1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
|
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*/
#ifndef _LINUX_BPF_VERIFIER_H
#define _LINUX_BPF_VERIFIER_H 1
#include <linux/bpf.h> /* for enum bpf_reg_type */
#include <linux/filter.h> /* for MAX_BPF_STACK */
#include <linux/tnum.h>
/* Maximum variable offset umax_value permitted when resolving memory accesses.
* In practice this is far bigger than any realistic pointer offset; this limit
* ensures that umax_value + (int)off + (int)size cannot overflow a u64.
*/
#define BPF_MAX_VAR_OFF (1 << 29)
/* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures
* that converting umax_value to int cannot overflow.
*/
#define BPF_MAX_VAR_SIZ (1 << 29)
/* Liveness marks, used for registers and spilled-regs (in stack slots).
* Read marks propagate upwards until they find a write mark; they record that
* "one of this state's descendants read this reg" (and therefore the reg is
* relevant for states_equal() checks).
* Write marks collect downwards and do not propagate; they record that "the
* straight-line code that reached this state (from its parent) wrote this reg"
* (and therefore that reads propagated from this state or its descendants
* should not propagate to its parent).
* A state with a write mark can receive read marks; it just won't propagate
* them to its parent, since the write mark is a property, not of the state,
* but of the link between it and its parent. See mark_reg_read() and
* mark_stack_slot_read() in kernel/bpf/verifier.c.
*/
enum bpf_reg_liveness {
REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
REG_LIVE_READ, /* reg was read, so we're sensitive to initial value */
REG_LIVE_WRITTEN, /* reg was written first, screening off later reads */
};
struct bpf_reg_state {
/* Ordering of fields matters. See states_equal() */
enum bpf_reg_type type;
union {
/* valid when type == PTR_TO_PACKET */
u16 range;
/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
* PTR_TO_MAP_VALUE_OR_NULL
*/
struct bpf_map *map_ptr;
/* Max size from any of the above. */
unsigned long raw;
};
/* Fixed part of pointer offset, pointer types only */
s32 off;
/* For PTR_TO_PACKET, used to find other pointers with the same variable
* offset, so they can share range knowledge.
* For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
* came from, when one is tested for != NULL.
* For PTR_TO_SOCKET this is used to share which pointers retain the
* same reference to the socket, to determine proper reference freeing.
*/
u32 id;
/* For scalar types (SCALAR_VALUE), this represents our knowledge of
* the actual value.
* For pointer types, this represents the variable part of the offset
* from the pointed-to object, and is shared with all bpf_reg_states
* with the same id as us.
*/
struct tnum var_off;
/* Used to determine if any memory access using this register will
* result in a bad access.
* These refer to the same value as var_off, not necessarily the actual
* contents of the register.
*/
s64 smin_value; /* minimum possible (s64)value */
s64 smax_value; /* maximum possible (s64)value */
u64 umin_value; /* minimum possible (u64)value */
u64 umax_value; /* maximum possible (u64)value */
/* parentage chain for liveness checking */
struct bpf_reg_state *parent;
/* Inside the callee two registers can be both PTR_TO_STACK like
* R1=fp-8 and R2=fp-8, but one of them points to this function stack
* while another to the caller's stack. To differentiate them 'frameno'
* is used which is an index in bpf_verifier_state->frame[] array
* pointing to bpf_func_state.
*/
u32 frameno;
enum bpf_reg_liveness live;
};
enum bpf_stack_slot_type {
STACK_INVALID, /* nothing was stored in this stack slot */
STACK_SPILL, /* register spilled into stack */
STACK_MISC, /* BPF program wrote some data into this slot */
STACK_ZERO, /* BPF program wrote constant zero */
};
#define BPF_REG_SIZE 8 /* size of eBPF register in bytes */
struct bpf_stack_state {
struct bpf_reg_state spilled_ptr;
u8 slot_type[BPF_REG_SIZE];
};
struct bpf_reference_state {
/* Track each reference created with a unique id, even if the same
* instruction creates the reference multiple times (eg, via CALL).
*/
int id;
/* Instruction where the allocation of this reference occurred. This
* is used purely to inform the user of a reference leak.
*/
int insn_idx;
};
/* state of the program:
* type of all registers and stack info
*/
struct bpf_func_state {
struct bpf_reg_state regs[MAX_BPF_REG];
/* index of call instruction that called into this func */
int callsite;
/* stack frame number of this function state from pov of
* enclosing bpf_verifier_state.
* 0 = main function, 1 = first callee.
*/
u32 frameno;
/* subprog number == index within subprog_stack_depth
* zero == main subprog
*/
u32 subprogno;
/* The following fields should be last. See copy_func_state() */
int acquired_refs;
struct bpf_reference_state *refs;
int allocated_stack;
struct bpf_stack_state *stack;
};
#define MAX_CALL_FRAMES 8
struct bpf_verifier_state {
/* call stack tracking */
struct bpf_func_state *frame[MAX_CALL_FRAMES];
u32 curframe;
};
#define bpf_get_spilled_reg(slot, frame) \
(((slot < frame->allocated_stack / BPF_REG_SIZE) && \
(frame->stack[slot].slot_type[0] == STACK_SPILL)) \
? &frame->stack[slot].spilled_ptr : NULL)
/* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
#define bpf_for_each_spilled_reg(iter, frame, reg) \
for (iter = 0, reg = bpf_get_spilled_reg(iter, frame); \
iter < frame->allocated_stack / BPF_REG_SIZE; \
iter++, reg = bpf_get_spilled_reg(iter, frame))
/* linked list of verifier states used to prune search */
struct bpf_verifier_state_list {
struct bpf_verifier_state state;
struct bpf_verifier_state_list *next;
};
struct bpf_insn_aux_data {
union {
enum bpf_reg_type ptr_type; /* pointer type for load/store insns */
unsigned long map_state; /* pointer/poison value for maps */
s32 call_imm; /* saved imm field of call insn */
};
int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
int sanitize_stack_off; /* stack slot to be cleared */
bool seen; /* this insn was processed by the verifier */
};
#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
#define BPF_VERIFIER_TMP_LOG_SIZE 1024
struct bpf_verifier_log {
u32 level;
char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
char __user *ubuf;
u32 len_used;
u32 len_total;
};
static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log)
{
return log->len_used >= log->len_total - 1;
}
static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
{
return log->level && log->ubuf && !bpf_verifier_log_full(log);
}
#define BPF_MAX_SUBPROGS 256
struct bpf_subprog_info {
u32 start; /* insn idx of function entry point */
u16 stack_depth; /* max. stack depth used by this function */
};
/* single container for all structs
* one verifier_env per bpf_check() call
*/
struct bpf_verifier_env {
struct bpf_prog *prog; /* eBPF program being verified */
const struct bpf_verifier_ops *ops;
struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
int stack_size; /* number of states to be processed */
bool strict_alignment; /* perform strict pointer alignment checks */
struct bpf_verifier_state *cur_state; /* current verifier state */
struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
u32 used_map_cnt; /* number of used maps */
u32 id_gen; /* used to generate unique reg IDs */
bool allow_ptr_leaks;
bool seen_direct_write;
struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
struct bpf_verifier_log log;
struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
u32 subprog_cnt;
};
__printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
const char *fmt, va_list args);
__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
const char *fmt, ...);
static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
{
struct bpf_verifier_state *cur = env->cur_state;
return cur->frame[cur->curframe];
}
static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
{
return cur_func(env)->regs;
}
int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
int insn_idx, int prev_insn_idx);
int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
#endif /* _LINUX_BPF_VERIFIER_H */
|