/** @file Copyright (c) 2017 - 2019, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "DmaProtection.h" UINTN mVtdUnitNumber; VTD_UNIT_INFORMATION *mVtdUnitInformation; BOOLEAN mVtdEnabled; VOID SetGlobalCommandRegisterBits ( IN UINTN VtdUnitBaseAddress, IN UINT32 BitMask ); VOID ClearGlobalCommandRegisterBits ( IN UINTN VtdUnitBaseAddress, IN UINT32 BitMask ); /** Flush VTD page table and context table memory. This action is to make sure the IOMMU engine can get final data in memory. @param[in] VtdIndex The index used to identify a VTd engine. @param[in] Base The base address of memory to be flushed. @param[in] Size The size of memory in bytes to be flushed. **/ VOID FlushPageTableMemory ( IN UINTN VtdIndex, IN UINTN Base, IN UINTN Size ) { if (mVtdUnitInformation[VtdIndex].ECapReg.Bits.C == 0) { WriteBackDataCacheRange ((VOID *)Base, Size); } } /** Flush VTd engine write buffer. @param[in] VtdIndex The index used to identify a VTd engine. **/ VOID FlushWriteBuffer ( IN UINTN VtdIndex ) { UINT32 Reg32; if (mVtdUnitInformation[VtdIndex].CapReg.Bits.RWBF != 0) { Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_GSTS_REG); Reg32 = (Reg32 & 0x96FFFFFF); // Reset the one-shot bits MmioWrite32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_GCMD_REG, Reg32 | B_GMCD_REG_WBF); do { Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_GSTS_REG); } while ((Reg32 & B_GSTS_REG_WBF) != 0); } } /** Perpare cache invalidation interface. @param[in] VtdIndex The index used to identify a VTd engine. @retval EFI_SUCCESS The operation was successful. @retval EFI_UNSUPPORTED Invalidation method is not supported. @retval EFI_OUT_OF_RESOURCES A memory allocation failed. **/ EFI_STATUS PerpareCacheInvalidationInterface ( IN UINTN VtdIndex ) { UINT32 Reg32; VTD_IQA_REG IqaReg; VTD_UNIT_INFORMATION *VTdUnitInfo; UINTN VtdUnitBaseAddress; VTdUnitInfo = &mVtdUnitInformation[VtdIndex]; VtdUnitBaseAddress = VTdUnitInfo->VtdUnitBaseAddress; if (VTdUnitInfo->VerReg.Bits.Major <= 5) { VTdUnitInfo->EnableQueuedInvalidation = 0; DEBUG ((DEBUG_INFO, "Use Register-based Invalidation Interface for engine [%d]\n", VtdIndex)); return EFI_SUCCESS; } if (VTdUnitInfo->ECapReg.Bits.QI == 0) { DEBUG ((DEBUG_ERROR, "Hardware does not support queued invalidations interface for engine [%d]\n", VtdIndex)); return EFI_UNSUPPORTED; } VTdUnitInfo->EnableQueuedInvalidation = 1; DEBUG ((DEBUG_INFO, "Use Queued Invalidation Interface for engine [%d]\n", VtdIndex)); Reg32 = MmioRead32 (VtdUnitBaseAddress + R_GSTS_REG); if ((Reg32 & B_GSTS_REG_QIES) != 0) { DEBUG ((DEBUG_ERROR,"Queued Invalidation Interface was enabled.\n")); ClearGlobalCommandRegisterBits (VtdUnitBaseAddress, B_GMCD_REG_QIE); } // // Initialize the Invalidation Queue Tail Register to zero. // MmioWrite64 (VtdUnitBaseAddress + R_IQT_REG, 0); // // Setup the IQ address, size and descriptor width through the Invalidation Queue Address Register // if (VTdUnitInfo->QiDescBuffer == NULL) { VTdUnitInfo->QiDescBufferSize = (sizeof (QI_256_DESC) * ((UINTN) 1 << (VTD_INVALIDATION_QUEUE_SIZE + 7))); VTdUnitInfo->QiDescBuffer = AllocatePages (EFI_SIZE_TO_PAGES (VTdUnitInfo->QiDescBufferSize)); if (VTdUnitInfo->QiDescBuffer == NULL) { DEBUG ((DEBUG_ERROR,"Could not Alloc Invalidation Queue Buffer.