summaryrefslogtreecommitdiff
path: root/poky/documentation/profile-manual/profile-manual-usage.xml
blob: a1b565157d006564ca876f2a5ff5477f949c2837 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >

<chapter id='profile-manual-usage'>

<title>Basic Usage (with examples) for each of the Yocto Tracing Tools</title>

<para>
    This chapter presents basic usage examples for each of the tracing
    tools.
</para>

<section id='profile-manual-perf'>
    <title>perf</title>

    <para>
        The 'perf' tool is the profiling and tracing tool that comes
        bundled with the Linux kernel.
    </para>

    <para>
        Don't let the fact that it's part of the kernel fool you into thinking
        that it's only for tracing and profiling the kernel - you can indeed
        use it to trace and profile just the kernel, but you can also use it
        to profile specific applications separately (with or without kernel
        context), and you can also use it to trace and profile the kernel
        and all applications on the system simultaneously to gain a system-wide
        view of what's going on.
    </para>

    <para>
        In many ways, perf aims to be a superset of all the tracing and profiling
        tools available in Linux today, including all the other tools covered
        in this HOWTO. The past couple of years have seen perf subsume a lot
        of the functionality of those other tools and, at the same time, those
        other tools have removed large portions of their previous functionality
        and replaced it with calls to the equivalent functionality now
        implemented by the perf subsystem. Extrapolation suggests that at
        some point those other tools will simply become completely redundant
        and go away; until then, we'll cover those other tools in these pages
        and in many cases show how the same things can be accomplished in
        perf and the other tools when it seems useful to do so.
    </para>

    <para>
        The coverage below details some of the most common ways you'll likely
        want to apply the tool; full documentation can be found either within
        the tool itself or in the man pages at
        <ulink url='http://linux.die.net/man/1/perf'>perf(1)</ulink>.
    </para>

    <section id='perf-setup'>
        <title>Setup</title>

        <para>
            For this section, we'll assume you've already performed the basic
            setup outlined in the General Setup section.
        </para>

        <para>
            In particular, you'll get the most mileage out of perf if you
            profile an image built with the following in your
            <filename>local.conf</filename> file:
            <literallayout class='monospaced'>
     <ulink url='&YOCTO_DOCS_REF_URL;#var-INHIBIT_PACKAGE_STRIP'>INHIBIT_PACKAGE_STRIP</ulink> = "1"
            </literallayout>
        </para>

        <para>
            perf runs on the target system for the most part. You can archive
            profile data and copy it to the host for analysis, but for the
            rest of this document we assume you've ssh'ed to the host and
            will be running the perf commands on the target.
        </para>
    </section>

    <section id='perf-basic-usage'>
        <title>Basic Usage</title>

        <para>
            The perf tool is pretty much self-documenting. To remind yourself
            of the available commands, simply type 'perf', which will show you
            basic usage along with the available perf subcommands:
            <literallayout class='monospaced'>
     root@crownbay:~# perf

     usage: perf [--version] [--help] COMMAND [ARGS]

     The most commonly used perf commands are:
       annotate        Read perf.data (created by perf record) and display annotated code
       archive         Create archive with object files with build-ids found in perf.data file
       bench           General framework for benchmark suites
       buildid-cache   Manage build-id cache.
       buildid-list    List the buildids in a perf.data file
       diff            Read two perf.data files and display the differential profile
       evlist          List the event names in a perf.data file
       inject          Filter to augment the events stream with additional information
       kmem            Tool to trace/measure kernel memory(slab) properties
       kvm             Tool to trace/measure kvm guest os
       list            List all symbolic event types
       lock            Analyze lock events
       probe           Define new dynamic tracepoints
       record          Run a command and record its profile into perf.data
       report          Read perf.data (created by perf record) and display the profile
       sched           Tool to trace/measure scheduler properties (latencies)
       script          Read perf.data (created by perf record) and display trace output
       stat            Run a command and gather performance counter statistics
       test            Runs sanity tests.
       timechart       Tool to visualize total system behavior during a workload
       top             System profiling tool.

     See 'perf help COMMAND' for more information on a specific command.
            </literallayout>
        </para>

        <section id='using-perf-to-do-basic-profiling'>
            <title>Using perf to do Basic Profiling</title>

            <para>
                As a simple test case, we'll profile the 'wget' of a fairly large
                file, which is a minimally interesting case because it has both
                file and network I/O aspects, and at least in the case of standard
                Yocto images, it's implemented as part of busybox, so the methods
                we use to analyze it can be used in a very similar way to the whole
                host of supported busybox applets in Yocto.
                <literallayout class='monospaced'>
     root@crownbay:~# rm linux-2.6.19.2.tar.bz2; \
     wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
                </literallayout>
                The quickest and easiest way to get some basic overall data about
                what's going on for a particular workload is to profile it using
                'perf stat'. 'perf stat' basically profiles using a few default
                counters and displays the summed counts at the end of the run:
                <literallayout class='monospaced'>
     root@crownbay:~# perf stat wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
     Connecting to downloads.yoctoproject.org (140.211.169.59:80)
     linux-2.6.19.2.tar.b 100% |***************************************************| 41727k  0:00:00 ETA

     Performance counter stats for 'wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>':

           4597.223902 task-clock                #    0.077 CPUs utilized
                 23568 context-switches          #    0.005 M/sec
                    68 CPU-migrations            #    0.015 K/sec
                   241 page-faults               #    0.052 K/sec
            3045817293 cycles                    #    0.663 GHz
       &lt;not supported&gt; stalled-cycles-frontend
       &lt;not supported&gt; stalled-cycles-backend
             858909167 instructions              #    0.28  insns per cycle
             165441165 branches                  #   35.987 M/sec
              19550329 branch-misses             #   11.82% of all branches

          59.836627620 seconds time elapsed
                </literallayout>
                Many times such a simple-minded test doesn't yield much of
                interest, but sometimes it does (see Real-world Yocto bug
                (slow loop-mounted write speed)).
            </para>

            <para>
                Also, note that 'perf stat' isn't restricted to a fixed set of
                counters - basically any event listed in the output of 'perf list'
                can be tallied by 'perf stat'. For example, suppose we wanted to
                see a summary of all the events related to kernel memory
                allocation/freeing along with cache hits and misses:
                <literallayout class='monospaced'>
     root@crownbay:~# perf stat -e kmem:* -e cache-references -e cache-misses wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
     Connecting to downloads.yoctoproject.org (140.211.169.59:80)
     linux-2.6.19.2.tar.b 100% |***************************************************| 41727k  0:00:00 ETA

     Performance counter stats for 'wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>':

                  5566 kmem:kmalloc
                125517 kmem:kmem_cache_alloc
                     0 kmem:kmalloc_node
                     0 kmem:kmem_cache_alloc_node
                 34401 kmem:kfree
                 69920 kmem:kmem_cache_free
                   133 kmem:mm_page_free
                    41 kmem:mm_page_free_batched
                 11502 kmem:mm_page_alloc
                 11375 kmem:mm_page_alloc_zone_locked
                     0 kmem:mm_page_pcpu_drain
                     0 kmem:mm_page_alloc_extfrag
              66848602 cache-references
               2917740 cache-misses              #    4.365 % of all cache refs

          44.831023415 seconds time elapsed
                </literallayout>
                So 'perf stat' gives us a nice easy way to get a quick overview of
                what might be happening for a set of events, but normally we'd
                need a little more detail in order to understand what's going on
                in a way that we can act on in a useful way.
            </para>

            <para>
                To dive down into a next level of detail, we can use 'perf
                record'/'perf report' which will collect profiling data and
                present it to use using an interactive text-based UI (or
                simply as text if we specify --stdio to 'perf report').
            </para>

            <para>
                As our first attempt at profiling this workload, we'll simply
                run 'perf record', handing it the workload we want to profile
                (everything after 'perf record' and any perf options we hand
                it - here none - will be executed in a new shell). perf collects
                samples until the process exits and records them in a file named
                'perf.data' in the current working directory.
                <literallayout class='monospaced'>
     root@crownbay:~# perf record wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>

     Connecting to downloads.yoctoproject.org (140.211.169.59:80)
     linux-2.6.19.2.tar.b 100% |************************************************| 41727k  0:00:00 ETA
     [ perf record: Woken up 1 times to write data ]
     [ perf record: Captured and wrote 0.176 MB perf.data (~7700 samples) ]
            </literallayout>
            To see the results in a 'text-based UI' (tui), simply run
            'perf report', which will read the perf.data file in the current
            working directory and display the results in an interactive UI:
                <literallayout class='monospaced'>
     root@crownbay:~# perf report
                </literallayout>
            </para>

            <para>
                <imagedata fileref="figures/perf-wget-flat-stripped.png" width="6in" depth="7in" align="center" scalefit="1" />
            </para>

            <para>
                The above screenshot displays a 'flat' profile, one entry for
                each 'bucket' corresponding to the functions that were profiled
                during the profiling run, ordered from the most popular to the
                least (perf has options to sort in various orders and keys as
                well as display entries only above a certain threshold and so
                on - see the perf documentation for details). Note that this
                includes both userspace functions (entries containing a [.]) and
                kernel functions accounted to the process (entries containing
                a [k]). (perf has command-line modifiers that can be used to
                restrict the profiling to kernel or userspace, among others).
            </para>

            <para>
                Notice also that the above report shows an entry for 'busybox',
                which is the executable that implements 'wget' in Yocto, but that
                instead of a useful function name in that entry, it displays
                a not-so-friendly hex value instead. The steps below will show
                how to fix that problem.
            </para>

            <para>
                Before we do that, however, let's try running a different profile,
                one which shows something a little more interesting. The only
                difference between the new profile and the previous one is that
                we'll add the -g option, which will record not just the address
                of a sampled function, but the entire callchain to the sampled
                function as well:
                <literallayout class='monospaced'>
     root@crownbay:~# perf record -g wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
     Connecting to downloads.yoctoproject.org (140.211.169.59:80)
     linux-2.6.19.2.tar.b 100% |************************************************| 41727k  0:00:00 ETA
     [ perf record: Woken up 3 times to write data ]
     [ perf record: Captured and wrote 0.652 MB perf.data (~28476 samples) ]


     root@crownbay:~# perf report
                </literallayout>
            </para>

            <para>
                <imagedata fileref="figures/perf-wget-g-copy-to-user-expanded-stripped.png" width="6in" depth="7in" align="center" scalefit="1" />
            </para>

            <para>
                Using the callgraph view, we can actually see not only which
                functions took the most time, but we can also see a summary of
                how those functions were called and learn something about how the
                program interacts with the kernel in the process.
            </para>

            <para>
                Notice that each entry in the above screenshot now contains a '+'
                on the left-hand side. This means that we can expand the entry and
                drill down into the callchains that feed into that entry.
                Pressing 'enter' on any one of them will expand the callchain
                (you can also press 'E' to expand them all at the same time or 'C'
                to collapse them all).
            </para>

            <para>
                In the screenshot above, we've toggled the __copy_to_user_ll()
                entry and several subnodes all the way down. This lets us see
                which callchains contributed to the profiled __copy_to_user_ll()
                function which contributed 1.77% to the total profile.
            </para>

            <para>
                As a bit of background explanation for these callchains, think
                about what happens at a high level when you run wget to get a file
                out on the network. Basically what happens is that the data comes
                into the kernel via the network connection (socket) and is passed
                to the userspace program 'wget' (which is actually a part of
                busybox, but that's not important for now), which takes the buffers
                the kernel passes to it and writes it to a disk file to save it.
            </para>

            <para>
                The part of this process that we're looking at in the above call
                stacks is the part where the kernel passes the data it's read from
                the socket down to wget i.e. a copy-to-user.
            </para>

            <para>
                Notice also that here there's also a case where the hex value
                is displayed in the callstack, here in the expanded
                sys_clock_gettime() function. Later we'll see it resolve to a
                userspace function call in busybox.
            </para>

            <para>
                <imagedata fileref="figures/perf-wget-g-copy-from-user-expanded-stripped.png" width="6in" depth="7in" align="center" scalefit="1" />
            </para>

            <para>
                The above screenshot shows the other half of the journey for the
                data - from the wget program's userspace buffers to disk. To get
                the buffers to disk, the wget program issues a write(2), which
                does a copy-from-user to the kernel, which then takes care via
                some circuitous path (probably also present somewhere in the
                profile data), to get it safely to disk.
            </para>

            <para>
                Now that we've seen the basic layout of the profile data and the
                basics of how to extract useful information out of it, let's get
                back to the task at hand and see if we can get some basic idea
                about where the time is spent in the program we're profiling,
                wget. Remember that wget is actually implemented as an applet
                in busybox, so while the process name is 'wget', the executable
                we're actually interested in is busybox. So let's expand the
                first entry containing busybox:
            </para>

            <para>
                <imagedata fileref="figures/perf-wget-busybox-expanded-stripped.png" width="6in" depth="7in" align="center" scalefit="1" />
            </para>

            <para>
                Again, before we expanded we saw that the function was labeled
                with a hex value instead of a symbol as with most of the kernel
                entries. Expanding the busybox entry doesn't make it any better.
            </para>

            <para>
                The problem is that perf can't find the symbol information for the
                busybox binary, which is actually stripped out by the Yocto build
                system.
            </para>

            <para>
                One way around that is to put the following in your
                <filename>local.conf</filename> file when you build the image:
                <literallayout class='monospaced'>
     <ulink url='&YOCTO_DOCS_REF_URL;#var-INHIBIT_PACKAGE_STRIP'>INHIBIT_PACKAGE_STRIP</ulink> = "1"
                </literallayout>
                However, we already have an image with the binaries stripped,
                so what can we do to get perf to resolve the symbols? Basically
                we need to install the debuginfo for the busybox package.
            </para>

            <para>
                To generate the debug info for the packages in the image, we can
                add dbg-pkgs to EXTRA_IMAGE_FEATURES in local.conf. For example:
                <literallayout class='monospaced'>
     EXTRA_IMAGE_FEATURES = "debug-tweaks tools-profile dbg-pkgs"
                </literallayout>
                Additionally, in order to generate the type of debuginfo that
                perf understands, we also need to set
                <ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_DEBUG_SPLIT_STYLE'><filename>PACKAGE_DEBUG_SPLIT_STYLE</filename></ulink>
                in the <filename>local.conf</filename> file:
                <literallayout class='monospaced'>
     PACKAGE_DEBUG_SPLIT_STYLE = 'debug-file-directory'
                </literallayout>
                Once we've done that, we can install the debuginfo for busybox.
                The debug packages once built can be found in
                build/tmp/deploy/rpm/* on the host system. Find the
                busybox-dbg-...rpm file and copy it to the target. For example:
                <literallayout class='monospaced'>
     [trz@empanada core2]$ scp /home/trz/yocto/crownbay-tracing-dbg/build/tmp/deploy/rpm/core2_32/busybox-dbg-1.20.2-r2.core2_32.rpm root@192.168.1.31:
     root@192.168.1.31's password:
     busybox-dbg-1.20.2-r2.core2_32.rpm                     100% 1826KB   1.8MB/s   00:01
                </literallayout>
                Now install the debug rpm on the target:
                <literallayout class='monospaced'>
     root@crownbay:~# rpm -i busybox-dbg-1.20.2-r2.core2_32.rpm
                </literallayout>
                Now that the debuginfo is installed, we see that the busybox
                entries now display their functions symbolically:
            </para>

            <para>
                <imagedata fileref="figures/perf-wget-busybox-debuginfo.png" width="6in" depth="7in" align="center" scalefit="1" />
            </para>

            <para>
                If we expand one of the entries and press 'enter' on a leaf node,
                we're presented with a menu of actions we can take to get more
                information related to that entry:
            </para>

            <para>
                <imagedata fileref="figures/perf-wget-busybox-dso-zoom-menu.png" width="6in" depth="2in" align="center" scalefit="1" />
            </para>

            <para>
                One of these actions allows us to show a view that displays a
                busybox-centric view of the profiled functions (in this case we've
                also expanded all the nodes using the 'E' key):
            </para>

            <para>
                <imagedata fileref="figures/perf-wget-busybox-dso-zoom.png" width="6in" depth="7in" align="center" scalefit="1" />
            </para>

            <para>
                Finally, we can see that now that the busybox debuginfo is
                installed, the previously unresolved symbol in the
                sys_clock_gettime() entry mentioned previously is now resolved,
                and shows that the sys_clock_gettime system call that was the
                source of 6.75% of the copy-to-user overhead was initiated by
                the handle_input() busybox function:
            </para>

            <para>
                <imagedata fileref="figures/perf-wget-g-copy-to-user-expanded-debuginfo.png" width="6in" depth="7in" align="center" scalefit="1" />
            </para>

            <para>
                At the lowest level of detail, we can dive down to the assembly
                level and see which instructions caused the most overhead in a
                function. Pressing 'enter' on the 'udhcpc_main' function, we're
                again presented with a menu:
            </para>

            <para>
                <imagedata fileref="figures/perf-wget-busybox-annotate-menu.png" width="6in" depth="2in" align="center" scalefit="1" />
            </para>

            <para>
                Selecting 'Annotate udhcpc_main', we get a detailed listing of
                percentages by instruction for the udhcpc_main function. From the
                display, we can see that over 50% of the time spent in this
                function is taken up by a couple tests and the move of a
                constant (1) to a register:
            </para>

            <para>
                <imagedata fileref="figures/perf-wget-busybox-annotate-udhcpc.png" width="6in" depth="7in" align="center" scalefit="1" />
            </para>

            <para>
                As a segue into tracing, let's try another profile using a
                different counter, something other than the default 'cycles'.
            </para>

            <para>
                The tracing and profiling infrastructure in Linux has become
                unified in a way that allows us to use the same tool with a
                completely different set of counters, not just the standard
                hardware counters that traditional tools have had to restrict
                themselves to (of course the traditional tools can also make use
                of the expanded possibilities now available to them, and in some
                cases have, as mentioned previously).
            </para>

            <para>
                We can get a list of the available events that can be used to
                profile a workload via 'perf list':
                <literallayout class='monospaced'>
     root@crownbay:~# perf list

