_number(paddr));
// spin_lock(&NODEPDA(cnodeid)->bist_lock);
local_irq_save(irq_flags);
- SAL_CALL_NOLOCK(ret_stuff, SN_SAL_MEMPROTECT, paddr, len, nasid_array,
- perms, 0, 0, 0);
+ ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_MEMPROTECT, paddr, len,
+ (u64)nasid_array, perms, 0, 0, 0);
local_irq_restore(irq_flags);
// spin_unlock(&NODEPDA(cnodeid)->bist_lock);
return ret_stuff.status;
diff --git a/include/asm-ia64/sn/sndrv.h b/include/asm-ia64/sn/sndrv.h
deleted file mode 100644
index aa00d42cde32..000000000000
--- a/include/asm-ia64/sn/sndrv.h
+++ /dev/null
@@ -1,47 +0,0 @@
-/*
- * This file is subject to the terms and conditions of the GNU General Public
- * License. See the file "COPYING" in the main directory of this archive
- * for more details.
- *
- * Copyright (c) 2002-2004 Silicon Graphics, Inc. All Rights Reserved.
- */
-
-#ifndef _ASM_IA64_SN_SNDRV_H
-#define _ASM_IA64_SN_SNDRV_H
-
-/* ioctl commands */
-#define SNDRV_GET_ROUTERINFO 1
-#define SNDRV_GET_INFOSIZE 2
-#define SNDRV_GET_HUBINFO 3
-#define SNDRV_GET_FLASHLOGSIZE 4
-#define SNDRV_SET_FLASHSYNC 5
-#define SNDRV_GET_FLASHLOGDATA 6
-#define SNDRV_GET_FLASHLOGALL 7
-
-#define SNDRV_SET_HISTOGRAM_TYPE 14
-
-#define SNDRV_ELSC_COMMAND 19
-#define SNDRV_CLEAR_LOG 20
-#define SNDRV_INIT_LOG 21
-#define SNDRV_GET_PIMM_PSC 22
-#define SNDRV_SET_PARTITION 23
-#define SNDRV_GET_PARTITION 24
-
-/* see synergy_perf_ioctl() */
-#define SNDRV_GET_SYNERGY_VERSION 30
-#define SNDRV_GET_SYNERGY_STATUS 31
-#define SNDRV_GET_SYNERGYINFO 32
-#define SNDRV_SYNERGY_APPEND 33
-#define SNDRV_SYNERGY_ENABLE 34
-#define SNDRV_SYNERGY_FREQ 35
-
-/* Devices */
-#define SNDRV_UKNOWN_DEVICE -1
-#define SNDRV_ROUTER_DEVICE 1
-#define SNDRV_HUB_DEVICE 2
-#define SNDRV_ELSC_NVRAM_DEVICE 3
-#define SNDRV_ELSC_CONTROLLER_DEVICE 4
-#define SNDRV_SYSCTL_SUBCH 5
-#define SNDRV_SYNERGY_DEVICE 6
-
-#endif /* _ASM_IA64_SN_SNDRV_H */
diff --git a/include/asm-ia64/sn/xp.h b/include/asm-ia64/sn/xp.h
new file mode 100644
index 000000000000..9902185c0288
--- /dev/null
+++ b/include/asm-ia64/sn/xp.h
@@ -0,0 +1,436 @@
+/*
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ * Copyright (C) 2004-2005 Silicon Graphics, Inc. All rights reserved.
+ */
+
+
+/*
+ * External Cross Partition (XP) structures and defines.
+ */
+
+
+#ifndef _ASM_IA64_SN_XP_H
+#define _ASM_IA64_SN_XP_H
+
+
+#include <linux/version.h>
+#include <linux/cache.h>
+#include <linux/hardirq.h>
+#include <asm/sn/types.h>
+#include <asm/sn/bte.h>
+
+
+#ifdef USE_DBUG_ON
+#define DBUG_ON(condition) BUG_ON(condition)
+#else
+#define DBUG_ON(condition)
+#endif
+
+
+/*
+ * Define the maximum number of logically defined partitions the system
+ * can support. It is constrained by the maximum number of hardware
+ * partitionable regions. The term 'region' in this context refers to the
+ * minimum number of nodes that can comprise an access protection grouping.
+ * The access protection is in regards to memory, IPI and IOI.
