diff options
author | Paolo Bonzini <pbonzini@redhat.com> | 2015-01-23 15:39:51 +0300 |
---|---|---|
committer | Paolo Bonzini <pbonzini@redhat.com> | 2015-01-23 15:39:51 +0300 |
commit | 1c6007d59a20762052cc92c0a2889ff11030d23a (patch) | |
tree | 40bd72fe4e4d38a811312e5ae35bafd04c995d40 | |
parent | c6156df9d32141e5f1abb43078c56f2e5a0cb294 (diff) | |
parent | 4b990589952f0e30aa860184ac6c76219a74632e (diff) | |
download | linux-1c6007d59a20762052cc92c0a2889ff11030d23a.tar.xz |
Merge tag 'kvm-arm-for-3.20' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-next
KVM/ARM changes for v3.20 including GICv3 emulation, dirty page logging, added
trace symbols, and adding an explicit VGIC init device control IOCTL.
Conflicts:
arch/arm64/include/asm/kvm_arm.h
arch/arm64/kvm/handle_exit.c
50 files changed, 3152 insertions, 996 deletions
diff --git a/Documentation/virtual/kvm/api.txt b/Documentation/virtual/kvm/api.txt index 0007fef4ed81..f4b19d78782b 100644 --- a/Documentation/virtual/kvm/api.txt +++ b/Documentation/virtual/kvm/api.txt @@ -612,11 +612,14 @@ Type: vm ioctl Parameters: none Returns: 0 on success, -1 on error -Creates an interrupt controller model in the kernel. On x86, creates a virtual -ioapic, a virtual PIC (two PICs, nested), and sets up future vcpus to have a -local APIC. IRQ routing for GSIs 0-15 is set to both PIC and IOAPIC; GSI 16-23 -only go to the IOAPIC. On ARM/arm64, a GIC is -created. On s390, a dummy irq routing table is created. +Creates an interrupt controller model in the kernel. +On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up +future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both +PIC and IOAPIC; GSI 16-23 only go to the IOAPIC. +On ARM/arm64, a GICv2 is created. Any other GIC versions require the usage of +KVM_CREATE_DEVICE, which also supports creating a GICv2. Using +KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2. +On s390, a dummy irq routing table is created. Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled before KVM_CREATE_IRQCHIP can be used. diff --git a/Documentation/virtual/kvm/devices/arm-vgic.txt b/Documentation/virtual/kvm/devices/arm-vgic.txt index df8b0c7540b6..3fb905429e8a 100644 --- a/Documentation/virtual/kvm/devices/arm-vgic.txt +++ b/Documentation/virtual/kvm/devices/arm-vgic.txt @@ -3,22 +3,42 @@ ARM Virtual Generic Interrupt Controller (VGIC) Device types supported: KVM_DEV_TYPE_ARM_VGIC_V2 ARM Generic Interrupt Controller v2.0 + KVM_DEV_TYPE_ARM_VGIC_V3 ARM Generic Interrupt Controller v3.0 Only one VGIC instance may be instantiated through either this API or the legacy KVM_CREATE_IRQCHIP api. The created VGIC will act as the VM interrupt controller, requiring emulated user-space devices to inject interrupts to the VGIC instead of directly to CPUs. +Creating a guest GICv3 device requires a host GICv3 as well. +GICv3 implementations with hardware compatibility support allow a guest GICv2 +as well. + Groups: KVM_DEV_ARM_VGIC_GRP_ADDR Attributes: KVM_VGIC_V2_ADDR_TYPE_DIST (rw, 64-bit) Base address in the guest physical address space of the GIC distributor - register mappings. + register mappings. Only valid for KVM_DEV_TYPE_ARM_VGIC_V2. + This address needs to be 4K aligned and the region covers 4 KByte. KVM_VGIC_V2_ADDR_TYPE_CPU (rw, 64-bit) Base address in the guest physical address space of the GIC virtual cpu - interface register mappings. + interface register mappings. Only valid for KVM_DEV_TYPE_ARM_VGIC_V2. + This address needs to be 4K aligned and the region covers 4 KByte. + + KVM_VGIC_V3_ADDR_TYPE_DIST (rw, 64-bit) + Base address in the guest physical address space of the GICv3 distributor + register mappings. Only valid for KVM_DEV_TYPE_ARM_VGIC_V3. + This address needs to be 64K aligned and the region covers 64 KByte. + + KVM_VGIC_V3_ADDR_TYPE_REDIST (rw, 64-bit) + Base address in the guest physical address space of the GICv3 + redistributor register mappings. There are two 64K pages for each + VCPU and all of the redistributor pages are contiguous. + Only valid for KVM_DEV_TYPE_ARM_VGIC_V3. + This address needs to be 64K aligned. + KVM_DEV_ARM_VGIC_GRP_DIST_REGS Attributes: @@ -36,6 +56,7 @@ Groups: the register. Limitations: - Priorities are not implemented, and registers are RAZ/WI + - Currently only implemented for KVM_DEV_TYPE_ARM_VGIC_V2. Errors: -ENODEV: Getting or setting this register is not yet supported -EBUSY: One or more VCPUs are running @@ -68,6 +89,7 @@ Groups: Limitations: - Priorities are not implemented, and registers are RAZ/WI + - Currently only implemented for KVM_DEV_TYPE_ARM_VGIC_V2. Errors: -ENODEV: Getting or setting this register is not yet supported -EBUSY: One or more VCPUs are running @@ -81,3 +103,14 @@ Groups: -EINVAL: Value set is out of the expected range -EBUSY: Value has already be set, or GIC has already been initialized with default values. + + KVM_DEV_ARM_VGIC_GRP_CTRL + Attributes: + KVM_DEV_ARM_VGIC_CTRL_INIT + request the initialization of the VGIC, no additional parameter in + kvm_device_attr.addr. + Errors: + -ENXIO: VGIC not properly configured as required prior to calling + this attribute + -ENODEV: no online VCPU + -ENOMEM: memory shortage when allocating vgic internal data diff --git a/arch/arm/include/asm/kvm_asm.h b/arch/arm/include/asm/kvm_asm.h index 3a67bec72d0c..25410b2d8bc1 100644 --- a/arch/arm/include/asm/kvm_asm.h +++ b/arch/arm/include/asm/kvm_asm.h @@ -96,6 +96,7 @@ extern char __kvm_hyp_code_end[]; extern void __kvm_flush_vm_context(void); extern void __kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa); +extern void __kvm_tlb_flush_vmid(struct kvm *kvm); extern int __kvm_vcpu_run(struct kvm_vcpu *vcpu); #endif diff --git a/arch/arm/include/asm/kvm_emulate.h b/arch/arm/include/asm/kvm_emulate.h index 66ce17655bb9..c52861577567 100644 --- a/arch/arm/include/asm/kvm_emulate.h +++ b/arch/arm/include/asm/kvm_emulate.h @@ -23,6 +23,7 @@ #include <asm/kvm_asm.h> #include <asm/kvm_mmio.h> #include <asm/kvm_arm.h> +#include <asm/cputype.h> unsigned long *vcpu_reg(struct kvm_vcpu *vcpu, u8 reg_num); unsigned long *vcpu_spsr(struct kvm_vcpu *vcpu); @@ -167,9 +168,9 @@ static inline u32 kvm_vcpu_hvc_get_imm(struct kvm_vcpu *vcpu) return kvm_vcpu_get_hsr(vcpu) & HSR_HVC_IMM_MASK; } -static inline unsigned long kvm_vcpu_get_mpidr(struct kvm_vcpu *vcpu) +static inline unsigned long kvm_vcpu_get_mpidr_aff(struct kvm_vcpu *vcpu) { - return vcpu->arch.cp15[c0_MPIDR]; + return vcpu->arch.cp15[c0_MPIDR] & MPIDR_HWID_BITMASK; } static inline void kvm_vcpu_set_be(struct kvm_vcpu *vcpu) diff --git a/arch/arm/include/asm/kvm_host.h b/arch/arm/include/asm/kvm_host.h index 254e0650e48b..bde494654bcc 100644 --- a/arch/arm/include/asm/kvm_host.h +++ b/arch/arm/include/asm/kvm_host.h @@ -68,6 +68,7 @@ struct kvm_arch { /* Interrupt controller */ struct vgic_dist vgic; + int max_vcpus; }; #define KVM_NR_MEM_OBJS 40 @@ -234,6 +235,10 @@ static inline void vgic_arch_setup(const struct vgic_params *vgic) int kvm_perf_init(void); int kvm_perf_teardown(void); +void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot); + +struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr); + static inline void kvm_arch_hardware_disable(void) {} static inline void kvm_arch_hardware_unsetup(void) {} static inline void kvm_arch_sync_events(struct kvm *kvm) {} diff --git a/arch/arm/include/asm/kvm_mmio.h b/arch/arm/include/asm/kvm_mmio.h index adcc0d7d3175..3f83db2f6cf0 100644 --- a/arch/arm/include/asm/kvm_mmio.h +++ b/arch/arm/include/asm/kvm_mmio.h @@ -37,6 +37,7 @@ struct kvm_exit_mmio { u8 data[8]; u32 len; bool is_write; + void *private; }; static inline void kvm_prepare_mmio(struct kvm_run *run, diff --git a/arch/arm/include/asm/kvm_mmu.h b/arch/arm/include/asm/kvm_mmu.h index 63e0ecc04901..2672cf84afd1 100644 --- a/arch/arm/include/asm/kvm_mmu.h +++ b/arch/arm/include/asm/kvm_mmu.h @@ -114,6 +114,27 @@ static inline void kvm_set_s2pmd_writable(pmd_t *pmd) pmd_val(*pmd) |= L_PMD_S2_RDWR; } +static inline void kvm_set_s2pte_readonly(pte_t *pte) +{ + pte_val(*pte) = (pte_val(*pte) & ~L_PTE_S2_RDWR) | L_PTE_S2_RDONLY; +} + +static inline bool kvm_s2pte_readonly(pte_t *pte) +{ + return (pte_val(*pte) & L_PTE_S2_RDWR) == L_PTE_S2_RDONLY; +} + +static inline void kvm_set_s2pmd_readonly(pmd_t *pmd) +{ + pmd_val(*pmd) = (pmd_val(*pmd) & ~L_PMD_S2_RDWR) | L_PMD_S2_RDONLY; +} + +static inline bool kvm_s2pmd_readonly(pmd_t *pmd) +{ + return (pmd_val(*pmd) & L_PMD_S2_RDWR) == L_PMD_S2_RDONLY; +} + + /* Open coded p*d_addr_end that can deal with 64bit addresses */ #define kvm_pgd_addr_end(addr, end) \ ({ u64 __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ diff --git a/arch/arm/include/asm/pgtable-3level.h b/arch/arm/include/asm/pgtable-3level.h index a31ecdad4b59..ae1d30a1aaae 100644 --- a/arch/arm/include/asm/pgtable-3level.h +++ b/arch/arm/include/asm/pgtable-3level.h @@ -130,6 +130,7 @@ #define L_PTE_S2_RDONLY (_AT(pteval_t, 1) << 6) /* HAP[1] */ #define L_PTE_S2_RDWR (_AT(pteval_t, 3) << 6) /* HAP[2:1] */ +#define L_PMD_S2_RDONLY (_AT(pmdval_t, 1) << 6) /* HAP[1] */ #define L_PMD_S2_RDWR (_AT(pmdval_t, 3) << 6) /* HAP[2:1] */ /* diff --git a/arch/arm/include/uapi/asm/kvm.h b/arch/arm/include/uapi/asm/kvm.h index 09ee408c1a67..0db25bc32864 100644 --- a/arch/arm/include/uapi/asm/kvm.h +++ b/arch/arm/include/uapi/asm/kvm.h @@ -175,6 +175,8 @@ struct kvm_arch_memory_slot { #define KVM_DEV_ARM_VGIC_OFFSET_SHIFT 0 #define KVM_DEV_ARM_VGIC_OFFSET_MASK (0xffffffffULL << KVM_DEV_ARM_VGIC_OFFSET_SHIFT) #define KVM_DEV_ARM_VGIC_GRP_NR_IRQS 3 +#define KVM_DEV_ARM_VGIC_GRP_CTRL 4 +#define KVM_DEV_ARM_VGIC_CTRL_INIT 0 /* KVM_IRQ_LINE irq field index values */ #define KVM_ARM_IRQ_TYPE_SHIFT 24 diff --git a/arch/arm/kvm/Kconfig b/arch/arm/kvm/Kconfig index 466bd299b1a8..a8d1ace3ea51 100644 --- a/arch/arm/kvm/Kconfig +++ b/arch/arm/kvm/Kconfig @@ -21,8 +21,10 @@ config KVM select PREEMPT_NOTIFIERS select ANON_INODES select HAVE_KVM_CPU_RELAX_INTERCEPT + select HAVE_KVM_ARCH_TLB_FLUSH_ALL select KVM_MMIO select KVM_ARM_HOST + select KVM_GENERIC_DIRTYLOG_READ_PROTECT depends on ARM_VIRT_EXT && ARM_LPAE ---help--- Support hosting virtualized guest machines. You will also diff --git a/arch/arm/kvm/Makefile b/arch/arm/kvm/Makefile index f7057ed045b6..443b8bea43e9 100644 --- a/arch/arm/kvm/Makefile +++ b/arch/arm/kvm/Makefile @@ -22,4 +22,5 @@ obj-y += arm.o handle_exit.o guest.o mmu.o emulate.o reset.o obj-y += coproc.o coproc_a15.o coproc_a7.o mmio.o psci.o perf.o obj-$(CONFIG_KVM_ARM_VGIC) += $(KVM)/arm/vgic.o obj-$(CONFIG_KVM_ARM_VGIC) += $(KVM)/arm/vgic-v2.o +obj-$(CONFIG_KVM_ARM_VGIC) += $(KVM)/arm/vgic-v2-emul.o obj-$(CONFIG_KVM_ARM_TIMER) += $(KVM)/arm/arch_timer.o diff --git a/arch/arm/kvm/arm.c b/arch/arm/kvm/arm.c index 2d6d91001062..6fbfa5fff05d 100644 --- a/arch/arm/kvm/arm.c +++ b/arch/arm/kvm/arm.c @@ -132,6 +132,9 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) /* Mark the initial VMID generation invalid */ kvm->arch.vmid_gen = 0; + /* The maximum number of VCPUs is limited by the host's GIC model */ + kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus(); + return ret; out_free_stage2_pgd: kvm_free_stage2_pgd(kvm); @@ -218,6 +221,11 @@ struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) goto out; } + if (id >= kvm->arch.max_vcpus) { + err = -EINVAL; + goto out; + } + vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); if (!vcpu) { err = -ENOMEM; @@ -787,9 +795,39 @@ long kvm_arch_vcpu_ioctl(struct file *filp, } } +/** + * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot + * @kvm: kvm instance + * @log: slot id and address to which we copy the log + * + * Steps 1-4 below provide general overview of dirty page logging. See + * kvm_get_dirty_log_protect() function description for additional details. + * + * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we + * always flush the TLB (step 4) even if previous step failed and the dirty + * bitmap may be corrupt. Regardless of previous outcome the KVM logging API + * does not preclude user space subsequent dirty log read. Flushing TLB ensures + * writes will be marked dirty for next log read. + * + * 1. Take a snapshot of the bit and clear it if needed. + * 2. Write protect the corresponding page. + * 3. Copy the snapshot to the userspace. + * 4. Flush TLB's if needed. + */ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) { - return -EINVAL; + bool is_dirty = false; + int r; + + mutex_lock(&kvm->slots_lock); + + r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); + + if (is_dirty) + kvm_flush_remote_tlbs(kvm); + + mutex_unlock(&kvm->slots_lock); + return r; } static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, @@ -821,7 +859,7 @@ long kvm_arch_vm_ioctl(struct file *filp, switch (ioctl) { case KVM_CREATE_IRQCHIP: { if (vgic_present) - return kvm_vgic_create(kvm); + return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); else return -ENXIO; } @@ -1045,6 +1083,19 @@ static void check_kvm_target_cpu(void *ret) *(int *)ret = kvm_target_cpu(); } +struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) +{ + struct kvm_vcpu *vcpu; + int i; + + mpidr &= MPIDR_HWID_BITMASK; + kvm_for_each_vcpu(i, vcpu, kvm) { + if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) + return vcpu; + } + return NULL; +} + /** * Initialize Hyp-mode and memory mappings on all CPUs. */ diff --git a/arch/arm/kvm/handle_exit.c b/arch/arm/kvm/handle_exit.c index a96a8043277c..95f12b2ccdcb 100644 --- a/arch/arm/kvm/handle_exit.c +++ b/arch/arm/kvm/handle_exit.c @@ -87,11 +87,13 @@ static int handle_dabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run) */ static int kvm_handle_wfx(struct kvm_vcpu *vcpu, struct kvm_run *run) { - trace_kvm_wfi(*vcpu_pc(vcpu)); - if (kvm_vcpu_get_hsr(vcpu) & HSR_WFI_IS_WFE) + if (kvm_vcpu_get_hsr(vcpu) & HSR_WFI_IS_WFE) { + trace_kvm_wfx(*vcpu_pc(vcpu), true); kvm_vcpu_on_spin(vcpu); - else + } else { + trace_kvm_wfx(*vcpu_pc(vcpu), false); kvm_vcpu_block(vcpu); + } kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); diff --git a/arch/arm/kvm/interrupts.S b/arch/arm/kvm/interrupts.S index 01dcb0e752d9..79caf79b304a 100644 --- a/arch/arm/kvm/interrupts.S +++ b/arch/arm/kvm/interrupts.S @@ -66,6 +66,17 @@ ENTRY(__kvm_tlb_flush_vmid_ipa) bx lr ENDPROC(__kvm_tlb_flush_vmid_ipa) +/** + * void __kvm_tlb_flush_vmid(struct kvm *kvm) - Flush per-VMID TLBs + * + * Reuses __kvm_tlb_flush_vmid_ipa() for ARMv7, without passing address + * parameter + */ + +ENTRY(__kvm_tlb_flush_vmid) + b __kvm_tlb_flush_vmid_ipa +ENDPROC(__kvm_tlb_flush_vmid) + /******************************************************************** * Flush TLBs and instruction caches of all CPUs inside the inner-shareable * domain, for all VMIDs diff --git a/arch/arm/kvm/mmu.c b/arch/arm/kvm/mmu.c index 1dc9778a00af..74aeabaa3c4d 100644 --- a/arch/arm/kvm/mmu.c +++ b/arch/arm/kvm/mmu.c @@ -45,6 +45,26 @@ static phys_addr_t hyp_idmap_vector; #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t)) #define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x)) +#define kvm_pud_huge(_x) pud_huge(_x) + +#define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0) +#define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1) + +static bool memslot_is_logging(struct kvm_memory_slot *memslot) +{ + return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY); +} + +/** + * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8 + * @kvm: pointer to kvm structure. + * + * Interface to HYP function to flush all VM TLB entries + */ +void kvm_flush_remote_tlbs(struct kvm *kvm) +{ + kvm_call_hyp(__kvm_tlb_flush_vmid, kvm); +} static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa) { @@ -58,6 +78,25 @@ static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa) kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa); } +/** + * stage2_dissolve_pmd() - clear and flush huge PMD entry + * @kvm: pointer to kvm structure. + * @addr: IPA + * @pmd: pmd pointer for IPA + * + * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all + * pages in the range dirty. + */ +static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd) +{ + if (!kvm_pmd_huge(*pmd)) + return; + + pmd_clear(pmd); + kvm_tlb_flush_vmid_ipa(kvm, addr); + put_page(virt_to_page(pmd)); +} + static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, int min, int max) { @@ -767,10 +806,15 @@ static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache } static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, - phys_addr_t addr, const pte_t *new_pte, bool iomap) + phys_addr_t addr, const pte_t *new_pte, + unsigned long flags) { pmd_t *pmd; pte_t *pte, old_pte; + bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP; + bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE; + + VM_BUG_ON(logging_active && !cache); /* Create stage-2 page table mapping - Levels 0 and 1 */ pmd = stage2_get_pmd(kvm, cache, addr); @@ -782,6 +826,13 @@ static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, return 0; } + /* + * While dirty page logging - dissolve huge PMD, then continue on to + * allocate page. + */ + if (logging_active) + stage2_dissolve_pmd(kvm, addr, pmd); + /* Create stage-2 page mappings - Level 2 */ if (pmd_none(*pmd)) { if (!cache) @@ -838,7 +889,8 @@ int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, if (ret) goto out; spin_lock(&kvm->mmu_lock); - ret = stage2_set_pte(kvm, &cache, addr, &pte, true); + ret = stage2_set_pte(kvm, &cache, addr, &pte, + KVM_S2PTE_FLAG_IS_IOMAP); spin_unlock(&kvm->mmu_lock); if (ret) goto out; @@ -905,6 +957,151 @@ static bool kvm_is_device_pfn(unsigned long pfn) return !pfn_valid(pfn); } +/** + * stage2_wp_ptes - write protect PMD range + * @pmd: pointer to pmd entry + * @addr: range start address + * @end: range end address + */ +static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end) +{ + pte_t *pte; + + pte = pte_offset_kernel(pmd, addr); + do { + if (!pte_none(*pte)) { + if (!kvm_s2pte_readonly(pte)) + kvm_set_s2pte_readonly(pte); + } + } while (pte++, addr += PAGE_SIZE, addr != end); +} + +/** + * stage2_wp_pmds - write protect PUD range + * @pud: pointer to pud entry + * @addr: range start address + * @end: range end address + */ +static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end) +{ + pmd_t *pmd; + phys_addr_t next; + + pmd = pmd_offset(pud, addr); + + do { + next = kvm_pmd_addr_end(addr, end); + if (!pmd_none(*pmd)) { + if (kvm_pmd_huge(*pmd)) { + if (!kvm_s2pmd_readonly(pmd)) + kvm_set_s2pmd_readonly(pmd); + } else { + stage2_wp_ptes(pmd, addr, next); + } + } + } while (pmd++, addr = next, addr != end); +} + +/** + * stage2_wp_puds - write protect PGD range + * @pgd: pointer to pgd entry + * @addr: range start address + * @end: range end address + * + * Process PUD entries, for a huge PUD we cause a panic. + */ +static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end) +{ + pud_t *pud; + phys_addr_t next; + + pud = pud_offset(pgd, addr); + do { + next = kvm_pud_addr_end(addr, end); + if (!pud_none(*pud)) { + /* TODO:PUD not supported, revisit later if supported */ + BUG_ON(kvm_pud_huge(*pud)); + stage2_wp_pmds(pud, addr, next); + } + } while (pud++, addr = next, addr != end); +} + +/** + * stage2_wp_range() - write protect stage2 memory region range + * @kvm: The KVM pointer + * @addr: Start address of range + * @end: End address of range + */ +static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end) +{ + pgd_t *pgd; + phys_addr_t next; + + pgd = kvm->arch.pgd + pgd_index(addr); + do { + /* + * Release kvm_mmu_lock