     List of pre-defined events (to be used in -e):
      cpu-cycles OR cycles                               [Hardware event]
      stalled-cycles-frontend OR idle-cycles-frontend    [Hardware event]
      stalled-cycles-backend OR idle-cycles-backend      [Hardware event]
      instructions                                       [Hardware event]
      cache-references                                   [Hardware event]
      cache-misses                                       [Hardware event]
      branch-instructions OR branches                    [Hardware event]
      branch-misses                                      [Hardware event]
      bus-cycles                                         [Hardware event]
      ref-cycles                                         [Hardware event]

      cpu-clock                                          [Software event]
      task-clock                                         [Software event]
      page-faults OR faults                              [Software event]
      minor-faults                                       [Software event]
      major-faults                                       [Software event]
      context-switches OR cs                             [Software event]
      cpu-migrations OR migrations                       [Software event]
      alignment-faults                                   [Software event]
      emulation-faults                                   [Software event]

      L1-dcache-loads                                    [Hardware cache event]
      L1-dcache-load-misses                              [Hardware cache event]
      L1-dcache-prefetch-misses                          [Hardware cache event]
      L1-icache-loads                                    [Hardware cache event]
      L1-icache-load-misses                              [Hardware cache event]
      .
      .
      .
      rNNN                                               [Raw hardware event descriptor]
      cpu/t1=v1[,t2=v2,t3 ...]/modifier                  [Raw hardware event descriptor]
       (see 'perf list --help' on how to encode it)

      mem:&lt;addr&gt;[:access]                                [Hardware breakpoint]

      sunrpc:rpc_call_status                             [Tracepoint event]
      sunrpc:rpc_bind_status                             [Tracepoint event]
      sunrpc:rpc_connect_status                          [Tracepoint event]
      sunrpc:rpc_task_begin                              [Tracepoint event]
      skb:kfree_skb                                      [Tracepoint event]
      skb:consume_skb                                    [Tracepoint event]
      skb:skb_copy_datagram_iovec                        [Tracepoint event]
      net:net_dev_xmit                                   [Tracepoint event]
      net:net_dev_queue                                  [Tracepoint event]
      net:netif_receive_skb                              [Tracepoint event]
      net:netif_rx                                       [Tracepoint event]
      napi:napi_poll                                     [Tracepoint event]
      sock:sock_rcvqueue_full                            [Tracepoint event]
      sock:sock_exceed_buf_limit                         [Tracepoint event]
      udp:udp_fail_queue_rcv_skb                         [Tracepoint event]
      hda:hda_send_cmd                                   [Tracepoint event]
      hda:hda_get_response                               [Tracepoint event]
      hda:hda_bus_reset                                  [Tracepoint event]
      scsi:scsi_dispatch_cmd_start                       [Tracepoint event]
      scsi:scsi_dispatch_cmd_error                       [Tracepoint event]
      scsi:scsi_eh_wakeup                                [Tracepoint event]
      drm:drm_vblank_event                               [Tracepoint event]
      drm:drm_vblank_event_queued                        [Tracepoint event]
      drm:drm_vblank_event_delivered                     [Tracepoint event]
      random:mix_pool_bytes                              [Tracepoint event]
      random:mix_pool_bytes_nolock                       [Tracepoint event]
      random:credit_entropy_bits                         [Tracepoint event]
      gpio:gpio_direction                                [Tracepoint event]
      gpio:gpio_value                                    [Tracepoint event]
      block:block_rq_abort                               [Tracepoint event]
      block:block_rq_requeue                             [Tracepoint event]
      block:block_rq_issue                               [Tracepoint event]
      block:block_bio_bounce                             [Tracepoint event]
      block:block_bio_complete                           [Tracepoint event]
      block:block_bio_backmerge                          [Tracepoint event]
      .
      .
      writeback:writeback_wake_thread                    [Tracepoint event]
      writeback:writeback_wake_forker_thread             [Tracepoint event]
      writeback:writeback_bdi_register                   [Tracepoint event]
      .
      .
      writeback:writeback_single_inode_requeue           [Tracepoint event]
      writeback:writeback_single_inode                   [Tracepoint event]
      kmem:kmalloc                                       [Tracepoint event]
      kmem:kmem_cache_alloc                              [Tracepoint event]
      kmem:mm_page_alloc                                 [Tracepoint event]
      kmem:mm_page_alloc_zone_locked                     [Tracepoint event]
      kmem:mm_page_pcpu_drain                            [Tracepoint event]
      kmem:mm_page_alloc_extfrag                         [Tracepoint event]
      vmscan:mm_vmscan_kswapd_sleep                      [Tracepoint event]
      vmscan:mm_vmscan_kswapd_wake                       [Tracepoint event]
      vmscan:mm_vmscan_wakeup_kswapd                     [Tracepoint event]
      vmscan:mm_vmscan_direct_reclaim_begin              [Tracepoint event]
      .
      .
      module:module_get                                  [Tracepoint event]
      module:module_put                                  [Tracepoint event]
      module:module_request                              [Tracepoint event]
      sched:sched_kthread_stop                           [Tracepoint event]
      sched:sched_wakeup                                 [Tracepoint event]
      sched:sched_wakeup_new                             [Tracepoint event]
      sched:sched_process_fork                           [Tracepoint event]
      sched:sched_process_exec                           [Tracepoint event]
      sched:sched_stat_runtime                           [Tracepoint event]
      rcu:rcu_utilization                                [Tracepoint event]
      workqueue:workqueue_queue_work                     [Tracepoint event]
      workqueue:workqueue_execute_end                    [Tracepoint event]
      signal:signal_generate                             [Tracepoint event]
      signal:signal_deliver                              [Tracepoint event]
      timer:timer_init                                   [Tracepoint event]
      timer:timer_start                                  [Tracepoint event]
      timer:hrtimer_cancel                               [Tracepoint event]
      timer:itimer_state                                 [Tracepoint event]
      timer:itimer_expire                                [Tracepoint event]
      irq:irq_handler_entry                              [Tracepoint event]
      irq:irq_handler_exit                               [Tracepoint event]
      irq:softirq_entry                                  [Tracepoint event]
      irq:softirq_exit                                   [Tracepoint event]
      irq:softirq_raise                                  [Tracepoint event]
      printk:console                                     [Tracepoint event]
      task:task_newtask                                  [Tracepoint event]
      task:task_rename                                   [Tracepoint event]
      syscalls:sys_enter_socketcall                      [Tracepoint event]
      syscalls:sys_exit_socketcall                       [Tracepoint event]
      .
      .
      .
      syscalls:sys_enter_unshare                         [Tracepoint event]
      syscalls:sys_exit_unshare                          [Tracepoint event]
      raw_syscalls:sys_enter                             [Tracepoint event]
      raw_syscalls:sys_exit                              [Tracepoint event]
                </literallayout>
            </para>

            <informalexample>
                <emphasis>Tying it Together:</emphasis> These are exactly the same set of events defined
                by the trace event subsystem and exposed by
                ftrace/tracecmd/kernelshark as files in
                /sys/kernel/debug/tracing/events, by SystemTap as
                kernel.trace("tracepoint_name") and (partially) accessed by LTTng.
            </informalexample>

            <para>
                Only a subset of these would be of interest to us when looking at
                this workload, so let's choose the most likely subsystems
                (identified by the string before the colon in the Tracepoint events)
                and do a 'perf stat' run using only those wildcarded subsystems:
                <literallayout class='monospaced'>
     root@crownbay:~# perf stat -e skb:* -e net:* -e napi:* -e sched:* -e workqueue:* -e irq:* -e syscalls:* wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
     Performance counter stats for 'wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>':

                 23323 skb:kfree_skb
                     0 skb:consume_skb
                 49897 skb:skb_copy_datagram_iovec
                  6217 net:net_dev_xmit
                  6217 net:net_dev_queue
                  7962 net:netif_receive_skb
                     2 net:netif_rx
                  8340 napi:napi_poll
                     0 sched:sched_kthread_stop
                     0 sched:sched_kthread_stop_ret
                  3749 sched:sched_wakeup
                     0 sched:sched_wakeup_new
                     0 sched:sched_switch
                    29 sched:sched_migrate_task
                     0 sched:sched_process_free
                     1 sched:sched_process_exit
                     0 sched:sched_wait_task
                     0 sched:sched_process_wait
                     0 sched:sched_process_fork
                     1 sched:sched_process_exec
                     0 sched:sched_stat_wait
         2106519415641 sched:sched_stat_sleep
                     0 sched:sched_stat_iowait
             147453613 sched:sched_stat_blocked
           12903026955 sched:sched_stat_runtime
                     0 sched:sched_pi_setprio
                  3574 workqueue:workqueue_queue_work
                  3574 workqueue:workqueue_activate_work
                     0 workqueue:workqueue_execute_start
                     0 workqueue:workqueue_execute_end
                 16631 irq:irq_handler_entry
                 16631 irq:irq_handler_exit
                 28521 irq:softirq_entry
                 28521 irq:softirq_exit
                 28728 irq:softirq_raise
                     1 syscalls:sys_enter_sendmmsg
                     1 syscalls:sys_exit_sendmmsg
                     0 syscalls:sys_enter_recvmmsg
                     0 syscalls:sys_exit_recvmmsg
                    14 syscalls:sys_enter_socketcall
                    14 syscalls:sys_exit_socketcall
                       .
                       .
                       .
                 16965 syscalls:sys_enter_read
                 16965 syscalls:sys_exit_read
                 12854 syscalls:sys_enter_write
                 12854 syscalls:sys_exit_write
                       .
                       .
                       .

          58.029710972 seconds time elapsed
                </literallayout>
                Let's pick one of these tracepoints and tell perf to do a profile
                using it as the sampling event:
                <literallayout class='monospaced'>
     root@crownbay:~# perf record -g -e sched:sched_wakeup wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
                </literallayout>
            </para>

            <para>
                <imagedata fileref="figures/sched-wakeup-profile.png" width="6in" depth="7in" align="center" scalefit="1" />
            </para>

            <para>
                The screenshot above shows the results of running a profile using
                sched:sched_switch tracepoint, which shows the relative costs of
                various paths to sched_wakeup (note that sched_wakeup is the
                name of the tracepoint - it's actually defined just inside
                ttwu_do_wakeup(), which accounts for the function name actually
                displayed in the profile:
                <literallayout class='monospaced'>
     /*
      * Mark the task runnable and perform wakeup-preemption.
      */
     static void
     ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
     {
          trace_sched_wakeup(p, true);
          .
          .
          .
     }
                </literallayout>
                A couple of the more interesting callchains are expanded and
                displayed above, basically some network receive paths that
                presumably end up waking up wget (busybox) when network data is
                ready.
            </para>

            <para>
                Note that because tracepoints are normally used for tracing,
                the default sampling period for tracepoints is 1 i.e. for
                tracepoints perf will sample on every event occurrence (this
                can be changed using the -c option). This is in contrast to
                hardware counters such as for example the default 'cycles'
                hardware counter used for normal profiling, where sampling
                periods are much higher (in the thousands) because profiling should
                have as low an overhead as possible and sampling on every cycle
                would be prohibitively expensive.
            </para>
        </section>

        <section id='using-perf-to-do-basic-tracing'>
            <title>Using perf to do Basic Tracing</title>

            <para>
                Profiling is a great tool for solving many problems or for
                getting a high-level view of what's going on with a workload or
                across the system. It is however by definition an approximation,
                as suggested by the most prominent word associated with it,
                'sampling'. On the one hand, it allows a representative picture of
                what's going on in the system to be cheaply taken, but on the other
                hand, that cheapness limits its utility when that data suggests a
                need to 'dive down' more deeply to discover what's really going
                on. In such cases, the only way to see what's really going on is
                to be able to look at (or summarize more intelligently) the
                individual steps that go into the higher-level behavior exposed
                by the coarse-grained profiling data.
            </para>

            <para>
                As a concrete example, we can trace all the events we think might
                be applicable to our workload:
                <literallayout class='monospaced'>
     root@crownbay:~# perf record -g -e skb:* -e net:* -e napi:* -e sched:sched_switch -e sched:sched_wakeup -e irq:*
      -e syscalls:sys_enter_read -e syscalls:sys_exit_read -e syscalls:sys_enter_write -e syscalls:sys_exit_write
      wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
                </literallayout>
                We can look at the raw trace output using 'perf script' with no
                arguments:
                <literallayout class='monospaced'>
     root@crownbay:~# perf script

           perf  1262 [000] 11624.857082: sys_exit_read: 0x0
           perf  1262 [000] 11624.857193: sched_wakeup: comm=migration/0 pid=6 prio=0 success=1 target_cpu=000
           wget  1262 [001] 11624.858021: softirq_raise: vec=1 [action=TIMER]
           wget  1262 [001] 11624.858074: softirq_entry: vec=1 [action=TIMER]
           wget  1262 [001] 11624.858081: softirq_exit: vec=1 [action=TIMER]
           wget  1262 [001] 11624.858166: sys_enter_read: fd: 0x0003, buf: 0xbf82c940, count: 0x0200
           wget  1262 [001] 11624.858177: sys_exit_read: 0x200
           wget  1262 [001] 11624.858878: kfree_skb: skbaddr=0xeb248d80 protocol=0 location=0xc15a5308
           wget  1262 [001] 11624.858945: kfree_skb: skbaddr=0xeb248000 protocol=0 location=0xc15a5308
           wget  1262 [001] 11624.859020: softirq_raise: vec=1 [action=TIMER]
           wget  1262 [001] 11624.859076: softirq_entry: vec=1 [action=TIMER]
           wget  1262 [001] 11624.859083: softirq_exit: vec=1 [action=TIMER]
           wget  1262 [001] 11624.859167: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400
           wget  1262 [001] 11624.859192: sys_exit_read: 0x1d7
           wget  1262 [001] 11624.859228: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400
           wget  1262 [001] 11624.859233: sys_exit_read: 0x0
           wget  1262 [001] 11624.859573: sys_enter_read: fd: 0x0003, buf: 0xbf82c580, count: 0x0200
           wget  1262 [001] 11624.859584: sys_exit_read: 0x200
           wget  1262 [001] 11624.859864: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400
           wget  1262 [001] 11624.859888: sys_exit_read: 0x400
           wget  1262 [001] 11624.859935: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400
           wget  1262 [001] 11624.859944: sys_exit_read: 0x400
                </literallayout>
                This gives us a detailed timestamped sequence of events that
                occurred within the workload with respect to those events.
            </para>

            <para>
                In many ways, profiling can be viewed as a subset of tracing -
                theoretically, if you have a set of trace events that's sufficient
                to capture all the important aspects of a workload, you can derive
                any of the results or views that a profiling run can.
            </para>

            <para>
                Another aspect of traditional profiling is that while powerful in
                many ways, it's limited by the granularity of the underlying data.
                Profiling tools offer various ways of sorting and presenting the
                sample data, which make it much more useful and amenable to user
                experimentation, but in the end it can't be used in an open-ended
                way to extract data that just isn't present as a consequence of
                the fact that conceptually, most of it has been thrown away.
            </para>

            <para>
                Full-blown detailed tracing data does however offer the opportunity
                to manipulate and present the information collected during a
                tracing run in an infinite variety of ways.
            </para>

            <para>
                Another way to look at it is that there are only so many ways that
                the 'primitive' counters can be used on their own to generate
                interesting output; to get anything more complicated than simple
                counts requires some amount of additional logic, which is typically
                very specific to the problem at hand. For example, if we wanted to
                make use of a 'counter' that maps to the value of the time
                difference between when a process was scheduled to run on a
                processor and the time it actually ran, we wouldn't expect such
                a counter to exist on its own, but we could derive one called say
                'wakeup_latency' and use it to extract a useful view of that metric
                from trace data. Likewise, we really can't figure out from standard
                profiling tools how much data every process on the system reads and
                writes, along with how many of those reads and writes fail
                completely. If we have sufficient trace data, however, we could
                with the right tools easily extract and present that information,
                but we'd need something other than pre-canned profiling tools to
                do that.
            </para>

            <para>
                Luckily, there is a general-purpose way to handle such needs,
                called 'programming languages'. Making programming languages
                easily available to apply to such problems given the specific
                format of data is called a 'programming language binding' for
                that data and language. Perf supports two programming language
                bindings, one for Python and one for Perl.
            </para>

            <informalexample>
                <emphasis>Tying it Together:</emphasis> Language bindings for manipulating and
                aggregating trace data are of course not a new
                idea.  One of the first projects to do this was IBM's DProbes
                dpcc compiler, an ANSI C compiler which targeted a low-level
                assembly language running on an in-kernel interpreter on the
                target system.  This is exactly analogous to what Sun's DTrace
                did, except that DTrace invented its own language for the purpose.
                Systemtap, heavily inspired by DTrace, also created its own
                one-off language, but rather than running the product on an
                in-kernel interpreter, created an elaborate compiler-based
                machinery to translate its language into kernel modules written
                in C.
            </informalexample>