+ *
+ * The maximum number of hardware partitionable regions is equal to the
+ * maximum number of nodes in the entire system divided by the minimum number
+ * of nodes that comprise an access protection grouping.
+ */
+#define XP_MAX_PARTITIONS 64
+
+
+/*
+ * Define the number of u64s required to represent all the C-brick nasids
+ * as a bitmap. The cross-partition kernel modules deal only with
+ * C-brick nasids, thus the need for bitmaps which don't account for
+ * odd-numbered (non C-brick) nasids.
+ */
+#define XP_MAX_PHYSNODE_ID (MAX_PHYSNODE_ID / 2)
+#define XP_NASID_MASK_BYTES ((XP_MAX_PHYSNODE_ID + 7) / 8)
+#define XP_NASID_MASK_WORDS ((XP_MAX_PHYSNODE_ID + 63) / 64)
+
+
+/*
+ * Wrapper for bte_copy() that should it return a failure status will retry
+ * the bte_copy() once in the hope that the failure was due to a temporary
+ * aberration (i.e., the link going down temporarily).
+ *
+ * See bte_copy for definition of the input parameters.
+ *
+ * Note: xp_bte_copy() should never be called while holding a spinlock.
+ */
+static inline bte_result_t
+xp_bte_copy(u64 src, u64 dest, u64 len, u64 mode, void *notification)
+{
+ bte_result_t ret;
+
+
+ ret = bte_copy(src, dest, len, mode, notification);
+
+ if (ret != BTE_SUCCESS) {
+ if (!in_interrupt()) {
+ cond_resched();
+ }
+ ret = bte_copy(src, dest, len, mode, notification);
+ }
+
+ return ret;
+}
+
+
+/*
+ * XPC establishes channel connections between the local partition and any
+ * other partition that is currently up. Over these channels, kernel-level
+ * `users' can communicate with their counterparts on the other partitions.
+ *
+ * The maxinum number of channels is limited to eight. For performance reasons,
+ * the internal cross partition structures require sixteen bytes per channel,
+ * and eight allows all of this interface-shared info to fit in one cache line.
+ *
+ * XPC_NCHANNELS reflects the total number of channels currently defined.
+ * If the need for additional channels arises, one can simply increase
+ * XPC_NCHANNELS accordingly. If the day should come where that number
+ * exceeds the MAXIMUM number of channels allowed (eight), then one will need
+ * to make changes to the XPC code to allow for this.
+ */
+#define XPC_MEM_CHANNEL 0 /* memory channel number */
+#define XPC_NET_CHANNEL 1 /* network channel number */
+
+#define XPC_NCHANNELS 2 /* #of defined channels */
+#define XPC_MAX_NCHANNELS 8 /* max #of channels allowed */
+
+#if XPC_NCHANNELS > XPC_MAX_NCHANNELS
+#error XPC_NCHANNELS exceeds MAXIMUM allowed.
+#endif
+
+
+/*
+ * The format of an XPC message is as follows:
+ *
+ * +-------+--------------------------------+
+ * | flags |////////////////////////////////|
+ * +-------+--------------------------------+
+ * | message # |
+ * +----------------------------------------+
+ * | payload (user-defined message) |
+ * | |
+ * :
+ * | |
+ * +----------------------------------------+
+ *
+ * The size of the payload is defined by the user via xpc_connect(). A user-
+ * defined message resides in the payload area.
+ *
+ * The user should have no dealings with the message header, but only the
+ * message's payload. When a message entry is allocated (via xpc_allocate())
+ * a pointer to the payload area is returned and not the actual beginning of
+ * the XPC message. The user then constructs a message in the payload area
+ * and passes that pointer as an argument on xpc_send() or xpc_send_notify().
+ *
+ * The size of a message entry (within a message queue) must be a cacheline
+ * sized multiple in order to facilitate the BTE transfer of messages from one
+ * message queue to another. A macro, XPC_MSG_SIZE(), is provided for the user
+ * that wants to fit as many msg entries as possible in a given memory size
+ * (e.g. a memory page).
+ */
+struct xpc_msg {
+ u8 flags; /* FOR XPC INTERNAL USE ONLY */
+ u8 reserved[7]; /* FOR XPC INTERNAL USE ONLY */
+ s64 number; /* FOR XPC INTERNAL USE ONLY */
+
+ u64 payload; /* user defined portion of message */
+};
+
+
+#define XPC_MSG_PAYLOAD_OFFSET (u64) (&((struct xpc_msg *)0)->payload)
+#define XPC_MSG_SIZE(_payload_size) \
+ L1_CACHE_ALIGN(XPC_MSG_PAYLOAD_OFFSET + (_payload_size))
+
+
+/*
+ * Define the return values and values passed to user's callout functions.