\n")); return EFI_OUT_OF_RESOURCES; } } DEBUG ((DEBUG_INFO, "Invalidation Queue Buffer Size : %d\n", VTdUnitInfo->QiDescBufferSize)); // // 4KB Aligned address // IqaReg.Uint64 = (UINT64) (UINTN) VTdUnitInfo->QiDescBuffer; IqaReg.Bits.DW = VTD_QUEUED_INVALIDATION_DESCRIPTOR_WIDTH; IqaReg.Bits.QS = VTD_INVALIDATION_QUEUE_SIZE; MmioWrite64 (VtdUnitBaseAddress + R_IQA_REG, IqaReg.Uint64); IqaReg.Uint64 = MmioRead64 (VtdUnitBaseAddress + R_IQA_REG); DEBUG ((DEBUG_INFO, "IQA_REG = 0x%lx, IQH_REG = 0x%lx\n", IqaReg.Uint64, MmioRead64 (VtdUnitBaseAddress + R_IQH_REG))); // // Enable the queued invalidation interface through the Global Command Register. // When enabled, hardware sets the QIES field in the Global Status Register. // DEBUG ((DEBUG_INFO, "Enable Queued Invalidation Interface.\n")); SetGlobalCommandRegisterBits (VtdUnitBaseAddress, B_GMCD_REG_QIE); return EFI_SUCCESS; } /** Disable queued invalidation interface. @param[in] VtdIndex The index used to identify a VTd engine. **/ VOID DisableQueuedInvalidationInterface ( IN UINTN VtdIndex ) { VTD_UNIT_INFORMATION *VTdUnitInfo; VTdUnitInfo = &mVtdUnitInformation[VtdIndex]; if (VTdUnitInfo->EnableQueuedInvalidation != 0) { DEBUG ((DEBUG_INFO, "Disable Queued Invalidation Interface.\n")); ClearGlobalCommandRegisterBits (VTdUnitInfo->VtdUnitBaseAddress, B_GMCD_REG_QIE); if (VTdUnitInfo->QiDescBuffer != NULL) { FreePages(VTdUnitInfo->QiDescBuffer, EFI_SIZE_TO_PAGES (VTdUnitInfo->QiDescBufferSize)); VTdUnitInfo->QiDescBuffer = NULL; VTdUnitInfo->QiDescBufferSize = 0; } mVtdUnitInformation[VtdIndex].EnableQueuedInvalidation = 0; } } /** Check Queued Invalidation Fault. @param[in] VtdIndex The index used to identify a VTd engine. @retval EFI_SUCCESS The operation was successful. @retval RETURN_DEVICE_ERROR A fault is detected. **/ EFI_STATUS QueuedInvalidationCheckFault ( IN UINTN VtdIndex ) { UINT32 FaultReg; VTD_IQERCD_REG IqercdReg; FaultReg = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FSTS_REG); if (FaultReg & (B_FSTS_REG_IQE | B_FSTS_REG_ITE | B_FSTS_REG_ICE)) { IqercdReg.Uint64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_IQERCD_REG); DEBUG((DEBUG_ERROR, "VTD 0x%x Detect Queue Invalidation Error [0x%08x] - IQERCD [0x%016lx]\n", mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress, FaultReg, IqercdReg.Uint64)); MmioWrite32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FSTS_REG, FaultReg); return RETURN_DEVICE_ERROR; } return EFI_SUCCESS; } /** Submit the queued invalidation descriptor to the remapping hardware unit and wait for its completion. @param[in] VtdIndex The index used to identify a VTd engine. @param[in] Desc The invalidate descriptor @retval EFI_SUCCESS The operation was successful. @retval RETURN_DEVICE_ERROR A fault is detected. @retval EFI_INVALID_PARAMETER Parameter is invalid. **/ EFI_STATUS SubmitQueuedInvalidationDescriptor ( IN UINTN VtdIndex, IN QI_256_DESC *Desc ) { EFI_STATUS Status; UINTN VtdUnitBaseAddress; UINTN QueueSize; UINTN QueueTail; UINTN QueueHead; QI_DESC *Qi128Desc; QI_256_DESC *Qi256Desc; VTD_IQA_REG IqaReg; VTD_IQT_REG IqtReg; VTD_IQH_REG IqhReg; if (Desc == NULL) { return EFI_INVALID_PARAMETER; } VtdUnitBaseAddress = mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress; IqaReg.Uint64 = MmioRead64 (VtdUnitBaseAddress + R_IQA_REG); if (IqaReg.Bits.IQA == 0) { DEBUG ((DEBUG_ERROR,"Invalidation Queue Buffer not ready [0x%lx]\n", IqaReg.Uint64)); return EFI_NOT_READY; } IqtReg.Uint64 = MmioRead64 (VtdUnitBaseAddress + R_IQT_REG); if (IqaReg.Bits.DW == 0) { // // 128-bit descriptor // QueueSize = (UINTN) (1 << (IqaReg.Bits.QS + 8)); Qi128Desc = (QI_DESC *) (UINTN) (IqaReg.Bits.IQA << VTD_PAGE_SHIFT); QueueTail = (UINTN) IqtReg.Bits128Desc.QT; Qi128Desc += QueueTail; Qi128Desc->Low = Desc->Uint64[0]; Qi128Desc->High = Desc->Uint64[1]; FlushPageTableMemory (VtdIndex, (UINTN) Qi128Desc, sizeof(QI_DESC)); QueueTail = (QueueTail + 1) % QueueSize; DEBUG ((DEBUG_VERBOSE, "[0x%x] Submit QI Descriptor 0x%x [0x%016lx, 0x%016lx]\n", VtdUnitBaseAddress, QueueTail, Desc->Uint64[0], Desc->Uint64[1])); IqtReg.Bits128Desc.QT = QueueTail; } else { // // 256-bit descriptor // QueueSize = (UINTN) (1 << (IqaReg.Bits.QS + 7)); Qi256Desc = (QI_256_DESC *) (UINTN) (IqaReg.Bits.IQA << VTD_PAGE_SHIFT); QueueTail = (UINTN) IqtReg.Bits256Desc.QT; Qi256Desc += QueueTail; Qi256Desc->Uint64[0] = Desc->Uint64[0]; Qi256Desc->Uint64[1] = Desc->Uint64[1]; Qi256Desc->Uint64[2] = Desc->Uint64[2]; Qi256Desc->Uint64[3] = Desc->Uint64[3]; FlushPageTableMemory (VtdIndex, (UINTN) Qi256Desc, sizeof(QI_256_DESC)); QueueTail = (QueueTail + 1) % QueueSize; DEBUG ((DEBUG_VERBOSE, "[0x%x] Submit QI Descriptor 0x%x [0x%016lx, 0x%016lx, 0x%016lx, 0x%016lx]\n", VtdUnitBaseAddress, QueueTail, Desc->Uint64[0], Desc->Uint64[1], Desc->Uint64[2], Desc->Uint64[3])); IqtReg.Bits256Desc.QT = QueueTail; } // // Update the HW tail register indicating the presence of new descriptors. // MmioWrite64 (VtdUnitBaseAddress + R_IQT_REG, IqtReg.Uint64); Status = EFI_SUCCESS; do { Status = QueuedInvalidationCheckFault(VtdIndex); if (Status != EFI_SUCCESS) { DEBUG((DEBUG_ERROR,"Detect Queued Invalidation Fault.\n")); break; } IqhReg.Uint64 = MmioRead64 (VtdUnitBaseAddress + R_IQH_REG); if (IqaReg.Bits.DW == 0) { QueueHead = (UINTN) IqhReg.Bits128Desc.QH; } else { QueueHead = (UINTN) IqhReg.Bits256Desc.QH; } } while (QueueTail != QueueHead); return Status; } /** Invalidate VTd context cache. @param[in] VtdIndex The index used to identify a VTd engine. **/ EFI_STATUS InvalidateContextCache ( IN UINTN VtdIndex ) { UINT64 Reg64; QI_256_DESC QiDesc; if (mVtdUnitInformation[VtdIndex].EnableQueuedInvalidation == 0) { // // Register-based Invalidation // Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CCMD_REG); if ((Reg64 & B_CCMD_REG_ICC) != 0) { DEBUG ((DEBUG_ERROR,"ERROR: InvalidateContextCache: B_CCMD_REG_ICC is set for VTD(%d)\n",VtdIndex)); return EFI_DEVICE_ERROR; } Reg64 &= ((~B_CCMD_REG_ICC) & (~B_CCMD_REG_CIRG_MASK)); Reg64 |= (B_CCMD_REG_ICC | V_CCMD_REG_CIRG_GLOBAL); MmioWrite64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CCMD_REG, Reg64); do { Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CCMD_REG); } while ((Reg64 & B_CCMD_REG_ICC) != 0); } else { // // Queued Invalidation // QiDesc.Uint64[0] = QI_CC_FM(0) | QI_CC_SID(0) | QI_CC_DID(0) | QI_CC_GRAN(1) | QI_CC_TYPE; QiDesc.Uint64[1] = 0; QiDesc.Uint64[2] = 0; QiDesc.Uint64[3] = 0; return SubmitQueuedInvalidationDescriptor(VtdIndex, &QiDesc); } return EFI_SUCCESS; } /** Invalidate VTd IOTLB. @param[in] VtdIndex The index used to identify a VTd engine. **/ EFI_STATUS InvalidateIOTLB ( IN UINTN VtdIndex ) { UINT64 Reg64; QI_256_DESC QiDesc; if (mVtdUnitInformation[VtdIndex].EnableQueuedInvalidation == 0) { // // Register-based Invalidation // Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG); if ((Reg64 & B_IOTLB_REG_IVT) != 0) { DEBUG ((DEBUG_ERROR,"ERROR: InvalidateIOTLB: B_IOTLB_REG_IVT is set for VTD(%d)\n", VtdIndex)); return EFI_DEVICE_ERROR; } Reg64 &= ((~B_IOTLB_REG_IVT) & (~B_IOTLB_REG_IIRG_MASK)); Reg64 |= (B_IOTLB_REG_IVT | V_IOTLB_REG_IIRG_GLOBAL); MmioWrite64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG, Reg64); do { Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG); } while ((Reg64 & B_IOTLB_REG_IVT) != 0); } else { // // Queued Invalidation // QiDesc.Uint64[0] = QI_IOTLB_DID(0) | QI_IOTLB_DR(CAP_READ_DRAIN(mVtdUnitInformation[VtdIndex].CapReg.Uint64)) | QI_IOTLB_DW(CAP_WRITE_DRAIN(mVtdUnitInformation[VtdIndex].CapReg.Uint64)) | QI_IOTLB_GRAN(1) | QI_IOTLB_TYPE; QiDesc.Uint64[1] = QI_IOTLB_ADDR(0) | QI_IOTLB_IH(0) | QI_IOTLB_AM(0); QiDesc.Uint64[2] = 