            <para>
                Now that we have the trace data in perf.data, we can use
                'perf script -g' to generate a skeleton script with handlers
                for the read/write entry/exit events we recorded:
                <literallayout class='monospaced'>
     root@crownbay:~# perf script -g python
     generated Python script: perf-script.py
                </literallayout>
                The skeleton script simply creates a python function for each
                event type in the perf.data file. The body of each function simply
                prints the event name along with its parameters. For example:
                <literallayout class='monospaced'>
     def net__netif_rx(event_name, context, common_cpu,
            common_secs, common_nsecs, common_pid, common_comm,
            skbaddr, len, name):
                    print_header(event_name, common_cpu, common_secs, common_nsecs,
                            common_pid, common_comm)

		     print "skbaddr=%u, len=%u, name=%s\n" % (skbaddr, len, name),
                </literallayout>
                We can run that script directly to print all of the events
                contained in the perf.data file:
                <literallayout class='monospaced'>
     root@crownbay:~# perf script -s perf-script.py

     in trace_begin
     syscalls__sys_exit_read     0 11624.857082795     1262 perf                  nr=3, ret=0
     sched__sched_wakeup      0 11624.857193498     1262 perf                  comm=migration/0, pid=6, prio=0,      success=1, target_cpu=0
     irq__softirq_raise       1 11624.858021635     1262 wget                  vec=TIMER
     irq__softirq_entry       1 11624.858074075     1262 wget                  vec=TIMER
     irq__softirq_exit        1 11624.858081389     1262 wget                  vec=TIMER
     syscalls__sys_enter_read     1 11624.858166434     1262 wget                  nr=3, fd=3, buf=3213019456,      count=512
     syscalls__sys_exit_read     1 11624.858177924     1262 wget                  nr=3, ret=512
     skb__kfree_skb           1 11624.858878188     1262 wget                  skbaddr=3945041280,           location=3243922184, protocol=0
     skb__kfree_skb           1 11624.858945608     1262 wget                  skbaddr=3945037824,      location=3243922184, protocol=0
     irq__softirq_raise       1 11624.859020942     1262 wget                  vec=TIMER
     irq__softirq_entry       1 11624.859076935     1262 wget                  vec=TIMER
     irq__softirq_exit        1 11624.859083469     1262 wget                  vec=TIMER
     syscalls__sys_enter_read     1 11624.859167565     1262 wget                  nr=3, fd=3, buf=3077701632,      count=1024
     syscalls__sys_exit_read     1 11624.859192533     1262 wget                  nr=3, ret=471
     syscalls__sys_enter_read     1 11624.859228072     1262 wget                  nr=3, fd=3, buf=3077701632,      count=1024
     syscalls__sys_exit_read     1 11624.859233707     1262 wget                  nr=3, ret=0
     syscalls__sys_enter_read     1 11624.859573008     1262 wget                  nr=3, fd=3, buf=3213018496,      count=512
     syscalls__sys_exit_read     1 11624.859584818     1262 wget                  nr=3, ret=512
     syscalls__sys_enter_read     1 11624.859864562     1262 wget                  nr=3, fd=3, buf=3077701632,      count=1024
     syscalls__sys_exit_read     1 11624.859888770     1262 wget                  nr=3, ret=1024
     syscalls__sys_enter_read     1 11624.859935140     1262 wget                  nr=3, fd=3, buf=3077701632,      count=1024
     syscalls__sys_exit_read     1 11624.859944032     1262 wget                  nr=3, ret=1024
                </literallayout>
                That in itself isn't very useful; after all, we can accomplish
                pretty much the same thing by simply running 'perf script'
                without arguments in the same directory as the perf.data file.
            </para>

            <para>
                We can however replace the print statements in the generated
                function bodies with whatever we want, and thereby make it
                infinitely more useful.
            </para>

            <para>
                As a simple example, let's just replace the print statements in
                the function bodies with a simple function that does nothing but
                increment a per-event count. When the program is run against a
                perf.data file, each time a particular event is encountered,
                a tally is incremented for that event. For example:
                <literallayout class='monospaced'>
     def net__netif_rx(event_name, context, common_cpu,
            common_secs, common_nsecs, common_pid, common_comm,
            skbaddr, len, name):
		          inc_counts(event_name)
                </literallayout>
                Each event handler function in the generated code is modified
                to do this. For convenience, we define a common function called
                inc_counts() that each handler calls; inc_counts() simply tallies
                a count for each event using the 'counts' hash, which is a
                specialized hash function that does Perl-like autovivification, a
                capability that's extremely useful for kinds of multi-level
                aggregation commonly used in processing traces (see perf's
                documentation on the Python language binding for details):
                <literallayout class='monospaced'>
     counts = autodict()

     def inc_counts(event_name):
            try:
                    counts[event_name] += 1
            except TypeError:
                    counts[event_name] = 1
                </literallayout>
                Finally, at the end of the trace processing run, we want to
                print the result of all the per-event tallies. For that, we
                use the special 'trace_end()' function:
                <literallayout class='monospaced'>
     def trace_end():
            for event_name, count in counts.iteritems():
                    print "%-40s %10s\n" % (event_name, count)
                </literallayout>
                The end result is a summary of all the events recorded in the
                trace:
                <literallayout class='monospaced'>
     skb__skb_copy_datagram_iovec                  13148
     irq__softirq_entry                             4796
     irq__irq_handler_exit                          3805
     irq__softirq_exit                              4795
     syscalls__sys_enter_write                      8990
     net__net_dev_xmit                               652
     skb__kfree_skb                                 4047
     sched__sched_wakeup                            1155
     irq__irq_handler_entry                         3804
     irq__softirq_raise                             4799
     net__net_dev_queue                              652
     syscalls__sys_enter_read                      17599
     net__netif_receive_skb                         1743
     syscalls__sys_exit_read                       17598
     net__netif_rx                                     2
     napi__napi_poll                                1877
     syscalls__sys_exit_write                       8990
                </literallayout>
                Note that this is pretty much exactly the same information we get
                from 'perf stat', which goes a little way to support the idea
                mentioned previously that given the right kind of trace data,
                higher-level profiling-type summaries can be derived from it.
            </para>

            <para>
                Documentation on using the
                <ulink url='http://linux.die.net/man/1/perf-script-python'>'perf script' python binding</ulink>.
            </para>
        </section>

        <section id='system-wide-tracing-and-profiling'>
            <title>System-Wide Tracing and Profiling</title>

            <para>
                The examples so far have focused on tracing a particular program or
                workload - in other words, every profiling run has specified the
                program to profile in the command-line e.g. 'perf record wget ...'.
            </para>

            <para>
                It's also possible, and more interesting in many cases, to run a
                system-wide profile or trace while running the workload in a
                separate shell.
            </para>

            <para>
                To do system-wide profiling or tracing, you typically use
                the -a flag to 'perf record'.
            </para>

            <para>
                To demonstrate this, open up one window and start the profile
                using the -a flag (press Ctrl-C to stop tracing):
                <literallayout class='monospaced'>
     root@crownbay:~# perf record -g -a
     ^C[ perf record: Woken up 6 times to write data ]
     [ perf record: Captured and wrote 1.400 MB perf.data (~61172 samples) ]
                </literallayout>
                In another window, run the wget test:
                <literallayout class='monospaced'>
     root@crownbay:~# wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
     Connecting to downloads.yoctoproject.org (140.211.169.59:80)
     linux-2.6.19.2.tar.b 100% |*******************************| 41727k  0:00:00 ETA
                </literallayout>
                Here we see entries not only for our wget load, but for other
                processes running on the system as well:
            </para>

            <para>
                <imagedata fileref="figures/perf-systemwide.png" width="6in" depth="7in" align="center" scalefit="1" />
            </para>

            <para>
                In the snapshot above, we can see callchains that originate in
                libc, and a callchain from Xorg that demonstrates that we're
                using a proprietary X driver in userspace (notice the presence
                of 'PVR' and some other unresolvable symbols in the expanded
                Xorg callchain).
            </para>

            <para>
                Note also that we have both kernel and userspace entries in the
                above snapshot. We can also tell perf to focus on userspace but
                providing a modifier, in this case 'u', to the 'cycles' hardware
                counter when we record a profile:
                <literallayout class='monospaced'>
     root@crownbay:~# perf record -g -a -e cycles:u
     ^C[ perf record: Woken up 2 times to write data ]
     [ perf record: Captured and wrote 0.376 MB perf.data (~16443 samples) ]
                </literallayout>
            </para>

            <para>
                <imagedata fileref="figures/perf-report-cycles-u.png" width="6in" depth="7in" align="center" scalefit="1" />
            </para>

            <para>
                Notice in the screenshot above, we see only userspace entries ([.])
            </para>

            <para>
                Finally, we can press 'enter' on a leaf node and select the 'Zoom
                into DSO' menu item to show only entries associated with a
                specific DSO. In the screenshot below, we've zoomed into the
                'libc' DSO which shows all the entries associated with the
                libc-xxx.so DSO.
            </para>

            <para>
                <imagedata fileref="figures/perf-systemwide-libc.png" width="6in" depth="7in" align="center" scalefit="1" />
            </para>

            <para>
                We can also use the system-wide -a switch to do system-wide
                tracing. Here we'll trace a couple of scheduler events:
                <literallayout class='monospaced'>
     root@crownbay:~# perf record -a -e sched:sched_switch -e sched:sched_wakeup
     ^C[ perf record: Woken up 38 times to write data ]
     [ perf record: Captured and wrote 9.780 MB perf.data (~427299 samples) ]
                </literallayout>
                We can look at the raw output using 'perf script' with no
                arguments:
                <literallayout class='monospaced'>
     root@crownbay:~# perf script

                perf  1383 [001]  6171.460045: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
                perf  1383 [001]  6171.460066: sched_switch: prev_comm=perf prev_pid=1383 prev_prio=120 prev_state=R+ ==> next_comm=kworker/1:1 next_pid=21 next_prio=120
         kworker/1:1    21 [001]  6171.460093: sched_switch: prev_comm=kworker/1:1 prev_pid=21 prev_prio=120 prev_state=S ==> next_comm=perf next_pid=1383 next_prio=120
             swapper     0 [000]  6171.468063: sched_wakeup: comm=kworker/0:3 pid=1209 prio=120 success=1 target_cpu=000
             swapper     0 [000]  6171.468107: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/0:3 next_pid=1209 next_prio=120
         kworker/0:3  1209 [000]  6171.468143: sched_switch: prev_comm=kworker/0:3 prev_pid=1209 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120
                perf  1383 [001]  6171.470039: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
                perf  1383 [001]  6171.470058: sched_switch: prev_comm=perf prev_pid=1383 prev_prio=120 prev_state=R+ ==> next_comm=kworker/1:1 next_pid=21 next_prio=120
         kworker/1:1    21 [001]  6171.470082: sched_switch: prev_comm=kworker/1:1 prev_pid=21 prev_prio=120 prev_state=S ==> next_comm=perf next_pid=1383 next_prio=120
                perf  1383 [001]  6171.480035: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
                </literallayout>
            </para>

            <section id='perf-filtering'>
                <title>Filtering</title>

                <para>
                    Notice that there are a lot of events that don't really have
                    anything to do with what we're interested in, namely events
                    that schedule 'perf' itself in and out or that wake perf up.
                    We can get rid of those by using the '--filter' option -
                    for each event we specify using -e, we can add a --filter
                    after that to filter out trace events that contain fields
                    with specific values:
                    <literallayout class='monospaced'>
     root@crownbay:~# perf record -a -e sched:sched_switch --filter 'next_comm != perf &amp;&amp; prev_comm != perf' -e sched:sched_wakeup --filter 'comm != perf'
     ^C[ perf record: Woken up 38 times to write data ]
     [ perf record: Captured and wrote 9.688 MB perf.data (~423279 samples) ]


     root@crownbay:~# perf script

             swapper     0 [000]  7932.162180: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/0:3 next_pid=1209 next_prio=120
         kworker/0:3  1209 [000]  7932.162236: sched_switch: prev_comm=kworker/0:3 prev_pid=1209 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120
                perf  1407 [001]  7932.170048: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
                perf  1407 [001]  7932.180044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
                perf  1407 [001]  7932.190038: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
                perf  1407 [001]  7932.200044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
                perf  1407 [001]  7932.210044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
                perf  1407 [001]  7932.220044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
             swapper     0 [001]  7932.230111: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
             swapper     0 [001]  7932.230146: sched_switch: prev_comm=swapper/1 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/1:1 next_pid=21 next_prio=120
         kworker/1:1    21 [001]  7932.230205: sched_switch: prev_comm=kworker/1:1 prev_pid=21 prev_prio=120 prev_state=S ==> next_comm=swapper/1 next_pid=0 next_prio=120
             swapper     0 [000]  7932.326109: sched_wakeup: comm=kworker/0:3 pid=1209 prio=120 success=1 target_cpu=000
             swapper     0 [000]  7932.326171: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/0:3 next_pid=1209 next_prio=120
         kworker/0:3  1209 [000]  7932.326214: sched_switch: prev_comm=kworker/0:3 prev_pid=1209 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120
                    </literallayout>
                    In this case, we've filtered out all events that have 'perf'
                    in their 'comm' or 'comm_prev' or 'comm_next' fields. Notice
                    that there are still events recorded for perf, but notice
                    that those events don't have values of 'perf' for the filtered
                    fields. To completely filter out anything from perf will
                    require a bit more work, but for the purpose of demonstrating
                    how to use filters, it's close enough.
                </para>

                <informalexample>
                    <emphasis>Tying it Together:</emphasis> These are exactly the same set of event
                    filters defined by the trace event subsystem. See the
                    ftrace/tracecmd/kernelshark section for more discussion about
                    these event filters.
                </informalexample>

                <informalexample>
                    <emphasis>Tying it Together:</emphasis> These event filters are implemented by a
                    special-purpose pseudo-interpreter in the kernel and are an
                    integral and indispensable part of the perf design as it
                    relates to tracing.  kernel-based event filters provide a
                    mechanism to precisely throttle the event stream that appears
                    in user space, where it makes sense to provide bindings to real
                    programming languages for postprocessing the event stream.
                    This architecture allows for the intelligent and flexible
                    partitioning of processing between the kernel and user space.
                    Contrast this with other tools such as SystemTap, which does
                    all of its processing in the kernel and as such requires a
                    special project-defined language in order to accommodate that
                    design, or LTTng, where everything is sent to userspace and
                    as such requires a super-efficient kernel-to-userspace
                    transport mechanism in order to function properly.  While
                    perf certainly can benefit from for instance advances in
                    the design of the transport, it doesn't fundamentally depend
                    on them.  Basically, if you find that your perf tracing
                    application is causing buffer I/O overruns, it probably
                    means that you aren't taking enough advantage of the
                    kernel filtering engine.
                </informalexample>
            </section>
        </section>

        <section id='using-dynamic-tracepoints'>
            <title>Using Dynamic Tracepoints</title>

            <para>
                perf isn't restricted to the fixed set of static tracepoints
                listed by 'perf list'. Users can also add their own 'dynamic'
                tracepoints anywhere in the kernel. For instance, suppose we
                want to define our own tracepoint on do_fork(). We can do that
                using the 'perf probe' perf subcommand:
                <literallayout class='monospaced'>
     root@crownbay:~# perf probe do_fork
     Added new event:
       probe:do_fork        (on do_fork)

     You can now use it in all perf tools, such as:

	     perf record -e probe:do_fork -aR sleep 1
                </literallayout>
                Adding a new tracepoint via 'perf probe' results in an event
                with all the expected files and format in
                /sys/kernel/debug/tracing/events, just the same as for static
                tracepoints (as discussed in more detail in the trace events
                subsystem section:
                <literallayout class='monospaced'>
     root@crownbay:/sys/kernel/debug/tracing/events/probe/do_fork# ls -al
     drwxr-xr-x    2 root     root             0 Oct 28 11:42 .
     drwxr-xr-x    3 root     root             0 Oct 28 11:42 ..
     -rw-r--r--    1 root     root             0 Oct 28 11:42 enable
     -rw-r--r--    1 root     root             0 Oct 28 11:42 filter
     -r--r--r--    1 root     root             0 Oct 28 11:42 format
     -r--r--r--    1 root     root             0 Oct 28 11:42 id

     root@crownbay:/sys/kernel/debug/tracing/events/probe/do_fork# cat format
     name: do_fork
     ID: 944
     format:
	     field:unsigned short common_type;	offset:0;	size:2;	signed:0;
	     field:unsigned char common_flags;	offset:2;	size:1;	signed:0;
	     field:unsigned char common_preempt_count;	offset:3;	size:1;	signed:0;
	     field:int common_pid;	offset:4;	size:4;	signed:1;
	     field:int common_padding;	offset:8;	size:4;	signed:1;

	     field:unsigned long __probe_ip;	offset:12;	size:4;	signed:0;

     print fmt: "(%lx)", REC->__probe_ip
                </literallayout>
                We can list all dynamic tracepoints currently in existence:
                <literallayout class='monospaced'>
     root@crownbay:~# perf probe -l
      probe:do_fork        (on do_fork)
      probe:schedule       (on schedule)
                </literallayout>
                Let's record system-wide ('sleep 30' is a trick for recording
                system-wide but basically do nothing and then wake up after
                30 seconds):
                <literallayout class='monospaced'>
     root@crownbay:~# perf record -g -a -e probe:do_fork sleep 30
     [ perf record: Woken up 1 times to write data ]
     [ perf record: Captured and wrote 0.087 MB perf.data (~3812 samples) ]
                </literallayout>
                Using 'perf script' we can see each do_fork event that fired:
                <literallayout class='monospaced'>
     root@crownbay:~# perf script

     # ========
     # captured on: Sun Oct 28 11:55:18 2012
     # hostname : crownbay
     # os release : 3.4.11-yocto-standard
     # perf version : 3.4.11
     # arch : i686
     # nrcpus online : 2
     # nrcpus avail : 2
     # cpudesc : Intel(R) Atom(TM) CPU E660 @ 1.30GHz
     # cpuid : GenuineIntel,6,38,1
     # total memory : 1017184 kB
     # cmdline : /usr/bin/perf record -g -a -e probe:do_fork sleep 30
     # event : name = probe:do_fork, type = 2, config = 0x3b0, config1 = 0x0, config2 = 0x0, excl_usr = 0, excl_kern
      = 0, id = { 5, 6 }
     # HEADER_CPU_TOPOLOGY info available, use -I to display
     # ========
     #
      matchbox-deskto  1197 [001] 34211.378318: do_fork: (c1028460)
      matchbox-deskto  1295 [001] 34211.380388: do_fork: (c1028460)
              pcmanfm  1296 [000] 34211.632350: do_fork: (c1028460)
              pcmanfm  1296 [000] 34211.639917: do_fork: (c1028460)
      matchbox-deskto  1197 [001] 34217.541603: do_fork: (c1028460)
      matchbox-deskto  1299 [001] 34217.543584: do_fork: (c1028460)
               gthumb  1300 [001] 34217.697451: do_fork: (c1028460)
               gthumb  1300 [001] 34219.085734: do_fork: (c1028460)
               gthumb  1300 [000] 34219.121351: do_fork: (c1028460)
               gthumb  1300 [001] 34219.264551: do_fork: (c1028460)
              pcmanfm  1296 [000] 34219.590380: do_fork: (c1028460)
      matchbox-deskto  1197 [001] 34224.955965: do_fork: (c1028460)
      matchbox-deskto  1306 [001] 34224.957972: do_fork: (c1028460)
      matchbox-termin  1307 [000] 34225.038214: do_fork: (c1028460)
      matchbox-termin  1307 [001] 34225.044218: do_fork: (c1028460)
      matchbox-termin  1307 [000] 34225.046442: do_fork: (c1028460)
      matchbox-deskto  1197 [001] 34237.112138: do_fork: (c1028460)
      matchbox-deskto  1311 [001] 34237.114106: do_fork: (c1028460)
                 gaku  1312 [000] 34237.202388: do_fork: (c1028460)
                </literallayout>
                And using 'perf report' on the same file, we can see the
                callgraphs from starting a few programs during those 30 seconds:
            </para>