+ * (It is important to add new value codes at the end just preceding
+ * xpcUnknownReason, which must have the highest numerical value.)
+ */
+enum xpc_retval {
+ xpcSuccess = 0,
+
+ xpcNotConnected, /* 1: channel is not connected */
+ xpcConnected, /* 2: channel connected (opened) */
+ xpcRETIRED1, /* 3: (formerly xpcDisconnected) */
+
+ xpcMsgReceived, /* 4: message received */
+ xpcMsgDelivered, /* 5: message delivered and acknowledged */
+
+ xpcRETIRED2, /* 6: (formerly xpcTransferFailed) */
+
+ xpcNoWait, /* 7: operation would require wait */
+ xpcRetry, /* 8: retry operation */
+ xpcTimeout, /* 9: timeout in xpc_allocate_msg_wait() */
+ xpcInterrupted, /* 10: interrupted wait */
+
+ xpcUnequalMsgSizes, /* 11: message size disparity between sides */
+ xpcInvalidAddress, /* 12: invalid address */
+
+ xpcNoMemory, /* 13: no memory available for XPC structures */
+ xpcLackOfResources, /* 14: insufficient resources for operation */
+ xpcUnregistered, /* 15: channel is not registered */
+ xpcAlreadyRegistered, /* 16: channel is already registered */
+
+ xpcPartitionDown, /* 17: remote partition is down */
+ xpcNotLoaded, /* 18: XPC module is not loaded */
+ xpcUnloading, /* 19: this side is unloading XPC module */
+
+ xpcBadMagic, /* 20: XPC MAGIC string not found */
+
+ xpcReactivating, /* 21: remote partition was reactivated */
+
+ xpcUnregistering, /* 22: this side is unregistering channel */
+ xpcOtherUnregistering, /* 23: other side is unregistering channel */
+
+ xpcCloneKThread, /* 24: cloning kernel thread */
+ xpcCloneKThreadFailed, /* 25: cloning kernel thread failed */
+
+ xpcNoHeartbeat, /* 26: remote partition has no heartbeat */
+
+ xpcPioReadError, /* 27: PIO read error */
+ xpcPhysAddrRegFailed, /* 28: registration of phys addr range failed */
+
+ xpcBteDirectoryError, /* 29: maps to BTEFAIL_DIR */
+ xpcBtePoisonError, /* 30: maps to BTEFAIL_POISON */
+ xpcBteWriteError, /* 31: maps to BTEFAIL_WERR */
+ xpcBteAccessError, /* 32: maps to BTEFAIL_ACCESS */
+ xpcBtePWriteError, /* 33: maps to BTEFAIL_PWERR */
+ xpcBtePReadError, /* 34: maps to BTEFAIL_PRERR */
+ xpcBteTimeOutError, /* 35: maps to BTEFAIL_TOUT */
+ xpcBteXtalkError, /* 36: maps to BTEFAIL_XTERR */
+ xpcBteNotAvailable, /* 37: maps to BTEFAIL_NOTAVAIL */
+ xpcBteUnmappedError, /* 38: unmapped BTEFAIL_ error */
+
+ xpcBadVersion, /* 39: bad version number */
+ xpcVarsNotSet, /* 40: the XPC variables are not set up */
+ xpcNoRsvdPageAddr, /* 41: unable to get rsvd page's phys addr */
+ xpcInvalidPartid, /* 42: invalid partition ID */
+ xpcLocalPartid, /* 43: local partition ID */
+
+ xpcUnknownReason /* 44: unknown reason -- must be last in list */
+};
+
+
+/*
+ * Define the callout function types used by XPC to update the user on
+ * connection activity and state changes (via the user function registered by
+ * xpc_connect()) and to notify them of messages received and delivered (via
+ * the user function registered by xpc_send_notify()).
+ *
+ * The two function types are xpc_channel_func and xpc_notify_func and
+ * both share the following arguments, with the exception of "data", which
+ * only xpc_channel_func has.
+ *
+ * Arguments:
+ *
+ * reason - reason code. (See following table.)
+ * partid - partition ID associated with condition.
+ * ch_number - channel # associated with condition.
