1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Mirics MSi001 silicon tuner driver
*
* Copyright (C) 2013 Antti Palosaari <crope@iki.fi>
* Copyright (C) 2014 Antti Palosaari <crope@iki.fi>
*/
#include <linux/module.h>
#include <linux/gcd.h>
#include <media/v4l2-device.h>
#include <media/v4l2-ctrls.h>
static const struct v4l2_frequency_band bands[] = {
{
.type = V4L2_TUNER_RF,
.index = 0,
.capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
.rangelow = 49000000,
.rangehigh = 263000000,
}, {
.type = V4L2_TUNER_RF,
.index = 1,
.capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
.rangelow = 390000000,
.rangehigh = 960000000,
},
};
struct msi001_dev {
struct spi_device *spi;
struct v4l2_subdev sd;
/* Controls */
struct v4l2_ctrl_handler hdl;
struct v4l2_ctrl *bandwidth_auto;
struct v4l2_ctrl *bandwidth;
struct v4l2_ctrl *lna_gain;
struct v4l2_ctrl *mixer_gain;
struct v4l2_ctrl *if_gain;
unsigned int f_tuner;
};
static inline struct msi001_dev *sd_to_msi001_dev(struct v4l2_subdev *sd)
{
return container_of(sd, struct msi001_dev, sd);
}
static int msi001_wreg(struct msi001_dev *dev, u32 data)
{
/* Register format: 4 bits addr + 20 bits value */
return spi_write(dev->spi, &data, 3);
};
static int msi001_set_gain(struct msi001_dev *dev, int lna_gain, int mixer_gain,
int if_gain)
{
struct spi_device *spi = dev->spi;
int ret;
u32 reg;
dev_dbg(&spi->dev, "lna=%d mixer=%d if=%d\n",
lna_gain, mixer_gain, if_gain);
reg = 1 << 0;
reg |= (59 - if_gain) << 4;
reg |= 0 << 10;
reg |= (1 - mixer_gain) << 12;
reg |= (1 - lna_gain) << 13;
reg |= 4 << 14;
reg |= 0 << 17;
ret = msi001_wreg(dev, reg);
if (ret)
goto err;
return 0;
err:
dev_dbg(&spi->dev, "failed %d\n", ret);
return ret;
};
static int msi001_set_tuner(struct msi001_dev *dev)
{
struct spi_device *spi = dev->spi;
int ret, i;
unsigned int uitmp, div_n, k, k_thresh, k_frac, div_lo, f_if1;
u32 reg;
u64 f_vco;
u8 mode, filter_mode;
static const struct {
u32 rf;
u8 mode;
u8 div_lo;
} band_lut[] = {
{ 50000000, 0xe1, 16}, /* AM_MODE2, antenna 2 */
{108000000, 0x42, 32}, /* VHF_MODE */
{330000000, 0x44, 16}, /* B3_MODE */
{960000000, 0x48, 4}, /* B45_MODE */
{ ~0U, 0x50, 2}, /* BL_MODE */
};
static const struct {
u32 freq;
u8 filter_mode;
} if_freq_lut[] = {
{ 0, 0x03}, /* Zero IF */
{ 450000, 0x02}, /* 450 kHz IF */
{1620000, 0x01}, /* 1.62 MHz IF */
{2048000, 0x00}, /* 2.048 MHz IF */
};
static const struct {
u32 freq;
u8 val;
} bandwidth_lut[] = {
{ 200000, 0x00}, /* 200 kHz */
{ 300000, 0x01}, /* 300 kHz */
{ 600000, 0x02}, /* 600 kHz */
{1536000, 0x03}, /* 1.536 MHz */
{5000000, 0x04}, /* 5 MHz */
{6000000, 0x05}, /* 6 MHz */
{7000000, 0x06}, /* 7 MHz */
{8000000, 0x07}, /* 8 MHz */
};
unsigned int f_rf = dev->f_tuner;
/*
* bandwidth (Hz)
* 200000, 300000, 600000, 1536000, 5000000, 6000000, 7000000, 8000000
*/
unsigned int bandwidth;
/*