            <para>
                <imagedata fileref="figures/perf-probe-do_fork-profile.png" width="6in" depth="7in" align="center" scalefit="1" />
            </para>

            <informalexample>
                <emphasis>Tying it Together:</emphasis> The trace events subsystem accommodate static
                and dynamic tracepoints in exactly the same way - there's no
                difference as far as the infrastructure is concerned.  See the
                ftrace section for more details on the trace event subsystem.
            </informalexample>

            <informalexample>
                <emphasis>Tying it Together:</emphasis> Dynamic tracepoints are implemented under the
                covers by kprobes and uprobes.  kprobes and uprobes are also used
                by and in fact are the main focus of SystemTap.
            </informalexample>
        </section>
    </section>

    <section id='perf-documentation'>
        <title>Documentation</title>

        <para>
            Online versions of the man pages for the commands discussed in this
            section can be found here:
            <itemizedlist>
                <listitem><para>The <ulink url='http://linux.die.net/man/1/perf-stat'>'perf stat' manpage</ulink>.
                    </para></listitem>
                <listitem><para>The <ulink url='http://linux.die.net/man/1/perf-record'>'perf record' manpage</ulink>.
                    </para></listitem>
                <listitem><para>The <ulink url='http://linux.die.net/man/1/perf-report'>'perf report' manpage</ulink>.
                    </para></listitem>
                <listitem><para>The <ulink url='http://linux.die.net/man/1/perf-probe'>'perf probe' manpage</ulink>.
                    </para></listitem>
                <listitem><para>The <ulink url='http://linux.die.net/man/1/perf-script'>'perf script' manpage</ulink>.
                    </para></listitem>
                <listitem><para>Documentation on using the
                    <ulink url='http://linux.die.net/man/1/perf-script-python'>'perf script' python binding</ulink>.
                    </para></listitem>
                <listitem><para>The top-level
                    <ulink url='http://linux.die.net/man/1/perf'>perf(1) manpage</ulink>.
                    </para></listitem>
            </itemizedlist>
        </para>

        <para>
            Normally, you should be able to invoke the man pages via perf
            itself e.g. 'perf help' or 'perf help record'.
        </para>

        <para>
            However, by default Yocto doesn't install man pages, but perf
            invokes the man pages for most help functionality. This is a bug
            and is being addressed by a Yocto bug:
            <ulink url='https://bugzilla.yoctoproject.org/show_bug.cgi?id=3388'>Bug 3388 - perf: enable man pages for basic 'help' functionality</ulink>.
        </para>

        <para>
            The man pages in text form, along with some other files, such as
            a set of examples, can be found in the 'perf' directory of the
            kernel tree:
            <literallayout class='monospaced'>
     tools/perf/Documentation
            </literallayout>
            There's also a nice perf tutorial on the perf wiki that goes
            into more detail than we do here in certain areas:
            <ulink url='https://perf.wiki.kernel.org/index.php/Tutorial'>Perf Tutorial</ulink>
        </para>
    </section>
</section>

<section id='profile-manual-ftrace'>
    <title>ftrace</title>

    <para>
        'ftrace' literally refers to the 'ftrace function tracer' but in
        reality this encompasses a number of related tracers along with
        the infrastructure that they all make use of.
    </para>

    <section id='ftrace-setup'>
        <title>Setup</title>

        <para>
            For this section, we'll assume you've already performed the basic
            setup outlined in the General Setup section.
        </para>

        <para>
            ftrace, trace-cmd, and kernelshark run on the target system,
            and are ready to go out-of-the-box - no additional setup is
            necessary. For the rest of this section we assume you've ssh'ed
            to the host and will be running ftrace on the target. kernelshark
            is a GUI application and if you use the '-X' option to ssh you
            can have the kernelshark GUI run on the target but display
            remotely on the host if you want.
        </para>
    </section>

    <section id='basic-ftrace-usage'>
        <title>Basic ftrace usage</title>

        <para>
            'ftrace' essentially refers to everything included in
            the /tracing directory of the mounted debugfs filesystem
            (Yocto follows the standard convention and mounts it
            at /sys/kernel/debug). Here's a listing of all the files
            found in /sys/kernel/debug/tracing on a Yocto system:
            <literallayout class='monospaced'>
     root@sugarbay:/sys/kernel/debug/tracing# ls
     README                      kprobe_events               trace
     available_events            kprobe_profile              trace_clock
     available_filter_functions  options                     trace_marker
     available_tracers           per_cpu                     trace_options
     buffer_size_kb              printk_formats              trace_pipe
     buffer_total_size_kb        saved_cmdlines              tracing_cpumask
     current_tracer              set_event                   tracing_enabled
     dyn_ftrace_total_info       set_ftrace_filter           tracing_on
     enabled_functions           set_ftrace_notrace          tracing_thresh
     events                      set_ftrace_pid
     free_buffer                 set_graph_function
            </literallayout>
            The files listed above are used for various purposes -
            some relate directly to the tracers themselves, others are
            used to set tracing options, and yet others actually contain
            the tracing output when a tracer is in effect. Some of the
            functions can be guessed from their names, others need
            explanation; in any case, we'll cover some of the files we
            see here below but for an explanation of the others, please
            see the ftrace documentation.
        </para>

        <para>
            We'll start by looking at some of the available built-in
            tracers.
        </para>

        <para>
            cat'ing the 'available_tracers' file lists the set of
            available tracers:
            <literallayout class='monospaced'>
     root@sugarbay:/sys/kernel/debug/tracing# cat available_tracers
     blk function_graph function nop
            </literallayout>
            The 'current_tracer' file contains the tracer currently in
            effect:
            <literallayout class='monospaced'>
     root@sugarbay:/sys/kernel/debug/tracing# cat current_tracer
     nop
            </literallayout>
            The above listing of current_tracer shows that
            the 'nop' tracer is in effect, which is just another
            way of saying that there's actually no tracer
            currently in effect.
        </para>

        <para>
            echo'ing one of the available_tracers into current_tracer
            makes the specified tracer the current tracer:
            <literallayout class='monospaced'>
     root@sugarbay:/sys/kernel/debug/tracing# echo function > current_tracer
     root@sugarbay:/sys/kernel/debug/tracing# cat current_tracer
     function
            </literallayout>
            The above sets the current tracer to be the
            'function tracer'. This tracer traces every function
            call in the kernel and makes it available as the
            contents of the 'trace' file. Reading the 'trace' file
            lists the currently buffered function calls that have been
            traced by the function tracer:
            <literallayout class='monospaced'>
     root@sugarbay:/sys/kernel/debug/tracing# cat trace | less

     # tracer: function
     #
     # entries-in-buffer/entries-written: 310629/766471   #P:8
     #
     #                              _-----=&gt; irqs-off
     #                             / _----=&gt; need-resched
     #                            | / _---=&gt; hardirq/softirq
     #                            || / _--=&gt; preempt-depth
     #                            ||| /     delay
     #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
     #              | |       |   ||||       |         |
              &lt;idle&gt;-0     [004] d..1   470.867169: ktime_get_real &lt;-intel_idle
              &lt;idle&gt;-0     [004] d..1   470.867170: getnstimeofday &lt;-ktime_get_real
              &lt;idle&gt;-0     [004] d..1   470.867171: ns_to_timeval &lt;-intel_idle
              &lt;idle&gt;-0     [004] d..1   470.867171: ns_to_timespec &lt;-ns_to_timeval
              &lt;idle&gt;-0     [004] d..1   470.867172: smp_apic_timer_interrupt &lt;-apic_timer_interrupt
              &lt;idle&gt;-0     [004] d..1   470.867172: native_apic_mem_write &lt;-smp_apic_timer_interrupt
              &lt;idle&gt;-0     [004] d..1   470.867172: irq_enter &lt;-smp_apic_timer_interrupt
              &lt;idle&gt;-0     [004] d..1   470.867172: rcu_irq_enter &lt;-irq_enter
              &lt;idle&gt;-0     [004] d..1   470.867173: rcu_idle_exit_common.isra.33 &lt;-rcu_irq_enter
              &lt;idle&gt;-0     [004] d..1   470.867173: local_bh_disable &lt;-irq_enter
              &lt;idle&gt;-0     [004] d..1   470.867173: add_preempt_count &lt;-local_bh_disable
              &lt;idle&gt;-0     [004] d.s1   470.867174: tick_check_idle &lt;-irq_enter
              &lt;idle&gt;-0     [004] d.s1   470.867174: tick_check_oneshot_broadcast &lt;-tick_check_idle
              &lt;idle&gt;-0     [004] d.s1   470.867174: ktime_get &lt;-tick_check_idle
              &lt;idle&gt;-0     [004] d.s1   470.867174: tick_nohz_stop_idle &lt;-tick_check_idle
              &lt;idle&gt;-0     [004] d.s1   470.867175: update_ts_time_stats &lt;-tick_nohz_stop_idle
              &lt;idle&gt;-0     [004] d.s1   470.867175: nr_iowait_cpu &lt;-update_ts_time_stats
              &lt;idle&gt;-0     [004] d.s1   470.867175: tick_do_update_jiffies64 &lt;-tick_check_idle
              &lt;idle&gt;-0     [004] d.s1   470.867175: _raw_spin_lock &lt;-tick_do_update_jiffies64
              &lt;idle&gt;-0     [004] d.s1   470.867176: add_preempt_count &lt;-_raw_spin_lock
              &lt;idle&gt;-0     [004] d.s2   470.867176: do_timer &lt;-tick_do_update_jiffies64
              &lt;idle&gt;-0     [004] d.s2   470.867176: _raw_spin_lock &lt;-do_timer
              &lt;idle&gt;-0     [004] d.s2   470.867176: add_preempt_count &lt;-_raw_spin_lock
              &lt;idle&gt;-0     [004] d.s3   470.867177: ntp_tick_length &lt;-do_timer
              &lt;idle&gt;-0     [004] d.s3   470.867177: _raw_spin_lock_irqsave &lt;-ntp_tick_length
              .
              .
              .
            </literallayout>
            Each line in the trace above shows what was happening in
            the kernel on a given cpu, to the level of detail of
            function calls. Each entry shows the function called,
            followed by its caller (after the arrow).
        </para>

        <para>
            The function tracer gives you an extremely detailed idea
            of what the kernel was doing at the point in time the trace
            was taken, and is a great way to learn about how the kernel
            code works in a dynamic sense.
        </para>

        <informalexample>
            <emphasis>Tying it Together:</emphasis> The ftrace function tracer is also
            available from within perf, as the ftrace:function tracepoint.
        </informalexample>

        <para>
            It is a little more difficult to follow the call chains than
            it needs to be - luckily there's a variant of the function
            tracer that displays the callchains explicitly, called the
            'function_graph' tracer:
            <literallayout class='monospaced'>
     root@sugarbay:/sys/kernel/debug/tracing# echo function_graph &gt; current_tracer
     root@sugarbay:/sys/kernel/debug/tracing# cat trace | less

      tracer: function_graph

      CPU  DURATION                  FUNCTION CALLS
      |     |   |                     |   |   |   |
     7)   0.046 us    |      pick_next_task_fair();
     7)   0.043 us    |      pick_next_task_stop();
     7)   0.042 us    |      pick_next_task_rt();
     7)   0.032 us    |      pick_next_task_fair();
     7)   0.030 us    |      pick_next_task_idle();
     7)               |      _raw_spin_unlock_irq() {
     7)   0.033 us    |        sub_preempt_count();
     7)   0.258 us    |      }
     7)   0.032 us    |      sub_preempt_count();
     7) + 13.341 us   |    } /* __schedule */
     7)   0.095 us    |  } /* sub_preempt_count */
     7)               |  schedule() {
     7)               |    __schedule() {
     7)   0.060 us    |      add_preempt_count();
     7)   0.044 us    |      rcu_note_context_switch();
     7)               |      _raw_spin_lock_irq() {
     7)   0.033 us    |        add_preempt_count();
     7)   0.247 us    |      }
     7)               |      idle_balance() {
     7)               |        _raw_spin_unlock() {
     7)   0.031 us    |          sub_preempt_count();
     7)   0.246 us    |        }
     7)               |        update_shares() {
     7)   0.030 us    |          __rcu_read_lock();
     7)   0.029 us    |          __rcu_read_unlock();
     7)   0.484 us    |        }
     7)   0.030 us    |        __rcu_read_lock();
     7)               |        load_balance() {
     7)               |          find_busiest_group() {
     7)   0.031 us    |            idle_cpu();
     7)   0.029 us    |            idle_cpu();
     7)   0.035 us    |            idle_cpu();
     7)   0.906 us    |          }
     7)   1.141 us    |        }
     7)   0.022 us    |        msecs_to_jiffies();
     7)               |        load_balance() {
     7)               |          find_busiest_group() {
     7)   0.031 us    |            idle_cpu();
     .
     .
     .
     4)   0.062 us    |        msecs_to_jiffies();
     4)   0.062 us    |        __rcu_read_unlock();
     4)               |        _raw_spin_lock() {
     4)   0.073 us    |          add_preempt_count();
     4)   0.562 us    |        }
     4) + 17.452 us   |      }
     4)   0.108 us    |      put_prev_task_fair();
     4)   0.102 us    |      pick_next_task_fair();
     4)   0.084 us    |      pick_next_task_stop();
     4)   0.075 us    |      pick_next_task_rt();
     4)   0.062 us    |      pick_next_task_fair();
     4)   0.066 us    |      pick_next_task_idle();
     ------------------------------------------
     4)   kworker-74   =&gt;    &lt;idle&gt;-0
     ------------------------------------------

     4)               |      finish_task_switch() {
     4)               |        _raw_spin_unlock_irq() {
     4)   0.100 us    |          sub_preempt_count();
     4)   0.582 us    |        }
     4)   1.105 us    |      }
     4)   0.088 us    |      sub_preempt_count();
     4) ! 100.066 us  |    }
     .
     .
     .
     3)               |  sys_ioctl() {
     3)   0.083 us    |    fget_light();
     3)               |    security_file_ioctl() {
     3)   0.066 us    |      cap_file_ioctl();
     3)   0.562 us    |    }
     3)               |    do_vfs_ioctl() {
     3)               |      drm_ioctl() {
     3)   0.075 us    |        drm_ut_debug_printk();
     3)               |        i915_gem_pwrite_ioctl() {
     3)               |          i915_mutex_lock_interruptible() {
     3)   0.070 us    |            mutex_lock_interruptible();
     3)   0.570 us    |          }
     3)               |          drm_gem_object_lookup() {
     3)               |            _raw_spin_lock() {
     3)   0.080 us    |              add_preempt_count();
     3)   0.620 us    |            }
     3)               |            _raw_spin_unlock() {
     3)   0.085 us    |              sub_preempt_count();
     3)   0.562 us    |            }
     3)   2.149 us    |          }
     3)   0.133 us    |          i915_gem_object_pin();
     3)               |          i915_gem_object_set_to_gtt_domain() {
     3)   0.065 us    |            i915_gem_object_flush_gpu_write_domain();
     3)   0.065 us    |            i915_gem_object_wait_rendering();
     3)   0.062 us    |            i915_gem_object_flush_cpu_write_domain();
     3)   1.612 us    |          }
     3)               |          i915_gem_object_put_fence() {
     3)   0.097 us    |            i915_gem_object_flush_fence.constprop.36();
     3)   0.645 us    |          }
     3)   0.070 us    |          add_preempt_count();
     3)   0.070 us    |          sub_preempt_count();
     3)   0.073 us    |          i915_gem_object_unpin();
     3)   0.068 us    |          mutex_unlock();
     3)   9.924 us    |        }
     3) + 11.236 us   |      }
     3) + 11.770 us   |    }
     3) + 13.784 us   |  }
     3)               |  sys_ioctl() {
            </literallayout>
            As you can see, the function_graph display is much easier to
            follow. Also note that in addition to the function calls and
            associated braces, other events such as scheduler events
            are displayed in context. In fact, you can freely include
            any tracepoint available in the trace events subsystem described
            in the next section by simply enabling those events, and they'll
            appear in context in the function graph display. Quite a
            powerful tool for understanding kernel dynamics.
        </para>

        <para>
            Also notice that there are various annotations on the left
            hand side of the display. For example if the total time it
            took for a given function to execute is above a certain
            threshold, an exclamation point or plus sign appears on the
            left hand side. Please see the ftrace documentation for
            details on all these fields.
        </para>
    </section>

    <section id='the-trace-events-subsystem'>
        <title>The 'trace events' Subsystem</title>