periodically if the memory region is + * large. Otherwise, we may see kernel panics with + * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR, + * CONFIG_LOCKDEP. Additionally, holding the lock too long + * will also starve other vCPUs. + */ + if (need_resched() || spin_needbreak(&kvm->mmu_lock)) + cond_resched_lock(&kvm->mmu_lock); + + next = kvm_pgd_addr_end(addr, end); + if (pgd_present(*pgd)) + stage2_wp_puds(pgd, addr, next); + } while (pgd++, addr = next, addr != end); +} + +/** + * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot + * @kvm: The KVM pointer + * @slot: The memory slot to write protect + * + * Called to start logging dirty pages after memory region + * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns + * all present PMD and PTEs are write protected in the memory region. + * Afterwards read of dirty page log can be called. + * + * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired, + * serializing operations for VM memory regions. + */ +void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot) +{ + struct kvm_memory_slot *memslot = id_to_memslot(kvm->memslots, slot); + phys_addr_t start = memslot->base_gfn << PAGE_SHIFT; + phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; + + spin_lock(&kvm->mmu_lock); + stage2_wp_range(kvm, start, end); + spin_unlock(&kvm->mmu_lock); + kvm_flush_remote_tlbs(kvm); +} + +/** + * kvm_arch_mmu_write_protect_pt_masked() - write protect dirty pages + * @kvm: The KVM pointer + * @slot: The memory slot associated with mask + * @gfn_offset: The gfn offset in memory slot + * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory + * slot to be write protected + * + * Walks bits set in mask write protects the associated pte's. Caller must + * acquire kvm_mmu_lock. + */ +void kvm_arch_mmu_write_protect_pt_masked(struct kvm *kvm, + struct kvm_memory_slot *slot, + gfn_t gfn_offset, unsigned long mask) +{ + phys_addr_t base_gfn = slot->base_gfn + gfn_offset; + phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; + phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; + + stage2_wp_range(kvm, start, end); +} + static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, struct kvm_memory_slot *memslot, unsigned long hva, unsigned long fault_status) @@ -919,6 +1116,8 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, pfn_t pfn; pgprot_t mem_type = PAGE_S2; bool fault_ipa_uncached; + bool logging_active = memslot_is_logging(memslot); + unsigned long flags = 0; write_fault = kvm_is_write_fault(vcpu); if (fault_status == FSC_PERM && !write_fault) { @@ -935,7 +1134,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, return -EFAULT; } - if (is_vm_hugetlb_page(vma)) { + if (is_vm_hugetlb_page(vma) && !logging_active) { hugetlb = true; gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT; } else { @@ -976,12 +1175,30 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, if (is_error_pfn(pfn)) return -EFAULT; - if (kvm_is_device_pfn(pfn)) + if (kvm_is_device_pfn(pfn)) { mem_type = PAGE_S2_DEVICE; + flags |= KVM_S2PTE_FLAG_IS_IOMAP; + } else if (logging_active) { + /* + * Faults on pages in a memslot with logging enabled + * should not be mapped with huge pages (it introduces churn + * and performance degradation), so force a pte mapping. + */ + force_pte = true; + flags |= KVM_S2_FLAG_LOGGING_ACTIVE; + + /* + * Only actually map the page as writable if this was a write + * fault. + */ + if (!write_fault) + writable = false; + } spin_lock(&kvm->mmu_lock); if (mmu_notifier_retry(kvm, mmu_seq)) goto out_unlock; + if (!hugetlb && !force_pte) hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa); @@ -999,17 +1216,17 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd); } else { pte_t new_pte = pfn_pte(pfn, mem_type); + if (writable) { kvm_set_s2pte_writable(&new_pte); kvm_set_pfn_dirty(pfn); + mark_page_dirty(kvm, gfn); } coherent_cache_guest_page(vcpu, hva, PAGE_SIZE, fault_ipa_uncached); - ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, - pgprot_val(mem_type) == pgprot_val(PAGE_S2_DEVICE)); + ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags); } - out_unlock: spin_unlock(&kvm->mmu_lock); kvm_release_pfn_clean(pfn); @@ -1159,7 +1376,14 @@ static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data) { pte_t *pte = (pte_t *)data; - stage2_set_pte(kvm, NULL, gpa, pte, false); + /* + * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE + * flag clear because MMU notifiers will have unmapped a huge PMD before + * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and + * therefore stage2_set_pte() never needs to clear out a huge PMD + * through this calling path. + */ + stage2_set_pte(kvm, NULL, gpa, pte, 0); } @@ -1292,6 +1516,13 @@ void kvm_arch_commit_memory_region(struct kvm *kvm, const struct kvm_memory_slot *old, enum kvm_mr_change change) { + /* + * At this point memslot has been committed and there is an + * allocated dirty_bitmap[], dirty pages will be be tracked while the + * memory slot is write protected. + */ + if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) + kvm_mmu_wp_memory_region(kvm, mem->slot); } int kvm_arch_prepare_memory_region(struct kvm *kvm, @@ -1304,7 +1535,8 @@ int kvm_arch_prepare_memory_region(struct kvm *kvm, bool writable = !(mem->flags & KVM_MEM_READONLY); int ret = 0; - if (change != KVM_MR_CREATE && change != KVM_MR_MOVE) + if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && + change != KVM_MR_FLAGS_ONLY) return 0; /* @@ -1355,6 +1587,10 @@ int kvm_arch_prepare_memory_region(struct kvm *kvm, phys_addr_t pa = (vma->vm_pgoff << PAGE_SHIFT) + vm_start - vma->vm_start; + /* IO region dirty page logging not allowed */ + if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) + return -EINVAL; + ret = kvm_phys_addr_ioremap(kvm, gpa, pa, vm_end - vm_start, writable); @@ -1364,6 +1600,9 @@ int kvm_arch_prepare_memory_region(struct kvm *kvm, hva = vm_end; } while (hva < reg_end); + if (change == KVM_MR_FLAGS_ONLY) + return ret; + spin_lock(&kvm->mmu_lock); if (ret) unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size); diff --git a/arch/arm/kvm/psci.c b/arch/arm/kvm/psci.c index 58cb3248d277..02fa8eff6ae1 100644 --- a/arch/arm/kvm/psci.c +++ b/arch/arm/kvm/psci.c @@ -22,6 +22,7 @@ #include <asm/cputype.h> #include <asm/kvm_emulate.h> #include <asm/kvm_psci.h> +#include <asm/kvm_host.h> /* * This is an implementation of the Power State Coordination Interface @@ -66,25 +67,17 @@ static void kvm_psci_vcpu_off(struct kvm_vcpu *vcpu) static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu) { struct kvm *kvm = source_vcpu->kvm; - struct kvm_vcpu *vcpu = NULL, *tmp; + struct kvm_vcpu *vcpu = NULL; wait_queue_head_t *wq; unsigned long cpu_id; unsigned long context_id; - unsigned long mpidr; phys_addr_t target_pc; - int i; - cpu_id = *vcpu_reg(source_vcpu, 1); + cpu_id = *vcpu_reg(source_vcpu, 1) & MPIDR_HWID_BITMASK; if (vcpu_mode_is_32bit(source_vcpu)) cpu_id &= ~((u32) 0); - kvm_for_each_vcpu(i, tmp, kvm) { - mpidr = kvm_vcpu_get_mpidr(tmp); - if ((mpidr & MPIDR_HWID_BITMASK) == (cpu_id & MPIDR_HWID_BITMASK)) { - vcpu = tmp; - break; - } - } + vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id); /* * Make sure the caller requested a valid CPU and that the CPU is @@ -155,7 +148,7 @@ static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu) * then ON else OFF */ kvm_for_each_vcpu(i, tmp, kvm) { - mpidr = kvm_vcpu_get_mpidr(tmp); + mpidr = kvm_vcpu_get_mpidr_aff(tmp); if (((mpidr & target_affinity_mask) == target_affinity) && !tmp->arch.pause) { return PSCI_0_2_AFFINITY_LEVEL_ON; diff --git a/arch/arm/kvm/trace.h b/arch/arm/kvm/trace.h index b1d640f78623..f741449121f3 100644 --- a/arch/arm/kvm/trace.h +++ b/arch/arm/kvm/trace.h @@ -140,19 +140,22 @@ TRACE_EVENT(kvm_emulate_cp15_imp, __entry->CRm, __entry->Op2) ); -TRACE_EVENT(kvm_wfi, - TP_PROTO(unsigned long vcpu_pc), - TP_ARGS(vcpu_pc), +TRACE_EVENT(kvm_wfx, + TP_PROTO(unsigned long vcpu_pc, bool is_wfe), + TP_ARGS(vcpu_pc, is_wfe), TP_STRUCT__entry( __field( unsigned long, vcpu_pc ) + __field( bool, is_wfe ) ), TP_fast_assign( __entry->vcpu_pc = vcpu_pc; + __entry->is_wfe = is_wfe; ), - TP_printk("guest executed wfi at: 0x%08lx", __entry->vcpu_pc) + TP_printk("guest executed wf%c at: 0x%08lx", + __entry->is_wfe ? 'e' : 'i', __entry->vcpu_pc) ); TRACE_EVENT(kvm_unmap_hva, diff --git a/arch/arm64/include/asm/esr.h b/arch/arm64/include/asm/esr.h index 62167090937d..92bbae381598 100644 --- a/arch/arm64/include/asm/esr.h +++ b/arch/arm64/include/asm/esr.h @@ -96,6 +96,7 @@ #define ESR_ELx_COND_SHIFT (20) #define ESR_ELx_COND_MASK (UL(0xF) << ESR_ELx_COND_SHIFT) #define ESR_ELx_WFx_ISS_WFE (UL(1) << 0) +#define ESR_ELx_xVC_IMM_MASK ((1UL << 16) - 1) #ifndef __ASSEMBLY__ #include <asm/types.h> diff --git a/arch/arm64/include/asm/kvm_asm.h b/arch/arm64/include/asm/kvm_asm.h index 483842180f8f..4f7310fa77f0 100644 --- a/arch/arm64/include/asm/kvm_asm.h +++ b/arch/arm64/include/asm/kvm_asm.h @@ -126,6 +126,7 @@ extern char __kvm_hyp_vector[]; extern void __kvm_flush_vm_context(void); extern void __kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa); +extern void __kvm_tlb_flush_vmid(struct kvm *kvm); extern int __kvm_vcpu_run(struct kvm_vcpu *vcpu); diff --git a/arch/arm64/include/asm/kvm_emulate.h b/arch/arm64/include/asm/kvm_emulate.h index 5c56c0d2cef1..c3baa971edab 100644 --- a/arch/arm64/include/asm/kvm_emulate.h +++ b/arch/arm64/include/asm/kvm_emulate.h @@ -29,6 +29,7 @@ #include <asm/kvm_asm.h> #include <asm/kvm_mmio.h> #include <asm/ptrace.h> +#include <asm/cputype.h> unsigned long *vcpu_reg32(const struct kvm_vcpu *vcpu, u8 reg_num); unsigned long *vcpu_spsr32(const struct kvm_vcpu *vcpu); @@ -128,6 +129,11 @@ static inline phys_addr_t kvm_vcpu_get_fault_ipa(const struct kvm_vcpu *vcpu) return ((phys_addr_t)vcpu->arch.fault.hpfar_el2 & HPFAR_MASK) << 8; } +static inline u32 kvm_vcpu_hvc_get_imm(const struct kvm_vcpu *vcpu) +{ + return kvm_vcpu_get_hsr(vcpu) & ESR_ELx_xVC_IMM_MASK; +} + static inline bool kvm_vcpu_dabt_isvalid(const struct kvm_vcpu *vcpu) { return !!(kvm_vcpu_get_hsr(vcpu) & ESR_ELx_ISV); @@ -189,9 +195,9 @@ static inline u8 kvm_vcpu_trap_get_fault_type(const struct kvm_vcpu *vcpu) return kvm_vcpu_get_hsr(vcpu) & ESR_ELx_FSC_TYPE; } -static inline unsigned long kvm_vcpu_get_mpidr(struct kvm_vcpu *vcpu) +static inline unsigned long kvm_vcpu_get_mpidr_aff(struct kvm_vcpu *vcpu) { - return vcpu_sys_reg(vcpu, MPIDR_EL1); + return vcpu_sys_reg(vcpu, MPIDR_EL1) & MPIDR_HWID_BITMASK; } static inline void kvm_vcpu_set_be(struct kvm_vcpu *vcpu) diff --git a/arch/arm64/include/asm/kvm_host.h b/arch/arm64/include/asm/kvm_host.h index 0b7dfdb931df..2c49aa4ac818 100644 --- a/arch/arm64/include/asm/kvm_host.h +++ b/arch/arm64/include/asm/kvm_host.h @@ -59,6 +59,9 @@ struct kvm_arch { /* VTTBR value associated with above pgd and vmid */ u64 vttbr; + /* The maximum number of vCPUs depends on the used GIC model */ + int max_vcpus; + /* Interrupt controller */ struct vgic_dist vgic; @@ -199,6 +202,7 @@ struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); u64 kvm_call_hyp(void *hypfn, ...); void force_vm_exit(const cpumask_t *mask); +void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot); int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run, int exception_index); @@ -206,6 +210,8 @@ int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run, int kvm_perf_init(void); int kvm_perf_teardown(void); +struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr); + static inline void __cpu_init_hyp_mode(phys_addr_t boot_pgd_ptr, phys_addr_t pgd_ptr, unsigned long hyp_stack_ptr, diff --git a/arch/arm64/include/asm/kvm_mmio.h b/arch/arm64/include/asm/kvm_mmio.h index fc2f689c0694..9f52beb7cb13 100644 --- a/arch/arm64/include/asm/kvm_mmio.h +++ b/arch/arm64/include/asm/kvm_mmio.h @@ -40,6 +40,7 @@ struct kvm_exit_mmio { u8 data[8]; u32 len; bool is_write; + void *private; }; static inline void kvm_prepare_mmio(struct kvm_run *run, diff --git a/arch/arm64/include/asm/kvm_mmu.h b/arch/arm64/include/asm/kvm_mmu.h index 14a74f136272..66577581ce68 100644 --- a/arch/arm64/include/asm/kvm_mmu.h +++ b/arch/arm64/include/asm/kvm_mmu.h @@ -118,6 +118,27 @@ static inline void kvm_set_s2pmd_writable(pmd_t *pmd) pmd_val(*pmd) |= PMD_S2_RDWR; } +static inline void kvm_set_s2pte_readonly(pte_t *pte) +{ + pte_val(*pte) = (pte_val(*pte) & ~PTE_S2_RDWR) | PTE_S2_RDONLY; +} + +static inline bool kvm_s2pte_readonly(pte_t *pte) +{ + return (pte_val(*pte) & PTE_S2_RDWR) == PTE_S2_RDONLY; +} + +static inline void kvm_set_s2pmd_readonly(pmd_t *pmd) +{ + pmd_val(*pmd) = (pmd_val(*pmd) & ~PMD_S2_RDWR) | PMD_S2_RDONLY; +} + +static inline bool kvm_s2pmd_readonly(pmd_t *pmd) +{ + return (pmd_val(*pmd) & PMD_S2_RDWR) == PMD_S2_RDONLY; +} + + #define kvm_pgd_addr_end(addr, end) pgd_addr_end(addr, end) #define kvm_pud_addr_end(addr, end) pud_addr_end(addr, end) #define kvm_pmd_addr_end(addr, end) pmd_addr_end(addr, end) diff --git a/arch/arm64/include/asm/pgtable-hwdef.h b/arch/arm64/include/asm/pgtable-hwdef.h index 88174e0bfafe..5f930cc9ea83 100644 --- a/arch/arm64/include/asm/pgtable-hwdef.h +++ b/arch/arm64/include/asm/pgtable-hwdef.h @@ -119,6 +119,7 @@ #define PTE_S2_RDONLY (_AT(pteval_t, 1) << 6) /* HAP[2:1] */ #define PTE_S2_RDWR (_AT(pteval_t, 3) << 6) /* HAP[2:1] */ +#define PMD_S2_RDONLY (_AT(pmdval_t, 1) << 6) /* HAP[2:1] */ #define PMD_S2_RDWR (_AT(pmdval_t, 3) << 6) /* HAP[2:1] */ /* diff --git a/arch/arm64/include/uapi/asm/kvm.h b/arch/arm64/include/uapi/asm/kvm.h index 8e38878c87c6..3ef77a466018 100644 --- a/arch/arm64/include/uapi/asm/kvm.h +++ b/arch/arm64/include/uapi/asm/kvm.h @@ -78,6 +78,13 @@ struct kvm_regs { #define KVM_VGIC_V2_DIST_SIZE 0x1000 #define KVM_VGIC_V2_CPU_SIZE 0x2000 +/* Supported VGICv3 address types */ +#define KVM_VGIC_V3_ADDR_TYPE_DIST 2 +#define KVM_VGIC_V3_ADDR_TYPE_REDIST 3 + +#define KVM_VGIC_V3_DIST_SIZE SZ_64K +#define KVM_VGIC_V3_REDIST_SIZE (2 * SZ_64K) + #define KVM_ARM_VCPU_POWER_OFF 0 /* CPU is started in OFF state */ #define KVM_ARM_VCPU_EL1_32BIT 1 /* CPU running a 32bit VM */ #define KVM_ARM_VCPU_PSCI_0_2 2 /* CPU uses PSCI v0.2 */ @@ -161,6 +168,8 @@ struct kvm_arch_memory_slot { #define KVM_DEV_ARM_VGIC_OFFSET_SHIFT 0 #define KVM_DEV_ARM_VGIC_OFFSET_MASK (0xffffffffULL << KVM_DEV_ARM_VGIC_OFFSET_SHIFT) #define KVM_DEV_ARM_VGIC_GRP_NR_IRQS 3 +#define KVM_DEV_ARM_VGIC_GRP_CTRL 4 +#define KVM_DEV_ARM_VGIC_CTRL_INIT 0 /* KVM_IRQ_LINE irq field index values */ #define KVM_ARM_IRQ_TYPE_SHIFT 24 diff --git a/arch/arm64/kernel/asm-offsets.c b/arch/arm64/kernel/asm-offsets.c index 9a9fce090d58..9d34486985fd 100644 --- a/arch/arm64/kernel/asm-offsets.c +++ b/arch/arm64/kernel/asm-offsets.c @@ -140,6 +140,7 @@ int main(void) DEFINE(VGIC_V2_CPU_ELRSR, offsetof(struct vgic_cpu, vgic_v2.vgic_elrsr)); DEFINE(VGIC_V2_CPU_APR, offsetof(struct vgic_cpu, vgic_v2.vgic_apr)); DEFINE(VGIC_V2_CPU_LR, offsetof(struct vgic_cpu, vgic_v2.vgic_lr)); + DEFINE(VGIC_V3_CPU_SRE, offsetof(struct vgic_cpu, vgic_v3.vgic_sre)); DEFINE(VGIC_V3_CPU_HCR, offsetof(struct vgic_cpu, vgic_v3.vgic_hcr)); DEFINE(VGIC_V3_CPU_VMCR, offsetof(struct vgic_cpu, vgic_v3.vgic_vmcr)); DEFINE(VGIC_V3_CPU_MISR, offsetof(struct vgic_cpu, vgic_v3.vgic_misr)); diff --git a/arch/arm64/kvm/Kconfig b/arch/arm64/kvm/Kconfig index 8ba85e9ea388..3ce389b3c21c 100644 --- a/arch/arm64/kvm/Kconfig +++ b/arch/arm64/kvm/Kconfig @@ -22,10 +22,12 @@ config KVM select PREEMPT_NOTIFIERS select ANON_INODES select HAVE_KVM_CPU_RELAX_INTERCEPT + select HAVE_KVM_ARCH_TLB_FLUSH_ALL select KVM_MMIO select KVM_ARM_HOST select KVM_ARM_VGIC select KVM_ARM_TIMER + select KVM_GENERIC_DIRTYLOG_READ_PROTECT ---help--- Support hosting virtualized guest machines. diff --git a/arch/arm64/kvm/Makefile b/arch/arm64/kvm/Makefile index 32a096174b94..4e6e09ee4033 100644 --- a/arch/arm64/kvm/Makefile +++ b/arch/arm64/kvm/Makefile @@ -21,7 +21,9 @@ kvm-$(CONFIG_KVM_ARM_HOST) += guest.o reset.o sys_regs.o sys_regs_generic_v8.o kvm-$(CONFIG_KVM_ARM_VGIC) += $(KVM)/arm/vgic.o kvm-$(CONFIG_KVM_ARM_VGIC) += $(KVM)/arm/vgic-v2.o +kvm-$(CONFIG_KVM_ARM_VGIC) += $(KVM)/arm/vgic-v2-emul.o kvm-$(CONFIG_KVM_ARM_VGIC) += vgic-v2-switch.o kvm-$(CONFIG_KVM_ARM_VGIC) += $(KVM)/arm/vgic-v3.o +kvm-$(CONFIG_KVM_ARM_VGIC) += $(KVM)/arm/vgic-v3-emul.o kvm-$(CONFIG_KVM_ARM_VGIC) += vgic-v3-switch.o kvm-$(CONFIG_KVM_ARM_TIMER) += $(KVM)/arm/arch_timer.o diff --git a/arch/arm64/kvm/handle_exit.c b/arch/arm64/kvm/handle_exit.c index 29b184a8f3f8..524fa25671fc 100644 --- a/arch/arm64/kvm/handle_exit.c +++ b/arch/arm64/kvm/handle_exit.c @@ -28,12 +28,18 @@ #include <asm/kvm_mmu.h> #include <asm/kvm_psci.h> +#define CREATE_TRACE_POINTS +#include "trace.h" + typedef int (*exit_handle_fn)(struct kvm_vcpu *, struct kvm_run *); static int handle_hvc(struct kvm_vcpu *vcpu, struct kvm_run *run) { int ret; + trace_kvm_hvc_arm64(*vcpu_pc(vcpu), *vcpu_reg(vcpu, 0), + kvm_vcpu_hvc_get_imm(vcpu)); + ret = kvm_psci_call(vcpu); if (ret < 0) { kvm_inject_undefined(vcpu); @@ -63,10 +69,13 @@ static int handle_smc(struct kvm_vcpu *vcpu, struct kvm_run *run) */ static int kvm_handle_wfx(struct kvm_vcpu *vcpu, struct kvm_run *run) { - if (kvm_vcpu_get_hsr(vcpu) & ESR_ELx_WFx_ISS_WFE) + if (kvm_vcpu_get_hsr(vcpu) & ESR_ELx_WFx_ISS_WFE) { + trace_kvm_wfx_arm64(*vcpu_pc(vcpu), true); kvm_vcpu_on_spin(vcpu); - else + } else { + trace_kvm_wfx_arm64(*vcpu_pc(vcpu), false); kvm_vcpu_block(vcpu); + } kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); diff --git a/arch/arm64/kvm/hyp.S b/arch/arm64/kvm/hyp.S index c0d820280a5e..31b4911b8522 100644 --- a/arch/arm64/kvm/hyp.S +++ b/arch/arm64/kvm/hyp.S @@ -1031,6 +1031,28 @@ ENTRY(__kvm_tlb_flush_vmid_ipa) ret ENDPROC(__kvm_tlb_flush_vmid_ipa) +/** + * void __kvm_tlb_flush_vmid(struct kvm *kvm) - Flush per-VMID TLBs + * @struct kvm *kvm - pointer to kvm structure + * + * Invalidates all Stage 1 and 2 TLB entries for current VMID. + */ +ENTRY(__kvm_tlb_flush_vmid) + dsb ishst + + kern_hyp_va x0 + ldr x2, [x0, #KVM_VTTBR] + msr vttbr_el2, x2 + isb + + tlbi vmalls12e1is + dsb ish + isb + + msr vttbr_el2, xzr + ret +ENDPROC(__kvm_tlb_flush_vmid) + ENTRY(__kvm_flush_vm_context) dsb ishst tlbi alle1is diff --git a/arch/arm64/kvm/sys_regs.c b/arch/arm64/kvm/sys_regs.c index 6b859d7a48e7..7ad7af51856f 100644 --- a/arch/arm64/kvm/sys_regs.c +++ b/arch/arm64/kvm/sys_regs.c @@ -168,6 +168,27 @@ static bool access_sctlr(struct kvm_vcpu *vcpu, return true; } +/* + * Trap handler for the GICv3 SGI generation system register. + * Forward the request to the VGIC emulation. + * The cp15_64 code makes sure this automatically works + * for both AArch64 and AArch32 accesses. + */ +static bool access_gic_sgi(struct kvm_vcpu *vcpu, + const struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 val; + + if (!p->is_write) + return read_from_write_only(vcpu, p); + + val = *vcpu_reg(vcpu, p->Rt); + vgic_v3_dispatch_sgi(vcpu, val); + + return true; +} + static bool trap_raz_wi(struct kvm_vcpu *vcpu, const struct sys_reg_params *p, const struct sys_reg_desc *r) @@ -255,10 +276,19 @@ static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { + u64 mpidr; + /* - * Simply map the vcpu_id into the Aff0 field of the MPIDR. + * Map the vcpu_id into the first three affinity level fields of + * the MPIDR. We limit the number of VCPUs in level 0 due to a + * limitation to 16 CPUs in that level in the ICC_SGIxR registers + * of the GICv3 to be able to address each CPU directly when + * sending IPIs. */ - vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff); + mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0); + mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1); + mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2); + vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr; } /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */ @@ -428,6 +458,9 @@ static const struct sys_reg_desc sys_reg_descs[] = { { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000), NULL, reset_val, VBAR_EL1, 0 }, + /* ICC_SGI1R_EL1 */ + { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101), + access_gic_sgi }, /* ICC_SRE_EL1 */ { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101), trap_raz_wi }, @@ -660,6 +693,8 @@ static const struct sys_reg_desc cp14_64_regs[] = { * register). */ static const struct sys_reg_desc cp15_regs[] = { + { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, + { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_sctlr, NULL, c1_SCTLR }, { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 }, { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 }, @@ -707,6 +742,7 @@ static const struct sys_reg_desc cp15_regs[] = { static const struct sys_reg_desc cp15_64_regs[] = { { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 }, + { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 }, }; diff --git a/arch/arm64/kvm/trace.h b/arch/arm64/kvm/trace.h new file mode 100644 index 000000000000..157416e963f2 --- /dev/null +++ b/arch/arm64/kvm/trace.h @@ -0,0 +1,55 @@ +#if !defined(_TRACE_ARM64_KVM_H) || defined(TRACE_HEADER_MULTI_READ) +#define _TRACE_ARM64_KVM_H + +#include <linux/tracepoint.h> + +#undef TRACE_SYSTEM +#define TRACE_SYSTEM kvm + +TRACE_EVENT(kvm_wfx_arm64, + TP_PROTO(unsigned long vcpu_pc, bool is_wfe), + TP_ARGS(vcpu_pc, is_wfe), + + TP_STRUCT__entry( + __field(unsigned long, vcpu_pc) + __field(bool, is_wfe) + ), + + TP_fast_assign( + __entry->vcpu_pc = vcpu_pc; + __entry->is_wfe = is_wfe; + ), + + TP_printk("guest executed wf%c at: 0x%08lx", + __entry->is_wfe ? 