0; QiDesc.Uint64[3] = 0; return SubmitQueuedInvalidationDescriptor(VtdIndex, &QiDesc); } return EFI_SUCCESS; } /** Invalid VTd global IOTLB. @param[in] VtdIndex The index of VTd engine. @retval EFI_SUCCESS VTd global IOTLB is invalidated. @retval EFI_DEVICE_ERROR VTd global IOTLB is not invalidated. **/ EFI_STATUS InvalidateVtdIOTLBGlobal ( IN UINTN VtdIndex ) { if (!mVtdEnabled) { return EFI_SUCCESS; } DEBUG((DEBUG_VERBOSE, "InvalidateVtdIOTLBGlobal(%d)\n", VtdIndex)); // // Write Buffer Flush before invalidation // FlushWriteBuffer (VtdIndex); // // Invalidate the context cache // if (mVtdUnitInformation[VtdIndex].HasDirtyContext) { InvalidateContextCache (VtdIndex); } // // Invalidate the IOTLB cache // if (mVtdUnitInformation[VtdIndex].HasDirtyContext || mVtdUnitInformation[VtdIndex].HasDirtyPages) { InvalidateIOTLB (VtdIndex); } return EFI_SUCCESS; } /** Prepare VTD configuration. **/ VOID PrepareVtdConfig ( VOID ) { UINTN Index; UINTN DomainNumber; EFI_STATUS Status; for (Index = 0; Index < mVtdUnitNumber; Index++) { DEBUG ((DEBUG_INFO, "Dump VTd Capability (%d)\n", Index)); mVtdUnitInformation[Index].VerReg.Uint32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_VER_REG); DumpVtdVerRegs (&mVtdUnitInformation[Index].VerReg); mVtdUnitInformation[Index].CapReg.Uint64 = MmioRead64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_CAP_REG); DumpVtdCapRegs (&mVtdUnitInformation[Index].CapReg); mVtdUnitInformation[Index].ECapReg.Uint64 = MmioRead64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_ECAP_REG); DumpVtdECapRegs (&mVtdUnitInformation[Index].ECapReg); if ((mVtdUnitInformation[Index].CapReg.Bits.SLLPS & BIT0) == 0) { DEBUG((DEBUG_WARN, "!!!! 2MB super page is not supported on VTD %d !!!!\n", Index)); } if ((mVtdUnitInformation[Index].CapReg.Bits.SAGAW & BIT3) != 0) { DEBUG((DEBUG_INFO, "Support 5-level page-table on VTD %d\n", Index)); } if ((mVtdUnitInformation[Index].CapReg.Bits.SAGAW & BIT2) != 0) { DEBUG((DEBUG_INFO, "Support 4-level page-table on VTD %d\n", Index)); } if ((mVtdUnitInformation[Index].CapReg.Bits.SAGAW & (BIT3 | BIT2)) == 0) { DEBUG((DEBUG_ERROR, "!!!! Page-table type 0x%X is not supported on VTD %d !!!!\n", Index, mVtdUnitInformation[Index].CapReg.Bits.SAGAW)); return ; } DomainNumber = (UINTN)1 << (UINT8)((UINTN)mVtdUnitInformation[Index].CapReg.Bits.ND * 2 + 4); if (mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceDataNumber >= DomainNumber) { DEBUG((DEBUG_ERROR, "!!!! Pci device Number(0x%x) >= DomainNumber(0x%x) !!!!\n", mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceDataNumber, DomainNumber)); return ; } Status = PerpareCacheInvalidationInterface(Index); if (EFI_ERROR (Status)) { ASSERT(FALSE); return; } } return ; } /** Disable PMR in all VTd engine. **/ VOID DisablePmr ( VOID ) { UINT32 Reg32; VTD_CAP_REG CapReg; UINTN Index; DEBUG ((DEBUG_INFO,"DisablePmr\n")); for (Index = 0; Index < mVtdUnitNumber; Index++) { CapReg.Uint64 = MmioRead64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_CAP_REG); if (CapReg.Bits.PLMR == 0 || CapReg.Bits.PHMR == 0) { continue ; } Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_PMEN_ENABLE_REG); if ((Reg32 & BIT0) != 0) { MmioWrite32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_PMEN_ENABLE_REG, 0x0); do { Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_PMEN_ENABLE_REG); } while((Reg32 & BIT0) != 0); DEBUG ((DEBUG_INFO,"Pmr(%d) disabled\n", Index)); } else { DEBUG ((DEBUG_INFO,"Pmr(%d) not enabled\n", Index)); } } return ; } /** Clear Global Command Register Bits @param[in] VtdUnitBaseAddress The base address of the VTd engine. @param[in] BitMask Bit mask. **/ VOID ClearGlobalCommandRegisterBits ( IN UINTN VtdUnitBaseAddress, IN UINT32 BitMask ) { UINT32 Reg32; UINT32 Status; UINT32 Command; Reg32 = MmioRead32 (VtdUnitBaseAddress + R_GSTS_REG); Status = (Reg32 & 0x96FFFFFF); // Reset the one-shot bits Command = (Status & (~BitMask)); MmioWrite32 (VtdUnitBaseAddress + R_GCMD_REG, Command); DEBUG((DEBUG_INFO, "Clear GCMD_REG bits 0x%x.