        <para>
            One especially important directory contained within
            the /sys/kernel/debug/tracing directory is the 'events'
            subdirectory, which contains representations of every
            tracepoint in the system. Listing out the contents of
            the 'events' subdirectory, we see mainly another set of
            subdirectories:
            <literallayout class='monospaced'>
     root@sugarbay:/sys/kernel/debug/tracing# cd events
     root@sugarbay:/sys/kernel/debug/tracing/events# ls -al
     drwxr-xr-x   38 root     root             0 Nov 14 23:19 .
     drwxr-xr-x    5 root     root             0 Nov 14 23:19 ..
     drwxr-xr-x   19 root     root             0 Nov 14 23:19 block
     drwxr-xr-x   32 root     root             0 Nov 14 23:19 btrfs
     drwxr-xr-x    5 root     root             0 Nov 14 23:19 drm
     -rw-r--r--    1 root     root             0 Nov 14 23:19 enable
     drwxr-xr-x   40 root     root             0 Nov 14 23:19 ext3
     drwxr-xr-x   79 root     root             0 Nov 14 23:19 ext4
     drwxr-xr-x   14 root     root             0 Nov 14 23:19 ftrace
     drwxr-xr-x    8 root     root             0 Nov 14 23:19 hda
     -r--r--r--    1 root     root             0 Nov 14 23:19 header_event
     -r--r--r--    1 root     root             0 Nov 14 23:19 header_page
     drwxr-xr-x   25 root     root             0 Nov 14 23:19 i915
     drwxr-xr-x    7 root     root             0 Nov 14 23:19 irq
     drwxr-xr-x   12 root     root             0 Nov 14 23:19 jbd
     drwxr-xr-x   14 root     root             0 Nov 14 23:19 jbd2
     drwxr-xr-x   14 root     root             0 Nov 14 23:19 kmem
     drwxr-xr-x    7 root     root             0 Nov 14 23:19 module
     drwxr-xr-x    3 root     root             0 Nov 14 23:19 napi
     drwxr-xr-x    6 root     root             0 Nov 14 23:19 net
     drwxr-xr-x    3 root     root             0 Nov 14 23:19 oom
     drwxr-xr-x   12 root     root             0 Nov 14 23:19 power
     drwxr-xr-x    3 root     root             0 Nov 14 23:19 printk
     drwxr-xr-x    8 root     root             0 Nov 14 23:19 random
     drwxr-xr-x    4 root     root             0 Nov 14 23:19 raw_syscalls
     drwxr-xr-x    3 root     root             0 Nov 14 23:19 rcu
     drwxr-xr-x    6 root     root             0 Nov 14 23:19 rpm
     drwxr-xr-x   20 root     root             0 Nov 14 23:19 sched
     drwxr-xr-x    7 root     root             0 Nov 14 23:19 scsi
     drwxr-xr-x    4 root     root             0 Nov 14 23:19 signal
     drwxr-xr-x    5 root     root             0 Nov 14 23:19 skb
     drwxr-xr-x    4 root     root             0 Nov 14 23:19 sock
     drwxr-xr-x   10 root     root             0 Nov 14 23:19 sunrpc
     drwxr-xr-x  538 root     root             0 Nov 14 23:19 syscalls
     drwxr-xr-x    4 root     root             0 Nov 14 23:19 task
     drwxr-xr-x   14 root     root             0 Nov 14 23:19 timer
     drwxr-xr-x    3 root     root             0 Nov 14 23:19 udp
     drwxr-xr-x   21 root     root             0 Nov 14 23:19 vmscan
     drwxr-xr-x    3 root     root             0 Nov 14 23:19 vsyscall
     drwxr-xr-x    6 root     root             0 Nov 14 23:19 workqueue
     drwxr-xr-x   26 root     root             0 Nov 14 23:19 writeback
            </literallayout>
            Each one of these subdirectories corresponds to a
            'subsystem' and contains yet again more subdirectories,
            each one of those finally corresponding to a tracepoint.
            For example, here are the contents of the 'kmem' subsystem:
            <literallayout class='monospaced'>
     root@sugarbay:/sys/kernel/debug/tracing/events# cd kmem
     root@sugarbay:/sys/kernel/debug/tracing/events/kmem# ls -al
     drwxr-xr-x   14 root     root             0 Nov 14 23:19 .
     drwxr-xr-x   38 root     root             0 Nov 14 23:19 ..
     -rw-r--r--    1 root     root             0 Nov 14 23:19 enable
     -rw-r--r--    1 root     root             0 Nov 14 23:19 filter
     drwxr-xr-x    2 root     root             0 Nov 14 23:19 kfree
     drwxr-xr-x    2 root     root             0 Nov 14 23:19 kmalloc
     drwxr-xr-x    2 root     root             0 Nov 14 23:19 kmalloc_node
     drwxr-xr-x    2 root     root             0 Nov 14 23:19 kmem_cache_alloc
     drwxr-xr-x    2 root     root             0 Nov 14 23:19 kmem_cache_alloc_node
     drwxr-xr-x    2 root     root             0 Nov 14 23:19 kmem_cache_free
     drwxr-xr-x    2 root     root             0 Nov 14 23:19 mm_page_alloc
     drwxr-xr-x    2 root     root             0 Nov 14 23:19 mm_page_alloc_extfrag
     drwxr-xr-x    2 root     root             0 Nov 14 23:19 mm_page_alloc_zone_locked
     drwxr-xr-x    2 root     root             0 Nov 14 23:19 mm_page_free
     drwxr-xr-x    2 root     root             0 Nov 14 23:19 mm_page_free_batched
     drwxr-xr-x    2 root     root             0 Nov 14 23:19 mm_page_pcpu_drain
            </literallayout>
            Let's see what's inside the subdirectory for a specific
            tracepoint, in this case the one for kmalloc:
            <literallayout class='monospaced'>
     root@sugarbay:/sys/kernel/debug/tracing/events/kmem# cd kmalloc
     root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# ls -al
     drwxr-xr-x    2 root     root             0 Nov 14 23:19 .
     drwxr-xr-x   14 root     root             0 Nov 14 23:19 ..
     -rw-r--r--    1 root     root             0 Nov 14 23:19 enable
     -rw-r--r--    1 root     root             0 Nov 14 23:19 filter
     -r--r--r--    1 root     root             0 Nov 14 23:19 format
     -r--r--r--    1 root     root             0 Nov 14 23:19 id
            </literallayout>
            The 'format' file for the tracepoint describes the event
            in memory, which is used by the various tracing tools
            that now make use of these tracepoint to parse the event
            and make sense of it, along with a 'print fmt' field that
            allows tools like ftrace to display the event as text.
            Here's what the format of the kmalloc event looks like:
            <literallayout class='monospaced'>
     root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# cat format
     name: kmalloc
     ID: 313
     format:
	     field:unsigned short common_type;	offset:0;	size:2;	signed:0;
	     field:unsigned char common_flags;	offset:2;	size:1;	signed:0;
	     field:unsigned char common_preempt_count;	offset:3;	size:1;	signed:0;
	     field:int common_pid;	offset:4;	size:4;	signed:1;
	     field:int common_padding;	offset:8;	size:4;	signed:1;

	     field:unsigned long call_site;	offset:16;	size:8;	signed:0;
	     field:const void * ptr;	offset:24;	size:8;	signed:0;
	     field:size_t bytes_req;	offset:32;	size:8;	signed:0;
	     field:size_t bytes_alloc;	offset:40;	size:8;	signed:0;
	     field:gfp_t gfp_flags;	offset:48;	size:4;	signed:0;

     print fmt: "call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s", REC->call_site, REC->ptr, REC->bytes_req, REC->bytes_alloc,
     (REC->gfp_flags) ? __print_flags(REC->gfp_flags, "|", {(unsigned long)(((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | ((
     gfp_t)0x20000u) | (( gfp_t)0x02u) | (( gfp_t)0x08u)) | (( gfp_t)0x4000u) | (( gfp_t)0x10000u) | (( gfp_t)0x1000u) | (( gfp_t)0x200u) | ((
     gfp_t)0x400000u)), "GFP_TRANSHUGE"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | (( gfp_t)0x20000u) | ((
     gfp_t)0x02u) | (( gfp_t)0x08u)), "GFP_HIGHUSER_MOVABLE"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | ((
     gfp_t)0x20000u) | (( gfp_t)0x02u)), "GFP_HIGHUSER"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | ((
     gfp_t)0x20000u)), "GFP_USER"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | (( gfp_t)0x80000u)), GFP_TEMPORARY"},
     {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u)), "GFP_KERNEL"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u)),
     "GFP_NOFS"}, {(unsigned long)((( gfp_t)0x20u)), "GFP_ATOMIC"}, {(unsigned long)((( gfp_t)0x10u)), "GFP_NOIO"}, {(unsigned long)((
     gfp_t)0x20u), "GFP_HIGH"}, {(unsigned long)(( gfp_t)0x10u), "GFP_WAIT"}, {(unsigned long)(( gfp_t)0x40u), "GFP_IO"}, {(unsigned long)((
     gfp_t)0x100u), "GFP_COLD"}, {(unsigned long)(( gfp_t)0x200u), "GFP_NOWARN"}, {(unsigned long)(( gfp_t)0x400u), "GFP_REPEAT"}, {(unsigned
     long)(( gfp_t)0x800u), "GFP_NOFAIL"}, {(unsigned long)(( gfp_t)0x1000u), "GFP_NORETRY"},      {(unsigned long)(( gfp_t)0x4000u), "GFP_COMP"},
     {(unsigned long)(( gfp_t)0x8000u), "GFP_ZERO"}, {(unsigned long)(( gfp_t)0x10000u), "GFP_NOMEMALLOC"}, {(unsigned long)(( gfp_t)0x20000u),
     "GFP_HARDWALL"}, {(unsigned long)(( gfp_t)0x40000u), "GFP_THISNODE"}, {(unsigned long)(( gfp_t)0x80000u), "GFP_RECLAIMABLE"}, {(unsigned
     long)(( gfp_t)0x08u), "GFP_MOVABLE"}, {(unsigned long)(( gfp_t)0), "GFP_NOTRACK"}, {(unsigned long)(( gfp_t)0x400000u), "GFP_NO_KSWAPD"},
     {(unsigned long)(( gfp_t)0x800000u), "GFP_OTHER_NODE"} ) : "GFP_NOWAIT"
            </literallayout>
            The 'enable' file in the tracepoint directory is what allows
            the user (or tools such as trace-cmd) to actually turn the
            tracepoint on and off. When enabled, the corresponding
            tracepoint will start appearing in the ftrace 'trace'
            file described previously. For example, this turns on the
            kmalloc tracepoint:
            <literallayout class='monospaced'>
     root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# echo 1 > enable
            </literallayout>
            At the moment, we're not interested in the function tracer or
            some other tracer that might be in effect, so we first turn
            it off, but if we do that, we still need to turn tracing on in
            order to see the events in the output buffer:
            <literallayout class='monospaced'>
     root@sugarbay:/sys/kernel/debug/tracing# echo nop > current_tracer
     root@sugarbay:/sys/kernel/debug/tracing# echo 1 > tracing_on
            </literallayout>
            Now, if we look at the the 'trace' file, we see nothing
            but the kmalloc events we just turned on:
            <literallayout class='monospaced'>
     root@sugarbay:/sys/kernel/debug/tracing# cat trace | less
     # tracer: nop
     #
     # entries-in-buffer/entries-written: 1897/1897   #P:8
     #
     #                              _-----=&gt; irqs-off
     #                             / _----=&gt; need-resched
     #                            | / _---=&gt; hardirq/softirq
     #                            || / _--=&gt; preempt-depth
     #                            ||| /     delay
     #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
     #              | |       |   ||||       |         |
            dropbear-1465  [000] ...1 18154.620753: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
              &lt;idle&gt;-0     [000] ..s3 18154.621640: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
              &lt;idle&gt;-0     [000] ..s3 18154.621656: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
     matchbox-termin-1361  [001] ...1 18154.755472: kmalloc: call_site=ffffffff81614050 ptr=ffff88006d5f0e00 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_KERNEL|GFP_REPEAT
                Xorg-1264  [002] ...1 18154.755581: kmalloc: call_site=ffffffff8141abe8 ptr=ffff8800734f4cc0 bytes_req=168 bytes_alloc=192 gfp_flags=GFP_KERNEL|GFP_NOWARN|GFP_NORETRY
                Xorg-1264  [002] ...1 18154.755583: kmalloc: call_site=ffffffff814192a3 ptr=ffff88001f822520 bytes_req=24 bytes_alloc=32 gfp_flags=GFP_KERNEL|GFP_ZERO
                Xorg-1264  [002] ...1 18154.755589: kmalloc: call_site=ffffffff81419edb ptr=ffff8800721a2f00 bytes_req=64 bytes_alloc=64 gfp_flags=GFP_KERNEL|GFP_ZERO
     matchbox-termin-1361  [001] ...1 18155.354594: kmalloc: call_site=ffffffff81614050 ptr=ffff88006db35400 bytes_req=576 bytes_alloc=1024 gfp_flags=GFP_KERNEL|GFP_REPEAT
                Xorg-1264  [002] ...1 18155.354703: kmalloc: call_site=ffffffff8141abe8 ptr=ffff8800734f4cc0 bytes_req=168 bytes_alloc=192 gfp_flags=GFP_KERNEL|GFP_NOWARN|GFP_NORETRY
                Xorg-1264  [002] ...1 18155.354705: kmalloc: call_site=ffffffff814192a3 ptr=ffff88001f822520 bytes_req=24 bytes_alloc=32 gfp_flags=GFP_KERNEL|GFP_ZERO
                Xorg-1264  [002] ...1 18155.354711: kmalloc: call_site=ffffffff81419edb ptr=ffff8800721a2f00 bytes_req=64 bytes_alloc=64 gfp_flags=GFP_KERNEL|GFP_ZERO
              &lt;idle&gt;-0     [000] ..s3 18155.673319: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
            dropbear-1465  [000] ...1 18155.673525: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
              &lt;idle&gt;-0     [000] ..s3 18155.674821: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
              &lt;idle&gt;-0     [000] ..s3 18155.793014: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
            dropbear-1465  [000] ...1 18155.793219: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
              &lt;idle&gt;-0     [000] ..s3 18155.794147: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
              &lt;idle&gt;-0     [000] ..s3 18155.936705: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
            dropbear-1465  [000] ...1 18155.936910: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
              &lt;idle&gt;-0     [000] ..s3 18155.937869: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
     matchbox-termin-1361  [001] ...1 18155.953667: kmalloc: call_site=ffffffff81614050 ptr=ffff88006d5f2000 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_KERNEL|GFP_REPEAT
                Xorg-1264  [002] ...1 18155.953775: kmalloc: call_site=ffffffff8141abe8 ptr=ffff8800734f4cc0 bytes_req=168 bytes_alloc=192 gfp_flags=GFP_KERNEL|GFP_NOWARN|GFP_NORETRY
                Xorg-1264  [002] ...1 18155.953777: kmalloc: call_site=ffffffff814192a3 ptr=ffff88001f822520 bytes_req=24 bytes_alloc=32 gfp_flags=GFP_KERNEL|GFP_ZERO
                Xorg-1264  [002] ...1 18155.953783: kmalloc: call_site=ffffffff81419edb ptr=ffff8800721a2f00 bytes_req=64 bytes_alloc=64 gfp_flags=GFP_KERNEL|GFP_ZERO
              &lt;idle&gt;-0     [000] ..s3 18156.176053: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
            dropbear-1465  [000] ...1 18156.176257: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
              &lt;idle&gt;-0     [000] ..s3 18156.177717: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
              &lt;idle&gt;-0     [000] ..s3 18156.399229: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
            dropbear-1465  [000] ...1 18156.399434: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_http://rostedt.homelinux.com/kernelshark/req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
              &lt;idle&gt;-0     [000] ..s3 18156.400660: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
     matchbox-termin-1361  [001] ...1 18156.552800: kmalloc: call_site=ffffffff81614050 ptr=ffff88006db34800 bytes_req=576 bytes_alloc=1024 gfp_flags=GFP_KERNEL|GFP_REPEAT
            </literallayout>
            To again disable the kmalloc event, we need to send 0 to the
            enable file:
            <literallayout class='monospaced'>
     root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# echo 0 > enable
            </literallayout>
            You can enable any number of events or complete subsystems
            (by using the 'enable' file in the subsystem directory) and
            get an arbitrarily fine-grained idea of what's going on in the
            system by enabling as many of the appropriate tracepoints
            as applicable.
        </para>

        <para>
            A number of the tools described in this HOWTO do just that,
            including trace-cmd and kernelshark in the next section.
        </para>

        <informalexample>
            <emphasis>Tying it Together:</emphasis> These tracepoints and their representation
            are used not only by ftrace,  but by many of the other tools
            covered in this document and they form a central point of
            integration for the various tracers available in Linux.
            They form a central part of the instrumentation for the
            following tools: perf, lttng, ftrace, blktrace and SystemTap
        </informalexample>

        <informalexample>
            <emphasis>Tying it Together:</emphasis> Eventually all the special-purpose tracers
            currently available in /sys/kernel/debug/tracing will be
            removed and replaced with equivalent tracers based on the
            'trace events' subsystem.
        </informalexample>
    </section>

    <section id='trace-cmd-kernelshark'>
        <title>trace-cmd/kernelshark</title>

        <para>
            trace-cmd is essentially an extensive command-line 'wrapper'
            interface that hides the details of all the individual files
            in /sys/kernel/debug/tracing, allowing users to specify
            specific particular events within the
            /sys/kernel/debug/tracing/events/ subdirectory and to collect
            traces and avoid having to deal with those details directly.
        </para>

        <para>
            As yet another layer on top of that, kernelshark provides a GUI
            that allows users to start and stop traces and specify sets
            of events using an intuitive interface, and view the
            output as both trace events and as a per-CPU graphical
            display. It directly uses 'trace-cmd' as the plumbing
            that accomplishes all that underneath the covers (and
            actually displays the trace-cmd command it uses, as we'll see).
        </para>

        <para>
            To start a trace using kernelshark, first start kernelshark:
            <literallayout class='monospaced'>
     root@sugarbay:~# kernelshark
            </literallayout>
            Then bring up the 'Capture' dialog by choosing from the
            kernelshark menu:
            <literallayout class='monospaced'>
     Capture | Record
            </literallayout>
            That will display the following dialog, which allows you to
            choose one or more events (or even one or more complete
            subsystems) to trace:
        </para>

        <para>
            <imagedata fileref="figures/kernelshark-choose-events.png" width="6in" depth="6in" align="center" scalefit="1" />
        </para>

        <para>
            Note that these are exactly the same sets of events described
            in the previous trace events subsystem section, and in fact
            is where trace-cmd gets them for kernelshark.
        </para>

        <para>
            In the above screenshot, we've decided to explore the
            graphics subsystem a bit and so have chosen to trace all
            the tracepoints contained within the 'i915' and 'drm'
            subsystems.
        </para>