'e' : 'i', __entry->vcpu_pc) +); + +TRACE_EVENT(kvm_hvc_arm64, + TP_PROTO(unsigned long vcpu_pc, unsigned long r0, unsigned long imm), + TP_ARGS(vcpu_pc, r0, imm), + + TP_STRUCT__entry( + __field(unsigned long, vcpu_pc) + __field(unsigned long, r0) + __field(unsigned long, imm) + ), + + TP_fast_assign( + __entry->vcpu_pc = vcpu_pc; + __entry->r0 = r0; + __entry->imm = imm; + ), + + TP_printk("HVC at 0x%08lx (r0: 0x%08lx, imm: 0x%lx)", + __entry->vcpu_pc, __entry->r0, __entry->imm) +); + +#endif /* _TRACE_ARM64_KVM_H */ + +#undef TRACE_INCLUDE_PATH +#define TRACE_INCLUDE_PATH . +#undef TRACE_INCLUDE_FILE +#define TRACE_INCLUDE_FILE trace + +/* This part must be outside protection */ +#include <trace/define_trace.h> diff --git a/arch/arm64/kvm/vgic-v3-switch.S b/arch/arm64/kvm/vgic-v3-switch.S index d16046999e06..617a012a0107 100644 --- a/arch/arm64/kvm/vgic-v3-switch.S +++ b/arch/arm64/kvm/vgic-v3-switch.S @@ -148,17 +148,18 @@ * x0: Register pointing to VCPU struct */ .macro restore_vgic_v3_state - // Disable SRE_EL1 access. Necessary, otherwise - // ICH_VMCR_EL2.VFIQEn becomes one, and FIQ happens... - msr_s ICC_SRE_EL1, xzr - isb - // Compute the address of struct vgic_cpu add x3, x0, #VCPU_VGIC_CPU // Restore all interesting registers ldr w4, [x3, #VGIC_V3_CPU_HCR] ldr w5, [x3, #VGIC_V3_CPU_VMCR] + ldr w25, [x3, #VGIC_V3_CPU_SRE] + + msr_s ICC_SRE_EL1, x25 + + // make sure SRE is valid before writing the other registers + isb msr_s ICH_HCR_EL2, x4 msr_s ICH_VMCR_EL2, x5 @@ -244,9 +245,12 @@ dsb sy // Prevent the guest from touching the GIC system registers + // if SRE isn't enabled for GICv3 emulation + cbnz x25, 1f mrs_s x5, ICC_SRE_EL2 and x5, x5, #~ICC_SRE_EL2_ENABLE msr_s ICC_SRE_EL2, x5 +1: .endm ENTRY(__save_vgic_v3_state) diff --git a/arch/x86/include/asm/kvm_host.h b/arch/x86/include/asm/kvm_host.h index 4327af53e544..843bea0e70fd 100644 --- a/arch/x86/include/asm/kvm_host.h +++ b/arch/x86/include/asm/kvm_host.h @@ -835,9 +835,6 @@ void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot); -void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, - struct kvm_memory_slot *slot, - gfn_t gfn_offset, unsigned long mask); void kvm_mmu_zap_all(struct kvm *kvm); void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm); unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm); diff --git a/arch/x86/kvm/Kconfig b/arch/x86/kvm/Kconfig index f9d16ff56c6b..d07359466d5d 100644 --- a/arch/x86/kvm/Kconfig +++ b/arch/x86/kvm/Kconfig @@ -39,6 +39,7 @@ config KVM select PERF_EVENTS select HAVE_KVM_MSI select HAVE_KVM_CPU_RELAX_INTERCEPT + select KVM_GENERIC_DIRTYLOG_READ_PROTECT select KVM_VFIO ---help--- Support hosting fully virtualized guest machines using hardware diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c index 97898abe8386..0ed9f795e4f0 100644 --- a/arch/x86/kvm/mmu.c +++ b/arch/x86/kvm/mmu.c @@ -1216,7 +1216,7 @@ static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp, } /** - * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages + * kvm_arch_mmu_write_protect_pt_masked - write protect selected PT level pages * @kvm: kvm instance * @slot: slot to protect * @gfn_offset: start of the BITS_PER_LONG pages we care about @@ -1225,7 +1225,7 @@ static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp, * Used when we do not need to care about huge page mappings: e.g. during dirty * logging we do not have any such mappings. */ -void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, +void kvm_arch_mmu_write_protect_pt_masked(struct kvm *kvm, struct kvm_memory_slot *slot, gfn_t gfn_offset, unsigned long mask) { diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c index 917672f8034a..d2bbb2d86610 100644 --- a/arch/x86/kvm/x86.c +++ b/arch/x86/kvm/x86.c @@ -3759,83 +3759,37 @@ static int kvm_vm_ioctl_reinject(struct kvm *kvm, * @kvm: kvm instance * @log: slot id and address to which we copy the log * - * We need to keep it in mind that VCPU threads can write to the bitmap - * concurrently. So, to avoid losing data, we keep the following order for - * each bit: + * Steps 1-4 below provide general overview of dirty page logging. See + * kvm_get_dirty_log_protect() function description for additional details. + * + * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we + * always flush the TLB (step 4) even if previous step failed and the dirty + * bitmap may be corrupt. Regardless of previous outcome the KVM logging API + * does not preclude user space subsequent dirty log read. Flushing TLB ensures + * writes will be marked dirty for next log read. * * 1. Take a snapshot of the bit and clear it if needed. * 2. Write protect the corresponding page. - * 3. Flush TLB's if needed. - * 4. Copy the snapshot to the userspace. - * - * Between 2 and 3, the guest may write to the page using the remaining TLB - * entry. This is not a problem because the page will be reported dirty at - * step 4 using the snapshot taken before and step 3 ensures that successive - * writes will be logged for the next call. + * 3. Copy the snapshot to the userspace. + * 4. Flush TLB's if needed. */ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) { - int r; - struct kvm_memory_slot *memslot; - unsigned long n, i; - unsigned long *dirty_bitmap; - unsigned long *dirty_bitmap_buffer; bool is_dirty = false; + int r; mutex_lock(&kvm->slots_lock); - r = -EINVAL; - if (log->slot >= KVM_USER_MEM_SLOTS) - goto out; - - memslot = id_to_memslot(kvm->memslots, log->slot); - - dirty_bitmap = memslot->dirty_bitmap; - r = -ENOENT; - if (!dirty_bitmap) - goto out; - - n = kvm_dirty_bitmap_bytes(memslot); - - dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); - memset(dirty_bitmap_buffer, 0, n); - - spin_lock(&kvm->mmu_lock); - - for (i = 0; i < n / sizeof(long); i++) { - unsigned long mask; - gfn_t offset; - - if (!dirty_bitmap[i]) - continue; - - is_dirty = true; - - mask = xchg(&dirty_bitmap[i], 0); - dirty_bitmap_buffer[i] = mask; - - offset = i * BITS_PER_LONG; - kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask); - } - - spin_unlock(&kvm->mmu_lock); - - /* See the comments in kvm_mmu_slot_remove_write_access(). */ - lockdep_assert_held(&kvm->slots_lock); + r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); /* * All the TLBs can be flushed out of mmu lock, see the comments in * kvm_mmu_slot_remove_write_access(). */ + lockdep_assert_held(&kvm->slots_lock); if (is_dirty) kvm_flush_remote_tlbs(kvm); - r = -EFAULT; - if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) - goto out; - - r = 0; -out: mutex_unlock(&kvm->slots_lock); return r; } diff --git a/drivers/irqchip/irq-gic-v3.c b/drivers/irqchip/irq-gic-v3.c index 1a146ccee701..2ab290bec655 100644 --- a/drivers/irqchip/irq-gic-v3.c +++ b/drivers/irqchip/irq-gic-v3.c @@ -481,15 +481,19 @@ out: return tlist; } +#define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \ + (MPIDR_AFFINITY_LEVEL(cluster_id, level) \ + << ICC_SGI1R_AFFINITY_## level ##_SHIFT) + static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq) { u64 val; - val = (MPIDR_AFFINITY_LEVEL(cluster_id, 3) << 48 | - MPIDR_AFFINITY_LEVEL(cluster_id, 2) << 32 | - irq << 24 | - MPIDR_AFFINITY_LEVEL(cluster_id, 1) << 16 | - tlist); + val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3) | + MPIDR_TO_SGI_AFFINITY(cluster_id, 2) | + irq << ICC_SGI1R_SGI_ID_SHIFT | + MPIDR_TO_SGI_AFFINITY(cluster_id, 1) | + tlist << ICC_SGI1R_TARGET_LIST_SHIFT); pr_debug("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val); gic_write_sgi1r(val); diff --git a/include/kvm/arm_vgic.h b/include/kvm/arm_vgic.h index ac4888dc86bc..7c55dd5dd2c9 100644 --- a/include/kvm/arm_vgic.h +++ b/include/kvm/arm_vgic.h @@ -33,10 +33,11 @@ #define VGIC_V2_MAX_LRS (1 << 6) #define VGIC_V3_MAX_LRS 16 #define VGIC_MAX_IRQS 1024 +#define VGIC_V2_MAX_CPUS 8 /* Sanity checks... */ -#if (KVM_MAX_VCPUS > 8) -#error Invalid number of CPU interfaces +#if (KVM_MAX_VCPUS > 255) +#error Too many KVM VCPUs, the VGIC only supports up to 255 VCPUs for now #endif #if (VGIC_NR_IRQS_LEGACY & 31) @@ -132,6 +133,18 @@ struct vgic_params { unsigned int maint_irq; /* Virtual control interface base address */ void __iomem *vctrl_base; + int max_gic_vcpus; + /* Only needed for the legacy KVM_CREATE_IRQCHIP */ + bool can_emulate_gicv2; +}; + +struct vgic_vm_ops { + bool (*handle_mmio)(struct kvm_vcpu *, struct kvm_run *, + struct kvm_exit_mmio *); + bool (*queue_sgi)(struct kvm_vcpu *, int irq); + void (*add_sgi_source)(struct kvm_vcpu *, int irq, int source); + int (*init_model)(struct kvm *); + int (*map_resources)(struct kvm *, const struct vgic_params *); }; struct vgic_dist { @@ -140,6 +153,9 @@ struct vgic_dist { bool in_kernel; bool ready; + /* vGIC model the kernel emulates for the guest (GICv2 or GICv3) */ + u32 vgic_model; + int nr_cpus; int nr_irqs; @@ -148,7 +164,11 @@ struct vgic_dist { /* Distributor and vcpu interface mapping in the guest */ phys_addr_t vgic_dist_base; - phys_addr_t vgic_cpu_base; + /* GICv2 and GICv3 use different mapped register blocks */ + union { + phys_addr_t vgic_cpu_base; + phys_addr_t vgic_redist_base; + }; /* Distributor enabled */ u32 enabled; @@ -210,8 +230,13 @@ struct vgic_dist { */ struct vgic_bitmap *irq_spi_target; + /* Target MPIDR for each IRQ (needed for GICv3 IROUTERn) only */ + u32 *irq_spi_mpidr; + /* Bitmap indicating which CPU has something pending */ unsigned long *irq_pending_on_cpu; + + struct vgic_vm_ops vm_ops; #endif }; @@ -229,6 +254,7 @@ struct vgic_v3_cpu_if { #ifdef CONFIG_ARM_GIC_V3 u32 vgic_hcr; u32 vgic_vmcr; + u32 vgic_sre; /* Restored only, change ignored */ u32 vgic_misr; /* Saved only */ u32 vgic_eisr; /* Saved only */ u32 vgic_elrsr; /* Saved only */ @@ -275,13 +301,15 @@ struct kvm_exit_mmio; int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write); int kvm_vgic_hyp_init(void); int kvm_vgic_map_resources(struct kvm *kvm); -int kvm_vgic_create(struct kvm *kvm); +int kvm_vgic_get_max_vcpus(void); +int kvm_vgic_create(struct kvm *kvm, u32 type); void kvm_vgic_destroy(struct kvm *kvm); void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu); void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu); void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu); int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num, bool level); +void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg); int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu); bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, struct kvm_exit_mmio *mmio); @@ -327,7 +355,7 @@ static inline int kvm_vgic_map_resources(struct kvm *kvm) return 0; } -static inline int kvm_vgic_create(struct kvm *kvm) +static inline int kvm_vgic_create(struct kvm *kvm, u32 type) { return 0; } @@ -379,6 +407,11 @@ static inline bool vgic_ready(struct kvm *kvm) { return true; } + +static inline int kvm_vgic_get_max_vcpus(void) +{ + return KVM_MAX_VCPUS; +} #endif #endif diff --git a/include/linux/irqchip/arm-gic-v3.h b/include/linux/irqchip/arm-gic-v3.h index 1e8b0cf30792..800544bc7bfd 100644 --- a/include/linux/irqchip/arm-gic-v3.h +++ b/include/linux/irqchip/arm-gic-v3.h @@ -33,6 +33,7 @@ #define GICD_SETSPI_SR 0x0050 #define GICD_CLRSPI_SR 0x0058 #define GICD_SEIR 0x0068 +#define GICD_IGROUPR 0x0080 #define GICD_ISENABLER 0x0100 #define GICD_ICENABLER 0x0180 #define GICD_ISPENDR 0x0200 @@ -41,14 +42,37 @@ #define GICD_ICACTIVER 0x0380 #define GICD_IPRIORITYR 0x0400 #define GICD_ICFGR 0x0C00 +#define GICD_IGRPMODR 0x0D00 +#define GICD_NSACR 0x0E00 #define GICD_IROUTER 0x6000 +#define GICD_IDREGS 0xFFD0 #define GICD_PIDR2 0xFFE8 +/* + * Those registers are actually from GICv2, but the spec demands that they + * are implemented as RES0 if ARE is 1 (which we do in KVM's emulated GICv3). + */ +#define GICD_ITARGETSR 0x0800 +#define GICD_SGIR 0x0F00 +#define GICD_CPENDSGIR 0x0F10 +#define GICD_SPENDSGIR 0x0F20 + #define GICD_CTLR_RWP (1U << 31) +#define GICD_CTLR_DS (1U << 6) #define GICD_CTLR_ARE_NS (1U << 4) #define GICD_CTLR_ENABLE_G1A (1U << 1) #define GICD_CTLR_ENABLE_G1 (1U << 0) +/* + * In systems with a single security state (what we emulate in KVM) + * the meaning of the interrupt group enable bits is slightly different + */ +#define GICD_CTLR_ENABLE_SS_G1 (1U << 1) +#define GICD_CTLR_ENABLE_SS_G0 (1U << 0) + +#define GICD_TYPER_LPIS (1U << 17) +#define GICD_TYPER_MBIS (1U << 16) + #define GICD_TYPER_ID_BITS(typer) ((((typer) >> 19) & 0x1f) + 1) #define GICD_TYPER_IRQS(typer) ((((typer) & 0x1f) + 1) * 32) #define GICD_TYPER_LPIS (1U << 17) @@ -60,6 +84,8 @@ #define GIC_PIDR2_ARCH_GICv3 0x30 #define GIC_PIDR2_ARCH_GICv4 0x40 +#define GIC_V3_DIST_SIZE 0x10000 + /* * Re-Distributor registers, offsets from RD_base */ @@ -78,6 +104,7 @@ #define GICR_SYNCR 0x00C0 #define GICR_MOVLPIR 0x0100 #define GICR_MOVALLR 0x0110 +#define GICR_IDREGS GICD_IDREGS #define GICR_PIDR2 GICD_PIDR2 #define GICR_CTLR_ENABLE_LPIS (1UL << 0) @@ -104,6 +131,7 @@ /* * Re-Distributor registers, offsets from SGI_base */ +#define GICR_IGROUPR0 GICD_IGROUPR #define GICR_ISENABLER0 GICD_ISENABLER #define GICR_ICENABLER0 GICD_ICENABLER #define GICR_ISPENDR0 GICD_ISPENDR @@ -112,11 +140,15 @@ #define GICR_ICACTIVER0 GICD_ICACTIVER #define GICR_IPRIORITYR0 GICD_IPRIORITYR #define GICR_ICFGR0 GICD_ICFGR +#define GICR_IGRPMODR0 GICD_IGRPMODR +#define GICR_NSACR GICD_NSACR #define GICR_TYPER_PLPIS (1U << 0) #define GICR_TYPER_VLPIS (1U << 1) #define GICR_TYPER_LAST (1U << 4) +#define GIC_V3_REDIST_SIZE 0x20000 + #define LPI_PROP_GROUP1 (1 << 1) #define LPI_PROP_ENABLED (1 << 0) @@ -248,6 +280,18 @@ #define ICC_SRE_EL2_SRE (1 << 0) #define ICC_SRE_EL2_ENABLE (1 << 3) +#define ICC_SGI1R_TARGET_LIST_SHIFT 0 +#define ICC_SGI1R_TARGET_LIST_MASK (0xffff << ICC_SGI1R_TARGET_LIST_SHIFT) +#define ICC_SGI1R_AFFINITY_1_SHIFT 16 +#define ICC_SGI1R_AFFINITY_1_MASK (0xff << ICC_SGI1R_AFFINITY_1_SHIFT) +#define ICC_SGI1R_SGI_ID_SHIFT 24 +#define ICC_SGI1R_SGI_ID_MASK (0xff << ICC_SGI1R_SGI_ID_SHIFT) +#define ICC_SGI1R_AFFINITY_2_SHIFT 32 +#define ICC_SGI1R_AFFINITY_2_MASK (0xffULL << ICC_SGI1R_AFFINITY_1_SHIFT) +#define ICC_SGI1R_IRQ_ROUTING_MODE_BIT 40 +#define ICC_SGI1R_AFFINITY_3_SHIFT 48 +#define ICC_SGI1R_AFFINITY_3_MASK (0xffULL << ICC_SGI1R_AFFINITY_1_SHIFT) + /* * System register definitions */ diff --git a/include/linux/kvm_host.h b/include/linux/kvm_host.h index 26f106022c88..0ef2daa199d8 100644 --- a/include/linux/kvm_host.h +++ b/include/linux/kvm_host.h @@ -611,6 +611,15 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, int *is_dirty); + +int kvm_get_dirty_log_protect(struct kvm *kvm, + struct kvm_dirty_log *log, bool *is_dirty); + +void kvm_arch_mmu_write_protect_pt_masked(struct kvm *kvm, + struct kvm_memory_slot *slot, + gfn_t gfn_offset, + unsigned long mask); + int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); @@ -1042,6 +1051,8 @@ void kvm_unregister_device_ops(u32 type); extern struct kvm_device_ops kvm_mpic_ops; extern struct kvm_device_ops kvm_xics_ops; +extern struct kvm_device_ops kvm_arm_vgic_v2_ops; +extern struct kvm_device_ops kvm_arm_vgic_v3_ops; #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT diff --git a/include/uapi/linux/kvm.h b/include/uapi/linux/kvm.h index a37fd1224f36..b4e6f1e70f03 100644 --- a/include/uapi/linux/kvm.h +++ b/include/uapi/linux/kvm.h @@ -952,6 +952,8 @@ enum kvm_device_type { #define KVM_DEV_TYPE_ARM_VGIC_V2 KVM_DEV_TYPE_ARM_VGIC_V2 KVM_DEV_TYPE_FLIC, #define KVM_DEV_TYPE_FLIC KVM_DEV_TYPE_FLIC + KVM_DEV_TYPE_ARM_VGIC_V3, +#define KVM_DEV_TYPE_ARM_VGIC_V3 KVM_DEV_TYPE_ARM_VGIC_V3 KVM_DEV_TYPE_MAX, }; diff --git a/virt/kvm/Kconfig b/virt/kvm/Kconfig index fc0c5e603eb4..50d110654b42 100644 --- a/virt/kvm/Kconfig +++ b/virt/kvm/Kconfig @@ -37,3 +37,9 @@ config HAVE_KVM_CPU_RELAX_INTERCEPT config KVM_VFIO bool + +config HAVE_KVM_ARCH_TLB_FLUSH_ALL + bool + +config KVM_GENERIC_DIRTYLOG_READ_PROTECT + bool diff --git a/virt/kvm/arm/vgic-v2-emul.c b/virt/kvm/arm/vgic-v2-emul.c new file mode 100644 index 000000000000..19c6210f02cf --- /dev/null +++ b/virt/kvm/arm/vgic-v2-emul.c @@ -0,0 +1,847 @@ +/* + * Contains GICv2 specific emulation code, was in vgic.c before. + * + * Copyright (C) 2012 ARM Ltd. + * Author: Marc Zyngier <marc.zyngier@arm.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + +#include <linux/cpu.h> +#include <linux/kvm.h> +#include <linux/kvm_host.