+ * data - pointer to optional data. (See following table.)
+ * key - pointer to optional user-defined value provided as the "key"
+ * argument to xpc_connect() or xpc_send_notify().
+ *
+ * In the following table the "Optional Data" column applies to callouts made
+ * to functions registered by xpc_connect(). A "NA" in that column indicates
+ * that this reason code can be passed to functions registered by
+ * xpc_send_notify() (i.e. they don't have data arguments).
+ *
+ * Also, the first three reason codes in the following table indicate
+ * success, whereas the others indicate failure. When a failure reason code
+ * is received, one can assume that the channel is not connected.
+ *
+ *
+ * Reason Code | Cause | Optional Data
+ * =====================+================================+=====================
+ * xpcConnected | connection has been established| max #of entries
+ * | to the specified partition on | allowed in message
+ * | the specified channel | queue
+ * ---------------------+--------------------------------+---------------------
+ * xpcMsgReceived | an XPC message arrived from | address of payload
+ * | the specified partition on the |
+ * | specified channel | [the user must call
+ * | | xpc_received() when
+ * | | finished with the
+ * | | payload]
+ * ---------------------+--------------------------------+---------------------
+ * xpcMsgDelivered | notification that the message | NA
+ * | was delivered to the intended |
+ * | recipient and that they have |
+ * | acknowledged its receipt by |
+ * | calling xpc_received() |
+ * =====================+================================+=====================
+ * xpcUnequalMsgSizes | can't connect to the specified | NULL
+ * | partition on the specified |
+ * | channel because of mismatched |
+ * | message sizes |
+ * ---------------------+--------------------------------+---------------------
+ * xpcNoMemory | insufficient memory avaiable | NULL
+ * | to allocate message queue |
+ * ---------------------+--------------------------------+---------------------
+ * xpcLackOfResources | lack of resources to create | NULL
+ * | the necessary kthreads to |
+ * | support the channel |
+ * ---------------------+--------------------------------+---------------------
+ * xpcUnregistering | this side's user has | NULL or NA
+ * | unregistered by calling |
+ * | xpc_disconnect() |
+ * ---------------------+--------------------------------+---------------------
+ * xpcOtherUnregistering| the other side's user has | NULL or NA
+ * | unregistered by calling |
+ * | xpc_disconnect() |
+ * ---------------------+--------------------------------+---------------------
+ * xpcNoHeartbeat | the other side's XPC is no | NULL or NA
+ * | longer heartbeating |
+ * | |
+ * ---------------------+--------------------------------+---------------------
+ * xpcUnloading | this side's XPC module is | NULL or NA
+ * | being unloaded |
+ * | |
+ * ---------------------+--------------------------------+---------------------
+ * xpcOtherUnloading | the other side's XPC module is | NULL or NA
+ * | is being unloaded |
+ * | |
+ * ---------------------+--------------------------------+---------------------
+ * xpcPioReadError | xp_nofault_PIOR() returned an | NULL or NA
+ * | error while sending an IPI |
+ * | |
+ * ---------------------+--------------------------------+---------------------
+ * xpcInvalidAddress | the address either received or | NULL or NA
+ * | sent by the specified partition|
+ * | is invalid |
+ * ---------------------+--------------------------------+---------------------
+ * xpcBteNotAvailable | attempt to pull data from the | NULL or NA
+ * xpcBtePoisonError | specified partition over the |
+ * xpcBteWriteError | specified channel via a |
+ * xpcBteAccessError | bte_copy() failed |
+ * xpcBteTimeOutError | |
+ * xpcBteXtalkError | |
+ * xpcBteDirectoryError | |
+ * xpcBteGenericError | |
+ * xpcBteUnmappedError | |
+ * ---------------------+--------------------------------+---------------------
+ * xpcUnknownReason | the specified channel to the | NULL or NA
+ * | specified partition was |
+ * | unavailable for unknown reasons|
+ * =====================+================================+=====================
+ */
+
+typedef void (*xpc_channel_func)(enum xpc_retval reason, partid_t partid,
+ int ch_number, void *data, void *key);
+
+typedef void (*xpc_notify_func)(enum xpc_retval reason, partid_t partid,
+ int ch_number, void *key);
+
+
+/*
+ * The following is a registration entry. There is a global array of these,
+ * one per channel. It is used to record the connection registration made
+ * by the users of XPC. As long as a registration entry exists, for any
+ * partition that comes up, XPC will attempt to establish a connection on
+ * that channel. Notification that a connection has been made will occur via
+ * the xpc_channel_func function.