        <para>
            After doing that, we can start and stop the trace using
            the 'Run' and 'Stop' button on the lower right corner of
            the dialog (the same button will turn into the 'Stop'
            button after the trace has started):
        </para>

        <para>
            <imagedata fileref="figures/kernelshark-output-display.png" width="6in" depth="6in" align="center" scalefit="1" />
        </para>

        <para>
            Notice that the right-hand pane shows the exact trace-cmd
            command-line that's used to run the trace, along with the
            results of the trace-cmd run.
        </para>

        <para>
            Once the 'Stop' button is pressed, the graphical view magically
            fills up with a colorful per-cpu display of the trace data,
            along with the detailed event listing below that:
        </para>

        <para>
            <imagedata fileref="figures/kernelshark-i915-display.png" width="6in" depth="7in" align="center" scalefit="1" />
        </para>

        <para>
            Here's another example, this time a display resulting
            from tracing 'all events':
        </para>

        <para>
            <imagedata fileref="figures/kernelshark-all.png" width="6in" depth="7in" align="center" scalefit="1" />
        </para>

        <para>
            The tool is pretty self-explanatory, but for more detailed
            information on navigating through the data, see the
            <ulink url='http://rostedt.homelinux.com/kernelshark/'>kernelshark website</ulink>.
        </para>
    </section>

    <section id='ftrace-documentation'>
        <title>Documentation</title>

        <para>
            The documentation for ftrace can be found in the kernel
            Documentation directory:
            <literallayout class='monospaced'>
     Documentation/trace/ftrace.txt
            </literallayout>
            The documentation for the trace event subsystem can also
            be found in the kernel Documentation directory:
            <literallayout class='monospaced'>
     Documentation/trace/events.txt
            </literallayout>
            There is a nice series of articles on using
            ftrace and trace-cmd at LWN:
            <itemizedlist>
                <listitem><para><ulink url='http://lwn.net/Articles/365835/'>Debugging the kernel using Ftrace - part 1</ulink>
                    </para></listitem>
                <listitem><para><ulink url='http://lwn.net/Articles/366796/'>Debugging the kernel using Ftrace - part 2</ulink>
                    </para></listitem>
                <listitem><para><ulink url='http://lwn.net/Articles/370423/'>Secrets of the Ftrace function tracer</ulink>
                    </para></listitem>
                <listitem><para><ulink url='https://lwn.net/Articles/410200/'>trace-cmd: A front-end for Ftrace</ulink>
                    </para></listitem>
            </itemizedlist>
        </para>

        <para>
            There's more detailed documentation kernelshark usage here:
            <ulink url='http://rostedt.homelinux.com/kernelshark/'>KernelShark</ulink>
        </para>

        <para>
            An amusing yet useful README (a tracing mini-HOWTO) can be
            found in /sys/kernel/debug/tracing/README.
        </para>
    </section>
</section>

<section id='profile-manual-systemtap'>
    <title>systemtap</title>

    <para>
        SystemTap is a system-wide script-based tracing and profiling tool.
    </para>

    <para>
        SystemTap scripts are C-like programs that are executed in the
        kernel to gather/print/aggregate data extracted from the context
        they end up being invoked under.
    </para>

    <para>
        For example, this probe from the
        <ulink url='http://sourceware.org/systemtap/tutorial/'>SystemTap tutorial</ulink>
        simply prints a line every time any process on the system open()s
        a file. For each line, it prints the executable name of the
        program that opened the file, along with its PID, and the name
        of the file it opened (or tried to open), which it extracts
        from the open syscall's argstr.
        <literallayout class='monospaced'>
     probe syscall.open
     {
             printf ("%s(%d) open (%s)\n", execname(), pid(), argstr)
     }

     probe timer.ms(4000) # after 4 seconds
     {
             exit ()
     }
        </literallayout>
        Normally, to execute this probe, you'd simply install
        systemtap on the system you want to probe, and directly run
        the probe on that system e.g. assuming the name of the file
        containing the above text is trace_open.stp:
        <literallayout class='monospaced'>
     # stap trace_open.stp
        </literallayout>
        What systemtap does under the covers to run this probe is 1)
        parse and convert the probe to an equivalent 'C' form, 2)
        compile the 'C' form into a kernel module, 3) insert the
        module into the kernel, which arms it, and 4) collect the data
        generated by the probe and display it to the user.
     </para>

     <para>
        In order to accomplish steps 1 and 2, the 'stap' program needs
        access to the kernel build system that produced the kernel
        that the probed system is running. In the case of a typical
        embedded system (the 'target'), the kernel build system
        unfortunately isn't typically part of the image running on
        the target. It is normally available on the 'host' system
        that produced the target image however; in such cases,
        steps 1 and 2 are executed on the host system, and steps
        3 and 4 are executed on the target system, using only the
        systemtap 'runtime'.
    </para>

    <para>
        The systemtap support in Yocto assumes that only steps
        3 and 4 are run on the target; it is possible to do
        everything on the target, but this section assumes only
        the typical embedded use-case.
    </para>

    <para>
        So basically what you need to do in order to run a systemtap
        script on the target is to 1) on the host system, compile the
        probe into a kernel module that makes sense to the target, 2)
        copy the module onto the target system and 3) insert the
        module into the target kernel, which arms it, and 4) collect
        the data generated by the probe and display it to the user.
    </para>

    <section id='systemtap-setup'>
        <title>Setup</title>

        <para>
            Those are a lot of steps and a lot of details, but
            fortunately Yocto includes a script called 'crosstap'
            that will take care of those details, allowing you to
            simply execute a systemtap script on the remote target,
            with arguments if necessary.
        </para>

        <para>
            In order to do this from a remote host, however, you
            need to have access to the build for the image you
            booted. The 'crosstap' script provides details on how
            to do this if you run the script on the host without having
            done a build:
            <note>
                SystemTap, which uses 'crosstap', assumes you can establish an
                ssh connection to the remote target.
                Please refer to the crosstap wiki page for details on verifying
                ssh connections at
                <ulink url='https://wiki.yoctoproject.org/wiki/Tracing_and_Profiling#systemtap'></ulink>.
                Also, the ability to ssh into the target system is not enabled
                by default in *-minimal images.
            </note>
            <literallayout class='monospaced'>
     $ crosstap root@192.168.1.88 trace_open.stp

     Error: No target kernel build found.
     Did you forget to create a local build of your image?

     'crosstap' requires a local sdk build of the target system
     (or a build that includes 'tools-profile') in order to build
     kernel modules that can probe the target system.

     Practically speaking, that means you need to do the following:
      - If you're running a pre-built image, download the release
        and/or BSP tarballs used to build the image.
      - If you're working from git sources, just clone the metadata
        and BSP layers needed to build the image you'll be booting.
      - Make sure you're properly set up to build a new image (see
        the BSP README and/or the widely available basic documentation
        that discusses how to build images).
      - Build an -sdk version of the image e.g.:
          $ bitbake core-image-sato-sdk
      OR
      - Build a non-sdk image but include the profiling tools:
          [ edit local.conf and add 'tools-profile' to the end of
            the EXTRA_IMAGE_FEATURES variable ]
          $ bitbake core-image-sato

     Once you've build the image on the host system, you're ready to
     boot it (or the equivalent pre-built image) and use 'crosstap'
     to probe it (you need to source the environment as usual first):

        $ source oe-init-build-env
        $ cd ~/my/systemtap/scripts
        $ crosstap root@192.168.1.xxx myscript.stp
            </literallayout>
            So essentially what you need to do is build an SDK image or
            image with 'tools-profile' as detailed in the
            "<link linkend='profile-manual-general-setup'>General Setup</link>"
            section of this manual, and boot the resulting target image.
        </para>

        <note>
            If you have a build directory containing multiple machines,
            you need to have the MACHINE you're connecting to selected
            in local.conf, and the kernel in that machine's build
            directory must match the kernel on the booted system exactly,
            or you'll get the above 'crosstap' message when you try to
            invoke a script.
        </note>
    </section>

    <section id='running-a-script-on-a-target'>
        <title>Running a Script on a Target</title>

        <para>
            Once you've done that, you should be able to run a systemtap
            script on the target:
            <literallayout class='monospaced'>
     $ cd /path/to/yocto
     $ source oe-init-build-env

     ### Shell environment set up for builds. ###

     You can now run 'bitbake &lt;target&gt;'

     Common targets are:
              core-image-minimal
              core-image-sato
              meta-toolchain
              meta-ide-support

     You can also run generated qemu images with a command like 'runqemu qemux86'

            </literallayout>
            Once you've done that, you can cd to whatever directory
            contains your scripts and use 'crosstap' to run the script:
            <literallayout class='monospaced'>
     $ cd /path/to/my/systemap/script
     $ crosstap root@192.168.7.2 trace_open.stp
            </literallayout>
            If you get an error connecting to the target e.g.:
            <literallayout class='monospaced'>
     $ crosstap root@192.168.7.2 trace_open.stp
     error establishing ssh connection on remote 'root@192.168.7.2'
            </literallayout>
            Try ssh'ing to the target and see what happens:
            <literallayout class='monospaced'>
     $ ssh root@192.168.7.2
            </literallayout>
            A lot of the time, connection problems are due specifying a
            wrong IP address or having a 'host key verification error'.
        </para>

        <para>
            If everything worked as planned, you should see something
            like this (enter the password when prompted, or press enter
            if it's set up to use no password):
            <literallayout class='monospaced'>
     $ crosstap root@192.168.7.2 trace_open.stp
     root@192.168.7.2's password:
     matchbox-termin(1036) open ("/tmp/vte3FS2LW", O_RDWR|O_CREAT|O_EXCL|O_LARGEFILE, 0600)
     matchbox-termin(1036) open ("/tmp/vteJMC7LW", O_RDWR|O_CREAT|O_EXCL|O_LARGEFILE, 0600)
            </literallayout>
        </para>
    </section>

    <section id='systemtap-documentation'>
        <title>Documentation</title>

        <para>
            The SystemTap language reference can be found here:
            <ulink url='http://sourceware.org/systemtap/langref/'>SystemTap Language Reference</ulink>
        </para>

        <para>
            Links to other SystemTap documents, tutorials, and examples can be
            found here:
            <ulink url='http://sourceware.org/systemtap/documentation.html'>SystemTap documentation page</ulink>
        </para>
    </section>
</section>

<section id='profile-manual-sysprof'>
    <title>Sysprof</title>

    <para>
        Sysprof is a very easy to use system-wide profiler that consists
        of a single window with three panes and a few buttons which allow
        you to start, stop, and view the profile from one place.
    </para>

    <section id='sysprof-setup'>
        <title>Setup</title>

        <para>
            For this section, we'll assume you've already performed the
            basic setup outlined in the General Setup section.
        </para>

        <para>
            Sysprof is a GUI-based application that runs on the target
            system. For the rest of this document we assume you've
            ssh'ed to the host and will be running Sysprof on the
            target (you can use the '-X' option to ssh and have the
            Sysprof GUI run on the target but display remotely on the
            host if you want).
        </para>
    </section>

    <section id='sysprof-basic-usage'>
        <title>Basic Usage</title>

        <para>
            To start profiling the system, you simply press the 'Start'
            button. To stop profiling and to start viewing the profile data
            in one easy step, press the 'Profile' button.
        </para>

        <para>
            Once you've pressed the profile button, the three panes will
            fill up with profiling data:
        </para>

        <para>
            <imagedata fileref="figures/sysprof-copy-to-user.png" width="6in" depth="4in" align="center" scalefit="1" />
        </para>

        <para>
            The left pane shows a list of functions and processes.
            Selecting one of those expands that function in the right
            pane, showing all its callees. Note that this caller-oriented
            display is essentially the inverse of perf's default
            callee-oriented callchain display.
        </para>

        <para>
            In the screenshot above, we're focusing on __copy_to_user_ll()
            and looking up the callchain we can see that one of the callers
            of __copy_to_user_ll is sys_read() and the complete callpath
            between them. Notice that this is essentially a portion of the
            same information we saw in the perf display shown in the perf
            section of this page.
        </para>

        <para>
            <imagedata fileref="figures/sysprof-copy-from-user.png" width="6in" depth="4in" align="center" scalefit="1" />
        </para>

        <para>
            Similarly, the above is a snapshot of the Sysprof display of a
            copy-from-user callchain.
        </para>

        <para>
            Finally, looking at the third Sysprof pane in the lower left,
            we can see a list of all the callers of a particular function
            selected in the top left pane. In this case, the lower pane is
            showing all the callers of __mark_inode_dirty:
        </para>

        <para>
            <imagedata fileref="figures/sysprof-callers.png" width="6in" depth="4in" align="center" scalefit="1" />
        </para>

        <para>
            Double-clicking on one of those functions will in turn change the
            focus to the selected function, and so on.
        </para>

        <informalexample>
            <emphasis>Tying it Together:</emphasis> If you like sysprof's 'caller-oriented'
            display, you may be able to approximate it in other tools as
            well.  For example, 'perf report' has the -g (--call-graph)
            option that you can experiment with; one of the options is
            'caller' for an inverted caller-based callgraph display.
        </informalexample>
    </section>

    <section id='sysprof-documentation'>
        <title>Documentation</title>

        <para>
            There doesn't seem to be any documentation for Sysprof, but
            maybe that's because it's pretty self-explanatory.
            The Sysprof website, however, is here:
            <ulink url='http://sysprof.com/'>Sysprof, System-wide Performance Profiler for Linux</ulink>
        </para>
    </section>
</section>

<section id='lttng-linux-trace-toolkit-next-generation'>
    <title>LTTng (Linux Trace Toolkit, next generation)</title>

    <section id='lttng-setup'>
        <title>Setup</title>

        <para>
            For this section, we'll assume you've already performed the
            basic setup outlined in the General Setup section.
        </para>

        <para>
            LTTng is run on the target system by ssh'ing to it.
            However, if you want to see the traces graphically,
            install Eclipse as described in section
            "<link linkend='manually-copying-a-trace-to-the-host-and-viewing-it-in-eclipse'>Manually copying a trace to the host and viewing it in Eclipse (i.e. using Eclipse without network support)</link>"
            and follow the directions to manually copy traces to the host and
            view them in Eclipse (i.e. using Eclipse without network support).
        </para>

        <note>
            Be sure to download and install/run the 'SR1' or later Juno release
            of eclipse e.g.:
            <ulink url='http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/juno/SR1/eclipse-cpp-juno-SR1-linux-gtk-x86_64.tar.gz'>http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/juno/SR1/eclipse-cpp-juno-SR1-linux-gtk-x86_64.tar.gz</ulink>
        </note>
    </section>

    <section id='collecting-and-viewing-traces'>
        <title>Collecting and Viewing Traces</title>

        <para>
            Once you've applied the above commits and built and booted your
            image (you need to build the core-image-sato-sdk image or use one of the
            other methods described in the General Setup section), you're
            ready to start tracing.
        </para>

        <section id='collecting-and-viewing-a-trace-on-the-target-inside-a-shell'>
            <title>Collecting and viewing a trace on the target (inside a shell)</title>