* intermediate frequency (Hz)
* 0, 450000, 1620000, 2048000
*/
unsigned int f_if = 0;
#define F_REF 24000000
#define DIV_PRE_N 4
#define F_VCO_STEP div_lo
dev_dbg(&spi->dev, "f_rf=%d f_if=%d\n", f_rf, f_if);
for (i = 0; i < ARRAY_SIZE(band_lut); i++) {
if (f_rf <= band_lut[i].rf) {
mode = band_lut[i].mode;
div_lo = band_lut[i].div_lo;
break;
}
}
if (i == ARRAY_SIZE(band_lut)) {
ret = -EINVAL;
goto err;
}
/* AM_MODE is upconverted */
if ((mode >> 0) & 0x1)
f_if1 = 5 * F_REF;
else
f_if1 = 0;
for (i = 0; i < ARRAY_SIZE(if_freq_lut); i++) {
if (f_if == if_freq_lut[i].freq) {
filter_mode = if_freq_lut[i].filter_mode;
break;
}
}
if (i == ARRAY_SIZE(if_freq_lut)) {
ret = -EINVAL;
goto err;
}
/* filters */
bandwidth = dev->bandwidth->val;
bandwidth = clamp(bandwidth, 200000U, 8000000U);
for (i = 0; i < ARRAY_SIZE(bandwidth_lut); i++) {
if (bandwidth <= bandwidth_lut[i].freq) {
bandwidth = bandwidth_lut[i].val;
break;
}
}
if (i == ARRAY_SIZE(bandwidth_lut)) {
ret = -EINVAL;
goto err;
}
dev->bandwidth->val = bandwidth_lut[i].freq;
dev_dbg(&spi->dev, "bandwidth selected=%d\n", bandwidth_lut[i].freq);
/*
* Fractional-N synthesizer
*
* +---------------------------------------+
* v |
* Fref +----+ +-------+ +----+ +------+ +---+
* ------> | PD | --> | VCO | ------> | /4 | --> | /N.F | <-- | K |
* +----+ +-------+ +----+ +------+ +---+
* |
* |
* v
* +-------+ Fout
* | /Rout | ------>
* +-------+
*/
/* Calculate PLL integer and fractional control word. */
f_vco = (u64) (f_rf + f_if + f_if1) * div_lo;
div_n = div_u64_rem(f_vco, DIV_PRE_N * F_REF, &k);
k_thresh = (DIV_PRE_N * F_REF) / F_VCO_STEP;
k_frac = div_u64((u64) k * k_thresh, (DIV_PRE_N * F_REF));
/* Find out greatest common divisor and divide to smaller. */
uitmp = gcd(k_thresh, k_frac);
k_thresh /= uitmp;
k_frac /= uitmp;
/* Force divide to reg max. Resolution will be reduced. */
uitmp = DIV_ROUND_UP(k_thresh, 4095);
k_thresh = DIV_ROUND_CLOSEST(k_thresh, uitmp);
k_frac = DIV_ROUND_CLOSEST(k_frac, uitmp);
/* Calculate real RF set. */
uitmp = (unsigned int) F_REF * DIV_PRE_N * div_n;
uitmp += (unsigned int) F_REF * DIV_PRE_N * k_frac / k_thresh;
uitmp /= div_lo;
dev_dbg(&spi->dev,
"f_rf=%u:%u f_vco=%llu div_n=%u k_thresh=%u k_frac=%u div_lo=%u\n",
f_rf, uitmp, f_vco, div_n, k_thresh, k_frac, div_lo);
ret = msi001_wreg(dev, 0x00000e);
if (ret)
goto err;
ret = msi001_wreg(dev, 0x000003);
if (ret)
goto err;
reg = 0 << 0;
reg |= mode << 4;
reg |= filter_mode << 12;
reg |= bandwidth << 14;
reg |= 0x02 << 17;
reg |= 0x00 << 20;
ret = msi001_wreg(dev, reg);
if (ret)
goto err;
reg = 5 << 0;
reg |= k_thresh << 4;
reg |= 1 << 19;
reg |= 1 << 21;
ret = msi001_wreg(dev, reg);
if (ret)
goto err;
reg = 2 << 0;
reg |= k_frac << 4;
reg |= div_n << 16;
ret = msi001_wreg(dev, reg);
if (ret)
goto err;
ret = msi001_set_gain(dev, dev->lna_gain->cur.val,
dev->mixer_gain->cur.val, dev->if_gain->cur.val);