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/uaccess.h> + +#include <linux/irqchip/arm-gic.h> + +#include <asm/kvm_emulate.h> +#include <asm/kvm_arm.h> +#include <asm/kvm_mmu.h> + +#include "vgic.h" + +#define GICC_ARCH_VERSION_V2 0x2 + +static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg); +static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi) +{ + return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi; +} + +static bool handle_mmio_misc(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, phys_addr_t offset) +{ + u32 reg; + u32 word_offset = offset & 3; + + switch (offset & ~3) { + case 0: /* GICD_CTLR */ + reg = vcpu->kvm->arch.vgic.enabled; + vgic_reg_access(mmio, ®, word_offset, + ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); + if (mmio->is_write) { + vcpu->kvm->arch.vgic.enabled = reg & 1; + vgic_update_state(vcpu->kvm); + return true; + } + break; + + case 4: /* GICD_TYPER */ + reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5; + reg |= (vcpu->kvm->arch.vgic.nr_irqs >> 5) - 1; + vgic_reg_access(mmio, ®, word_offset, + ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); + break; + + case 8: /* GICD_IIDR */ + reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0); + vgic_reg_access(mmio, ®, word_offset, + ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); + break; + } + + return false; +} + +static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, + vcpu->vcpu_id, ACCESS_WRITE_SETBIT); +} + +static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, + vcpu->vcpu_id, ACCESS_WRITE_CLEARBIT); +} + +static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset, + vcpu->vcpu_id); +} + +static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset, + vcpu->vcpu_id); +} + +static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority, + vcpu->vcpu_id, offset); + vgic_reg_access(mmio, reg, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); + return false; +} + +#define GICD_ITARGETSR_SIZE 32 +#define GICD_CPUTARGETS_BITS 8 +#define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS) +static u32 vgic_get_target_reg(struct kvm *kvm, int irq) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + int i; + u32 val = 0; + + irq -= VGIC_NR_PRIVATE_IRQS; + + for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) + val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8); + + return val; +} + +static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + struct kvm_vcpu *vcpu; + int i, c; + unsigned long *bmap; + u32 target; + + irq -= VGIC_NR_PRIVATE_IRQS; + + /* + * Pick the LSB in each byte. This ensures we target exactly + * one vcpu per IRQ. If the byte is null, assume we target + * CPU0. + */ + for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) { + int shift = i * GICD_CPUTARGETS_BITS; + + target = ffs((val >> shift) & 0xffU); + target = target ? (target - 1) : 0; + dist->irq_spi_cpu[irq + i] = target; + kvm_for_each_vcpu(c, vcpu, kvm) { + bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]); + if (c == target) + set_bit(irq + i, bmap); + else + clear_bit(irq + i, bmap); + } + } +} + +static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + u32 reg; + + /* We treat the banked interrupts targets as read-only */ + if (offset < 32) { + u32 roreg; + + roreg = 1 << vcpu->vcpu_id; + roreg |= roreg << 8; + roreg |= roreg << 16; + + vgic_reg_access(mmio, &roreg, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); + return false; + } + + reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U); + vgic_reg_access(mmio, ®, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); + if (mmio->is_write) { + vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U); + vgic_update_state(vcpu->kvm); + return true; + } + + return false; +} + +static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, phys_addr_t offset) +{ + u32 *reg; + + reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg, + vcpu->vcpu_id, offset >> 1); + + return vgic_handle_cfg_reg(reg, mmio, offset); +} + +static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, phys_addr_t offset) +{ + u32 reg; + + vgic_reg_access(mmio, ®, offset, + ACCESS_READ_RAZ | ACCESS_WRITE_VALUE); + if (mmio->is_write) { + vgic_dispatch_sgi(vcpu, reg); + vgic_update_state(vcpu->kvm); + return true; + } + + return false; +} + +/* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */ +static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + struct vgic_dist *dist = &vcpu->kvm->arch.vgic; + int sgi; + int min_sgi = (offset & ~0x3); + int max_sgi = min_sgi + 3; + int vcpu_id = vcpu->vcpu_id; + u32 reg = 0; + + /* Copy source SGIs from distributor side */ + for (sgi = min_sgi; sgi <= max_sgi; sgi++) { + u8 sources = *vgic_get_sgi_sources(dist, vcpu_id, sgi); + + reg |= ((u32)sources) << (8 * (sgi - min_sgi)); + } + + mmio_data_write(mmio, ~0, reg); + return false; +} + +static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset, bool set) +{ + struct vgic_dist *dist = &vcpu->kvm->arch.vgic; + int sgi; + int min_sgi = (offset & ~0x3); + int max_sgi = min_sgi + 3; + int vcpu_id = vcpu->vcpu_id; + u32 reg; + bool updated = false; + + reg = mmio_data_read(mmio, ~0); + + /* Clear pending SGIs on the distributor */ + for (sgi = min_sgi; sgi <= max_sgi; sgi++) { + u8 mask = reg >> (8 * (sgi - min_sgi)); + u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi); + + if (set) { + if ((*src & mask) != mask) + updated = true; + *src |= mask; + } else { + if (*src & mask) + updated = true; + *src &= ~mask; + } + } + + if (updated) + vgic_update_state(vcpu->kvm); + + return updated; +} + +static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + if (!mmio->is_write) + return read_set_clear_sgi_pend_reg(vcpu, mmio, offset); + else + return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true); +} + +static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + if (!mmio->is_write) + return read_set_clear_sgi_pend_reg(vcpu, mmio, offset); + else + return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false); +} + +static const struct kvm_mmio_range vgic_dist_ranges[] = { + { + .base = GIC_DIST_CTRL, + .len = 12, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_misc, + }, + { + .base = GIC_DIST_IGROUP, + .len = VGIC_MAX_IRQS / 8, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GIC_DIST_ENABLE_SET, + .len = VGIC_MAX_IRQS / 8, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_set_enable_reg, + }, + { + .base = GIC_DIST_ENABLE_CLEAR, + .len = VGIC_MAX_IRQS / 8, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_clear_enable_reg, + }, + { + .base = GIC_DIST_PENDING_SET, + .len = VGIC_MAX_IRQS / 8, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_set_pending_reg, + }, + { + .base = GIC_DIST_PENDING_CLEAR, + .len = VGIC_MAX_IRQS / 8, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_clear_pending_reg, + }, + { + .base = GIC_DIST_ACTIVE_SET, + .len = VGIC_MAX_IRQS / 8, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GIC_DIST_ACTIVE_CLEAR, + .len = VGIC_MAX_IRQS / 8, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GIC_DIST_PRI, + .len = VGIC_MAX_IRQS, + .bits_per_irq = 8, + .handle_mmio = handle_mmio_priority_reg, + }, + { + .base = GIC_DIST_TARGET, + .len = VGIC_MAX_IRQS, + .bits_per_irq = 8, + .handle_mmio = handle_mmio_target_reg, + }, + { + .base = GIC_DIST_CONFIG, + .len = VGIC_MAX_IRQS / 4, + .bits_per_irq = 2, + .handle_mmio = handle_mmio_cfg_reg, + }, + { + .base = GIC_DIST_SOFTINT, + .len = 4, + .handle_mmio = handle_mmio_sgi_reg, + }, + { + .base = GIC_DIST_SGI_PENDING_CLEAR, + .len = VGIC_NR_SGIS, + .handle_mmio = handle_mmio_sgi_clear, + }, + { + .base = GIC_DIST_SGI_PENDING_SET, + .len = VGIC_NR_SGIS, + .handle_mmio = handle_mmio_sgi_set, + }, + {} +}; + +static bool vgic_v2_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, + struct kvm_exit_mmio *mmio) +{ + unsigned long base = vcpu->kvm->arch.vgic.vgic_dist_base; + + if (!is_in_range(mmio->phys_addr, mmio->len, base, + KVM_VGIC_V2_DIST_SIZE)) + return false; + + /* GICv2 does not support accesses wider than 32 bits */ + if (mmio->len > 4) { + kvm_inject_dabt(vcpu, mmio->phys_addr); + return true; + } + + return vgic_handle_mmio_range(vcpu, run, mmio, vgic_dist_ranges, base); +} + +static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg) +{ + struct kvm *kvm = vcpu->kvm; + struct vgic_dist *dist = &kvm->arch.vgic; + int nrcpus = atomic_read(&kvm->online_vcpus); + u8 target_cpus; + int sgi, mode, c, vcpu_id; + + vcpu_id = vcpu->vcpu_id; + + sgi = reg & 0xf; + target_cpus = (reg >> 16) & 0xff; + mode = (reg >> 24) & 3; + + switch (mode) { + case 0: + if (!target_cpus) + return; + break; + + case 1: + target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff; + break; + + case 2: + target_cpus = 1 << vcpu_id; + break; + } + + kvm_for_each_vcpu(c, vcpu, kvm) { + if (target_cpus & 1) { + /* Flag the SGI as pending */ + vgic_dist_irq_set_pending(vcpu, sgi); + *vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id; + kvm_debug("SGI%d from CPU%d to CPU%d\n", + sgi, vcpu_id, c); + } + + target_cpus >>= 1; + } +} + +static bool vgic_v2_queue_sgi(struct kvm_vcpu *vcpu, int irq) +{ + struct vgic_dist *dist = &vcpu->kvm->arch.vgic; + unsigned long sources; + int vcpu_id = vcpu->vcpu_id; + int c; + + sources = *vgic_get_sgi_sources(dist, vcpu_id, irq); + + for_each_set_bit(c, &sources, dist->nr_cpus) { + if (vgic_queue_irq(vcpu, c, irq)) + clear_bit(c, &sources); + } + + *vgic_get_sgi_sources(dist, vcpu_id, irq) = sources; + + /* + * If the sources bitmap has been cleared it means that we + * could queue all the SGIs onto link registers (see the + * clear_bit above), and therefore we are done with them in + * our emulated gic and can get rid of them. + */ + if (!sources) { + vgic_dist_irq_clear_pending(vcpu, irq); + vgic_cpu_irq_clear(vcpu, irq); + return true; + } + + return false; +} + +/** + * kvm_vgic_map_resources - Configure global VGIC state before running any VCPUs + * @kvm: pointer to the kvm struct + * + * Map the virtual CPU interface into the VM before running any VCPUs. We + * can't do this at creation time, because user space must first set the + * virtual CPU interface address in the guest physical address space. + */ +static int vgic_v2_map_resources(struct kvm *kvm, + const struct vgic_params *params) +{ + int ret = 0; + + if (!irqchip_in_kernel(kvm)) + return 0; + + mutex_lock(&kvm->lock); + + if (vgic_ready(kvm)) + goto out; + + if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) || + IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) { + kvm_err("Need to set vgic cpu and dist addresses first\n"); + ret = -ENXIO; + goto out; + } + + /* + * Initialize the vgic if this hasn't already been done on demand by + * accessing the vgic state from userspace. + */ + ret = vgic_init(kvm); + if (ret) { + kvm_err("Unable to allocate maps\n"); + goto out; + } + + ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base, + params->vcpu_base, KVM_VGIC_V2_CPU_SIZE, + true); + if (ret) { + kvm_err("Unable to remap VGIC CPU to VCPU\n"); + goto out; + } + + kvm->arch.vgic.ready = true; +out: + if (ret) + kvm_vgic_destroy(kvm); + mutex_unlock(&kvm->lock); + return ret; +} + +static void vgic_v2_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source) +{ + struct vgic_dist *dist = &vcpu->kvm->arch.vgic; + + *vgic_get_sgi_sources(dist, vcpu->vcpu_id, irq) |= 1 << source; +} + +static int vgic_v2_init_model(struct kvm *kvm) +{ + int i; + + for (i = VGIC_NR_PRIVATE_IRQS; i < kvm->arch.vgic.nr_irqs; i += 4) + vgic_set_target_reg(kvm, 0, i); + + return 0; +} + +void vgic_v2_init_emulation(struct kvm *kvm) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + + dist->vm_ops.handle_mmio = vgic_v2_handle_mmio; + dist->vm_ops.queue_sgi = vgic_v2_queue_sgi; + dist->vm_ops.add_sgi_source = vgic_v2_add_sgi_source; + dist->vm_ops.init_model = vgic_v2_init_model; + dist->vm_ops.map_resources = vgic_v2_map_resources; + + kvm->arch.max_vcpus = VGIC_V2_MAX_CPUS; +} + +static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, phys_addr_t offset) +{ + bool updated = false; + struct vgic_vmcr vmcr; + u32 *vmcr_field; + u32 reg; + + vgic_get_vmcr(vcpu, &vmcr); + + switch (offset & ~0x3) { + case GIC_CPU_CTRL: + vmcr_field = &vmcr.ctlr; + break; + case GIC_CPU_PRIMASK: + vmcr_field = &vmcr.pmr; + break; + case GIC_CPU_BINPOINT: + vmcr_field = &vmcr.bpr; + break; + case GIC_CPU_ALIAS_BINPOINT: + vmcr_field = &vmcr.abpr; + break; + default: + BUG(); + } + + if (!mmio->is_write) { + reg = *vmcr_field; + mmio_data_write(mmio, ~0, reg); + } else { + reg = mmio_data_read(mmio, ~0); + if (reg != *vmcr_field) { + *vmcr_field = reg; + vgic_set_vmcr(vcpu, &vmcr); + updated = true; + } + } + return updated; +} + +static bool handle_mmio_abpr(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, phys_addr_t offset) +{ + return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT); +} + +static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + u32 reg; + + if (mmio->is_write) + return false; + + /* GICC_IIDR */ + reg = (PRODUCT_ID_KVM << 20) | + (GICC_ARCH_VERSION_V2 << 16) | + (IMPLEMENTER_ARM << 0); + mmio_data_write(mmio, ~0, reg); + return false; +} + +/* + * CPU Interface Register accesses - these are not accessed by the VM, but by + * user space for saving and restoring VGIC state. + */ +static const struct kvm_mmio_range vgic_cpu_ranges[] = { + { + .base = GIC_CPU_CTRL, + .len = 12, + .handle_mmio = handle_cpu_mmio_misc, + }, + { + .base = GIC_CPU_ALIAS_BINPOINT, + .len = 4, + .handle_mmio = handle_mmio_abpr, + }, + { + .base = GIC_CPU_ACTIVEPRIO, + .len = 16, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GIC_CPU_IDENT, + .len = 4, + .handle_mmio = handle_cpu_mmio_ident, + }, +}; + +static int vgic_attr_regs_access(struct kvm_device *dev, + struct kvm_device_attr *attr, + u32 *reg, bool is_write) +{ + const struct kvm_mmio_range *r = NULL, *ranges; + phys_addr_t offset; + int ret, cpuid, c; + struct kvm_vcpu *vcpu, *tmp_vcpu; + struct vgic_dist *vgic; + struct kvm_exit_mmio mmio; + + offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK; + cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >> + KVM_DEV_ARM_VGIC_CPUID_SHIFT; + + mutex_lock(&dev->kvm->lock); + + ret = vgic_init(dev->kvm); + if (ret) + goto out; + + if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) { + ret = -EINVAL; + goto out; + } + + vcpu = kvm_get_vcpu(dev->kvm, cpuid); + vgic = &dev->kvm->arch.vgic; + + mmio.len = 4; + mmio.is_write = is_write; + if (is_write) + mmio_data_write(&mmio, ~0, *reg); + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: + mmio.phys_addr = vgic->vgic_dist_base + offset; + ranges = vgic_dist_ranges; + break; + case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: + mmio.phys_addr = vgic->vgic_cpu_base + offset; + ranges = vgic_cpu_ranges; + break; + default: + BUG(); + } + r = vgic_find_range(ranges, &mmio, offset); + + if (unlikely(!r || !r->handle_mmio)) { + ret = -ENXIO; + goto out; + } + + + spin_lock(&vgic->lock); + + /* + * Ensure that no other VCPU is running by checking the vcpu->cpu + * field. If no other VPCUs are running we can safely access the VGIC + * state, because even if another VPU is run after this point, that + * VCPU will not touch the vgic state, because it will block on + * getting the vgic->lock in kvm_vgic_sync_hwstate(). + */ + kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) { + if (unlikely(tmp_vcpu->cpu != -1)) { + ret = -EBUSY; + goto out_vgic_unlock; + } + } + + /* + * Move all pending IRQs from the LRs on all VCPUs so the pending + * state can be properly represented in the register state accessible + * through this API. + */ + kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) + vgic_unqueue_irqs(tmp_vcpu); + + offset -= r->base; + r->handle_mmio(vcpu, &mmio, offset); + + if (!is_write) + *reg = mmio_data_read(&mmio, ~0); + + ret = 0; +out_vgic_unlock: + spin_unlock(&vgic->lock); +out: + mutex_unlock(&dev->kvm->lock); + return ret; +} + +static int vgic_v2_create(struct kvm_device *dev, u32 type) +{ + return kvm_vgic_create(dev->kvm, type); +} + +static void vgic_v2_destroy(struct kvm_device *dev) +{ + kfree(dev); +} + +static int vgic_v2_set_attr(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + int ret; + + ret = vgic_set_common_attr(dev, attr); + if (ret != -ENXIO) + return ret; + + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: + case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: { + u32 __user *uaddr = (u32 __user *)(long)attr->addr; + u32 reg; + + if (get_user(reg, uaddr)) + return -EFAULT; + + return vgic_attr_regs_access(dev, attr, ®, true); + } + + } + + return -ENXIO; +} + +static int vgic_v2_get_attr(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + int ret; + + ret = vgic_get_common_attr(dev, attr); + if (ret != -ENXIO) + return ret; + + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: + case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: { + u32 __user *uaddr = (u32 __user *)(long)attr->addr; + u32 reg = 0; + + ret = vgic_attr_regs_access(dev, attr, ®, false); + if (ret) + return ret; + return put_user(reg, uaddr); + } + + } + + return -ENXIO; +} + +static int vgic_v2_has_attr(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + phys_addr_t offset; + + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_ADDR: + switch (attr->attr) { + case KVM_VGIC_V2_ADDR_TYPE_DIST: + case KVM_VGIC_V2_ADDR_TYPE_CPU: + return 0; + } + break; + case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: + offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK; + return vgic_has_attr_regs(vgic_dist_ranges, offset); + case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: + offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK; + return vgic_has_attr_regs(vgic_cpu_ranges, offset); + case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: + return 0; + case KVM_DEV_ARM_VGIC_GRP_CTRL: + switch (attr->attr) { + case KVM_DEV_ARM_VGIC_CTRL_INIT: + return 0; + } + } + return -ENXIO; +} + +struct kvm_device_ops kvm_arm_vgic_v2_ops = { + .name = "kvm-arm-vgic-v2", + .create = vgic_v2_create, + .destroy = vgic_v2_destroy, + .set_attr = vgic_v2_set_attr, + .get_attr = vgic_v2_get_attr, + .has_attr = vgic_v2_has_attr, +}; diff --git a/virt/kvm/arm/vgic-v2.c b/virt/kvm/arm/vgic-v2.c index 2935405ad22f..a0a7b5d1a070 100644 --- a/virt/kvm/arm/vgic-v2.c +++ b/virt/kvm/arm/vgic-v2.c @@ -229,12 +229,16 @@ int vgic_v2_probe(struct device_node *vgic_node, goto out_unmap; } + vgic->can_emulate_gicv2 = true; + kvm_register_device_ops(&kvm_arm_vgic_v2_ops, KVM_DEV_TYPE_ARM_VGIC_V2); + vgic->vcpu_base = vcpu_res.start; kvm_info("%s@%llx IRQ%d\n", vgic_node->name, vctrl_res.start, vgic->maint_irq); vgic->type = VGIC_V2; + vgic->max_gic_vcpus = VGIC_V2_MAX_CPUS; *ops = &vgic_v2_ops; *params = vgic; goto out; diff --git a/virt/kvm/arm/vgic-v3-emul.c b/virt/kvm/arm/vgic-v3-emul.c new file mode 100644 index 000000000000..b3f154631515 --- /dev/null +++ b/virt/kvm/arm/vgic-v3-emul.c @@ -0,0 +1,1036 @@ +/* + * GICv3 distributor and redistributor emulation + * + * GICv3 emulation is currently only supported on a GICv3 host (because + * we rely on the hardware's CPU interface virtualization support), but + * supports both hardware with or without the optional GICv2 backwards + * compatibility features. + * + * Limitations of the emulation: + * (RAZ/WI: read as zero, write ignore, RAO/WI: read as one, write ignore) + * - We do not support LPIs (yet). TYPER.LPIS is reported as 0 and is RAZ/WI. + * - We do not support the message based interrupts (MBIs) triggered by + * writes to the GICD_{SET,CLR}SPI_* registers. TYPER.MBIS is reported as 0. + * - We do not support the (optional) backwards compatibility feature. + * GICD_CTLR.ARE resets to 1 and is RAO/WI. If the _host_ GIC supports + * the compatiblity feature, you can use a GICv2 in the guest, though. + * - We only support a single security state. GICD_CTLR.DS is 1 and is RAO/WI. + * - Priorities are not emulated (same as the GICv2 emulation). Linux + * as a guest is fine with this, because it does not use priorities. + * - We only support Group1 interrupts. Again Linux uses only those. + * + * Copyright (C) 2014 ARM Ltd. + * Author: Andre Przywara <andre.przywara@arm.