            <para>
                First, from the host, ssh to the target:
                <literallayout class='monospaced'>
     $ ssh -l root 192.168.1.47
     The authenticity of host '192.168.1.47 (192.168.1.47)' can't be established.
     RSA key fingerprint is 23:bd:c8:b1:a8:71:52:00:ee:00:4f:64:9e:10:b9:7e.
     Are you sure you want to continue connecting (yes/no)? yes
     Warning: Permanently added '192.168.1.47' (RSA) to the list of known hosts.
     root@192.168.1.47's password:
                </literallayout>
                Once on the target, use these steps to create a trace:
                <literallayout class='monospaced'>
     root@crownbay:~# lttng create
     Spawning a session daemon
     Session auto-20121015-232120 created.
     Traces will be written in /home/root/lttng-traces/auto-20121015-232120
                </literallayout>
                Enable the events you want to trace (in this case all
                kernel events):
                <literallayout class='monospaced'>
     root@crownbay:~# lttng enable-event --kernel --all
     All kernel events are enabled in channel channel0
                </literallayout>
                Start the trace:
                <literallayout class='monospaced'>
     root@crownbay:~# lttng start
     Tracing started for session auto-20121015-232120
                </literallayout>
                And then stop the trace after awhile or after running
                a particular workload that you want to trace:
                <literallayout class='monospaced'>
     root@crownbay:~# lttng stop
     Tracing stopped for session auto-20121015-232120
                </literallayout>
                You can now view the trace in text form on the target:
                <literallayout class='monospaced'>
     root@crownbay:~# lttng view
     [23:21:56.989270399] (+?.?????????) sys_geteuid: { 1 }, { }
     [23:21:56.989278081] (+0.000007682) exit_syscall: { 1 }, { ret = 0 }
     [23:21:56.989286043] (+0.000007962) sys_pipe: { 1 }, { fildes = 0xB77B9E8C }
     [23:21:56.989321802] (+0.000035759) exit_syscall: { 1 }, { ret = 0 }
     [23:21:56.989329345] (+0.000007543) sys_mmap_pgoff: { 1 }, { addr = 0x0, len = 10485760, prot = 3, flags = 131362, fd = 4294967295, pgoff = 0 }
     [23:21:56.989351694] (+0.000022349) exit_syscall: { 1 }, { ret = -1247805440 }
     [23:21:56.989432989] (+0.000081295) sys_clone: { 1 }, { clone_flags = 0x411, newsp = 0xB5EFFFE4, parent_tid = 0xFFFFFFFF, child_tid = 0x0 }
     [23:21:56.989477129] (+0.000044140) sched_stat_runtime: { 1 }, { comm = "lttng-consumerd", tid = 1193, runtime = 681660, vruntime = 43367983388 }
     [23:21:56.989486697] (+0.000009568) sched_migrate_task: { 1 }, { comm = "lttng-consumerd", tid = 1193, prio = 20, orig_cpu = 1, dest_cpu = 1 }
     [23:21:56.989508418] (+0.000021721) hrtimer_init: { 1 }, { hrtimer = 3970832076, clockid = 1, mode = 1 }
     [23:21:56.989770462] (+0.000262044) hrtimer_cancel: { 1 }, { hrtimer = 3993865440 }
     [23:21:56.989771580] (+0.000001118) hrtimer_cancel: { 0 }, { hrtimer = 3993812192 }
     [23:21:56.989776957] (+0.000005377) hrtimer_expire_entry: { 1 }, { hrtimer = 3993865440, now = 79815980007057, function = 3238465232 }
     [23:21:56.989778145] (+0.000001188) hrtimer_expire_entry: { 0 }, { hrtimer = 3993812192, now = 79815980008174, function = 3238465232 }
     [23:21:56.989791695] (+0.000013550) softirq_raise: { 1 }, { vec = 1 }
     [23:21:56.989795396] (+0.000003701) softirq_raise: { 0 }, { vec = 1 }
     [23:21:56.989800635] (+0.000005239) softirq_raise: { 0 }, { vec = 9 }
     [23:21:56.989807130] (+0.000006495) sched_stat_runtime: { 1 }, { comm = "lttng-consumerd", tid = 1193, runtime = 330710, vruntime = 43368314098 }
     [23:21:56.989809993] (+0.000002863) sched_stat_runtime: { 0 }, { comm = "lttng-sessiond", tid = 1181, runtime = 1015313, vruntime = 36976733240 }
     [23:21:56.989818514] (+0.000008521) hrtimer_expire_exit: { 0 }, { hrtimer = 3993812192 }
     [23:21:56.989819631] (+0.000001117) hrtimer_expire_exit: { 1 }, { hrtimer = 3993865440 }
     [23:21:56.989821866] (+0.000002235) hrtimer_start: { 0 }, { hrtimer = 3993812192, function = 3238465232, expires = 79815981000000, softexpires = 79815981000000 }
     [23:21:56.989822984] (+0.000001118) hrtimer_start: { 1 }, { hrtimer = 3993865440, function = 3238465232, expires = 79815981000000, softexpires = 79815981000000 }
     [23:21:56.989832762] (+0.000009778) softirq_entry: { 1 }, { vec = 1 }
     [23:21:56.989833879] (+0.000001117) softirq_entry: { 0 }, { vec = 1 }
     [23:21:56.989838069] (+0.000004190) timer_cancel: { 1 }, { timer = 3993871956 }
     [23:21:56.989839187] (+0.000001118) timer_cancel: { 0 }, { timer = 3993818708 }
     [23:21:56.989841492] (+0.000002305) timer_expire_entry: { 1 }, { timer = 3993871956, now = 79515980, function = 3238277552 }
     [23:21:56.989842819] (+0.000001327) timer_expire_entry: { 0 }, { timer = 3993818708, now = 79515980, function = 3238277552 }
     [23:21:56.989854831] (+0.000012012) sched_stat_runtime: { 1 }, { comm = "lttng-consumerd", tid = 1193, runtime = 49237, vruntime = 43368363335 }
     [23:21:56.989855949] (+0.000001118) sched_stat_runtime: { 0 }, { comm = "lttng-sessiond", tid = 1181, runtime = 45121, vruntime = 36976778361 }
     [23:21:56.989861257] (+0.000005308) sched_stat_sleep: { 1 }, { comm = "kworker/1:1", tid = 21, delay = 9451318 }
     [23:21:56.989862374] (+0.000001117) sched_stat_sleep: { 0 }, { comm = "kworker/0:0", tid = 4, delay = 9958820 }
     [23:21:56.989868241] (+0.000005867) sched_wakeup: { 0 }, { comm = "kworker/0:0", tid = 4, prio = 120, success = 1, target_cpu = 0 }
     [23:21:56.989869358] (+0.000001117) sched_wakeup: { 1 }, { comm = "kworker/1:1", tid = 21, prio = 120, success = 1, target_cpu = 1 }
     [23:21:56.989877460] (+0.000008102) timer_expire_exit: { 1 }, { timer = 3993871956 }
     [23:21:56.989878577] (+0.000001117) timer_expire_exit: { 0 }, { timer = 3993818708 }
     .
     .
     .
                </literallayout>
                You can now safely destroy the trace session (note that
                this doesn't delete the trace - it's still there
                in ~/lttng-traces):
                <literallayout class='monospaced'>
     root@crownbay:~# lttng destroy
     Session auto-20121015-232120 destroyed at /home/root
                </literallayout>
                Note that the trace is saved in a directory of the same
                name as returned by 'lttng create', under the ~/lttng-traces
                directory (note that you can change this by supplying your
                own name to 'lttng create'):
                <literallayout class='monospaced'>
     root@crownbay:~# ls -al ~/lttng-traces
     drwxrwx---    3 root     root          1024 Oct 15 23:21 .
     drwxr-xr-x    5 root     root          1024 Oct 15 23:57 ..
     drwxrwx---    3 root     root          1024 Oct 15 23:21 auto-20121015-232120
                </literallayout>
            </para>
        </section>

        <section id='collecting-and-viewing-a-userspace-trace-on-the-target-inside-a-shell'>
            <title>Collecting and viewing a userspace trace on the target (inside a shell)</title>

            <para>
                For LTTng userspace tracing, you need to have a properly
                instrumented userspace program. For this example, we'll use
                the 'hello' test program generated by the lttng-ust build.
            </para>

            <para>
                The 'hello' test program isn't installed on the rootfs by
                the lttng-ust build, so we need to copy it over manually.
                First cd into the build directory that contains the hello
                executable:
                <literallayout class='monospaced'>
     $ cd build/tmp/work/core2_32-poky-linux/lttng-ust/2.0.5-r0/git/tests/hello/.libs
                </literallayout>
                Copy that over to the target machine:
                <literallayout class='monospaced'>
     $ scp hello root@192.168.1.20:
                </literallayout>
                You now have the instrumented lttng 'hello world' test
                program on the target, ready to test.
            </para>

            <para>
                First, from the host, ssh to the target:
                <literallayout class='monospaced'>
     $ ssh -l root 192.168.1.47
     The authenticity of host '192.168.1.47 (192.168.1.47)' can't be established.
     RSA key fingerprint is 23:bd:c8:b1:a8:71:52:00:ee:00:4f:64:9e:10:b9:7e.
     Are you sure you want to continue connecting (yes/no)? yes
     Warning: Permanently added '192.168.1.47' (RSA) to the list of known hosts.
     root@192.168.1.47's password:
                </literallayout>
                Once on the target, use these steps to create a trace:
                <literallayout class='monospaced'>
     root@crownbay:~# lttng create
     Session auto-20190303-021943 created.
     Traces will be written in /home/root/lttng-traces/auto-20190303-021943
                </literallayout>
                Enable the events you want to trace (in this case all
                userspace events):
                <literallayout class='monospaced'>
     root@crownbay:~# lttng enable-event --userspace --all
     All UST events are enabled in channel channel0
                </literallayout>
                Start the trace:
                <literallayout class='monospaced'>
     root@crownbay:~# lttng start
     Tracing started for session auto-20190303-021943
                </literallayout>
                Run the instrumented hello world program:
                <literallayout class='monospaced'>
     root@crownbay:~# ./hello
     Hello, World!
     Tracing...  done.
                </literallayout>
                And then stop the trace after awhile or after running a
                particular workload that you want to trace:
                <literallayout class='monospaced'>
     root@crownbay:~# lttng stop
     Tracing stopped for session auto-20190303-021943
                </literallayout>
                You can now view the trace in text form on the target:
                <literallayout class='monospaced'>
     root@crownbay:~# lttng view
     [02:31:14.906146544] (+?.?????????) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 0, intfield2 = 0x0, longfield = 0, netintfield = 0, netintfieldhex = 0x0, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4,  seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 }
     [02:31:14.906170360] (+0.000023816) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 1, intfield2 = 0x1, longfield = 1, netintfield = 1, netintfieldhex = 0x1, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 }
     [02:31:14.906183140] (+0.000012780) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 2, intfield2 = 0x2, longfield = 2, netintfield = 2, netintfieldhex = 0x2, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 }
     [02:31:14.906194385] (+0.000011245) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 3, intfield2 = 0x3, longfield = 3, netintfield = 3, netintfieldhex = 0x3, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 }
     .
     .
     .
                </literallayout>
                You can now safely destroy the trace session (note that
                this doesn't delete the trace - it's still
                there in ~/lttng-traces):
                <literallayout class='monospaced'>
     root@crownbay:~# lttng destroy
     Session auto-20190303-021943 destroyed at /home/root
                </literallayout>
            </para>
        </section>

        <section id='manually-copying-a-trace-to-the-host-and-viewing-it-in-eclipse'>
            <title>Manually copying a trace to the host and viewing it in Eclipse (i.e. using Eclipse without network support)</title>

            <para>
                If you already have an LTTng trace on a remote target and
                would like to view it in Eclipse on the host, you can easily
                copy it from the target to the host and import it into
                Eclipse to view it using the LTTng Eclipse plug-in already
                bundled in the Eclipse (Juno SR1 or greater).
            </para>

            <para>
                Using the trace we created in the previous section, archive
                it and copy it to your host system:
                <literallayout class='monospaced'>
     root@crownbay:~/lttng-traces# tar zcvf auto-20121015-232120.tar.gz auto-20121015-232120
     auto-20121015-232120/
     auto-20121015-232120/kernel/
     auto-20121015-232120/kernel/metadata
     auto-20121015-232120/kernel/channel0_1
     auto-20121015-232120/kernel/channel0_0

     $ scp root@192.168.1.47:lttng-traces/auto-20121015-232120.tar.gz .
     root@192.168.1.47's password:
     auto-20121015-232120.tar.gz                                             100% 1566KB   1.5MB/s   00:01
                </literallayout>
                Unarchive it on the host:
                <literallayout class='monospaced'>
     $ gunzip -c auto-20121015-232120.tar.gz | tar xvf -
     auto-20121015-232120/
     auto-20121015-232120/kernel/
     auto-20121015-232120/kernel/metadata
     auto-20121015-232120/kernel/channel0_1
     auto-20121015-232120/kernel/channel0_0
                </literallayout>
                We can now import the trace into Eclipse and view it:
                <orderedlist>
                    <listitem><para>First, start eclipse and open the
                        'LTTng Kernel' perspective by selecting the following
                        menu item:
                        <literallayout class='monospaced'>
     Window | Open Perspective | Other...
                        </literallayout></para></listitem>
                    <listitem><para>In the dialog box that opens, select
                        'LTTng Kernel' from the list.</para></listitem>
                    <listitem><para>Back at the main menu, select the
                        following menu item:
                        <literallayout class='monospaced'>
     File | New | Project...
                        </literallayout></para></listitem>
                    <listitem><para>In the dialog box that opens, select
                        the 'Tracing | Tracing Project' wizard and press
                        'Next>'.</para></listitem>
                    <listitem><para>Give the project a name and press
                        'Finish'.</para></listitem>
                    <listitem><para>In the 'Project Explorer' pane under
                        the project you created, right click on the
                        'Traces' item.</para></listitem>
                    <listitem><para>Select 'Import..." and in the dialog
                        that's displayed:</para></listitem>
                    <listitem><para>Browse the filesystem and find the
                        select the 'kernel' directory containing the trace
                        you copied from the target
                        e.g. auto-20121015-232120/kernel</para></listitem>
                    <listitem><para>'Checkmark' the directory in the tree
                        that's displayed for the trace</para></listitem>
                    <listitem><para>Below that, select 'Common Trace Format:
                        Kernel Trace' for the 'Trace Type'</para></listitem>
                    <listitem><para>Press 'Finish' to close the dialog
                        </para></listitem>
                    <listitem><para>Back in the 'Project Explorer' pane,
                        double-click on the 'kernel' item for the
                        trace you just imported under 'Traces'
                        </para></listitem>
                </orderedlist>
                You should now see your trace data displayed graphically
                in several different views in Eclipse:
            </para>

            <para>
                <imagedata fileref="figures/lttngmain0.png" width="6in" depth="6in" align="center" scalefit="1" />
            </para>

            <para>
                You can access extensive help information on how to use
                the LTTng plug-in to search and analyze captured traces via
                the Eclipse help system:
                <literallayout class='monospaced'>
     Help | Help Contents | LTTng Plug-in User Guide
                </literallayout>
            </para>
        </section>

        <section id='collecting-and-viewing-a-trace-in-eclipse'>
            <title>Collecting and viewing a trace in Eclipse</title>

            <note>
                This section on collecting traces remotely doesn't currently
                work because of Eclipse 'RSE' connectivity problems. Manually
                tracing on the target, copying the trace files to the host,
                and viewing the trace in Eclipse on the host as outlined in
                previous steps does work however - please use the manual
                steps outlined above to view traces in Eclipse.
            </note>

            <para>
                In order to trace a remote target, you also need to add
                a 'tracing' group on the target and connect as a user
                who's part of that group e.g:
                <literallayout class='monospaced'>
     # adduser tomz
     # groupadd -r tracing
     # usermod -a -G tracing tomz
                </literallayout>
                <orderedlist>
                    <listitem><para>First, start eclipse and open the
                        'LTTng Kernel' perspective by selecting the following
                         menu item:
                         <literallayout class='monospaced'>
     Window | Open Perspective | Other...
                         </literallayout></para></listitem>
                    <listitem><para>In the dialog box that opens, select
                        'LTTng Kernel' from the list.</para></listitem>
                    <listitem><para>Back at the main menu, select the
                        following menu item:
                        <literallayout class='monospaced'>
     File | New | Project...
                        </literallayout></para></listitem>
                    <listitem><para>In the dialog box that opens, select
                        the 'Tracing | Tracing Project' wizard and
                        press 'Next>'.</para></listitem>
                    <listitem><para>Give the project a name and press
                        'Finish'. That should result in an entry in the
                        'Project' subwindow.</para></listitem>
                    <listitem><para>In the 'Control' subwindow just below
                        it, press 'New Connection'.</para></listitem>
                    <listitem><para>Add a new connection, giving it the
                        hostname or IP address of the target system.
                        </para></listitem>
                    <listitem><para>Provide the username and password
                        of a qualified user (a member of the 'tracing' group)
                        or root account on the target system.
                        </para></listitem>
                    <listitem><para>Provide appropriate answers to whatever
                        else is asked for e.g. 'secure storage password'
                        can be anything you want.
                        If you get an 'RSE Error' it may be due to proxies.
                        It may be possible to get around the problem by
                        changing the following setting:
                        <literallayout class='monospaced'>
     Window | Preferences | Network Connections
                        </literallayout>
                        Switch 'Active Provider' to 'Direct'
                        </para></listitem>
                </orderedlist>
            </para>
        </section>
    </section>

    <section id='lltng-documentation'>
        <title>Documentation</title>

        <para>
            You can find the primary LTTng Documentation on the
            <ulink url='https://lttng.org/docs/'>LTTng Documentation</ulink>
            site.
            The documentation on this site is appropriate for intermediate to
            advanced software developers who are working in a Linux environment
            and are interested in efficient software tracing.
        </para>

        <para>
            For information on LTTng in general, visit the
            <ulink url='http://lttng.org/lttng2.0'>LTTng Project</ulink>
            site.
            You can find a "Getting Started" link on this site that takes
            you to an LTTng Quick Start.
        </para>

        <para>
            Finally, you can access extensive help information on how to use
            the LTTng plug-in to search and analyze captured traces via the
            Eclipse help system:
            <literallayout class='monospaced'>
     Help | Help Contents | LTTng Plug-in User Guide
            </literallayout>
        </para>
    </section>
</section>

<section id='profile-manual-blktrace'>
    <title>blktrace</title>

    <para>
        blktrace is a tool for tracing and reporting low-level disk I/O.
        blktrace provides the tracing half of the equation; its output can
        be piped into the blkparse program, which renders the data in a
        human-readable form and does some basic analysis:
    </para>

    <section id='blktrace-setup'>
        <title>Setup</title>

        <para>
            For this section, we'll assume you've already performed the
            basic setup outlined in the
            "<link linkend='profile-manual-general-setup'>General Setup</link>"
            section.
        </para>

        <para>
            blktrace is an application that runs on the target system.
            You can run the entire blktrace and blkparse pipeline on the
            target, or you can run blktrace in 'listen' mode on the target
            and have blktrace and blkparse collect and analyze the data on
            the host (see the
            "<link linkend='using-blktrace-remotely'>Using blktrace Remotely</link>"
            section below).
            For the rest of this section we assume you've ssh'ed to the
            host and will be running blkrace on the target.
        </para>
    </section>

    <section id='blktrace-basic-usage'>
        <title>Basic Usage</title>

        <para>
            To record a trace, simply run the 'blktrace' command, giving it
            the name of the block device you want to trace activity on:
            <literallayout class='monospaced'>
     root@crownbay:~# blktrace /dev/sdc
            </literallayout>
            In another shell, execute a workload you want to trace.
            <literallayout class='monospaced'>
     root@crownbay:/media/sdc# rm linux-2.6.19.2.tar.bz2; wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>; sync
     Connecting to downloads.yoctoproject.org (140.211.169.59:80)
     linux-2.6.19.2.tar.b 100% |*******************************| 41727k  0:00:00 ETA
            </literallayout>
            Press Ctrl-C in the blktrace shell to stop the trace. It will
            display how many events were logged, along with the per-cpu file
            sizes (blktrace records traces in per-cpu kernel buffers and
            simply dumps them to userspace for blkparse to merge and sort
            later).
            <literallayout class='monospaced'>
     ^C=== sdc ===
      CPU  0:                 7082 events,      332 KiB data
      CPU  1:                 1578 events,       74 KiB data
      Total:                  8660 events (dropped 0),      406 KiB data
            </literallayout>
            If you examine the files saved to disk, you see multiple files,
            one per CPU and with the device name as the first part of the
            filename:
            <literallayout class='monospaced'>
     root@crownbay:~# ls -al
     drwxr-xr-x    6 root     root          1024 Oct 27 22:39 .
     drwxr-sr-x    4 root     root          1024 Oct 26 18:24 ..
     -rw-r--r--    1 root     root        339938 Oct 27 22:40 sdc.blktrace.0
     -rw-r--r--    1 root     root         75753 Oct 27 22:40 sdc.blktrace.1
            </literallayout>
            To view the trace events, simply invoke 'blkparse' in the
            directory containing the trace files, giving it the device name
            that forms the first part of the filenames:
            <literallayout class='monospaced'>
     root@crownbay:~# blkparse sdc

