1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
|
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2012-2017 ASPEED Technology Inc.
// Copyright (c) 2018-2019 Intel Corporation
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/peci.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
/* ASPEED PECI Registers */
/* Control Register */
#define ASPEED_PECI_CTRL 0x00
#define ASPEED_PECI_CTRL_SAMPLING_MASK GENMASK(19, 16)
#define ASPEED_PECI_CTRL_READ_MODE_MASK GENMASK(13, 12)
#define ASPEED_PECI_CTRL_READ_MODE_COUNT BIT(12)
#define ASPEED_PECI_CTRL_READ_MODE_DBG BIT(13)
#define ASPEED_PECI_CTRL_CLK_SOURCE_MASK BIT(11)
#define ASPEED_PECI_CTRL_CLK_DIV_MASK GENMASK(10, 8)
#define ASPEED_PECI_CTRL_INVERT_OUT BIT(7)
#define ASPEED_PECI_CTRL_INVERT_IN BIT(6)
#define ASPEED_PECI_CTRL_BUS_CONTENT_EN BIT(5)
#define ASPEED_PECI_CTRL_PECI_EN BIT(4)
#define ASPEED_PECI_CTRL_PECI_CLK_EN BIT(0)
/* Timing Negotiation Register */
#define ASPEED_PECI_TIMING_NEGOTIATION 0x04
#define ASPEED_PECI_TIMING_MESSAGE_MASK GENMASK(15, 8)
#define ASPEED_PECI_TIMING_ADDRESS_MASK GENMASK(7, 0)
/* Command Register */
#define ASPEED_PECI_CMD 0x08
#define ASPEED_PECI_CMD_PIN_MON BIT(31)
#define ASPEED_PECI_CMD_STS_MASK GENMASK(27, 24)
#define ASPEED_PECI_CMD_STS_ADDR_T_NEGO 0x3
#define ASPEED_PECI_CMD_IDLE_MASK \
(ASPEED_PECI_CMD_STS_MASK | ASPEED_PECI_CMD_PIN_MON)
#define ASPEED_PECI_CMD_FIRE BIT(0)
/* Read/Write Length Register */
#define ASPEED_PECI_RW_LENGTH 0x0c
#define ASPEED_PECI_AW_FCS_EN BIT(31)
#define ASPEED_PECI_READ_LEN_MASK GENMASK(23, 16)
#define ASPEED_PECI_WRITE_LEN_MASK GENMASK(15, 8)
#define ASPEED_PECI_TAGET_ADDR_MASK GENMASK(7, 0)
/* Expected FCS Data Register */
#define ASPEED_PECI_EXP_FCS 0x10
#define ASPEED_PECI_EXP_READ_FCS_MASK GENMASK(23, 16)
#define ASPEED_PECI_EXP_AW_FCS_AUTO_MASK GENMASK(15, 8)
#define ASPEED_PECI_EXP_WRITE_FCS_MASK GENMASK(7, 0)
/* Captured FCS Data Register */
#define ASPEED_PECI_CAP_FCS 0x14
#define ASPEED_PECI_CAP_READ_FCS_MASK GENMASK(23, 16)
#define ASPEED_PECI_CAP_WRITE_FCS_MASK GENMASK(7, 0)
/* Interrupt Register */
#define ASPEED_PECI_INT_CTRL 0x18
#define ASPEED_PECI_TIMING_NEGO_SEL_MASK GENMASK(31, 30)
#define ASPEED_PECI_1ST_BIT_OF_ADDR_NEGO 0
#define ASPEED_PECI_2ND_BIT_OF_ADDR_NEGO 1
#define ASPEED_PECI_MESSAGE_NEGO 2
#define ASPEED_PECI_INT_MASK GENMASK(4, 0)
#define ASPEED_PECI_INT_BUS_TIMEOUT BIT(4)
#define ASPEED_PECI_INT_BUS_CONNECT BIT(3)
#define ASPEED_PECI_INT_W_FCS_BAD BIT(2)
#define ASPEED_PECI_INT_W_FCS_ABORT BIT(1)
#define ASPEED_PECI_INT_CMD_DONE BIT(0)
/* Interrupt Status Register */
#define ASPEED_PECI_INT_STS 0x1c