\n", BitMask)); // // Poll on Status bit of Global status register to become zero // do { Reg32 = MmioRead32 (VtdUnitBaseAddress + R_GSTS_REG); } while ((Reg32 & BitMask) == BitMask); DEBUG ((DEBUG_INFO, "GSTS_REG : 0x%08x \n", Reg32)); } /** Set Global Command Register Bits @param[in] VtdUnitBaseAddress The base address of the VTd engine. @param[in] BitMask Bit mask. **/ VOID SetGlobalCommandRegisterBits ( IN UINTN VtdUnitBaseAddress, IN UINT32 BitMask ) { UINT32 Reg32; UINT32 Status; UINT32 Command; Reg32 = MmioRead32 (VtdUnitBaseAddress + R_GSTS_REG); Status = (Reg32 & 0x96FFFFFF); // Reset the one-shot bits Command = (Status | BitMask); MmioWrite32 (VtdUnitBaseAddress + R_GCMD_REG, Command); DEBUG((DEBUG_INFO, "Set GCMD_REG bits 0x%x.\n", BitMask)); // // Poll on Status bit of Global status register to become not zero // do { Reg32 = MmioRead32 (VtdUnitBaseAddress + R_GSTS_REG); } while ((Reg32 & BitMask) == 0); DEBUG ((DEBUG_INFO, "GSTS_REG : 0x%08x \n", Reg32)); } /** Update Root Table Address Register @param[in] VtdIndex The index used to identify a VTd engine. @param[in] EnableADM TRUE - Enable ADM in TTM bits **/ VOID UpdateRootTableAddressRegister ( IN UINTN VtdIndex, IN BOOLEAN EnableADM ) { UINT64 Reg64; if (mVtdUnitInformation[VtdIndex].ExtRootEntryTable != NULL) { DEBUG((DEBUG_INFO, "ExtRootEntryTable 0x%x \n", mVtdUnitInformation[VtdIndex].ExtRootEntryTable)); Reg64 = (UINT64)(UINTN)mVtdUnitInformation[VtdIndex].ExtRootEntryTable | (EnableADM ? V_RTADDR_REG_TTM_ADM : BIT11); } else { DEBUG((DEBUG_INFO, "RootEntryTable 0x%x \n", mVtdUnitInformation[VtdIndex].RootEntryTable)); Reg64 = (UINT64)(UINTN)mVtdUnitInformation[VtdIndex].RootEntryTable | (EnableADM ? V_RTADDR_REG_TTM_ADM : 0); } MmioWrite64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_RTADDR_REG, Reg64); } /** Enable DMAR translation. @retval EFI_SUCCESS DMAR translation is enabled. @retval EFI_DEVICE_ERROR DMAR translation is not enabled. **/ EFI_STATUS EnableDmar ( VOID ) { UINTN Index; UINTN VtdUnitBaseAddress; BOOLEAN TEWasEnabled; for (Index = 0; Index < mVtdUnitNumber; Index++) { VtdUnitBaseAddress = mVtdUnitInformation[Index].VtdUnitBaseAddress; DEBUG((DEBUG_INFO, ">>>>>>EnableDmar() for engine [%d] BAR [0x%x]\n", Index, VtdUnitBaseAddress)); // // Check TE was enabled or not. // TEWasEnabled = ((MmioRead32 (VtdUnitBaseAddress + R_GSTS_REG) & B_GSTS_REG_TE) == B_GSTS_REG_TE); if (TEWasEnabled && (mVtdUnitInformation[Index].ECapReg.Bits.ADMS == 1) && PcdGetBool (PcdVTdSupportAbortDmaMode)) { // // For implementations reporting Enhanced SRTP Support (ESRTPS) field as // Clear in the Capability register, software must not modify this field while // DMA remapping is active (TES=1 in Global Status register). // if (mVtdUnitInformation[Index].CapReg.Bits.ESRTPS == 0) { ClearGlobalCommandRegisterBits (VtdUnitBaseAddress, B_GMCD_REG_TE); } // // Enable ADM // UpdateRootTableAddressRegister (Index, TRUE); DEBUG((DEBUG_INFO, "EnableDmar: waiting for RTPS bit to be set... \n")); SetGlobalCommandRegisterBits (VtdUnitBaseAddress, B_GMCD_REG_SRTP); DEBUG((DEBUG_INFO, "Enable Abort DMA Mode...