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + +#include <linux/cpu.h> +#include <linux/kvm.h> +#include <linux/kvm_host.h> +#include <linux/interrupt.h> + +#include <linux/irqchip/arm-gic-v3.h> +#include <kvm/arm_vgic.h> + +#include <asm/kvm_emulate.h> +#include <asm/kvm_arm.h> +#include <asm/kvm_mmu.h> + +#include "vgic.h" + +static bool handle_mmio_rao_wi(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, phys_addr_t offset) +{ + u32 reg = 0xffffffff; + + vgic_reg_access(mmio, ®, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); + + return false; +} + +static bool handle_mmio_ctlr(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, phys_addr_t offset) +{ + u32 reg = 0; + + /* + * Force ARE and DS to 1, the guest cannot change this. + * For the time being we only support Group1 interrupts. + */ + if (vcpu->kvm->arch.vgic.enabled) + reg = GICD_CTLR_ENABLE_SS_G1; + reg |= GICD_CTLR_ARE_NS | GICD_CTLR_DS; + + vgic_reg_access(mmio, ®, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); + if (mmio->is_write) { + if (reg & GICD_CTLR_ENABLE_SS_G0) + kvm_info("guest tried to enable unsupported Group0 interrupts\n"); + vcpu->kvm->arch.vgic.enabled = !!(reg & GICD_CTLR_ENABLE_SS_G1); + vgic_update_state(vcpu->kvm); + return true; + } + return false; +} + +/* + * As this implementation does not provide compatibility + * with GICv2 (ARE==1), we report zero CPUs in bits [5..7]. + * Also LPIs and MBIs are not supported, so we set the respective bits to 0. + * Also we report at most 2**10=1024 interrupt IDs (to match 1024 SPIs). + */ +#define INTERRUPT_ID_BITS 10 +static bool handle_mmio_typer(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, phys_addr_t offset) +{ + u32 reg; + + reg = (min(vcpu->kvm->arch.vgic.nr_irqs, 1024) >> 5) - 1; + + reg |= (INTERRUPT_ID_BITS - 1) << 19; + + vgic_reg_access(mmio, ®, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); + + return false; +} + +static bool handle_mmio_iidr(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, phys_addr_t offset) +{ + u32 reg; + + reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0); + vgic_reg_access(mmio, ®, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); + + return false; +} + +static bool handle_mmio_set_enable_reg_dist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) + return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, + vcpu->vcpu_id, + ACCESS_WRITE_SETBIT); + + vgic_reg_access(mmio, NULL, offset, + ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); + return false; +} + +static bool handle_mmio_clear_enable_reg_dist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) + return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, + vcpu->vcpu_id, + ACCESS_WRITE_CLEARBIT); + + vgic_reg_access(mmio, NULL, offset, + ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); + return false; +} + +static bool handle_mmio_set_pending_reg_dist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) + return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset, + vcpu->vcpu_id); + + vgic_reg_access(mmio, NULL, offset, + ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); + return false; +} + +static bool handle_mmio_clear_pending_reg_dist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) + return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset, + vcpu->vcpu_id); + + vgic_reg_access(mmio, NULL, offset, + ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); + return false; +} + +static bool handle_mmio_priority_reg_dist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + u32 *reg; + + if (unlikely(offset < VGIC_NR_PRIVATE_IRQS)) { + vgic_reg_access(mmio, NULL, offset, + ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); + return false; + } + + reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority, + vcpu->vcpu_id, offset); + vgic_reg_access(mmio, reg, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); + return false; +} + +static bool handle_mmio_cfg_reg_dist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + u32 *reg; + + if (unlikely(offset < VGIC_NR_PRIVATE_IRQS / 4)) { + vgic_reg_access(mmio, NULL, offset, + ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); + return false; + } + + reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg, + vcpu->vcpu_id, offset >> 1); + + return vgic_handle_cfg_reg(reg, mmio, offset); +} + +/* + * We use a compressed version of the MPIDR (all 32 bits in one 32-bit word) + * when we store the target MPIDR written by the guest. + */ +static u32 compress_mpidr(unsigned long mpidr) +{ + u32 ret; + + ret = MPIDR_AFFINITY_LEVEL(mpidr, 0); + ret |= MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8; + ret |= MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16; + ret |= MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24; + + return ret; +} + +static unsigned long uncompress_mpidr(u32 value) +{ + unsigned long mpidr; + + mpidr = ((value >> 0) & 0xFF) << MPIDR_LEVEL_SHIFT(0); + mpidr |= ((value >> 8) & 0xFF) << MPIDR_LEVEL_SHIFT(1); + mpidr |= ((value >> 16) & 0xFF) << MPIDR_LEVEL_SHIFT(2); + mpidr |= (u64)((value >> 24) & 0xFF) << MPIDR_LEVEL_SHIFT(3); + + return mpidr; +} + +/* + * Lookup the given MPIDR value to get the vcpu_id (if there is one) + * and store that in the irq_spi_cpu[] array. + * This limits the number of VCPUs to 255 for now, extending the data + * type (or storing kvm_vcpu pointers) should lift the limit. + * Store the original MPIDR value in an extra array to support read-as-written. + * Unallocated MPIDRs are translated to a special value and caught + * before any array accesses. + */ +static bool handle_mmio_route_reg(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + struct kvm *kvm = vcpu->kvm; + struct vgic_dist *dist = &kvm->arch.vgic; + int spi; + u32 reg; + int vcpu_id; + unsigned long *bmap, mpidr; + + /* + * The upper 32 bits of each 64 bit register are zero, + * as we don't support Aff3. + */ + if ((offset & 4)) { + vgic_reg_access(mmio, NULL, offset, + ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); + return false; + } + + /* This region only covers SPIs, so no handling of private IRQs here. */ + spi = offset / 8; + + /* get the stored MPIDR for this IRQ */ + mpidr = uncompress_mpidr(dist->irq_spi_mpidr[spi]); + reg = mpidr; + + vgic_reg_access(mmio, ®, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); + + if (!mmio->is_write) + return false; + + /* + * Now clear the currently assigned vCPU from the map, making room + * for the new one to be written below + */ + vcpu = kvm_mpidr_to_vcpu(kvm, mpidr); + if (likely(vcpu)) { + vcpu_id = vcpu->vcpu_id; + bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]); + __clear_bit(spi, bmap); + } + + dist->irq_spi_mpidr[spi] = compress_mpidr(reg); + vcpu = kvm_mpidr_to_vcpu(kvm, reg & MPIDR_HWID_BITMASK); + + /* + * The spec says that non-existent MPIDR values should not be + * forwarded to any existent (v)CPU, but should be able to become + * pending anyway. We simply keep the irq_spi_target[] array empty, so + * the interrupt will never be injected. + * irq_spi_cpu[irq] gets a magic value in this case. + */ + if (likely(vcpu)) { + vcpu_id = vcpu->vcpu_id; + dist->irq_spi_cpu[spi] = vcpu_id; + bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]); + __set_bit(spi, bmap); + } else { + dist->irq_spi_cpu[spi] = VCPU_NOT_ALLOCATED; + } + + vgic_update_state(kvm); + + return true; +} + +/* + * We should be careful about promising too much when a guest reads + * this register. Don't claim to be like any hardware implementation, + * but just report the GIC as version 3 - which is what a Linux guest + * would check. + */ +static bool handle_mmio_idregs(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + u32 reg = 0; + + switch (offset + GICD_IDREGS) { + case GICD_PIDR2: + reg = 0x3b; + break; + } + + vgic_reg_access(mmio, ®, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); + + return false; +} + +static const struct kvm_mmio_range vgic_v3_dist_ranges[] = { + { + .base = GICD_CTLR, + .len = 0x04, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_ctlr, + }, + { + .base = GICD_TYPER, + .len = 0x04, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_typer, + }, + { + .base = GICD_IIDR, + .len = 0x04, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_iidr, + }, + { + /* this register is optional, it is RAZ/WI if not implemented */ + .base = GICD_STATUSR, + .len = 0x04, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_raz_wi, + }, + { + /* this write only register is WI when TYPER.MBIS=0 */ + .base = GICD_SETSPI_NSR, + .len = 0x04, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_raz_wi, + }, + { + /* this write only register is WI when TYPER.MBIS=0 */ + .base = GICD_CLRSPI_NSR, + .len = 0x04, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_raz_wi, + }, + { + /* this is RAZ/WI when DS=1 */ + .base = GICD_SETSPI_SR, + .len = 0x04, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_raz_wi, + }, + { + /* this is RAZ/WI when DS=1 */ + .base = GICD_CLRSPI_SR, + .len = 0x04, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GICD_IGROUPR, + .len = 0x80, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_rao_wi, + }, + { + .base = GICD_ISENABLER, + .len = 0x80, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_set_enable_reg_dist, + }, + { + .base = GICD_ICENABLER, + .len = 0x80, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_clear_enable_reg_dist, + }, + { + .base = GICD_ISPENDR, + .len = 0x80, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_set_pending_reg_dist, + }, + { + .base = GICD_ICPENDR, + .len = 0x80, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_clear_pending_reg_dist, + }, + { + .base = GICD_ISACTIVER, + .len = 0x80, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GICD_ICACTIVER, + .len = 0x80, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GICD_IPRIORITYR, + .len = 0x400, + .bits_per_irq = 8, + .handle_mmio = handle_mmio_priority_reg_dist, + }, + { + /* TARGETSRn is RES0 when ARE=1 */ + .base = GICD_ITARGETSR, + .len = 0x400, + .bits_per_irq = 8, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GICD_ICFGR, + .len = 0x100, + .bits_per_irq = 2, + .handle_mmio = handle_mmio_cfg_reg_dist, + }, + { + /* this is RAZ/WI when DS=1 */ + .base = GICD_IGRPMODR, + .len = 0x80, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_raz_wi, + }, + { + /* this is RAZ/WI when DS=1 */ + .base = GICD_NSACR, + .len = 0x100, + .bits_per_irq = 2, + .handle_mmio = handle_mmio_raz_wi, + }, + { + /* this is RAZ/WI when ARE=1 */ + .base = GICD_SGIR, + .len = 0x04, + .handle_mmio = handle_mmio_raz_wi, + }, + { + /* this is RAZ/WI when ARE=1 */ + .base = GICD_CPENDSGIR, + .len = 0x10, + .handle_mmio = handle_mmio_raz_wi, + }, + { + /* this is RAZ/WI when ARE=1 */ + .base = GICD_SPENDSGIR, + .len = 0x10, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GICD_IROUTER + 0x100, + .len = 0x1ee0, + .bits_per_irq = 64, + .handle_mmio = handle_mmio_route_reg, + }, + { + .base = GICD_IDREGS, + .len = 0x30, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_idregs, + }, + {}, +}; + +static bool handle_mmio_set_enable_reg_redist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + struct kvm_vcpu *redist_vcpu = mmio->private; + + return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, + redist_vcpu->vcpu_id, + ACCESS_WRITE_SETBIT); +} + +static bool handle_mmio_clear_enable_reg_redist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + struct kvm_vcpu *redist_vcpu = mmio->private; + + return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, + redist_vcpu->vcpu_id, + ACCESS_WRITE_CLEARBIT); +} + +static bool handle_mmio_set_pending_reg_redist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + struct kvm_vcpu *redist_vcpu = mmio->private; + + return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset, + redist_vcpu->vcpu_id); +} + +static bool handle_mmio_clear_pending_reg_redist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + struct kvm_vcpu *redist_vcpu = mmio->private; + + return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset, + redist_vcpu->vcpu_id); +} + +static bool handle_mmio_priority_reg_redist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + struct kvm_vcpu *redist_vcpu = mmio->private; + u32 *reg; + + reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority, + redist_vcpu->vcpu_id, offset); + vgic_reg_access(mmio, reg, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); + return false; +} + +static bool handle_mmio_cfg_reg_redist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + struct kvm_vcpu *redist_vcpu = mmio->private; + + u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg, + redist_vcpu->vcpu_id, offset >> 1); + + return vgic_handle_cfg_reg(reg, mmio, offset); +} + +static const struct kvm_mmio_range vgic_redist_sgi_ranges[] = { + { + .base = GICR_IGROUPR0, + .len = 0x04, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_rao_wi, + }, + { + .base = GICR_ISENABLER0, + .len = 0x04, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_set_enable_reg_redist, + }, + { + .base = GICR_ICENABLER0, + .len = 0x04, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_clear_enable_reg_redist, + }, + { + .base = GICR_ISPENDR0, + .len = 0x04, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_set_pending_reg_redist, + }, + { + .base = GICR_ICPENDR0, + .len = 0x04, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_clear_pending_reg_redist, + }, + { + .base = GICR_ISACTIVER0, + .len = 0x04, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GICR_ICACTIVER0, + .len = 0x04, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GICR_IPRIORITYR0, + .len = 0x20, + .bits_per_irq = 8, + .handle_mmio = handle_mmio_priority_reg_redist, + }, + { + .base = GICR_ICFGR0, + .len = 0x08, + .bits_per_irq = 2, + .handle_mmio = handle_mmio_cfg_reg_redist, + }, + { + .base = GICR_IGRPMODR0, + .len = 0x04, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GICR_NSACR, + .len = 0x04, + .handle_mmio = handle_mmio_raz_wi, + }, + {}, +}; + +static bool handle_mmio_ctlr_redist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + /* since we don't support LPIs, this register is zero for now */ + vgic_reg_access(mmio, NULL, offset, + ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); + return false; +} + +static bool handle_mmio_typer_redist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + u32 reg; + u64 mpidr; + struct kvm_vcpu *redist_vcpu = mmio->private; + int target_vcpu_id = redist_vcpu->vcpu_id; + + /* the upper 32 bits contain the affinity value */ + if ((offset & ~3) == 4) { + mpidr = kvm_vcpu_get_mpidr_aff(redist_vcpu); + reg = compress_mpidr(mpidr); + + vgic_reg_access(mmio, ®, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); + return false; + } + + reg = redist_vcpu->vcpu_id << 8; + if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1) + reg |= GICR_TYPER_LAST; + vgic_reg_access(mmio, ®, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); + return false; +} + +static const struct kvm_mmio_range vgic_redist_ranges[] = { + { + .base = GICR_CTLR, + .len = 0x04, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_ctlr_redist, + }, + { + .base = GICR_TYPER, + .len = 0x08, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_typer_redist, + }, + { + .base = GICR_IIDR, + .len = 0x04, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_iidr, + }, + { + .base = GICR_WAKER, + .len = 0x04, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GICR_IDREGS, + .len = 0x30, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_idregs, + }, + {}, +}; + +/* + * This function splits accesses between the distributor and the two + * redistributor parts (private/SPI). As each redistributor is accessible + * from any CPU, we have to determine the affected VCPU by taking the faulting + * address into account. We then pass this VCPU to the handler function via + * the private parameter. + */ +#define SGI_BASE_OFFSET SZ_64K +static bool vgic_v3_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, + struct kvm_exit_mmio *mmio) +{ + struct vgic_dist *dist = &vcpu->kvm->arch.vgic; + unsigned long dbase = dist->vgic_dist_base; + unsigned long rdbase = dist->vgic_redist_base; + int nrcpus = atomic_read(&vcpu->kvm->online_vcpus); + int vcpu_id; + const struct kvm_mmio_range *mmio_range; + + if (is_in_range(mmio->phys_addr, mmio->len, dbase, GIC_V3_DIST_SIZE)) { + return vgic_handle_mmio_range(vcpu, run, mmio, + vgic_v3_dist_ranges, dbase); + } + + if (!is_in_range(mmio->phys_addr, mmio->len, rdbase, + GIC_V3_REDIST_SIZE * nrcpus)) + return false; + + vcpu_id = (mmio->phys_addr - rdbase) / GIC_V3_REDIST_SIZE; + rdbase += (vcpu_id * GIC_V3_REDIST_SIZE); + mmio->private = kvm_get_vcpu(vcpu->kvm, vcpu_id); + + if (mmio->phys_addr >= rdbase + SGI_BASE_OFFSET) { + rdbase += SGI_BASE_OFFSET; + mmio_range = vgic_redist_sgi_ranges; + } else { + mmio_range = vgic_redist_ranges; + } + return vgic_handle_mmio_range(vcpu, run, mmio, mmio_range, rdbase); +} + +static bool vgic_v3_queue_sgi(struct kvm_vcpu *vcpu, int irq) +{ + if (vgic_queue_irq(vcpu, 0, irq)) { + vgic_dist_irq_clear_pending(vcpu, irq); + vgic_cpu_irq_clear(vcpu, irq); + return true; + } + + return false; +} + +static int vgic_v3_map_resources(struct kvm *kvm, + const struct vgic_params *params) +{ + int ret = 0; + struct vgic_dist *dist = &kvm->arch.vgic; + + if (!irqchip_in_kernel(kvm)) + return 0; + + mutex_lock(&kvm->lock); + + if (vgic_ready(kvm)) + goto out; + + if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) || + IS_VGIC_ADDR_UNDEF(dist->vgic_redist_base)) { + kvm_err("Need to set vgic distributor addresses first\n"); + ret = -ENXIO; + goto out; + } + + /* + * For a VGICv3 we require the userland to explicitly initialize + * the VGIC before we need to use it. + */ + if (!vgic_initialized(kvm)) { + ret = -EBUSY; + goto out; + } + + kvm->arch.vgic.ready = true; +out: + if (ret) + kvm_vgic_destroy(kvm); + mutex_unlock(&kvm->lock); + return ret; +} + +static int vgic_v3_init_model(struct kvm *kvm) +{ + int i; + u32 mpidr; + struct vgic_dist *dist = &kvm->arch.vgic; + int nr_spis = dist->nr_irqs - VGIC_NR_PRIVATE_IRQS; + + dist->irq_spi_mpidr = kcalloc(nr_spis, sizeof(dist->irq_spi_mpidr[0]), + GFP_KERNEL); + + if (!dist->irq_spi_mpidr) + return -ENOMEM; + + /* Initialize the target VCPUs for each IRQ to VCPU 0 */ + mpidr = compress_mpidr(kvm_vcpu_get_mpidr_aff(kvm_get_vcpu(kvm, 0))); + for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i++) { + dist->irq_spi_cpu[i - VGIC_NR_PRIVATE_IRQS] = 0; + dist->irq_spi_mpidr[i - VGIC_NR_PRIVATE_IRQS] = mpidr; + vgic_bitmap_set_irq_val(dist->irq_spi_target, 0, i, 1); + } + + return 0; +} + +/* GICv3 does not keep track of SGI sources anymore. */ +static void vgic_v3_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source) +{ +} + +void vgic_v3_init_emulation(struct kvm *kvm) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + + dist->vm_ops.handle_mmio = vgic_v3_handle_mmio; + dist->vm_ops.queue_sgi = vgic_v3_queue_sgi; + dist->vm_ops.add_sgi_source = vgic_v3_add_sgi_source; + dist->vm_ops.init_model = vgic_v3_init_model; + dist->vm_ops.map_resources = vgic_v3_map_resources; + + kvm->arch.max_vcpus = KVM_MAX_VCPUS; +} + +/* + * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI + * generation register ICC_SGI1R_EL1) with a given VCPU. + * If the VCPU's MPIDR matches, return the level0 affinity, otherwise + * return -1. + */ +static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu) +{ + unsigned long affinity; + int level0; + + /* + * Split the current VCPU's MPIDR into affinity level 0 and the + * rest as this is what we have to compare against. + */ + affinity = kvm_vcpu_get_mpidr_aff(vcpu); + level0 = MPIDR_AFFINITY_LEVEL(affinity, 0); + affinity &= ~MPIDR_LEVEL_MASK; + + /* bail out if the upper three levels don't match */ + if (sgi_aff != affinity) + return -1; + + /* Is this VCPU's bit set in the mask ? */ + if (!