#define ASPEED_PECI_INT_TIMING_RESULT_MASK GENMASK(29, 16)
/* bits[4..0]: Same bit fields in the 'Interrupt Register' */
/* Rx/Tx Data Buffer Registers */
#define ASPEED_PECI_W_DATA0 0x20
#define ASPEED_PECI_W_DATA1 0x24
#define ASPEED_PECI_W_DATA2 0x28
#define ASPEED_PECI_W_DATA3 0x2c
#define ASPEED_PECI_R_DATA0 0x30
#define ASPEED_PECI_R_DATA1 0x34
#define ASPEED_PECI_R_DATA2 0x38
#define ASPEED_PECI_R_DATA3 0x3c
#define ASPEED_PECI_W_DATA4 0x40
#define ASPEED_PECI_W_DATA5 0x44
#define ASPEED_PECI_W_DATA6 0x48
#define ASPEED_PECI_W_DATA7 0x4c
#define ASPEED_PECI_R_DATA4 0x50
#define ASPEED_PECI_R_DATA5 0x54
#define ASPEED_PECI_R_DATA6 0x58
#define ASPEED_PECI_R_DATA7 0x5c
#define ASPEED_PECI_DATA_BUF_SIZE_MAX 32
/* Timing Negotiation */
#define ASPEED_PECI_RD_SAMPLING_POINT_DEFAULT 8
#define ASPEED_PECI_RD_SAMPLING_POINT_MAX 15
#define ASPEED_PECI_CLK_DIV_DEFAULT 0
#define ASPEED_PECI_CLK_DIV_MAX 7
#define ASPEED_PECI_MSG_TIMING_DEFAULT 1
#define ASPEED_PECI_MSG_TIMING_MAX 255
#define ASPEED_PECI_ADDR_TIMING_DEFAULT 1
#define ASPEED_PECI_ADDR_TIMING_MAX 255
/* Timeout */
#define ASPEED_PECI_IDLE_CHECK_TIMEOUT_USEC 50000
#define ASPEED_PECI_IDLE_CHECK_INTERVAL_USEC 10000
#define ASPEED_PECI_CMD_TIMEOUT_MS_DEFAULT 1000
#define ASPEED_PECI_CMD_TIMEOUT_MS_MAX 60000
struct aspeed_peci {
struct peci_adapter *adapter;
struct device *dev;
void __iomem *base;
struct clk *clk;
struct reset_control *rst;
int irq;
spinlock_t lock; /* to sync completion status handling */
struct completion xfer_complete;
u32 status;
u32 cmd_timeout_ms;
u32 msg_timing;
u32 addr_timing;
u32 rd_sampling_point;
u32 clk_div_val;
};
static void aspeed_peci_init_regs(struct aspeed_peci *priv)
{
writel(FIELD_PREP(ASPEED_PECI_CTRL_CLK_DIV_MASK,
ASPEED_PECI_CLK_DIV_DEFAULT) |
ASPEED_PECI_CTRL_PECI_CLK_EN, priv->base + ASPEED_PECI_CTRL);
/*
* Timing negotiation period setting.
* The unit of the programmed value is 4 times of PECI clock period.
*/
writel(FIELD_PREP(ASPEED_PECI_TIMING_MESSAGE_MASK, priv->msg_timing) |
FIELD_PREP(ASPEED_PECI_TIMING_ADDRESS_MASK, priv->addr_timing),
priv->base + ASPEED_PECI_TIMING_NEGOTIATION);
/* Clear interrupts */
writel(readl(priv->base + ASPEED_PECI_INT_STS) | ASPEED_PECI_INT_MASK,
priv->base + ASPEED_PECI_INT_STS);
/* Set timing negotiation mode and enable interrupts */
writel(FIELD_PREP(ASPEED_PECI_TIMING_NEGO_SEL_MASK,
ASPEED_PECI_1ST_BIT_OF_ADDR_NEGO) |
ASPEED_PECI_INT_MASK, priv->base + ASPEED_PECI_INT_CTRL);
/* Read sampling point and clock speed setting */
writel(FIELD_PREP(ASPEED_PECI_CTRL_SAMPLING_MASK, priv->rd_sampling_point) |