\n")); SetGlobalCommandRegisterBits (VtdUnitBaseAddress, B_GMCD_REG_TE); } else { UpdateRootTableAddressRegister (Index, FALSE); DEBUG((DEBUG_INFO, "EnableDmar: waiting for RTPS bit to be set... \n")); SetGlobalCommandRegisterBits (VtdUnitBaseAddress, B_GMCD_REG_SRTP); } // // Write Buffer Flush before invalidation // FlushWriteBuffer (Index); // // Invalidate the context cache // InvalidateContextCache (Index); // // Invalidate the IOTLB cache // InvalidateIOTLB (Index); if (TEWasEnabled && (mVtdUnitInformation[Index].ECapReg.Bits.ADMS == 1) && PcdGetBool (PcdVTdSupportAbortDmaMode)) { if (mVtdUnitInformation[Index].CapReg.Bits.ESRTPS == 0) { ClearGlobalCommandRegisterBits (VtdUnitBaseAddress, B_GMCD_REG_TE); } UpdateRootTableAddressRegister (Index, FALSE); DEBUG((DEBUG_INFO, "EnableDmar: waiting for RTPS bit to be set... \n")); SetGlobalCommandRegisterBits (VtdUnitBaseAddress, B_GMCD_REG_SRTP); } // // Enable VTd // DEBUG ((DEBUG_INFO, "EnableDmar: Waiting B_GSTS_REG_TE ...\n")); SetGlobalCommandRegisterBits (VtdUnitBaseAddress, B_GMCD_REG_TE); DEBUG ((DEBUG_INFO,"VTD (%d) enabled!<<<<<<\n",Index)); } // // Need disable PMR, since we already setup translation table. // DisablePmr (); mVtdEnabled = TRUE; return EFI_SUCCESS; } /** Disable DMAR translation. @retval EFI_SUCCESS DMAR translation is disabled. @retval EFI_DEVICE_ERROR DMAR translation is not disabled. **/ EFI_STATUS DisableDmar ( VOID ) { UINTN Index; UINTN SubIndex; UINT32 Reg32; for (Index = 0; Index < mVtdUnitNumber; Index++) { DEBUG((DEBUG_INFO, ">>>>>>DisableDmar() for engine [%d] \n", Index)); // // Write Buffer Flush before invalidation // FlushWriteBuffer (Index); // // Disable Dmar // // // Set TE (Translation Enable: BIT31) of Global command register to zero // ClearGlobalCommandRegisterBits (mVtdUnitInformation[Index].VtdUnitBaseAddress, B_GMCD_REG_TE); // // Set SRTP (Set Root Table Pointer: BIT30) of Global command register in order to update the root table pointerDisable VTd // SetGlobalCommandRegisterBits (mVtdUnitInformation[Index].VtdUnitBaseAddress, B_GSTS_REG_RTPS); Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GSTS_REG); DEBUG ((DEBUG_INFO, "DisableDmar: GSTS_REG - 0x%08x\n", Reg32)); DEBUG ((DEBUG_INFO,"VTD (%d) Disabled!<<<<<<\n",Index)); DisableQueuedInvalidationInterface(Index); } mVtdEnabled = FALSE; for (Index = 0; Index < mVtdUnitNumber; Index++) { DEBUG((DEBUG_INFO, "engine [%d] access\n", Index)); for (SubIndex = 0; SubIndex < mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceDataNumber; SubIndex++) { DEBUG ((DEBUG_INFO, " PCI S%04X B%02x D%02x F%02x - %d\n", mVtdUnitInformation[Index].Segment, mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceData[Index].PciSourceId.Bits.Bus, mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceData[Index].PciSourceId.Bits.Device, mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceData[Index].PciSourceId.Bits.Function, mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceData[Index].AccessCount )); } } return EFI_SUCCESS; } /** Dump VTd version registers. @param[in] VerReg The version register. **/ VOID DumpVtdVerRegs ( IN VTD_VER_REG *VerReg ) { DEBUG ((DEBUG_INFO, " VerReg - 0x%x\n", VerReg->Uint32)); DEBUG ((DEBUG_INFO, " Major - 0x%x\n", VerReg->Bits.Major)); DEBUG ((DEBUG_INFO, " Minor - 0x%x\n", VerReg->Bits.Minor)); } /** Dump VTd capability registers. @param[in] CapReg The capability register. **/ VOID DumpVtdCapRegs ( IN VTD_CAP_REG *CapReg ) { DEBUG((DEBUG_INFO, " CapReg - 0x%016lx\n", CapReg->Uint64)); DEBUG((DEBUG_INFO, " ND - 0x%x\n", CapReg->Bits.ND)); DEBUG((DEBUG_INFO, " AFL - 0x%x\n", CapReg->Bits.AFL)); DEBUG((DEBUG_INFO, " RWBF - 0x%x\n", CapReg->Bits.RWBF)); DEBUG((DEBUG_INFO, " PLMR - 0x%x\n", CapReg->Bits.PLMR)); DEBUG((DEBUG_INFO, " PHMR - 0x%x\n", CapReg->Bits.PHMR)); DEBUG((DEBUG_INFO, " CM - 0x%x\n", CapReg->Bits.CM)); DEBUG((DEBUG_INFO, " SAGAW - 0x%x\n", CapReg->Bits.SAGAW)); DEBUG((DEBUG_INFO, " MGAW - 0x%x\n", CapReg->Bits.MGAW)); DEBUG((DEBUG_INFO, " ZLR - 0x%x\n", CapReg->Bits.ZLR)); DEBUG((DEBUG_INFO, " FRO - 0x%x\n", CapReg->Bits.FRO)); DEBUG((DEBUG_INFO, " SLLPS - 0x%x\n", CapReg->Bits.SLLPS)); DEBUG((DEBUG_INFO, " PSI - 0x%x\n", CapReg->Bits.PSI)); DEBUG((DEBUG_INFO, " NFR - 0x%x\n", CapReg->Bits.NFR)); DEBUG((DEBUG_INFO, " MAMV - 0x%x\n", CapReg->Bits.MAMV)); DEBUG((DEBUG_INFO, " DWD - 0x%x\n", CapReg->Bits.DWD)); DEBUG((DEBUG_INFO, " DRD - 0x%x\n", CapReg->Bits.DRD)); DEBUG((DEBUG_INFO, " FL1GP - 0x%x\n", CapReg->Bits.FL1GP)); DEBUG((DEBUG_INFO, " PI - 0x%x\n", CapReg->Bits.PI)); } /** Dump VTd extended capability registers. @param[in] ECapReg The extended capability register. **/ VOID DumpVtdECapRegs ( IN VTD_ECAP_REG *ECapReg ) { DEBUG((DEBUG_INFO, " ECapReg - 0x%016lx\n", ECapReg->Uint64)); DEBUG((DEBUG_INFO, " C - 0x%x\n", ECapReg->Bits.C)); DEBUG((DEBUG_INFO, " QI - 0x%x\n", ECapReg->Bits.QI)); DEBUG((DEBUG_INFO, " DT - 0x%x\n", ECapReg->Bits.DT)); DEBUG((DEBUG_INFO, " IR - 0x%x\n", ECapReg->Bits.IR)); DEBUG((DEBUG_INFO, " EIM - 0x%x\n", ECapReg->Bits.EIM)); DEBUG((DEBUG_INFO, " PT - 0x%x\n", ECapReg->Bits.PT)); DEBUG((DEBUG_INFO, " SC - 0x%x\n", ECapReg->Bits.SC)); DEBUG((DEBUG_INFO, " IRO - 0x%x\n", ECapReg->Bits.IRO)); DEBUG((DEBUG_INFO, " MHMV - 0x%x\n", ECapReg->Bits.MHMV)); DEBUG((DEBUG_INFO, " MTS - 0x%x\n", ECapReg->Bits.MTS)); DEBUG((DEBUG_INFO, " NEST - 0x%x\n", ECapReg->Bits.NEST)); DEBUG((DEBUG_INFO, " PASID - 0x%x\n", ECapReg->Bits.PASID)); DEBUG((DEBUG_INFO, " PRS - 0x%x\n", ECapReg->Bits.PRS)); DEBUG((DEBUG_INFO, " ERS - 0x%x\n", ECapReg->Bits.ERS)); DEBUG((DEBUG_INFO, " SRS - 0x%x\n", ECapReg->Bits.SRS)); DEBUG((DEBUG_INFO, " NWFS - 0x%x\n", ECapReg->Bits.NWFS)); DEBUG((DEBUG_INFO, " EAFS - 0x%x\n", ECapReg->Bits.EAFS)); DEBUG((DEBUG_INFO, " PSS - 0x%x\n", ECapReg->Bits.PSS)); DEBUG((DEBUG_INFO, " SMTS - 0x%x\n", ECapReg->Bits.SMTS)); DEBUG((DEBUG_INFO, " ADMS - 0x%x\n", ECapReg->Bits.ADMS)); } /** Dump VTd registers. @param[in] VtdIndex The index of VTd engine. **/ VOID DumpVtdRegs ( IN UINTN VtdIndex ) { UINTN Index; UINT64 Reg64; VTD_FRCD_REG FrcdReg; VTD_CAP_REG CapReg; UINT32 Reg32; VTD_SOURCE_ID SourceId; DEBUG((DEBUG_INFO, "#### DumpVtdRegs(%d) Begin ####\n", VtdIndex)); Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_VER_REG); DEBUG((DEBUG_INFO, " VER_REG - 0x%08x\n", Reg32)); CapReg.Uint64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CAP_REG); DEBUG((DEBUG_INFO, " CAP_REG - 0x%016lx\n", CapReg.Uint64)); Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_ECAP_REG); DEBUG((DEBUG_INFO, " ECAP_REG - 0x%016lx\n", Reg64)); Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_GSTS_REG); DEBUG((DEBUG_INFO, " GSTS_REG - 0x%08x \n", Reg32)); Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_RTADDR_REG); DEBUG((DEBUG_INFO, " RTADDR_REG - 0x%016lx\n", Reg64)); Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CCMD_REG); DEBUG((DEBUG_INFO, " CCMD_REG - 0x%016lx\n", Reg64)); Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FSTS_REG); DEBUG((DEBUG_INFO, " FSTS_REG - 0x%08x\n", Reg32)); Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FECTL_REG); DEBUG((DEBUG_INFO, " FECTL_REG - 