(sgi_cpu_mask & BIT(level0))) + return -1; + + return level0; +} + +#define SGI_AFFINITY_LEVEL(reg, level) \ + ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \ + >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level)) + +/** + * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs + * @vcpu: The VCPU requesting a SGI + * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU + * + * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register. + * This will trap in sys_regs.c and call this function. + * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the + * target processors as well as a bitmask of 16 Aff0 CPUs. + * If the interrupt routing mode bit is not set, we iterate over all VCPUs to + * check for matching ones. If this bit is set, we signal all, but not the + * calling VCPU. + */ +void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg) +{ + struct kvm *kvm = vcpu->kvm; + struct kvm_vcpu *c_vcpu; + struct vgic_dist *dist = &kvm->arch.vgic; + u16 target_cpus; + u64 mpidr; + int sgi, c; + int vcpu_id = vcpu->vcpu_id; + bool broadcast; + int updated = 0; + + sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT; + broadcast = reg & BIT(ICC_SGI1R_IRQ_ROUTING_MODE_BIT); + target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT; + mpidr = SGI_AFFINITY_LEVEL(reg, 3); + mpidr |= SGI_AFFINITY_LEVEL(reg, 2); + mpidr |= SGI_AFFINITY_LEVEL(reg, 1); + + /* + * We take the dist lock here, because we come from the sysregs + * code path and not from the MMIO one (which already takes the lock). + */ + spin_lock(&dist->lock); + + /* + * We iterate over all VCPUs to find the MPIDRs matching the request. + * If we have handled one CPU, we clear it's bit to detect early + * if we are already finished. This avoids iterating through all + * VCPUs when most of the times we just signal a single VCPU. + */ + kvm_for_each_vcpu(c, c_vcpu, kvm) { + + /* Exit early if we have dealt with all requested CPUs */ + if (!broadcast && target_cpus == 0) + break; + + /* Don't signal the calling VCPU */ + if (broadcast && c == vcpu_id) + continue; + + if (!broadcast) { + int level0; + + level0 = match_mpidr(mpidr, target_cpus, c_vcpu); + if (level0 == -1) + continue; + + /* remove this matching VCPU from the mask */ + target_cpus &= ~BIT(level0); + } + + /* Flag the SGI as pending */ + vgic_dist_irq_set_pending(c_vcpu, sgi); + updated = 1; + kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c); + } + if (updated) + vgic_update_state(vcpu->kvm); + spin_unlock(&dist->lock); + if (updated) + vgic_kick_vcpus(vcpu->kvm); +} + +static int vgic_v3_create(struct kvm_device *dev, u32 type) +{ + return kvm_vgic_create(dev->kvm, type); +} + +static void vgic_v3_destroy(struct kvm_device *dev) +{ + kfree(dev); +} + +static int vgic_v3_set_attr(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + int ret; + + ret = vgic_set_common_attr(dev, attr); + if (ret != -ENXIO) + return ret; + + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: + case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: + return -ENXIO; + } + + return -ENXIO; +} + +static int vgic_v3_get_attr(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + int ret; + + ret = vgic_get_common_attr(dev, attr); + if (ret != -ENXIO) + return ret; + + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: + case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: + return -ENXIO; + } + + return -ENXIO; +} + +static int vgic_v3_has_attr(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_ADDR: + switch (attr->attr) { + case KVM_VGIC_V2_ADDR_TYPE_DIST: + case KVM_VGIC_V2_ADDR_TYPE_CPU: + return -ENXIO; + case KVM_VGIC_V3_ADDR_TYPE_DIST: + case KVM_VGIC_V3_ADDR_TYPE_REDIST: + return 0; + } + break; + case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: + case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: + return -ENXIO; + case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: + return 0; + case KVM_DEV_ARM_VGIC_GRP_CTRL: + switch (attr->attr) { + case KVM_DEV_ARM_VGIC_CTRL_INIT: + return 0; + } + } + return -ENXIO; +} + +struct kvm_device_ops kvm_arm_vgic_v3_ops = { + .name = "kvm-arm-vgic-v3", + .create = vgic_v3_create, + .destroy = vgic_v3_destroy, + .set_attr = vgic_v3_set_attr, + .get_attr = vgic_v3_get_attr, + .has_attr = vgic_v3_has_attr, +}; diff --git a/virt/kvm/arm/vgic-v3.c b/virt/kvm/arm/vgic-v3.c index 1c2c8eef0599..3a62d8a9a2c6 100644 --- a/virt/kvm/arm/vgic-v3.c +++ b/virt/kvm/arm/vgic-v3.c @@ -34,6 +34,7 @@ #define GICH_LR_VIRTUALID (0x3ffUL << 0) #define GICH_LR_PHYSID_CPUID_SHIFT (10) #define GICH_LR_PHYSID_CPUID (7UL << GICH_LR_PHYSID_CPUID_SHIFT) +#define ICH_LR_VIRTUALID_MASK (BIT_ULL(32) - 1) /* * LRs are stored in reverse order in memory. make sure we index them @@ -48,12 +49,17 @@ static struct vgic_lr vgic_v3_get_lr(const struct kvm_vcpu *vcpu, int lr) struct vgic_lr lr_desc; u64 val = vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[LR_INDEX(lr)]; - lr_desc.irq = val & GICH_LR_VIRTUALID; - if (lr_desc.irq <= 15) - lr_desc.source = (val >> GICH_LR_PHYSID_CPUID_SHIFT) & 0x7; + if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) + lr_desc.irq = val & ICH_LR_VIRTUALID_MASK; else - lr_desc.source = 0; - lr_desc.state = 0; + lr_desc.irq = val & GICH_LR_VIRTUALID; + + lr_desc.source = 0; + if (lr_desc.irq <= 15 && + vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2) + lr_desc.source = (val >> GICH_LR_PHYSID_CPUID_SHIFT) & 0x7; + + lr_desc.state = 0; if (val & ICH_LR_PENDING_BIT) lr_desc.state |= LR_STATE_PENDING; @@ -68,8 +74,20 @@ static struct vgic_lr vgic_v3_get_lr(const struct kvm_vcpu *vcpu, int lr) static void vgic_v3_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc) { - u64 lr_val = (((u32)lr_desc.source << GICH_LR_PHYSID_CPUID_SHIFT) | - lr_desc.irq); + u64 lr_val; + + lr_val = lr_desc.irq; + + /* + * Currently all guest IRQs are Group1, as Group0 would result + * in a FIQ in the guest, which it wouldn't expect. + * Eventually we want to make this configurable, so we may revisit + * this in the future. + */ + if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) + lr_val |= ICH_LR_GROUP; + else + lr_val |= (u32)lr_desc.source << GICH_LR_PHYSID_CPUID_SHIFT; if (lr_desc.state & LR_STATE_PENDING) lr_val |= ICH_LR_PENDING_BIT; @@ -145,15 +163,27 @@ static void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) static void vgic_v3_enable(struct kvm_vcpu *vcpu) { + struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3; + /* * By forcing VMCR to zero, the GIC will restore the binary * points to their reset values. Anything else resets to zero * anyway. */ - vcpu->arch.vgic_cpu.vgic_v3.vgic_vmcr = 0; + vgic_v3->vgic_vmcr = 0; + + /* + * If we are emulating a GICv3, we do it in an non-GICv2-compatible + * way, so we force SRE to 1 to demonstrate this to the guest. + * This goes with the spec allowing the value to be RAO/WI. + */ + if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) + vgic_v3->vgic_sre = ICC_SRE_EL1_SRE; + else + vgic_v3->vgic_sre = 0; /* Get the show on the road... */ - vcpu->arch.vgic_cpu.vgic_v3.vgic_hcr = ICH_HCR_EN; + vgic_v3->vgic_hcr = ICH_HCR_EN; } static const struct vgic_ops vgic_v3_ops = { @@ -205,35 +235,37 @@ int vgic_v3_probe(struct device_node *vgic_node, * maximum of 16 list registers. Just ignore bit 4... */ vgic->nr_lr = (ich_vtr_el2 & 0xf) + 1; + vgic->can_emulate_gicv2 = false; if (of_property_read_u32(vgic_node, "#redistributor-regions", &gicv_idx)) gicv_idx = 1; gicv_idx += 3; /* Also skip GICD, GICC, GICH */ if (of_address_to_resource(vgic_node, gicv_idx, &vcpu_res)) { - kvm_err("Cannot obtain GICV region\n"); - ret = -ENXIO; - goto out; - } - - if (!PAGE_ALIGNED(vcpu_res.start)) { - kvm_err("GICV physical address 0x%llx not page aligned\n", + kvm_info("GICv3: no GICV resource entry\n"); + vgic->vcpu_base = 0; + } else if (!PAGE_ALIGNED(vcpu_res.start)) { + pr_warn("GICV physical address 0x%llx not page aligned\n", (unsigned long long)vcpu_res.start); - ret = -ENXIO; - goto out; - } - - if (!PAGE_ALIGNED(resource_size(&vcpu_res))) { - kvm_err("GICV size 0x%llx not a multiple of page size 0x%lx\n", + vgic->vcpu_base = 0; + } else if (!PAGE_ALIGNED(resource_size(&vcpu_res))) { + pr_warn("GICV size 0x%llx not a multiple of page size 0x%lx\n", (unsigned long long)resource_size(&vcpu_res), PAGE_SIZE); - ret = -ENXIO; - goto out; + vgic->vcpu_base = 0; + } else { + vgic->vcpu_base = vcpu_res.start; + vgic->can_emulate_gicv2 = true; + kvm_register_device_ops(&kvm_arm_vgic_v2_ops, + KVM_DEV_TYPE_ARM_VGIC_V2); } + if (vgic->vcpu_base == 0) + kvm_info("disabling GICv2 emulation\n"); + kvm_register_device_ops(&kvm_arm_vgic_v3_ops, KVM_DEV_TYPE_ARM_VGIC_V3); - vgic->vcpu_base = vcpu_res.start; vgic->vctrl_base = NULL; vgic->type = VGIC_V3; + vgic->max_gic_vcpus = KVM_MAX_VCPUS; kvm_info("%s@%llx IRQ%d\n", vgic_node->name, vcpu_res.start, vgic->maint_irq); diff --git a/virt/kvm/arm/vgic.c b/virt/kvm/arm/vgic.c index 03affc7bf453..0cc6ab6005a0 100644 --- a/virt/kvm/arm/vgic.c +++ b/virt/kvm/arm/vgic.c @@ -75,37 +75,31 @@ * inactive as long as the external input line is held high. */ -#define VGIC_ADDR_UNDEF (-1) -#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF) - -#define PRODUCT_ID_KVM 0x4b /* ASCII code K */ -#define IMPLEMENTER_ARM 0x43b -#define GICC_ARCH_VERSION_V2 0x2 - -#define ACCESS_READ_VALUE (1 << 0) -#define ACCESS_READ_RAZ (0 << 0) -#define ACCESS_READ_MASK(x) ((x) & (1 << 0)) -#define ACCESS_WRITE_IGNORED (0 << 1) -#define ACCESS_WRITE_SETBIT (1 << 1) -#define ACCESS_WRITE_CLEARBIT (2 << 1) -#define ACCESS_WRITE_VALUE (3 << 1) -#define ACCESS_WRITE_MASK(x) ((x) & (3 << 1)) - -static int vgic_init(struct kvm *kvm); +#include "vgic.h" + static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu); static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu); -static void vgic_update_state(struct kvm *kvm); -static void vgic_kick_vcpus(struct kvm *kvm); -static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi); -static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg); static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr); static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc); -static void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr); -static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr); static const struct vgic_ops *vgic_ops; static const struct vgic_params *vgic; +static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source) +{ + vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source); +} + +static bool queue_sgi(struct kvm_vcpu *vcpu, int irq) +{ + return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq); +} + +int kvm_vgic_map_resources(struct kvm *kvm) +{ + return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic); +} + /* * struct vgic_bitmap contains a bitmap made of unsigned longs, but * extracts u32s out of them. @@ -160,8 +154,7 @@ static unsigned long *u64_to_bitmask(u64 *val) return (unsigned long *)val; } -static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, - int cpuid, u32 offset) +u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset) { offset >>= 2; if (!offset) @@ -179,8 +172,8 @@ static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x, return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared); } -static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid, - int irq, int val) +void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid, + int irq, int val) { unsigned long *reg; @@ -202,7 +195,7 @@ static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid) return x->private + cpuid; } -static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x) +unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x) { return x->shared; } @@ -229,7 +222,7 @@ static void vgic_free_bytemap(struct vgic_bytemap *b) b->shared = NULL; } -static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset) +u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset) { u32 *reg; @@ -326,14 +319,14 @@ static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq) return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq); } -static void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq) +void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1); } -static void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq) +void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; @@ -349,7 +342,7 @@ static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq) vcpu->arch.vgic_cpu.pending_shared); } -static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq) +void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq) { if (irq < VGIC_NR_PRIVATE_IRQS) clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu); @@ -363,16 +356,6 @@ static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq) return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq); } -static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask) -{ - return le32_to_cpu(*((u32 *)mmio->data)) & mask; -} - -static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value) -{ - *((u32 *)mmio->data) = cpu_to_le32(value) & mask; -} - /** * vgic_reg_access - access vgic register * @mmio: pointer to the data describing the mmio access @@ -384,8 +367,8 @@ static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value) * modes defined for vgic register access * (read,raz,write-ignored,setbit,clearbit,write) */ -static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg, - phys_addr_t offset, int mode) +void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg, + phys_addr_t offset, int mode) { int word_offset = (offset & 3) * 8; u32 mask = (1UL << (mmio->len * 8)) - 1; @@ -434,107 +417,58 @@ static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg, } } -static bool handle_mmio_misc(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, phys_addr_t offset) -{ - u32 reg; - u32 word_offset = offset & 3; - - switch (offset & ~3) { - case 0: /* GICD_CTLR */ - reg = vcpu->kvm->arch.vgic.enabled; - vgic_reg_access(mmio, ®, word_offset, - ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); - if (mmio->is_write) { - vcpu->kvm->arch.vgic.enabled = reg & 1; - vgic_update_state(vcpu->kvm); - return true; - } - break; - - case 4: /* GICD_TYPER */ - reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5; - reg |= (vcpu->kvm->arch.vgic.nr_irqs >> 5) - 1; - vgic_reg_access(mmio, ®, word_offset, - ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); - break; - - case 8: /* GICD_IIDR */ - reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0); - vgic_reg_access(mmio, ®, word_offset, - ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); - break; - } - - return false; -} - -static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, phys_addr_t offset) +bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, + phys_addr_t offset) { vgic_reg_access(mmio, NULL, offset, ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); return false; } -static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, - phys_addr_t offset) +bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio, + phys_addr_t offset, int vcpu_id, int access) { - u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled, - vcpu->vcpu_id, offset); - vgic_reg_access(mmio, reg, offset, - ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT); - if (mmio->is_write) { - vgic_update_state(vcpu->kvm); - return true; - } - - return false; -} + u32 *reg; + int mode = ACCESS_READ_VALUE | access; + struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id); -static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, - phys_addr_t offset) -{ - u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled, - vcpu->vcpu_id, offset); - vgic_reg_access(mmio, reg, offset, - ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT); + reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset); + vgic_reg_access(mmio, reg, offset, mode); if (mmio->is_write) { - if (offset < 4) /* Force SGI enabled */ - *reg |= 0xffff; - vgic_retire_disabled_irqs(vcpu); - vgic_update_state(vcpu->kvm); + if (access & ACCESS_WRITE_CLEARBIT) { + if (offset < 4) /* Force SGI enabled */ + *reg |= 0xffff; + vgic_retire_disabled_irqs(target_vcpu); + } + vgic_update_state(kvm); return true; } return false; } -static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, - phys_addr_t offset) +bool vgic_handle_set_pending_reg(struct kvm *kvm, + struct kvm_exit_mmio *mmio, + phys_addr_t offset, int vcpu_id) { u32 *reg, orig; u32 level_mask; - struct vgic_dist *dist = &vcpu->kvm->arch.vgic; + int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT; + struct vgic_dist *dist = &kvm->arch.vgic; - reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu->vcpu_id, offset); + reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset); level_mask = (~(*reg)); /* Mark both level and edge triggered irqs as pending */ - reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset); + reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset); orig = *reg; - vgic_reg_access(mmio, reg, offset, - ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT); + vgic_reg_access(mmio, reg, offset, mode); if (mmio->is_write) { /* Set the soft-pending flag only for level-triggered irqs */ reg = vgic_bitmap_get_reg(&dist->irq_soft_pend, - vcpu->vcpu_id, offset); - vgic_reg_access(mmio, reg, offset, - ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT); + vcpu_id, offset); + vgic_reg_access(mmio, reg, offset, mode); *reg &= level_mask; /* Ignore writes to SGIs */ @@ -543,31 +477,30 @@ static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu, *reg |= orig & 0xffff; } - vgic_update_state(vcpu->kvm); + vgic_update_state(kvm); return true; } return false; } -static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, - phys_addr_t offset) +bool vgic_handle_clear_pending_reg(struct kvm *kvm, + struct kvm_exit_mmio *mmio, + phys_addr_t offset, int vcpu_id) { u32 *level_active; u32 *reg, orig; - struct vgic_dist *dist = &vcpu->kvm->arch.vgic; + int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT; + struct vgic_dist *dist = &kvm->arch.vgic; - reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset); + reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset); orig = *reg; - vgic_reg_access(mmio, reg, offset, - ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT); + vgic_reg_access(mmio, reg, offset, mode); if (mmio->is_write) { /* Re-set level triggered level-active interrupts */ level_active = vgic_bitmap_get_reg(&dist->irq_level, - vcpu->vcpu_id, offset); - reg = vgic_bitmap_get_reg(&dist->irq_pending, - vcpu->vcpu_id, offset); + vcpu_id, offset); + reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset); *reg |= *level_active; /* Ignore writes to SGIs */ @@ -578,101 +511,12 @@ static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu, /* Clear soft-pending flags */ reg = vgic_bitmap_get_reg(&dist->irq_soft_pend, - vcpu->vcpu_id, offset); - vgic_reg_access(mmio, reg, offset, - ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT); + vcpu_id, offset); + vgic_reg_access(mmio, reg, offset, mode); - vgic_update_state(vcpu->kvm); + vgic_update_state(kvm); return true; } - - return false; -} - -static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, - phys_addr_t offset) -{ - u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority, - vcpu->vcpu_id, offset); - vgic_reg_access(mmio, reg, offset, - ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); - return false; -} - -#define