/* * net/dsa/legacy.c - Hardware switch handling * Copyright (c) 2008-2009 Marvell Semiconductor * Copyright (c) 2013 Florian Fainelli * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dsa_priv.h" /* switch driver registration ***********************************************/ static DEFINE_MUTEX(dsa_switch_drivers_mutex); static LIST_HEAD(dsa_switch_drivers); void register_switch_driver(struct dsa_switch_driver *drv) { mutex_lock(&dsa_switch_drivers_mutex); list_add_tail(&drv->list, &dsa_switch_drivers); mutex_unlock(&dsa_switch_drivers_mutex); } EXPORT_SYMBOL_GPL(register_switch_driver); void unregister_switch_driver(struct dsa_switch_driver *drv) { mutex_lock(&dsa_switch_drivers_mutex); list_del_init(&drv->list); mutex_unlock(&dsa_switch_drivers_mutex); } EXPORT_SYMBOL_GPL(unregister_switch_driver); static const struct dsa_switch_ops * dsa_switch_probe(struct device *parent, struct device *host_dev, int sw_addr, const char **_name, void **priv) { const struct dsa_switch_ops *ret; struct list_head *list; const char *name; ret = NULL; name = NULL; mutex_lock(&dsa_switch_drivers_mutex); list_for_each(list, &dsa_switch_drivers) { const struct dsa_switch_ops *ops; struct dsa_switch_driver *drv; drv = list_entry(list, struct dsa_switch_driver, list); ops = drv->ops; name = ops->probe(parent, host_dev, sw_addr, priv); if (name != NULL) { ret = ops; break; } } mutex_unlock(&dsa_switch_drivers_mutex); *_name = name; return ret; } /* basic switch operations **************************************************/ static int dsa_cpu_dsa_setups(struct dsa_switch *ds) { struct dsa_port *dport; int ret, port; for (port = 0; port < ds->num_ports; port++) { if (!(dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port))) continue; dport = &ds->ports[port]; ret = dsa_cpu_dsa_setup(ds, ds->dev, dport, port); if (ret) return ret; } return 0; } static int dsa_switch_setup_one(struct dsa_switch *ds, struct net_device *master) { const struct dsa_switch_ops *ops = ds->ops; struct dsa_switch_tree *dst = ds->dst; struct dsa_chip_data *cd = ds->cd; bool valid_name_found = false; int index = ds->index; int i, ret; /* * Validate supplied switch configuration. */ for (i = 0; i < ds->num_ports; i++) { char *name; name = cd->port_names[i]; if (name == NULL) continue; if (!strcmp(name, "cpu")) { if (dst->cpu_dp) { netdev_err(master, "multiple cpu ports?!\n"); return -EINVAL; } dst->cpu_dp = &ds->ports[i]; dst->cpu_dp->netdev = master; ds->cpu_port_mask |= 1 << i; } else if (!strcmp(name, "dsa")) { ds->dsa_port_mask |= 1 << i; } else { ds->enabled_port_mask |= 1 << i; } valid_name_found = true; } if (!valid_name_found && i == ds->num_ports) return -EINVAL; /* Make the built-in MII bus mask match the number of ports, * switch drivers can override this later */ ds->phys_mii_mask = ds->enabled_port_mask; /* * If the CPU connects to this switch, set the switch tree * tagging protocol to the preferred tagging format of this * switch. */ if (dst->cpu_dp->ds == ds) { enum dsa_tag_protocol tag_protocol; tag_protocol = ops->get_tag_protocol(ds); dst->tag_ops = dsa_resolve_tag_protocol(tag_protocol); if (IS_ERR(dst->tag_ops)) return PTR_ERR(dst->tag_ops); dst->rcv = dst->tag_ops->rcv; } memcpy(ds->rtable, cd->rtable, sizeof(ds->rtable)); /* * Do basic register setup. */ ret = ops->setup(ds); if (ret < 0) return ret; ret = dsa_switch_register_notifier(ds); if (ret) return ret; if (ops->set_addr) { ret = ops->set_addr(ds, master->dev_addr); if (ret < 0) return ret; } if (!ds->slave_mii_bus && ops->phy_read) { ds->slave_mii_bus = devm_mdiobus_alloc(ds->dev); if (!ds->slave_mii_bus) return -ENOMEM; dsa_slave_mii_bus_init(ds); ret = mdiobus_register(ds->slave_mii_bus); if (ret < 0) return ret; } /* * Create network devices for physical switch ports. */ for (i = 0; i < ds->num_ports; i++) { ds->ports[i].dn = cd->port_dn[i]; ds->ports[i].cpu_dp = dst->cpu_dp; if (!