if (ret)
goto err;
reg = 6 << 0;
reg |= 63 << 4;
reg |= 4095 << 10;
ret = msi001_wreg(dev, reg);
if (ret)
goto err;
return 0;
err:
dev_dbg(&spi->dev, "failed %d\n", ret);
return ret;
}
static int msi001_standby(struct v4l2_subdev *sd)
{
struct msi001_dev *dev = sd_to_msi001_dev(sd);
return msi001_wreg(dev, 0x000000);
}
static int msi001_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *v)
{
struct msi001_dev *dev = sd_to_msi001_dev(sd);
struct spi_device *spi = dev->spi;
dev_dbg(&spi->dev, "index=%d\n", v->index);
strscpy(v->name, "Mirics MSi001", sizeof(v->name));
v->type = V4L2_TUNER_RF;
v->capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS;
v->rangelow = 49000000;
v->rangehigh = 960000000;
return 0;
}
static int msi001_s_tuner(struct v4l2_subdev *sd, const struct v4l2_tuner *v)
{
struct msi001_dev *dev = sd_to_msi001_dev(sd);
struct spi_device *spi = dev->spi;
dev_dbg(&spi->dev, "index=%d\n", v->index);
return 0;
}
static int msi001_g_frequency(struct v4l2_subdev *sd, struct v4l2_frequency *f)
{
struct msi001_dev *dev = sd_to_msi001_dev(sd);
struct spi_device *spi = dev->spi;
dev_dbg(&spi->dev, "tuner=%d\n", f->tuner);
f->frequency = dev->f_tuner;
return 0;
}
static int msi001_s_frequency(struct v4l2_subdev *sd,
const struct v4l2_frequency *f)
{
struct msi001_dev *dev = sd_to_msi001_dev(sd);
struct spi_device *spi = dev->spi;
unsigned int band;
dev_dbg(&spi->dev, "tuner=%d type=%d frequency=%u\n",
f->tuner, f->type, f->frequency);
if (f->frequency < ((bands[0].rangehigh + bands[1].rangelow) / 2))
band = 0;
else
band = 1;
dev->f_tuner = clamp_t(unsigned int, f->frequency,
bands[band].rangelow, bands[band].rangehigh);
return msi001_set_tuner(dev);
}
static int msi001_enum_freq_bands(struct v4l2_subdev *sd,
struct v4l2_frequency_band *band)
{
struct msi001_dev *dev = sd_to_msi001_dev(sd);
struct spi_device *spi = dev->spi;
dev_dbg(&spi->dev, "tuner=%d type=%d index=%d\n",
band->tuner, band->type, band->index);
if (band->index >= ARRAY_SIZE(bands))
return -EINVAL;
band->capability = bands[band->index].capability;
band->rangelow = bands[band->index].rangelow;
band->rangehigh = bands[band->index].rangehigh;
return 0;
}
static const struct v4l2_subdev_tuner_ops msi001_tuner_ops = {
.standby = msi001_standby,
.g_tuner = msi001_g_tuner,
.s_tuner = msi001_s_tuner,
.g_frequency = msi001_g_frequency,
.s_frequency = msi001_s_frequency,
.enum_freq_bands = msi001_enum_freq_bands,
};
static const struct v4l2_subdev_ops msi001_ops = {
.tuner = &msi001_tuner_ops,
};
static int msi001_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct msi001_dev *dev = container_of(ctrl->handler, struct msi001_dev, hdl);
struct spi_device *spi = dev->spi;
int ret;
dev_dbg(&spi->dev, "id=%d name=%s val=%d min=%lld max=%lld step=%lld\n",
ctrl->id, ctrl->name, ctrl->val, ctrl->minimum, ctrl->maximum,