FIELD_PREP(ASPEED_PECI_CTRL_CLK_DIV_MASK, priv->clk_div_val) |
ASPEED_PECI_CTRL_PECI_EN | ASPEED_PECI_CTRL_PECI_CLK_EN,
priv->base + ASPEED_PECI_CTRL);
}
static inline int aspeed_peci_check_idle(struct aspeed_peci *priv)
{
u32 cmd_sts = readl(priv->base + ASPEED_PECI_CMD);
if (FIELD_GET(ASPEED_PECI_CMD_STS_MASK,
cmd_sts) == ASPEED_PECI_CMD_STS_ADDR_T_NEGO)
aspeed_peci_init_regs(priv);
return readl_poll_timeout(priv->base + ASPEED_PECI_CMD,
cmd_sts,
!(cmd_sts & ASPEED_PECI_CMD_IDLE_MASK),
ASPEED_PECI_IDLE_CHECK_INTERVAL_USEC,
ASPEED_PECI_IDLE_CHECK_TIMEOUT_USEC);
}
static int aspeed_peci_xfer(struct peci_adapter *adapter,
struct peci_xfer_msg *msg)
{
struct aspeed_peci *priv = peci_get_adapdata(adapter);
long err, timeout = msecs_to_jiffies(priv->cmd_timeout_ms);
u32 peci_head, peci_state, rx_data = 0;
ulong flags;
int i, ret;
uint reg;
if (msg->tx_len > ASPEED_PECI_DATA_BUF_SIZE_MAX ||
msg->rx_len > ASPEED_PECI_DATA_BUF_SIZE_MAX)
return -EINVAL;
/* Check command sts and bus idle state */
ret = aspeed_peci_check_idle(priv);
if (ret)
return ret; /* -ETIMEDOUT */
spin_lock_irqsave(&priv->lock, flags);
reinit_completion(&priv->xfer_complete);
peci_head = FIELD_PREP(ASPEED_PECI_TAGET_ADDR_MASK, msg->addr) |
FIELD_PREP(ASPEED_PECI_WRITE_LEN_MASK, msg->tx_len) |
FIELD_PREP(ASPEED_PECI_READ_LEN_MASK, msg->rx_len);
writel(peci_head, priv->base + ASPEED_PECI_RW_LENGTH);
for (i = 0; i < msg->tx_len; i += 4) {
reg = i < 16 ? ASPEED_PECI_W_DATA0 + i % 16 :
ASPEED_PECI_W_DATA4 + i % 16;
writel(le32_to_cpup((__le32 *)&msg->tx_buf[i]),
priv->base + reg);
}
dev_dbg(priv->dev, "HEAD : 0x%08x\n", peci_head);
print_hex_dump_debug("TX : ", DUMP_PREFIX_NONE, 16, 1,
msg->tx_buf, msg->tx_len, true);
priv->status = 0;
writel(ASPEED_PECI_CMD_FIRE, priv->base + ASPEED_PECI_CMD);
spin_unlock_irqrestore(&priv->lock, flags);
err = wait_for_completion_interruptible_timeout(&priv->xfer_complete,
timeout);
spin_lock_irqsave(&priv->lock, flags);
dev_dbg(priv->dev, "INT_STS : 0x%08x\n", priv->status);
peci_state = readl(priv->base + ASPEED_PECI_CMD);
dev_dbg(priv->dev, "PECI_STATE : 0x%lx\n",
FIELD_GET(ASPEED_PECI_CMD_STS_MASK, peci_state));
writel(0, priv->base + ASPEED_PECI_CMD);
if (err <= 0 || priv->status != ASPEED_PECI_INT_CMD_DONE) {
if (err < 0) { /* -ERESTARTSYS */
ret = (int)err;
goto err_irqrestore;
} else if (err == 0) {
dev_dbg(priv->dev, "Timeout waiting for a response!\n");
ret = -ETIMEDOUT;
goto err_irqrestore;
}
dev_dbg(priv->dev, "No valid response!\n");
ret = -EIO;
goto err_irqrestore;
}
/*
* Note that rx_len and rx_buf size can be an odd number.
* Byte handling is more efficient.