GICD_ITARGETSR_SIZE 32 -#define GICD_CPUTARGETS_BITS 8 -#define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS) -static u32 vgic_get_target_reg(struct kvm *kvm, int irq) -{ - struct vgic_dist *dist = &kvm->arch.vgic; - int i; - u32 val = 0; - - irq -= VGIC_NR_PRIVATE_IRQS; - - for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) - val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8); - - return val; -} - -static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq) -{ - struct vgic_dist *dist = &kvm->arch.vgic; - struct kvm_vcpu *vcpu; - int i, c; - unsigned long *bmap; - u32 target; - - irq -= VGIC_NR_PRIVATE_IRQS; - - /* - * Pick the LSB in each byte. This ensures we target exactly - * one vcpu per IRQ. If the byte is null, assume we target - * CPU0. - */ - for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) { - int shift = i * GICD_CPUTARGETS_BITS; - target = ffs((val >> shift) & 0xffU); - target = target ? (target - 1) : 0; - dist->irq_spi_cpu[irq + i] = target; - kvm_for_each_vcpu(c, vcpu, kvm) { - bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]); - if (c == target) - set_bit(irq + i, bmap); - else - clear_bit(irq + i, bmap); - } - } -} - -static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, - phys_addr_t offset) -{ - u32 reg; - - /* We treat the banked interrupts targets as read-only */ - if (offset < 32) { - u32 roreg = 1 << vcpu->vcpu_id; - roreg |= roreg << 8; - roreg |= roreg << 16; - - vgic_reg_access(mmio, &roreg, offset, - ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); - return false; - } - - reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U); - vgic_reg_access(mmio, ®, offset, - ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); - if (mmio->is_write) { - vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U); - vgic_update_state(vcpu->kvm); - return true; - } - return false; } @@ -711,14 +555,10 @@ static u16 vgic_cfg_compress(u32 val) * LSB is always 0. As such, we only keep the upper bit, and use the * two above functions to compress/expand the bits */ -static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, phys_addr_t offset) +bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio, + phys_addr_t offset) { u32 val; - u32 *reg; - - reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg, - vcpu->vcpu_id, offset >> 1); if (offset & 4) val = *reg >> 16; @@ -747,21 +587,6 @@ static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu, return false; } -static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, phys_addr_t offset) -{ - u32 reg; - vgic_reg_access(mmio, ®, offset, - ACCESS_READ_RAZ | ACCESS_WRITE_VALUE); - if (mmio->is_write) { - vgic_dispatch_sgi(vcpu, reg); - vgic_update_state(vcpu->kvm); - return true; - } - - return false; -} - /** * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs @@ -774,11 +599,9 @@ static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu, * to the distributor but the active state stays in the LRs, because we don't * track the active state on the distributor side. */ -static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu) +void vgic_unqueue_irqs(struct kvm_vcpu *vcpu) { - struct vgic_dist *dist = &vcpu->kvm->arch.vgic; struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; - int vcpu_id = vcpu->vcpu_id; int i; for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) { @@ -805,7 +628,7 @@ static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu) */ vgic_dist_irq_set_pending(vcpu, lr.irq); if (lr.irq < VGIC_NR_SGIS) - *vgic_get_sgi_sources(dist, vcpu_id, lr.irq) |= 1 << lr.source; + add_sgi_source(vcpu, lr.irq, lr.source); lr.state &= ~LR_STATE_PENDING; vgic_set_lr(vcpu, i, lr); @@ -824,188 +647,12 @@ static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu) } } -/* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */ -static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, - phys_addr_t offset) -{ - struct vgic_dist *dist = &vcpu->kvm->arch.vgic; - int sgi; - int min_sgi = (offset & ~0x3); - int max_sgi = min_sgi + 3; - int vcpu_id = vcpu->vcpu_id; - u32 reg = 0; - - /* Copy source SGIs from distributor side */ - for (sgi = min_sgi; sgi <= max_sgi; sgi++) { - int shift = 8 * (sgi - min_sgi); - reg |= ((u32)*vgic_get_sgi_sources(dist, vcpu_id, sgi)) << shift; - } - - mmio_data_write(mmio, ~0, reg); - return false; -} - -static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, - phys_addr_t offset, bool set) -{ - struct vgic_dist *dist = &vcpu->kvm->arch.vgic; - int sgi; - int min_sgi = (offset & ~0x3); - int max_sgi = min_sgi + 3; - int vcpu_id = vcpu->vcpu_id; - u32 reg; - bool updated = false; - - reg = mmio_data_read(mmio, ~0); - - /* Clear pending SGIs on the distributor */ - for (sgi = min_sgi; sgi <= max_sgi; sgi++) { - u8 mask = reg >> (8 * (sgi - min_sgi)); - u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi); - if (set) { - if ((*src & mask) != mask) - updated = true; - *src |= mask; - } else { - if (*src & mask) - updated = true; - *src &= ~mask; - } - } - - if (updated) - vgic_update_state(vcpu->kvm); - - return updated; -} - -static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, - phys_addr_t offset) -{ - if (!mmio->is_write) - return read_set_clear_sgi_pend_reg(vcpu, mmio, offset); - else - return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true); -} - -static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, - phys_addr_t offset) -{ - if (!mmio->is_write) - return read_set_clear_sgi_pend_reg(vcpu, mmio, offset); - else - return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false); -} - -/* - * I would have liked to use the kvm_bus_io_*() API instead, but it - * cannot cope with banked registers (only the VM pointer is passed - * around, and we need the vcpu). One of these days, someone please - * fix it! - */ -struct mmio_range { - phys_addr_t base; - unsigned long len; - int bits_per_irq; - bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, - phys_addr_t offset); -}; - -static const struct mmio_range vgic_dist_ranges[] = { - { - .base = GIC_DIST_CTRL, - .len = 12, - .bits_per_irq = 0, - .handle_mmio = handle_mmio_misc, - }, - { - .base = GIC_DIST_IGROUP, - .len = VGIC_MAX_IRQS / 8, - .bits_per_irq = 1, - .handle_mmio = handle_mmio_raz_wi, - }, - { - .base = GIC_DIST_ENABLE_SET, - .len = VGIC_MAX_IRQS / 8, - .bits_per_irq = 1, - .handle_mmio = handle_mmio_set_enable_reg, - }, - { - .base = GIC_DIST_ENABLE_CLEAR, - .len = VGIC_MAX_IRQS / 8, - .bits_per_irq = 1, - .handle_mmio = handle_mmio_clear_enable_reg, - }, - { - .base = GIC_DIST_PENDING_SET, - .len = VGIC_MAX_IRQS / 8, - .bits_per_irq = 1, - .handle_mmio = handle_mmio_set_pending_reg, - }, - { - .base = GIC_DIST_PENDING_CLEAR, - .len = VGIC_MAX_IRQS / 8, - .bits_per_irq = 1, - .handle_mmio = handle_mmio_clear_pending_reg, - }, - { - .base = GIC_DIST_ACTIVE_SET, - .len = VGIC_MAX_IRQS / 8, - .bits_per_irq = 1, - .handle_mmio = handle_mmio_raz_wi, - }, - { - .base = GIC_DIST_ACTIVE_CLEAR, - .len = VGIC_MAX_IRQS / 8, - .bits_per_irq = 1, - .handle_mmio = handle_mmio_raz_wi, - }, - { - .base = GIC_DIST_PRI, - .len = VGIC_MAX_IRQS, - .bits_per_irq = 8, - .handle_mmio = handle_mmio_priority_reg, - }, - { - .base = GIC_DIST_TARGET, - .len = VGIC_MAX_IRQS, - .bits_per_irq = 8, - .handle_mmio = handle_mmio_target_reg, - }, - { - .base = GIC_DIST_CONFIG, - .len = VGIC_MAX_IRQS / 4, - .bits_per_irq = 2, - .handle_mmio = handle_mmio_cfg_reg, - }, - { - .base = GIC_DIST_SOFTINT, - .len = 4, - .handle_mmio = handle_mmio_sgi_reg, - }, - { - .base = GIC_DIST_SGI_PENDING_CLEAR, - .len = VGIC_NR_SGIS, - .handle_mmio = handle_mmio_sgi_clear, - }, - { - .base = GIC_DIST_SGI_PENDING_SET, - .len = VGIC_NR_SGIS, - .handle_mmio = handle_mmio_sgi_set, - }, - {} -}; - -static const -struct mmio_range *find_matching_range(const struct mmio_range *ranges, +const +struct kvm_mmio_range *vgic_find_range(const struct kvm_mmio_range *ranges, struct kvm_exit_mmio *mmio, phys_addr_t offset) { - const struct mmio_range *r = ranges; + const struct kvm_mmio_range *r = ranges; while (r->len) { if (offset >= r->base && @@ -1018,7 +665,7 @@ struct mmio_range *find_matching_range(const struct mmio_range *ranges, } static bool vgic_validate_access(const struct vgic_dist *dist, - const struct mmio_range *range, + const struct kvm_mmio_range *range, unsigned long offset) { int irq; @@ -1033,37 +680,76 @@ static bool vgic_validate_access(const struct vgic_dist *dist, return true; } +/* + * Call the respective handler function for the given range. + * We split up any 64 bit accesses into two consecutive 32 bit + * handler calls and merge the result afterwards. + * We do this in a little endian fashion regardless of the host's + * or guest's endianness, because the GIC is always LE and the rest of + * the code (vgic_reg_access) also puts it in a LE fashion already. + * At this point we have already identified the handle function, so + * range points to that one entry and offset is relative to this. + */ +static bool call_range_handler(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + unsigned long offset, + const struct kvm_mmio_range *range) +{ + u32 *data32 = (void *)mmio->data; + struct kvm_exit_mmio mmio32; + bool ret; + + if (likely(mmio->len <= 4)) + return range->handle_mmio(vcpu, mmio, offset); + + /* + * Any access bigger than 4 bytes (that we currently handle in KVM) + * is actually 8 bytes long, caused by a 64-bit access + */ + + mmio32.len = 4; + mmio32.is_write = mmio->is_write; + mmio32.private = mmio->private; + + mmio32.phys_addr = mmio->phys_addr + 4; + if (mmio->is_write) + *(u32 *)mmio32.data = data32[1]; + ret = range->handle_mmio(vcpu, &mmio32, offset + 4); + if (!mmio->is_write) + data32[1] = *(u32 *)mmio32.data; + + mmio32.phys_addr = mmio->phys_addr; + if (mmio->is_write) + *(u32 *)mmio32.data = data32[0]; + ret |= range->handle_mmio(vcpu, &mmio32, offset); + if (!mmio->is_write) + data32[0] = *(u32 *)mmio32.data; + + return ret; +} + /** - * vgic_handle_mmio - handle an in-kernel MMIO access + * vgic_handle_mmio_range - handle an in-kernel MMIO access * @vcpu: pointer to the vcpu performing the access * @run: pointer to the kvm_run structure * @mmio: pointer to the data describing the access + * @ranges: array of MMIO ranges in a given region + * @mmio_base: base address of that region * - * returns true if the MMIO access has been performed in kernel space, - * and false if it needs to be emulated in user space. + * returns true if the MMIO access could be performed */ -bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, - struct kvm_exit_mmio *mmio) +bool vgic_handle_mmio_range(struct kvm_vcpu *vcpu, struct kvm_run *run, + struct kvm_exit_mmio *mmio, + const struct kvm_mmio_range *ranges, + unsigned long mmio_base) { - const struct mmio_range *range; + const struct kvm_mmio_range *range; struct vgic_dist *dist = &vcpu->kvm->arch.vgic; - unsigned long base = dist->vgic_dist_base; bool updated_state; unsigned long offset; - if (!irqchip_in_kernel(vcpu->kvm) || - mmio->phys_addr < base || - (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE)) - return false; - - /* We don't support ldrd / strd or ldm / stm to the emulated vgic */ - if (mmio->len > 4) { - kvm_inject_dabt(vcpu, mmio->phys_addr); - return true; - } - - offset = mmio->phys_addr - base; - range = find_matching_range(vgic_dist_ranges, mmio, offset); + offset = mmio->phys_addr - mmio_base; + range = vgic_find_range(ranges, mmio, offset); if (unlikely(!range || !range->handle_mmio)) { pr_warn("Unhandled access %d %08llx %d\n", mmio->is_write, mmio->phys_addr, mmio->len); @@ -1071,12 +757,12 @@ bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, } spin_lock(&vcpu->kvm->arch.vgic.lock); - offset = mmio->phys_addr - range->base - base; + offset -= range->base; if (vgic_validate_access(dist, range, offset)) { - updated_state = range->handle_mmio(vcpu, mmio, offset); + updated_state = call_range_handler(vcpu, mmio, offset, range); } else { - vgic_reg_access(mmio, NULL, offset, - ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); + if (!mmio->is_write) + memset(mmio->data, 0, mmio->len); updated_state = false; } spin_unlock(&vcpu->kvm->arch.vgic.lock); @@ -1089,50 +775,28 @@ bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, return true; } -static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi) -{ - return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi; -} - -static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg) +/** + * vgic_handle_mmio - handle an in-kernel MMIO access for the GIC emulation + * @vcpu: pointer to the vcpu performing the access + * @run: pointer to the kvm_run structure + * @mmio: pointer to the data describing the access + * + * returns true if the MMIO access has been performed in kernel space, + * and false if it needs to be emulated in user space. + * Calls the actual handling routine for the selected VGIC model. + */ +bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, + struct kvm_exit_mmio *mmio) { - struct kvm *kvm = vcpu->kvm; - struct vgic_dist *dist = &kvm->arch.vgic; - int nrcpus = atomic_read(&kvm->online_vcpus); - u8 target_cpus; - int sgi, mode, c, vcpu_id; - - vcpu_id = vcpu->vcpu_id; - - sgi = reg & 0xf; - target_cpus = (reg >> 16) & 0xff; - mode = (reg >> 24) & 3; - - switch (mode) { - case 0: - if (!target_cpus) - return; - break; - - case 1: - target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff; - break; - - case 2: - target_cpus = 1 << vcpu_id; - break; - } - - kvm_for_each_vcpu(c, vcpu, kvm) { - if (target_cpus & 1) { - /* Flag the SGI as pending */ - vgic_dist_irq_set_pending(vcpu, sgi); - *vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id; - kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c); - } + if (!irqchip_in_kernel(vcpu->kvm)) + return false; - target_cpus >>= 1; - } + /* + * This will currently call either vgic_v2_handle_mmio() or + * vgic_v3_handle_mmio(), which in turn will call + * vgic_handle_mmio_range() defined above. + */ + return vcpu->kvm->arch.vgic.vm_ops.handle_mmio(vcpu, run, mmio); } static int vgic_nr_shared_irqs(struct vgic_dist *dist) @@ -1173,7 +837,7 @@ static int compute_pending_for_cpu(struct kvm_vcpu *vcpu) * Update the interrupt state and determine which CPUs have pending * interrupts. Must be called with distributor lock held. */ -static void vgic_update_state(struct kvm *kvm) +void vgic_update_state(struct kvm *kvm) { struct vgic_dist *dist = &kvm->arch.vgic; struct kvm_vcpu *vcpu; @@ -1234,12 +898,12 @@ static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu) vgic_ops->disable_underflow(vcpu); } -static inline void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) +void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) { vgic_ops->get_vmcr(vcpu, vmcr); } -static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) +void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) { vgic_ops->set_vmcr(vcpu, vmcr); } @@ -1288,8 +952,9 @@ static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu) /* * Queue an interrupt to a CPU virtual interface. Return true on success, * or false if it wasn't possible to queue it. + * sgi_source must be zero for any non-SGI interrupts. */ -static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq) +bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; struct vgic_dist *dist = &vcpu->kvm->arch.vgic; @@ -1338,37 +1003,6 @@ static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq) return true; } -static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq) -{ - struct vgic_dist *dist = &vcpu->kvm->arch.vgic; - unsigned long sources; - int vcpu_id = vcpu->vcpu_id; - int c; - - sources = *vgic_get_sgi_sources(dist, vcpu_id, irq); - - for_each_set_bit(c, &sources, dist->nr_cpus) { - if (vgic_queue_irq(vcpu, c, irq)) - clear_bit(c, &sources); - } - - *vgic_get_sgi_sources(dist, vcpu_id, irq) = sources; - - /* - * If the sources bitmap has been cleared it means that we - * could queue all the SGIs onto link registers (see the - * clear_bit above), and therefore we are done with them in - * our emulated gic and can get rid of them. - */ - if (!sources) { - vgic_dist_irq_clear_pending(vcpu, irq); - vgic_cpu_irq_clear(vcpu, irq); - return true; - } - - return false; -} - static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq) { if (!vgic_can_sample_irq(vcpu, irq)) @@ -1413,7 +1047,7 @@ static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) /* SGIs */ for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) { - if (!vgic_queue_sgi(vcpu, i)) + if (!queue_sgi(vcpu, i)) overflow = 1; } @@ -1575,7 +1209,7 @@ int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu) return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu); } -static void vgic_kick_vcpus(struct kvm *kvm) +void vgic_kick_vcpus(struct kvm *kvm) { struct kvm_vcpu *vcpu; int c; @@ -1615,7 +1249,7 @@ static int vgic_update_irq_pending(struct kvm *kvm, int cpuid, struct kvm_vcpu *vcpu; int edge_triggered, level_triggered; int enabled; - bool ret = true; + bool ret = true, can_inject = true; spin_lock(&dist->lock); @@ -1630,6 +1264,11 @@ static int vgic_update_irq_pending(struct kvm *kvm, int cpuid, if (irq_num >= VGIC_NR_PRIVATE_IRQS) { cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS]; + if (cpuid == VCPU_NOT_ALLOCATED) { + /* Pretend we use CPU0, and prevent injection */ + cpuid = 0; + can_inject = false; + } vcpu = kvm_get_vcpu(kvm, cpuid); } @@ -1652,7 +1291,7 @@ static int vgic_update_irq_pending(struct kvm *kvm, int cpuid, enabled = vgic_irq_is_enabled(vcpu, irq_num); - if (!enabled) { + if (!enabled || !can_inject) { ret = false; goto out; } @@ -1698,6 +1337,16 @@ int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num, int vcpu_id; if (unlikely(!vgic_initialized(kvm))) { + /* + * We only provide the automatic initialization of the VGIC + * for the legacy case of a GICv2. Any other type must + * be explicitly initialized once setup with the respective + * KVM device call. + */ + if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) { + ret = -EBUSY; + goto out; + } mutex_lock(&kvm->lock); ret = vgic_init(kvm); mutex_unlock(&kvm->lock); @@ -1762,6 +1411,17 @@ static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs) return 0; } +/** + * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW + * + * The host's GIC naturally limits the maximum amount of VCPUs a guest + * can use. + */ +int kvm_vgic_get_max_vcpus(void) +{ + return vgic->max_gic_vcpus; +} + void kvm_vgic_destroy(struct kvm *kvm) { struct vgic_dist *dist = &kvm->arch.vgic; @@ -1784,6 +1444,7 @@ void kvm_vgic_destroy(struct kvm *kvm) } kfree(dist->irq_sgi_sources); kfree(dist->irq_spi_cpu); + kfree(dist->irq_spi_mpidr); kfree(dist->irq_spi_target); kfree(dist->irq_pending_on_cpu); dist->irq_sgi_sources = NULL; @@ -1797,7 +1458,7 @@ void kvm_vgic_destroy(struct kvm *kvm) * Allocate and initialize the various data structures. Must be called * with kvm->lock held! */ -static int vgic_init(struct kvm *kvm) +int vgic_init(struct kvm *kvm) { struct vgic_dist *dist = &kvm->arch.vgic; struct kvm_vcpu *vcpu; @@ -1809,7 +1470,7 @@ static int vgic_init(struct kvm *kvm) nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus); if (!nr_cpus) /* No vcpus? Can't be good... */ - return -EINVAL; + return -ENODEV; /* * If nobody configured the number of interrupts, use the @@ -1852,8 +1513,9 @@ static int vgic_init(struct kvm *kvm) if (ret) goto out; - for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i += 4) - vgic_set_target_reg(kvm, 