ctrl->step);
switch (ctrl->id) {
case V4L2_CID_RF_TUNER_BANDWIDTH_AUTO:
case V4L2_CID_RF_TUNER_BANDWIDTH:
ret = msi001_set_tuner(dev);
break;
case V4L2_CID_RF_TUNER_LNA_GAIN:
ret = msi001_set_gain(dev, dev->lna_gain->val,
dev->mixer_gain->cur.val,
dev->if_gain->cur.val);
break;
case V4L2_CID_RF_TUNER_MIXER_GAIN:
ret = msi001_set_gain(dev, dev->lna_gain->cur.val,
dev->mixer_gain->val,
dev->if_gain->cur.val);
break;
case V4L2_CID_RF_TUNER_IF_GAIN:
ret = msi001_set_gain(dev, dev->lna_gain->cur.val,
dev->mixer_gain->cur.val,
dev->if_gain->val);
break;
default:
dev_dbg(&spi->dev, "unknown control %d\n", ctrl->id);
ret = -EINVAL;
}
return ret;
}
static const struct v4l2_ctrl_ops msi001_ctrl_ops = {
.s_ctrl = msi001_s_ctrl,
};
static int msi001_probe(struct spi_device *spi)
{
struct msi001_dev *dev;
int ret;
dev_dbg(&spi->dev, "\n");
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev) {
ret = -ENOMEM;
goto err;
}
dev->spi = spi;
dev->f_tuner = bands[0].rangelow;
v4l2_spi_subdev_init(&dev->sd, spi, &msi001_ops);
/* Register controls */
v4l2_ctrl_handler_init(&dev->hdl, 5);
dev->bandwidth_auto = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
V4L2_CID_RF_TUNER_BANDWIDTH_AUTO, 0, 1, 1, 1);
dev->bandwidth = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
V4L2_CID_RF_TUNER_BANDWIDTH, 200000, 8000000, 1, 200000);
v4l2_ctrl_auto_cluster(2, &dev->bandwidth_auto, 0, false);
dev->lna_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
V4L2_CID_RF_TUNER_LNA_GAIN, 0, 1, 1, 1);
dev->mixer_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
V4L2_CID_RF_TUNER_MIXER_GAIN, 0, 1, 1, 1);
dev->if_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
V4L2_CID_RF_TUNER_IF_GAIN, 0, 59, 1, 0);
if (dev->hdl.error) {
ret = dev->hdl.error;
dev_err(&spi->dev, "Could not initialize controls\n");
/* control init failed, free handler */
goto err_ctrl_handler_free;
}
dev->sd.ctrl_handler = &dev->hdl;
return 0;
err_ctrl_handler_free:
v4l2_ctrl_handler_free(&dev->hdl);
kfree(dev);
err:
return ret;
}
static int msi001_remove(struct spi_device *spi)
{
struct v4l2_subdev *sd = spi_get_drvdata(spi);
struct msi001_dev *dev = sd_to_msi001_dev(sd);
dev_dbg(&spi->dev, "\n");
/*
* Registered by v4l2_spi_new_subdev() from master driver, but we must
* unregister it from here. Weird.
*/
v4l2_device_unregister_subdev(&dev->sd);
v4l2_ctrl_handler_free(&dev->hdl);
kfree(dev);
return 0;
}
static const struct spi_device_id msi001_id_table[] = {
{"msi001", 0},
{}
};
MODULE_DEVICE_TABLE(spi, msi001_id_table);
static struct spi_driver msi001_driver = {
.driver = {
.name = "msi001",
.suppress_bind_attrs = true,
},
.probe = msi001_probe,
.remove = msi001_remove,
.id_table = msi001_id_table,
};
module_spi_driver(msi001_driver);
MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
MODULE_DESCRIPTION("Mirics MSi001");
MODULE_LICENSE("GPL");
|