      8,32   1        1     0.000000000  1225  Q  WS 3417048 + 8 [jbd2/sdc-8]
      8,32   1        2     0.000025213  1225  G  WS 3417048 + 8 [jbd2/sdc-8]
      8,32   1        3     0.000033384  1225  P   N [jbd2/sdc-8]
      8,32   1        4     0.000043301  1225  I  WS 3417048 + 8 [jbd2/sdc-8]
      8,32   1        0     0.000057270     0  m   N cfq1225 insert_request
      8,32   1        0     0.000064813     0  m   N cfq1225 add_to_rr
      8,32   1        5     0.000076336  1225  U   N [jbd2/sdc-8] 1
      8,32   1        0     0.000088559     0  m   N cfq workload slice:150
      8,32   1        0     0.000097359     0  m   N cfq1225 set_active wl_prio:0 wl_type:1
      8,32   1        0     0.000104063     0  m   N cfq1225 Not idling. st->count:1
      8,32   1        0     0.000112584     0  m   N cfq1225 fifo=  (null)
      8,32   1        0     0.000118730     0  m   N cfq1225 dispatch_insert
      8,32   1        0     0.000127390     0  m   N cfq1225 dispatched a request
      8,32   1        0     0.000133536     0  m   N cfq1225 activate rq, drv=1
      8,32   1        6     0.000136889  1225  D  WS 3417048 + 8 [jbd2/sdc-8]
      8,32   1        7     0.000360381  1225  Q  WS 3417056 + 8 [jbd2/sdc-8]
      8,32   1        8     0.000377422  1225  G  WS 3417056 + 8 [jbd2/sdc-8]
      8,32   1        9     0.000388876  1225  P   N [jbd2/sdc-8]
      8,32   1       10     0.000397886  1225  Q  WS 3417064 + 8 [jbd2/sdc-8]
      8,32   1       11     0.000404800  1225  M  WS 3417064 + 8 [jbd2/sdc-8]
      8,32   1       12     0.000412343  1225  Q  WS 3417072 + 8 [jbd2/sdc-8]
      8,32   1       13     0.000416533  1225  M  WS 3417072 + 8 [jbd2/sdc-8]
      8,32   1       14     0.000422121  1225  Q  WS 3417080 + 8 [jbd2/sdc-8]
      8,32   1       15     0.000425194  1225  M  WS 3417080 + 8 [jbd2/sdc-8]
      8,32   1       16     0.000431968  1225  Q  WS 3417088 + 8 [jbd2/sdc-8]
      8,32   1       17     0.000435251  1225  M  WS 3417088 + 8 [jbd2/sdc-8]
      8,32   1       18     0.000440279  1225  Q  WS 3417096 + 8 [jbd2/sdc-8]
      8,32   1       19     0.000443911  1225  M  WS 3417096 + 8 [jbd2/sdc-8]
      8,32   1       20     0.000450336  1225  Q  WS 3417104 + 8 [jbd2/sdc-8]
      8,32   1       21     0.000454038  1225  M  WS 3417104 + 8 [jbd2/sdc-8]
      8,32   1       22     0.000462070  1225  Q  WS 3417112 + 8 [jbd2/sdc-8]
      8,32   1       23     0.000465422  1225  M  WS 3417112 + 8 [jbd2/sdc-8]
      8,32   1       24     0.000474222  1225  I  WS 3417056 + 64 [jbd2/sdc-8]
      8,32   1        0     0.000483022     0  m   N cfq1225 insert_request
      8,32   1       25     0.000489727  1225  U   N [jbd2/sdc-8] 1
      8,32   1        0     0.000498457     0  m   N cfq1225 Not idling. st->count:1
      8,32   1        0     0.000503765     0  m   N cfq1225 dispatch_insert
      8,32   1        0     0.000512914     0  m   N cfq1225 dispatched a request
      8,32   1        0     0.000518851     0  m   N cfq1225 activate rq, drv=2
      .
      .
      .
      8,32   0        0    58.515006138     0  m   N cfq3551 complete rqnoidle 1
      8,32   0     2024    58.516603269     3  C  WS 3156992 + 16 [0]
      8,32   0        0    58.516626736     0  m   N cfq3551 complete rqnoidle 1
      8,32   0        0    58.516634558     0  m   N cfq3551 arm_idle: 8 group_idle: 0
      8,32   0        0    58.516636933     0  m   N cfq schedule dispatch
      8,32   1        0    58.516971613     0  m   N cfq3551 slice expired t=0
      8,32   1        0    58.516982089     0  m   N cfq3551 sl_used=13 disp=6 charge=13 iops=0 sect=80
      8,32   1        0    58.516985511     0  m   N cfq3551 del_from_rr
      8,32   1        0    58.516990819     0  m   N cfq3551 put_queue

     CPU0 (sdc):
      Reads Queued:           0,        0KiB	 Writes Queued:         331,   26,284KiB
      Read Dispatches:        0,        0KiB	 Write Dispatches:      485,   40,484KiB
      Reads Requeued:         0		 Writes Requeued:         0
      Reads Completed:        0,        0KiB	 Writes Completed:      511,   41,000KiB
      Read Merges:            0,        0KiB	 Write Merges:           13,      160KiB
      Read depth:             0        	 Write depth:             2
      IO unplugs:            23        	 Timer unplugs:           0
     CPU1 (sdc):
      Reads Queued:           0,        0KiB	 Writes Queued:         249,   15,800KiB
      Read Dispatches:        0,        0KiB	 Write Dispatches:       42,    1,600KiB
      Reads Requeued:         0		 Writes Requeued:         0
      Reads Completed:        0,        0KiB	 Writes Completed:       16,    1,084KiB
      Read Merges:            0,        0KiB	 Write Merges:           40,      276KiB
      Read depth:             0        	 Write depth:             2
      IO unplugs:            30        	 Timer unplugs:           1

     Total (sdc):
      Reads Queued:           0,        0KiB	 Writes Queued:         580,   42,084KiB
      Read Dispatches:        0,        0KiB	 Write Dispatches:      527,   42,084KiB
      Reads Requeued:         0		 Writes Requeued:         0
      Reads Completed:        0,        0KiB	 Writes Completed:      527,   42,084KiB
      Read Merges:            0,        0KiB	 Write Merges:           53,      436KiB
      IO unplugs:            53        	 Timer unplugs:           1

     Throughput (R/W): 0KiB/s / 719KiB/s
     Events (sdc): 6,592 entries
     Skips: 0 forward (0 -   0.0%)
     Input file sdc.blktrace.0 added
     Input file sdc.blktrace.1 added
            </literallayout>
            The report shows each event that was found in the blktrace data,
            along with a summary of the overall block I/O traffic during
            the run. You can look at the
            <ulink url='http://linux.die.net/man/1/blkparse'>blkparse</ulink>
            manpage to learn the
            meaning of each field displayed in the trace listing.
        </para>

        <section id='blktrace-live-mode'>
            <title>Live Mode</title>

            <para>
                blktrace and blkparse are designed from the ground up to
                be able to operate together in a 'pipe mode' where the
                stdout of blktrace can be fed directly into the stdin of
                blkparse:
                <literallayout class='monospaced'>
     root@crownbay:~# blktrace /dev/sdc -o - | blkparse -i -
                </literallayout>
                This enables long-lived tracing sessions to run without
                writing anything to disk, and allows the user to look for
                certain conditions in the trace data in 'real-time' by
                viewing the trace output as it scrolls by on the screen or
                by passing it along to yet another program in the pipeline
                such as grep which can be used to identify and capture
                conditions of interest.
            </para>

            <para>
                There's actually another blktrace command that implements
                the above pipeline as a single command, so the user doesn't
                have to bother typing in the above command sequence:
                <literallayout class='monospaced'>
     root@crownbay:~# btrace /dev/sdc
                </literallayout>
            </para>
        </section>

        <section id='using-blktrace-remotely'>
            <title>Using blktrace Remotely</title>

            <para>
                Because blktrace traces block I/O and at the same time
                normally writes its trace data to a block device, and
                in general because it's not really a great idea to make
                the device being traced the same as the device the tracer
                writes to, blktrace provides a way to trace without
                perturbing the traced device at all by providing native
                support for sending all trace data over the network.
            </para>

            <para>
                To have blktrace operate in this mode, start blktrace on
                the target system being traced with the -l option, along with
                the device to trace:
                <literallayout class='monospaced'>
     root@crownbay:~# blktrace -l /dev/sdc
     server: waiting for connections...
                </literallayout>
                On the host system, use the -h option to connect to the
                target system, also passing it the device to trace:
                <literallayout class='monospaced'>
     $ blktrace -d /dev/sdc -h 192.168.1.43
     blktrace: connecting to 192.168.1.43
     blktrace: connected!
                </literallayout>
                On the target system, you should see this:
                <literallayout class='monospaced'>
     server: connection from 192.168.1.43
                </literallayout>
                In another shell, execute a workload you want to trace.
                <literallayout class='monospaced'>
     root@crownbay:/media/sdc# rm linux-2.6.19.2.tar.bz2; wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>; sync
     Connecting to downloads.yoctoproject.org (140.211.169.59:80)
     linux-2.6.19.2.tar.b 100% |*******************************| 41727k  0:00:00 ETA
                </literallayout>
                When it's done, do a Ctrl-C on the host system to
                stop the trace:
                <literallayout class='monospaced'>
     ^C=== sdc ===
      CPU  0:                 7691 events,      361 KiB data
      CPU  1:                 4109 events,      193 KiB data
      Total:                 11800 events (dropped 0),      554 KiB data
                </literallayout>
                On the target system, you should also see a trace
                summary for the trace just ended:
                <literallayout class='monospaced'>
     server: end of run for 192.168.1.43:sdc
     === sdc ===
      CPU  0:                 7691 events,      361 KiB data
      CPU  1:                 4109 events,      193 KiB data
      Total:                 11800 events (dropped 0),      554 KiB data
                </literallayout>
                The blktrace instance on the host will save the target
                output inside a hostname-timestamp directory:
                <literallayout class='monospaced'>
     $ ls -al
     drwxr-xr-x   10 root     root          1024 Oct 28 02:40 .
     drwxr-sr-x    4 root     root          1024 Oct 26 18:24 ..
     drwxr-xr-x    2 root     root          1024 Oct 28 02:40 192.168.1.43-2012-10-28-02:40:56
                </literallayout>
                cd into that directory to see the output files:
                <literallayout class='monospaced'>
     $ ls -l
     -rw-r--r--    1 root     root        369193 Oct 28 02:44 sdc.blktrace.0
     -rw-r--r--    1 root     root        197278 Oct 28 02:44 sdc.blktrace.1
                </literallayout>
                And run blkparse on the host system using the device name:
                <literallayout class='monospaced'>
     $ blkparse sdc

      8,32   1        1     0.000000000  1263  Q  RM 6016 + 8 [ls]
      8,32   1        0     0.000036038     0  m   N cfq1263 alloced
      8,32   1        2     0.000039390  1263  G  RM 6016 + 8 [ls]
      8,32   1        3     0.000049168  1263  I  RM 6016 + 8 [ls]
      8,32   1        0     0.000056152     0  m   N cfq1263 insert_request
      8,32   1        0     0.000061600     0  m   N cfq1263 add_to_rr
      8,32   1        0     0.000075498     0  m   N cfq workload slice:300
      .
      .
      .
      8,32   0        0   177.266385696     0  m   N cfq1267 arm_idle: 8 group_idle: 0
      8,32   0        0   177.266388140     0  m   N cfq schedule dispatch
      8,32   1        0   177.266679239     0  m   N cfq1267 slice expired t=0
      8,32   1        0   177.266689297     0  m   N cfq1267 sl_used=9 disp=6 charge=9 iops=0 sect=56
      8,32   1        0   177.266692649     0  m   N cfq1267 del_from_rr
      8,32   1        0   177.266696560     0  m   N cfq1267 put_queue

     CPU0 (sdc):
      Reads Queued:           0,        0KiB	 Writes Queued:         270,   21,708KiB
      Read Dispatches:       59,    2,628KiB	 Write Dispatches:      495,   39,964KiB
      Reads Requeued:         0		 Writes Requeued:         0
      Reads Completed:       90,    2,752KiB	 Writes Completed:      543,   41,596KiB
      Read Merges:            0,        0KiB	 Write Merges:            9,      344KiB
      Read depth:             2        	 Write depth:             2
      IO unplugs:            20        	 Timer unplugs:           1
     CPU1 (sdc):
      Reads Queued:         688,    2,752KiB	 Writes Queued:         381,   20,652KiB
      Read Dispatches:       31,      124KiB	 Write Dispatches:       59,    2,396KiB
      Reads Requeued:         0		 Writes Requeued:         0
      Reads Completed:        0,        0KiB	 Writes Completed:       11,      764KiB
      Read Merges:          598,    2,392KiB	 Write Merges:           88,      448KiB
      Read depth:             2        	 Write depth:             2
      IO unplugs:            52        	 Timer unplugs:           0

     Total (sdc):
      Reads Queued:         688,    2,752KiB	 Writes Queued:         651,   42,360KiB
      Read Dispatches:       90,    2,752KiB	 Write Dispatches:      554,   42,360KiB
      Reads Requeued:         0		 Writes Requeued:         0
      Reads Completed:       90,    2,752KiB	 Writes Completed:      554,   42,360KiB
      Read Merges:          598,    2,392KiB	 Write Merges:           97,      792KiB
      IO unplugs:            72        	 Timer unplugs:           1

     Throughput (R/W): 15KiB/s / 238KiB/s
     Events (sdc): 9,301 entries
     Skips: 0 forward (0 -   0.0%)
                </literallayout>
                You should see the trace events and summary just as
                you would have if you'd run the same command on the target.
            </para>
        </section>

        <section id='tracing-block-io-via-ftrace'>
            <title>Tracing Block I/O via 'ftrace'</title>

            <para>
                It's also possible to trace block I/O using only
                <link linkend='the-trace-events-subsystem'>trace events subsystem</link>,
                which can be useful for casual tracing
                if you don't want to bother dealing with the userspace tools.
            </para>

            <para>
                To enable tracing for a given device, use
                /sys/block/xxx/trace/enable, where xxx is the device name.
                This for example enables tracing for /dev/sdc:
                <literallayout class='monospaced'>
     root@crownbay:/sys/kernel/debug/tracing# echo 1 > /sys/block/sdc/trace/enable
                </literallayout>
                Once you've selected the device(s) you want to trace,
                selecting the 'blk' tracer will turn the blk tracer on:
                <literallayout class='monospaced'>
     root@crownbay:/sys/kernel/debug/tracing# cat available_tracers
     blk function_graph function nop

     root@crownbay:/sys/kernel/debug/tracing# echo blk > current_tracer
                </literallayout>
                Execute the workload you're interested in:
                <literallayout class='monospaced'>
     root@crownbay:/sys/kernel/debug/tracing# cat /media/sdc/testfile.txt
                </literallayout>
                And look at the output (note here that we're using
                'trace_pipe' instead of trace to capture this trace -
                this allows us to wait around on the pipe for data to
                appear):
                <literallayout class='monospaced'>
     root@crownbay:/sys/kernel/debug/tracing# cat trace_pipe
                 cat-3587  [001] d..1  3023.276361:   8,32   Q   R 1699848 + 8 [cat]
                 cat-3587  [001] d..1  3023.276410:   8,32   m   N cfq3587 alloced
                 cat-3587  [001] d..1  3023.276415:   8,32   G   R 1699848 + 8 [cat]
                 cat-3587  [001] d..1  3023.276424:   8,32   P   N [cat]
                 cat-3587  [001] d..2  3023.276432:   8,32   I   R 1699848 + 8 [cat]
                 cat-3587  [001] d..1  3023.276439:   8,32   m   N cfq3587 insert_request
                 cat-3587  [001] d..1  3023.276445:   8,32   m   N cfq3587 add_to_rr
                 cat-3587  [001] d..2  3023.276454:   8,32   U   N [cat] 1
                 cat-3587  [001] d..1  3023.276464:   8,32   m   N cfq workload slice:150
                 cat-3587  [001] d..1  3023.276471:   8,32   m   N cfq3587 set_active wl_prio:0 wl_type:2
                 cat-3587  [001] d..1  3023.276478:   8,32   m   N cfq3587 fifo=  (null)
                 cat-3587  [001] d..1  3023.276483:   8,32   m   N cfq3587 dispatch_insert
                 cat-3587  [001] d..1  3023.276490:   8,32   m   N cfq3587 dispatched a request
                 cat-3587  [001] d..1  3023.276497:   8,32   m   N cfq3587 activate rq, drv=1
                 cat-3587  [001] d..2  3023.276500:   8,32   D   R 1699848 + 8 [cat]
                </literallayout>
                And this turns off tracing for the specified device:
                <literallayout class='monospaced'>
     root@crownbay:/sys/kernel/debug/tracing# echo 0 > /sys/block/sdc/trace/enable
                </literallayout>
            </para>
        </section>
    </section>

    <section id='blktrace-documentation'>
        <title>Documentation</title>

        <para>
            Online versions of the man pages for the commands discussed
            in this section can be found here:
            <itemizedlist>
                <listitem><para><ulink url='http://linux.die.net/man/8/blktrace'>http://linux.die.net/man/8/blktrace</ulink>
                    </para></listitem>
                <listitem><para><ulink url='http://linux.die.net/man/1/blkparse'>http://linux.die.net/man/1/blkparse</ulink>
                    </para></listitem>
                <listitem><para><ulink url='http://linux.die.net/man/8/btrace'>http://linux.die.net/man/8/btrace</ulink>
                    </para></listitem>
            </itemizedlist>
        </para>

        <para>
            The above manpages, along with manpages for the other
            blktrace utilities (btt, blkiomon, etc) can be found in the
            /doc directory of the blktrace tools git repo:
            <literallayout class='monospaced'>
     $ git clone git://git.kernel.dk/blktrace.git
            </literallayout>
        </para>
    </section>
</section>
</chapter>
<!--
vim: expandtab tw=80 ts=4
-->