0, i); + ret = kvm->arch.vgic.vm_ops.init_model(kvm); + if (ret) + goto out; kvm_for_each_vcpu(vcpu_id, vcpu, kvm) { ret = vgic_vcpu_init_maps(vcpu, nr_irqs); @@ -1882,72 +1544,49 @@ out: return ret; } -/** - * kvm_vgic_map_resources - Configure global VGIC state before running any VCPUs - * @kvm: pointer to the kvm struct - * - * Map the virtual CPU interface into the VM before running any VCPUs. We - * can't do this at creation time, because user space must first set the - * virtual CPU interface address in the guest physical address space. - */ -int kvm_vgic_map_resources(struct kvm *kvm) +static int init_vgic_model(struct kvm *kvm, int type) { - int ret = 0; - - if (!irqchip_in_kernel(kvm)) - return 0; - - mutex_lock(&kvm->lock); - - if (vgic_ready(kvm)) - goto out; - - if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) || - IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) { - kvm_err("Need to set vgic cpu and dist addresses first\n"); - ret = -ENXIO; - goto out; - } - - /* - * Initialize the vgic if this hasn't already been done on demand by - * accessing the vgic state from userspace. - */ - ret = vgic_init(kvm); - if (ret) { - kvm_err("Unable to allocate maps\n"); - goto out; + switch (type) { + case KVM_DEV_TYPE_ARM_VGIC_V2: + vgic_v2_init_emulation(kvm); + break; +#ifdef CONFIG_ARM_GIC_V3 + case KVM_DEV_TYPE_ARM_VGIC_V3: + vgic_v3_init_emulation(kvm); + break; +#endif + default: + return -ENODEV; } - ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base, - vgic->vcpu_base, KVM_VGIC_V2_CPU_SIZE, - true); - if (ret) { - kvm_err("Unable to remap VGIC CPU to VCPU\n"); - goto out; - } + if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus) + return -E2BIG; - kvm->arch.vgic.ready = true; -out: - if (ret) - kvm_vgic_destroy(kvm); - mutex_unlock(&kvm->lock); - return ret; + return 0; } -int kvm_vgic_create(struct kvm *kvm) +int kvm_vgic_create(struct kvm *kvm, u32 type) { int i, vcpu_lock_idx = -1, ret; struct kvm_vcpu *vcpu; mutex_lock(&kvm->lock); - if (kvm->arch.vgic.vctrl_base) { + if (irqchip_in_kernel(kvm)) { ret = -EEXIST; goto out; } /* + * This function is also called by the KVM_CREATE_IRQCHIP handler, + * which had no chance yet to check the availability of the GICv2 + * emulation. So check this here again. KVM_CREATE_DEVICE does + * the proper checks already. + */ + if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) + return -ENODEV; + + /* * Any time a vcpu is run, vcpu_load is called which tries to grab the * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure * that no other VCPUs are run while we create the vgic. @@ -1965,11 +1604,17 @@ int kvm_vgic_create(struct kvm *kvm) } ret = 0; + ret = init_vgic_model(kvm, type); + if (ret) + goto out_unlock; + spin_lock_init(&kvm->arch.vgic.lock); kvm->arch.vgic.in_kernel = true; + kvm->arch.vgic.vgic_model = type; kvm->arch.vgic.vctrl_base = vgic->vctrl_base; kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF; kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF; + kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF; out_unlock: for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) { @@ -2022,7 +1667,7 @@ static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr, /** * kvm_vgic_addr - set or get vgic VM base addresses * @kvm: pointer to the vm struct - * @type: the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX + * @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX * @addr: pointer to address value * @write: if true set the address in the VM address space, if false read the * address @@ -2036,216 +1681,64 @@ int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write) { int r = 0; struct vgic_dist *vgic = &kvm->arch.vgic; + int type_needed; + phys_addr_t *addr_ptr, block_size; + phys_addr_t alignment; mutex_lock(&kvm->lock); switch (type) { case KVM_VGIC_V2_ADDR_TYPE_DIST: - if (write) { - r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base, - *addr, KVM_VGIC_V2_DIST_SIZE); - } else { - *addr = vgic->vgic_dist_base; - } + type_needed = KVM_DEV_TYPE_ARM_VGIC_V2; + addr_ptr = &vgic->vgic_dist_base; + block_size = KVM_VGIC_V2_DIST_SIZE; + alignment = SZ_4K; break; case KVM_VGIC_V2_ADDR_TYPE_CPU: - if (write) { - r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base, - *addr, KVM_VGIC_V2_CPU_SIZE); - } else { - *addr = vgic->vgic_cpu_base; - } + type_needed = KVM_DEV_TYPE_ARM_VGIC_V2; + addr_ptr = &vgic->vgic_cpu_base; + block_size = KVM_VGIC_V2_CPU_SIZE; + alignment = SZ_4K; break; - default: - r = -ENODEV; - } - - mutex_unlock(&kvm->lock); - return r; -} - -static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, phys_addr_t offset) -{ - bool updated = false; - struct vgic_vmcr vmcr; - u32 *vmcr_field; - u32 reg; - - vgic_get_vmcr(vcpu, &vmcr); - - switch (offset & ~0x3) { - case GIC_CPU_CTRL: - vmcr_field = &vmcr.ctlr; - break; - case GIC_CPU_PRIMASK: - vmcr_field = &vmcr.pmr; +#ifdef CONFIG_ARM_GIC_V3 + case KVM_VGIC_V3_ADDR_TYPE_DIST: + type_needed = KVM_DEV_TYPE_ARM_VGIC_V3; + addr_ptr = &vgic->vgic_dist_base; + block_size = KVM_VGIC_V3_DIST_SIZE; + alignment = SZ_64K; break; - case GIC_CPU_BINPOINT: - vmcr_field = &vmcr.bpr; - break; - case GIC_CPU_ALIAS_BINPOINT: - vmcr_field = &vmcr.abpr; + case KVM_VGIC_V3_ADDR_TYPE_REDIST: + type_needed = KVM_DEV_TYPE_ARM_VGIC_V3; + addr_ptr = &vgic->vgic_redist_base; + block_size = KVM_VGIC_V3_REDIST_SIZE; + alignment = SZ_64K; break; +#endif default: - BUG(); - } - - if (!mmio->is_write) { - reg = *vmcr_field; - mmio_data_write(mmio, ~0, reg); - } else { - reg = mmio_data_read(mmio, ~0); - if (reg != *vmcr_field) { - *vmcr_field = reg; - vgic_set_vmcr(vcpu, &vmcr); - updated = true; - } - } - return updated; -} - -static bool handle_mmio_abpr(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, phys_addr_t offset) -{ - return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT); -} - -static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, - phys_addr_t offset) -{ - u32 reg; - - if (mmio->is_write) - return false; - - /* GICC_IIDR */ - reg = (PRODUCT_ID_KVM << 20) | - (GICC_ARCH_VERSION_V2 << 16) | - (IMPLEMENTER_ARM << 0); - mmio_data_write(mmio, ~0, reg); - return false; -} - -/* - * CPU Interface Register accesses - these are not accessed by the VM, but by - * user space for saving and restoring VGIC state. - */ -static const struct mmio_range vgic_cpu_ranges[] = { - { - .base = GIC_CPU_CTRL, - .len = 12, - .handle_mmio = handle_cpu_mmio_misc, - }, - { - .base = GIC_CPU_ALIAS_BINPOINT, - .len = 4, - .handle_mmio = handle_mmio_abpr, - }, - { - .base = GIC_CPU_ACTIVEPRIO, - .len = 16, - .handle_mmio = handle_mmio_raz_wi, - }, - { - .base = GIC_CPU_IDENT, - .len = 4, - .handle_mmio = handle_cpu_mmio_ident, - }, -}; - -static int vgic_attr_regs_access(struct kvm_device *dev, - struct kvm_device_attr *attr, - u32 *reg, bool is_write) -{ - const struct mmio_range *r = NULL, *ranges; - phys_addr_t offset; - int ret, cpuid, c; - struct kvm_vcpu *vcpu, *tmp_vcpu; - struct vgic_dist *vgic; - struct kvm_exit_mmio mmio; - - offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK; - cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >> - KVM_DEV_ARM_VGIC_CPUID_SHIFT; - - mutex_lock(&dev->kvm->lock); - - ret = vgic_init(dev->kvm); - if (ret) - goto out; - - if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) { - ret = -EINVAL; + r = -ENODEV; goto out; } - vcpu = kvm_get_vcpu(dev->kvm, cpuid); - vgic = &dev->kvm->arch.vgic; - - mmio.len = 4; - mmio.is_write = is_write; - if (is_write) - mmio_data_write(&mmio, ~0, *reg); - switch (attr->group) { - case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: - mmio.phys_addr = vgic->vgic_dist_base + offset; - ranges = vgic_dist_ranges; - break; - case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: - mmio.phys_addr = vgic->vgic_cpu_base + offset; - ranges = vgic_cpu_ranges; - break; - default: - BUG(); - } - r = find_matching_range(ranges, &mmio, offset); - - if (unlikely(!r || !r->handle_mmio)) { - ret = -ENXIO; + if (vgic->vgic_model != type_needed) { + r = -ENODEV; goto out; } - - spin_lock(&vgic->lock); - - /* - * Ensure that no other VCPU is running by checking the vcpu->cpu - * field. If no other VPCUs are running we can safely access the VGIC - * state, because even if another VPU is run after this point, that - * VCPU will not touch the vgic state, because it will block on - * getting the vgic->lock in kvm_vgic_sync_hwstate(). - */ - kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) { - if (unlikely(tmp_vcpu->cpu != -1)) { - ret = -EBUSY; - goto out_vgic_unlock; - } + if (write) { + if (!IS_ALIGNED(*addr, alignment)) + r = -EINVAL; + else + r = vgic_ioaddr_assign(kvm, addr_ptr, *addr, + block_size); + } else { + *addr = *addr_ptr; } - /* - * Move all pending IRQs from the LRs on all VCPUs so the pending - * state can be properly represented in the register state accessible - * through this API. - */ - kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) - vgic_unqueue_irqs(tmp_vcpu); - - offset -= r->base; - r->handle_mmio(vcpu, &mmio, offset); - - if (!is_write) - *reg = mmio_data_read(&mmio, ~0); - - ret = 0; -out_vgic_unlock: - spin_unlock(&vgic->lock); out: - mutex_unlock(&dev->kvm->lock); - return ret; + mutex_unlock(&kvm->lock); + return r; } -static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) +int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { int r; @@ -2261,17 +1754,6 @@ static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) r = kvm_vgic_addr(dev->kvm, type, &addr, true); return (r == -ENODEV) ? -ENXIO : r; } - - case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: - case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: { - u32 __user *uaddr = (u32 __user *)(long)attr->addr; - u32 reg; - - if (get_user(reg, uaddr)) - return -EFAULT; - - return vgic_attr_regs_access(dev, attr, ®, true); - } case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: { u32 __user *uaddr = (u32 __user *)(long)attr->addr; u32 val; @@ -2302,13 +1784,20 @@ static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) return ret; } - + case KVM_DEV_ARM_VGIC_GRP_CTRL: { + switch (attr->attr) { + case KVM_DEV_ARM_VGIC_CTRL_INIT: + r = vgic_init(dev->kvm); + return r; + } + break; + } } return -ENXIO; } -static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) +int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { int r = -ENXIO; @@ -2326,20 +1815,9 @@ static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) return -EFAULT; break; } - - case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: - case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: { - u32 __user *uaddr = (u32 __user *)(long)attr->addr; - u32 reg = 0; - - r = vgic_attr_regs_access(dev, attr, ®, false); - if (r) - return r; - r = put_user(reg, uaddr); - break; - } case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: { u32 __user *uaddr = (u32 __user *)(long)attr->addr; + r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr); break; } @@ -2349,61 +1827,17 @@ static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) return r; } -static int vgic_has_attr_regs(const struct mmio_range *ranges, - phys_addr_t offset) +int vgic_has_attr_regs(const struct kvm_mmio_range *ranges, phys_addr_t offset) { struct kvm_exit_mmio dev_attr_mmio; dev_attr_mmio.len = 4; - if (find_matching_range(ranges, &dev_attr_mmio, offset)) + if (vgic_find_range(ranges, &dev_attr_mmio, offset)) return 0; else return -ENXIO; } -static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr) -{ - phys_addr_t offset; - - switch (attr->group) { - case KVM_DEV_ARM_VGIC_GRP_ADDR: - switch (attr->attr) { - case KVM_VGIC_V2_ADDR_TYPE_DIST: - case KVM_VGIC_V2_ADDR_TYPE_CPU: - return 0; - } - break; - case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: - offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK; - return vgic_has_attr_regs(vgic_dist_ranges, offset); - case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: - offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK; - return vgic_has_attr_regs(vgic_cpu_ranges, offset); - case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: - return 0; - } - return -ENXIO; -} - -static void vgic_destroy(struct kvm_device *dev) -{ - kfree(dev); -} - -static int vgic_create(struct kvm_device *dev, u32 type) -{ - return kvm_vgic_create(dev->kvm); -} - -static struct kvm_device_ops kvm_arm_vgic_v2_ops = { - .name = "kvm-arm-vgic", - .create = vgic_create, - .destroy = vgic_destroy, - .set_attr = vgic_set_attr, - .get_attr = vgic_get_attr, - .has_attr = vgic_has_attr, -}; - static void vgic_init_maintenance_interrupt(void *info) { enable_percpu_irq(vgic->maint_irq, 0); @@ -2474,8 +1908,7 @@ int kvm_vgic_hyp_init(void) on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1); - return kvm_register_device_ops(&kvm_arm_vgic_v2_ops, - KVM_DEV_TYPE_ARM_VGIC_V2); + return 0; out_free_irq: free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus()); diff --git a/virt/kvm/arm/vgic.h b/virt/kvm/arm/vgic.h new file mode 100644 index 000000000000..1e83bdf5f499 --- /dev/null +++ b/virt/kvm/arm/vgic.h @@ -0,0 +1,123 @@ +/* + * Copyright (C) 2012-2014 ARM Ltd. + * Author: Marc Zyngier <marc.zyngier@arm.com> + * + * Derived from virt/kvm/arm/vgic.c + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + +#ifndef __KVM_VGIC_H__ +#define __KVM_VGIC_H__ + +#define VGIC_ADDR_UNDEF (-1) +#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF) + +#define PRODUCT_ID_KVM 0x4b /* ASCII code K */ +#define IMPLEMENTER_ARM 0x43b + +#define ACCESS_READ_VALUE (1 << 0) +#define ACCESS_READ_RAZ (0 << 0) +#define ACCESS_READ_MASK(x) ((x) & (1 << 0)) +#define ACCESS_WRITE_IGNORED (0 << 1) +#define ACCESS_WRITE_SETBIT (1 << 1) +#define ACCESS_WRITE_CLEARBIT (2 << 1) +#define ACCESS_WRITE_VALUE (3 << 1) +#define ACCESS_WRITE_MASK(x) ((x) & (3 << 1)) + +#define VCPU_NOT_ALLOCATED ((u8)-1) + +unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x); + +void vgic_update_state(struct kvm *kvm); +int vgic_init_common_maps(struct kvm *kvm); + +u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset); +u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset); + +void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq); +void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq); +void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq); +void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid, + int irq, int val); + +void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr); +void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr); + +bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq); +void vgic_unqueue_irqs(struct kvm_vcpu *vcpu); + +void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg, + phys_addr_t offset, int mode); +bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, + phys_addr_t offset); + +static inline +u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask) +{ + return le32_to_cpu(*((u32 *)mmio->data)) & mask; +} + +static inline +void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value) +{ + *((u32 *)mmio->data) = cpu_to_le32(value) & mask; +} + +struct kvm_mmio_range { + phys_addr_t base; + unsigned long len; + int bits_per_irq; + bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, + phys_addr_t offset); +}; + +static inline bool is_in_range(phys_addr_t addr, unsigned long len, + phys_addr_t baseaddr, unsigned long size) +{ + return (addr >= baseaddr) && (addr + len <= baseaddr + size); +} + +const +struct kvm_mmio_range *vgic_find_range(const struct kvm_mmio_range *ranges, + struct kvm_exit_mmio *mmio, + phys_addr_t offset); + +bool vgic_handle_mmio_range(struct kvm_vcpu *vcpu, struct kvm_run *run, + struct kvm_exit_mmio *mmio, + const struct kvm_mmio_range *ranges, + unsigned long mmio_base); + +bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio, + phys_addr_t offset, int vcpu_id, int access); + +bool vgic_handle_set_pending_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio, + phys_addr_t offset, int vcpu_id); + +bool vgic_handle_clear_pending_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio, + phys_addr_t offset, int vcpu_id); + +bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio, + phys_addr_t offset); + +void vgic_kick_vcpus(struct kvm *kvm); + +int vgic_has_attr_regs(const struct kvm_mmio_range *ranges, phys_addr_t offset); +int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr); +int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr); + +int vgic_init(struct kvm *kvm); +void vgic_v2_init_emulation(struct kvm *kvm); +void vgic_v3_init_emulation(struct kvm *kvm); + +#endif diff --git a/virt/kvm/kvm_main.c b/virt/kvm/kvm_main.c index 167e8c14b143..246cf291c6fd 100644 --- a/virt/kvm/kvm_main.c +++ b/virt/kvm/kvm_main.c @@ -176,6 +176,7 @@ bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) return called; } +#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL void kvm_flush_remote_tlbs(struct kvm *kvm) { long dirty_count = kvm->tlbs_dirty; @@ -186,6 +187,7 @@ void kvm_flush_remote_tlbs(struct kvm *kvm) cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); } EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); +#endif void kvm_reload_remote_mmus(struct kvm *kvm) { @@ -993,6 +995,86 @@ out: } EXPORT_SYMBOL_GPL(kvm_get_dirty_log); +#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT +/** + * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages + * are dirty write protect them for next write. + * @kvm: pointer to kvm instance + * @log: slot id and address to which we copy the log + * @is_dirty: flag set if any page is dirty + * + * We need to keep it in mind that VCPU threads can write to the bitmap + * concurrently. So, to avoid losing track of dirty pages we keep the + * following order: + * + * 1. Take a snapshot of the bit and clear it if needed. + * 2. Write protect the corresponding page. + * 3. Copy the snapshot to the userspace. + * 4. Upon return caller flushes TLB's if needed. + * + * Between 2 and 4, the guest may write to the page using the remaining TLB + * entry. This is not a problem because the page is reported dirty using + * the snapshot taken before and step 4 ensures that writes done after + * exiting to userspace will be logged for the next call. + * + */ +int kvm_get_dirty_log_protect(struct kvm *kvm, + struct kvm_dirty_log *log, bool *is_dirty) +{ + struct kvm_memory_slot *memslot; + int r, i; + unsigned long n; + unsigned long *dirty_bitmap; + unsigned long *dirty_bitmap_buffer; + + r = -EINVAL; + if (log->slot >= KVM_USER_MEM_SLOTS) + goto out; + + memslot = id_to_memslot(kvm->memslots, log->slot); + + dirty_bitmap = memslot->dirty_bitmap; + r = -ENOENT; + if (!dirty_bitmap) + goto out; + + n = kvm_dirty_bitmap_bytes(memslot); + + dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); + memset(dirty_bitmap_buffer, 0, n); + + spin_lock(&kvm->mmu_lock); + *is_dirty = false; + for (i = 0; i < n / sizeof(long); i++) { + unsigned long mask; + gfn_t offset; + + if (!dirty_bitmap[i]) + continue; + + *is_dirty = true; + + mask = xchg(&dirty_bitmap[i], 0); + dirty_bitmap_buffer[i] = mask; + + offset = i * BITS_PER_LONG; + kvm_arch_mmu_write_protect_pt_masked(kvm, memslot, offset, + mask); + } + + spin_unlock(&kvm->mmu_lock); + + r = -EFAULT; + if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) + goto out; + + r = 0; +out: + return r; +} +EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); +#endif + bool kvm_largepages_enabled(void) { return largepages_enabled; |