0x%08x\n", Reg32)); Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FEDATA_REG); DEBUG((DEBUG_INFO, " FEDATA_REG - 0x%08x\n", Reg32)); Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FEADDR_REG); DEBUG((DEBUG_INFO, " FEADDR_REG - 0x%08x\n",Reg32)); Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FEUADDR_REG); DEBUG((DEBUG_INFO, " FEUADDR_REG - 0x%08x\n",Reg32)); for (Index = 0; Index < (UINTN)CapReg.Bits.NFR + 1; Index++) { FrcdReg.Uint64[0] = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + ((CapReg.Bits.FRO * 16) + (Index * 16) + R_FRCD_REG)); FrcdReg.Uint64[1] = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + ((CapReg.Bits.FRO * 16) + (Index * 16) + R_FRCD_REG + sizeof(UINT64))); DEBUG((DEBUG_INFO, " FRCD_REG[%d] - 0x%016lx %016lx\n", Index, FrcdReg.Uint64[1], FrcdReg.Uint64[0])); if (FrcdReg.Uint64[1] != 0 || FrcdReg.Uint64[0] != 0) { DEBUG((DEBUG_INFO, " Fault Info - 0x%016lx\n", VTD_64BITS_ADDRESS(FrcdReg.Bits.FILo, FrcdReg.Bits.FIHi))); DEBUG((DEBUG_INFO, " Fault Bit - %d\n", FrcdReg.Bits.F)); SourceId.Uint16 = (UINT16)FrcdReg.Bits.SID; DEBUG((DEBUG_INFO, " Source - B%02x D%02x F%02x\n", SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function)); DEBUG((DEBUG_INFO, " Type - 0x%02x\n", (FrcdReg.Bits.T1 << 1) | FrcdReg.Bits.T2)); DEBUG((DEBUG_INFO, " Reason - %x (Refer to VTd Spec, Appendix A)\n", FrcdReg.Bits.FR)); } } Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IVA_REG); DEBUG((DEBUG_INFO, " IVA_REG - 0x%016lx\n",Reg64)); Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG); DEBUG((DEBUG_INFO, " IOTLB_REG - 0x%016lx\n",Reg64)); DEBUG((DEBUG_INFO, "#### DumpVtdRegs(%d) End ####\n", VtdIndex)); } /** Dump VTd registers for all VTd engine. **/ VOID DumpVtdRegsAll ( VOID ) { UINTN Num; for (Num = 0; Num < mVtdUnitNumber; Num++) { DumpVtdRegs (Num); } } /** Dump VTd registers if there is error. **/ VOID DumpVtdIfError ( VOID ) { UINTN Num; UINTN Index; VTD_FRCD_REG FrcdReg; VTD_CAP_REG CapReg; UINT32 Reg32; BOOLEAN HasError; for (Num = 0; Num < mVtdUnitNumber; Num++) { HasError = FALSE; Reg32 = MmioRead32 (mVtdUnitInformation[Num].VtdUnitBaseAddress + R_FSTS_REG); if (Reg32 != 0) { HasError = TRUE; } Reg32 = MmioRead32 (mVtdUnitInformation[Num].VtdUnitBaseAddress + R_FECTL_REG); if ((Reg32 & BIT30) != 0) { HasError = TRUE; } CapReg.Uint64 = MmioRead64 (mVtdUnitInformation[Num].VtdUnitBaseAddress + R_CAP_REG); for (Index = 0; Index < (UINTN)CapReg.Bits.NFR + 1; Index++) { FrcdReg.Uint64[0] = MmioRead64 (mVtdUnitInformation[Num].VtdUnitBaseAddress + ((CapReg.Bits.FRO * 16) + (Index * 16) + R_FRCD_REG)); FrcdReg.Uint64[1] = MmioRead64 (mVtdUnitInformation[Num].VtdUnitBaseAddress + ((CapReg.Bits.FRO * 16) + (Index * 16) + R_FRCD_REG + sizeof(UINT64))); if (FrcdReg.Bits.F != 0) { HasError = TRUE; } } if (HasError) { REPORT_STATUS_CODE (EFI_ERROR_CODE, PcdGet32 (PcdErrorCodeVTdError)); DEBUG((DEBUG_INFO, "\n#### ERROR ####\n")); DumpVtdRegs (Num); DEBUG((DEBUG_INFO, "#### ERROR ####\n\n")); // // Clear // for (Index = 0; Index < (UINTN)CapReg.Bits.NFR + 1; Index++) { FrcdReg.Uint64[1] = MmioRead64 (mVtdUnitInformation[Num].VtdUnitBaseAddress + ((CapReg.Bits.FRO * 16) + (Index * 16) + R_FRCD_REG + sizeof(UINT64))); if (FrcdReg.Bits.F != 0) { // // Software writes the value read from this field (F) to Clear it. // MmioWrite64 (mVtdUnitInformation[Num].VtdUnitBaseAddress + ((CapReg.Bits.FRO * 16) + (Index * 16) + R_FRCD_REG + sizeof(UINT64)), FrcdReg.Uint64[1]); } } MmioWrite32 (mVtdUnitInformation[Num].VtdUnitBaseAddress + R_FSTS_REG, MmioRead32 (mVtdUnitInformation[Num].VtdUnitBaseAddress + R_FSTS_REG)); } } }