*/
for (i = 0; i < msg->rx_len; i++) {
u8 byte_offset = i % 4;
if (byte_offset == 0) {
reg = i < 16 ? ASPEED_PECI_R_DATA0 + i % 16 :
ASPEED_PECI_R_DATA4 + i % 16;
rx_data = readl(priv->base + reg);
}
msg->rx_buf[i] = (u8)(rx_data >> (byte_offset << 3));
}
print_hex_dump_debug("RX : ", DUMP_PREFIX_NONE, 16, 1,
msg->rx_buf, msg->rx_len, true);
peci_state = readl(priv->base + ASPEED_PECI_CMD);
dev_dbg(priv->dev, "PECI_STATE : 0x%lx\n",
FIELD_GET(ASPEED_PECI_CMD_STS_MASK, peci_state));
dev_dbg(priv->dev, "------------------------\n");
err_irqrestore:
spin_unlock_irqrestore(&priv->lock, flags);
return ret;
}
static irqreturn_t aspeed_peci_irq_handler(int irq, void *arg)
{
struct aspeed_peci *priv = arg;
u32 status;
spin_lock(&priv->lock);
status = readl(priv->base + ASPEED_PECI_INT_STS);
writel(status, priv->base + ASPEED_PECI_INT_STS);
priv->status |= (status & ASPEED_PECI_INT_MASK);
/*
* In most cases, interrupt bits will be set one by one but also note
* that multiple interrupt bits could be set at the same time.
*/
if (status & ASPEED_PECI_INT_BUS_TIMEOUT)
dev_dbg(priv->dev, "ASPEED_PECI_INT_BUS_TIMEOUT\n");
if (status & ASPEED_PECI_INT_BUS_CONNECT)
dev_dbg(priv->dev, "ASPEED_PECI_INT_BUS_CONNECT\n");
if (status & ASPEED_PECI_INT_W_FCS_BAD)
dev_dbg(priv->dev, "ASPEED_PECI_INT_W_FCS_BAD\n");
if (status & ASPEED_PECI_INT_W_FCS_ABORT)
dev_dbg(priv->dev, "ASPEED_PECI_INT_W_FCS_ABORT\n");
/*
* All commands should be ended up with a ASPEED_PECI_INT_CMD_DONE bit
* set even in an error case.
*/
if (status & ASPEED_PECI_INT_CMD_DONE) {
dev_dbg(priv->dev, "ASPEED_PECI_INT_CMD_DONE\n");
complete(&priv->xfer_complete);
}
spin_unlock(&priv->lock);
return IRQ_HANDLED;
}
static int aspeed_peci_init_ctrl(struct aspeed_peci *priv)
{
u32 msg_timing, addr_timing, rd_sampling_point;
u32 clk_freq, clk_divisor, clk_div_val = 0;
int ret;
priv->clk = devm_clk_get(priv->dev, NULL);
if (IS_ERR(priv->clk)) {
dev_err(priv->dev, "Failed to get clk source.\n");
return PTR_ERR(priv->clk);
}
ret = clk_prepare_enable(priv->clk);
if (ret) {
dev_err(priv->dev, "Failed to enable clock.\n");
return ret;
}
ret = device_property_read_u32(priv->dev, "clock-frequency", &clk_freq);
if (ret) {
dev_err(priv->dev,
"Could not read clock-frequency property.\n");
clk_disable_unprepare(priv->clk);
return ret;
}
clk_divisor = clk_get_rate(priv->clk) / clk_freq;
while ((clk_divisor >>= 1) && (clk_div_val < ASPEED_PECI_CLK_DIV_MAX))
clk_div_val++;
priv->clk_div_val = clk_div_val;
ret = device_property_read_u32(priv->dev, "msg-timing", &msg_timing);
if (ret || msg_timing > ASPEED_PECI_MSG_TIMING_MAX) {
if (!ret)
dev_warn(priv->dev,
"Invalid msg-timing : %u, Use default : %u\n",
msg_timing, ASPEED_PECI_MSG_TIMING_DEFAULT);
msg_timing = ASPEED_PECI_MSG_TIMING_DEFAULT;
}
priv->msg_timing = msg_timing;
ret = device_property_read_u32(priv->dev, "addr-timing", &addr_timing);
if (ret || addr_timing > ASPEED_PECI_ADDR_TIMING_MAX) {
if (!ret)
dev_warn(priv->dev,
"Invalid addr-timing : %u, Use default : %u\n",
addr_timing, ASPEED_PECI_ADDR_TIMING_DEFAULT);
addr_timing = ASPEED_PECI_ADDR_TIMING_DEFAULT;
}
priv->addr_timing = addr_timing;
ret = device_property_read_u32(priv->dev, "rd-sampling-point",
&rd_sampling_point);