+ *
+ * The 'func' field points to the function to call when aynchronous
+ * notification is required for such events as: a connection established/lost,
+ * or an incomming message received, or an error condition encountered. A
+ * non-NULL 'func' field indicates that there is an active registration for
+ * the channel.
+ */
+struct xpc_registration {
+ struct semaphore sema;
+ xpc_channel_func func; /* function to call */
+ void *key; /* pointer to user's key */
+ u16 nentries; /* #of msg entries in local msg queue */
+ u16 msg_size; /* message queue's message size */
+ u32 assigned_limit; /* limit on #of assigned kthreads */
+ u32 idle_limit; /* limit on #of idle kthreads */
+} ____cacheline_aligned;
+
+
+#define XPC_CHANNEL_REGISTERED(_c) (xpc_registrations[_c].func != NULL)
+
+
+/* the following are valid xpc_allocate() flags */
+#define XPC_WAIT 0 /* wait flag */
+#define XPC_NOWAIT 1 /* no wait flag */
+
+
+struct xpc_interface {
+ void (*connect)(int);
+ void (*disconnect)(int);
+ enum xpc_retval (*allocate)(partid_t, int, u32, void **);
+ enum xpc_retval (*send)(partid_t, int, void *);
+ enum xpc_retval (*send_notify)(partid_t, int, void *,
+ xpc_notify_func, void *);
+ void (*received)(partid_t, int, void *);
+ enum xpc_retval (*partid_to_nasids)(partid_t, void *);
+};
+
+
+extern struct xpc_interface xpc_interface;
+
+extern void xpc_set_interface(void (*)(int),
+ void (*)(int),
+ enum xpc_retval (*)(partid_t, int, u32, void **),
+ enum xpc_retval (*)(partid_t, int, void *),
+ enum xpc_retval (*)(partid_t, int, void *, xpc_notify_func,
+ void *),
+ void (*)(partid_t, int, void *),
+ enum xpc_retval (*)(partid_t, void *));
+extern void xpc_clear_interface(void);
+
+
+extern enum xpc_retval xpc_connect(int, xpc_channel_func, void *, u16,
+ u16, u32, u32);
+extern void xpc_disconnect(int);
+
+static inline enum xpc_retval
+xpc_allocate(partid_t partid, int ch_number, u32 flags, void **payload)
+{
+ return xpc_interface.allocate(partid, ch_number, flags, payload);
+}
+
+static inline enum xpc_retval
+xpc_send(partid_t partid, int ch_number, void *payload)
+{
+ return xpc_interface.send(partid, ch_number, payload);
+}
+
+static inline enum xpc_retval
+xpc_send_notify(partid_t partid, int ch_number, void *payload,
+ xpc_notify_func func, void *key)
+{
+ return xpc_interface.send_notify(partid, ch_number, payload, func, key);
+}
+
+static inline void
+xpc_received(partid_t partid, int ch_number, void *payload)
+{
+ return xpc_interface.received(partid, ch_number, payload);
+}
+
+static inline enum xpc_retval
+xpc_partid_to_nasids(partid_t partid, void *nasids)
+{
+ return xpc_interface.partid_to_nasids(partid, nasids);
+}
+
+
+extern u64 xp_nofault_PIOR_target;
+extern int xp_nofault_PIOR(void *);
+extern int xp_error_PIOR(void);
+
+
+#endif /* _ASM_IA64_SN_XP_H */
+
diff --git a/kernel/exit.c b/kernel/exit.c
index 7be283d98983..edaa50b5bbfa 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -846,6 +846,8 @@ fastcall NORET_TYPE void do_exit(long code)
for (;;) ;
}
+EXPORT_SYMBOL_GPL(do_exit);
+
NORET_TYPE void complete_and_exit(struct completion *comp, long code)
{
if (comp)
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index fc1b1064c505..b1061b1962f8 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -43,7 +43,9 @@
* initializer cleaner
*/
nodemask_t node_online_map = { { [0] = 1UL } };
+EXPORT_SYMBOL(node_online_map);
nodemask_t node_possible_map = NODE_MASK_ALL;
+EXPORT_SYMBOL(node_possible_map);
struct pglist_data *pgdat_list;
unsigned long totalram_pages;
unsigned long totalhigh_pages;