if (ret || rd_sampling_point > ASPEED_PECI_RD_SAMPLING_POINT_MAX) {
if (!ret)
dev_warn(priv->dev,
"Invalid rd-sampling-point : %u. Use default : %u\n",
rd_sampling_point,
ASPEED_PECI_RD_SAMPLING_POINT_DEFAULT);
rd_sampling_point = ASPEED_PECI_RD_SAMPLING_POINT_DEFAULT;
}
priv->rd_sampling_point = rd_sampling_point;
ret = device_property_read_u32(priv->dev, "cmd-timeout-ms",
&priv->cmd_timeout_ms);
if (ret || priv->cmd_timeout_ms > ASPEED_PECI_CMD_TIMEOUT_MS_MAX ||
priv->cmd_timeout_ms == 0) {
if (!ret)
dev_warn(priv->dev,
"Invalid cmd-timeout-ms : %u. Use default : %u\n",
priv->cmd_timeout_ms,
ASPEED_PECI_CMD_TIMEOUT_MS_DEFAULT);
priv->cmd_timeout_ms = ASPEED_PECI_CMD_TIMEOUT_MS_DEFAULT;
}
aspeed_peci_init_regs(priv);
return 0;
}
static int aspeed_peci_probe(struct platform_device *pdev)
{
struct peci_adapter *adapter;
struct aspeed_peci *priv;
int ret;
adapter = peci_alloc_adapter(&pdev->dev, sizeof(*priv));
if (!adapter)
return -ENOMEM;
priv = peci_get_adapdata(adapter);
priv->adapter = adapter;
priv->dev = &pdev->dev;
dev_set_drvdata(&pdev->dev, priv);
priv->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->base)) {
ret = PTR_ERR(priv->base);
goto err_put_adapter_dev;
}
priv->irq = platform_get_irq(pdev, 0);
if (!priv->irq) {
ret = -ENODEV;
goto err_put_adapter_dev;
}
ret = devm_request_irq(&pdev->dev, priv->irq, aspeed_peci_irq_handler,
0, "peci-aspeed-irq", priv);
if (ret)
goto err_put_adapter_dev;
init_completion(&priv->xfer_complete);
spin_lock_init(&priv->lock);
priv->adapter->owner = THIS_MODULE;
priv->adapter->dev.of_node = of_node_get(dev_of_node(priv->dev));
strlcpy(priv->adapter->name, pdev->name, sizeof(priv->adapter->name));
priv->adapter->xfer = aspeed_peci_xfer;
priv->adapter->use_dma = false;
priv->rst = devm_reset_control_get(&pdev->dev, NULL);
if (IS_ERR(priv->rst)) {
dev_err(&pdev->dev,
"missing or invalid reset controller entry\n");
ret = PTR_ERR(priv->rst);
goto err_put_adapter_dev;
}
reset_control_deassert(priv->rst);
ret = aspeed_peci_init_ctrl(priv);
if (ret)
goto err_put_adapter_dev;
ret = peci_add_adapter(priv->adapter);
if (ret)
goto err_put_adapter_dev;
dev_info(&pdev->dev, "peci bus %d registered, irq %d\n",
priv->adapter->nr, priv->irq);
return 0;
err_put_adapter_dev:
put_device(&adapter->dev);
return ret;
}
static int aspeed_peci_remove(struct platform_device *pdev)
{
struct aspeed_peci *priv = dev_get_drvdata(&pdev->dev);
peci_del_adapter(priv->adapter);
complete(&priv->xfer_complete);
clk_disable_unprepare(priv->clk);
reset_control_assert(priv->rst);
of_node_put(priv->adapter->dev.of_node);
return 0;
}
static const struct of_device_id aspeed_peci_of_table[] = {
{ .compatible = "aspeed,ast2400-peci", },
{ .compatible = "aspeed,ast2500-peci", },
{ .compatible = "aspeed,ast2600-peci", },
{ }
};
MODULE_DEVICE_TABLE(of, aspeed_peci_of_table);
static struct platform_driver aspeed_peci_driver = {
.probe = aspeed_peci_probe,
.remove = aspeed_peci_remove,
.driver = {
.name = KBUILD_MODNAME,
.of_match_table = of_match_ptr(aspeed_peci_of_table),
},
};
module_platform_driver(aspeed_peci_driver);
MODULE_AUTHOR("Ryan Chen <ryan_chen@aspeedtech.com>");
MODULE_AUTHOR("Jae Hyun Yoo <jae.hyun.yoo@linux.intel.com>");
MODULE_DESCRIPTION("ASPEED PECI driver");
MODULE_LICENSE("GPL v2");
|