(ds->enabled_port_mask & (1 << i))) continue; ret = dsa_slave_create(ds, ds->dev, i, cd->port_names[i]); if (ret < 0) netdev_err(master, "[%d]: can't create dsa slave device for port %d(%s): %d\n", index, i, cd->port_names[i], ret); } /* Perform configuration of the CPU and DSA ports */ ret = dsa_cpu_dsa_setups(ds); if (ret < 0) netdev_err(master, "[%d] : can't configure CPU and DSA ports\n", index); ret = dsa_cpu_port_ethtool_setup(ds->dst->cpu_dp); if (ret) return ret; return 0; } static struct dsa_switch * dsa_switch_setup(struct dsa_switch_tree *dst, struct net_device *master, int index, struct device *parent, struct device *host_dev) { struct dsa_chip_data *cd = dst->pd->chip + index; const struct dsa_switch_ops *ops; struct dsa_switch *ds; int ret; const char *name; void *priv; /* * Probe for switch model. */ ops = dsa_switch_probe(parent, host_dev, cd->sw_addr, &name, &priv); if (!ops) { netdev_err(master, "[%d]: could not detect attached switch\n", index); return ERR_PTR(-EINVAL); } netdev_info(master, "[%d]: detected a %s switch\n", index, name); /* * Allocate and initialise switch state. */ ds = dsa_switch_alloc(parent, DSA_MAX_PORTS); if (!ds) return ERR_PTR(-ENOMEM); ds->dst = dst; ds->index = index; ds->cd = cd; ds->ops = ops; ds->priv = priv; ret = dsa_switch_setup_one(ds, master); if (ret) return ERR_PTR(ret); return ds; } static void dsa_switch_destroy(struct dsa_switch *ds) { int port; /* Destroy network devices for physical switch ports. */ for (port = 0; port < ds->num_ports; port++) { if (!(ds->enabled_port_mask & (1 << port))) continue; if (!ds->ports[port].netdev) continue; dsa_slave_destroy(ds->ports[port].netdev); } /* Disable configuration of the CPU and DSA ports */ for (port = 0; port < ds->num_ports; port++) { if (!(dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port))) continue; dsa_cpu_dsa_destroy(&ds->ports[port]); /* Clearing a bit which is not set does no harm */ ds->cpu_port_mask |= ~(1 << port); ds->dsa_port_mask |= ~(1 << port); } if (ds->slave_mii_bus && ds->ops->phy_read) mdiobus_unregister(ds->slave_mii_bus); dsa_switch_unregister_notifier(ds); } /* platform driver init and cleanup *****************************************/ static int dev_is_class(struct device *dev, void *class) { if (dev->class != NULL && !strcmp(dev->class->name, class)) return 1; return 0; } static struct device *dev_find_class(struct device *parent, char *class) { if (dev_is_class(parent, class)) { get_device(parent); return parent; } return device_find_child(parent, class, dev_is_class); } struct mii_bus *dsa_host_dev_to_mii_bus(struct device *dev) { struct device *d; d = dev_find_class(dev, "mdio_bus"); if (d != NULL) { struct mii_bus *bus; bus = to_mii_bus(d); put_device(d); return bus; } return NULL; } EXPORT_SYMBOL_GPL(dsa_host_dev_to_mii_bus); #ifdef CONFIG_OF static int dsa_of_setup_routing_table(struct dsa_platform_data *pd, struct dsa_chip_data *cd, int chip_index, int port_index, struct device_node *link) { const __be32 *reg; int link_sw_addr; struct device_node *parent_sw; int len; parent_sw = of_get_parent(link); if (!parent_sw) return -EINVAL; reg = of_get_property(parent_sw, "reg", &len); if (!reg || (len != sizeof(*reg) * 2)) return -EINVAL; /* * Get the destination switch number from the second field of its 'reg' * property, i.e. for "reg = <0x19 1>" sw_addr is '1'. */ link_sw_addr = be32_to_cpup(reg + 1); if (link_sw_addr >= pd->nr_chips) return -EINVAL; cd->rtable[link_sw_addr] = port_index; return 0; } static int dsa_of_probe_links(struct dsa_platform_data *pd, struct dsa_chip_data *cd, int chip_index, int port_index, struct device_node *port, const char *port_name) { struct device_node *link; int link_index; int ret; for (link_index = 0;; link_index++) { link = of_parse_phandle(port, "link", link_index); if (!link) break; if (!strcmp(port_name, "dsa") && pd->nr_chips > 1) { ret = dsa_of_setup_routing_table(pd, cd, chip_index, port_index, link); if (ret) return ret; } } return 0; } static void dsa_of_free_platform_data(struct dsa_platform_data *pd) { int i; int port_index; for (i = 0; i < pd->nr_chips; i++) { port_index = 0; while (port_index < DSA_MAX_PORTS) { kfree(pd->chip[i].port_names[port_index]); port_index++; } /* Drop our reference to the MDIO bus device */ if (pd->chip[i].host_dev) put_device(pd->chip[i].host_dev); } kfree(pd->chip); } static int dsa_of_probe(struct device *dev) { struct device_node *np = dev->of_node; struct device_node *child, *mdio, *ethernet, *port; struct mii_bus *mdio_bus, *mdio_bus_switch; struct net_device *ethernet_dev; struct dsa_platform_data *pd; struct dsa_chip_data *cd; const char *port_name; int chip_index, port_index; const unsigned int *sw_addr, *port_reg; u32 eeprom_len; int ret; mdio = of_parse_phandle(np, "dsa,mii-bus", 0); if (!mdio) return -EINVAL; mdio_bus = of_mdio_find_bus(mdio); if (!mdio_bus) return -EPROBE_DEFER; ethernet = of_parse_phandle(np, "dsa,ethernet", 0); if (!ethernet) { ret = -EINVAL; goto out_put_mdio; } ethernet_dev = of_find_net_device_by_node(ethernet); if (!ethernet_dev) { ret = -EPROBE_DEFER; goto out_put_mdio; } pd = kzalloc(sizeof(*pd), GFP_KERNEL); if (!pd) { ret = -ENOMEM; goto out_put_ethernet; } dev->platform_data = pd; pd->of_netdev = ethernet_dev; pd->nr_chips = of_get_available_child_count(np); if (pd->nr_chips > DSA_MAX_SWITCHES) pd->nr_chips = DSA_MAX_SWITCHES; pd->chip = kcalloc(pd->nr_chips, sizeof(struct dsa_chip_data), GFP_KERNEL); if (!pd->chip) { ret = -ENOMEM; goto out_free; } chip_index = -1; for_each_available_child_of_node(np, child) { int i; chip_index++; cd = &pd->chip[chip_index]; cd->of_node = child; /* Initialize the routing table */ for (i = 0; i < DSA_MAX_SWITCHES; ++i) cd->rtable[i] = DSA_RTABLE_NONE; /* When assigning the host device, increment its refcount */ cd->host_dev = get_device(&mdio_bus->dev); sw_addr = of_get_property(child, "reg", NULL); if (!sw_addr) continue; cd->sw_addr = be32_to_cpup(sw_addr); if (cd->sw_addr >= PHY_MAX_ADDR) continue; if (!of_property_read_u32(child, "eeprom-length", &eeprom_len)) cd->eeprom_len = eeprom_len; mdio = of_parse_phandle(child, "mii-bus", 0); if (mdio) { mdio_bus_switch = of_mdio_find_bus(mdio); if (!mdio_bus_switch) { ret = -EPROBE_DEFER; goto out_free_chip; } /* Drop the mdio_bus device ref, replacing the host * device with the mdio_bus_switch device, keeping * the refcount from of_mdio_find_bus() above. */ put_device(cd->host_dev); cd->host_dev = &mdio_bus_switch->dev; } for_each_available_child_of_node(child, port) { port_reg = of_get_property(port, "reg", NULL); if (!port_reg) continue; port_index = be32_to_cpup(port_reg); if (port_index >= DSA_MAX_PORTS) break; port_name = of_get_property(port, "label", NULL); if (!port_name) continue; cd->port_dn[port_index] = port; cd->port_names[port_index] = kstrdup(port_name, GFP_KERNEL); if (!cd->port_names[port_index]) { ret = -ENOMEM; goto out_free_chip; } ret = dsa_of_probe_links(pd, cd, chip_index, port_index, port, port_name); if (ret) goto out_free_chip; } } /* The individual chips hold their own refcount on the mdio bus, * so drop ours */ put_device(&mdio_bus->dev); return 0; out_free_chip: dsa_of_free_platform_data(pd); out_free: kfree(pd); dev->platform_data = NULL; out_put_ethernet: put_device(ðernet_dev->dev); out_put_mdio: put_device(&mdio_bus->dev); return ret; } static void dsa_of_remove(struct device *dev) { struct dsa_platform_data *pd = dev->platform_data; if (!dev->of_node) return; dsa_of_free_platform_data(pd); put_device(&pd->of_netdev->dev); kfree(pd); } #else static inline int dsa_of_probe(struct device *dev) { return 0; } static inline void dsa_of_remove(struct device *dev) { } #endif static int dsa_setup_dst(struct dsa_switch_tree *dst, struct net_device *dev, struct device *parent, struct dsa_platform_data *pd) { int i; unsigned configured = 0; dst->pd = pd; for (i = 0; i < pd->nr_chips; i++) { struct dsa_switch *ds; ds = dsa_switch_setup(dst, dev, i, parent, pd->chip[i].host_dev); if (IS_ERR(ds)) { netdev_err(dev, "[%d]: couldn't create dsa switch instance (error %ld)\n", i, PTR_ERR(ds)); continue; } dst->ds[i] = ds; ++configured; } /* * If no switch was found, exit cleanly */ if (!configured) return -EPROBE_DEFER; /* * If we use a tagging format that doesn't have an ethertype * field, make sure that all packets from this point on get * sent to the tag format's receive function. */ wmb(); dev->dsa_ptr = dst; return 0; } static int dsa_probe(struct platform_device *pdev) { struct dsa_platform_data *pd = pdev->dev.platform_data; struct net_device *dev; struct dsa_switch_tree *dst; int ret; if (pdev->dev.of_node) { ret = dsa_of_probe(&pdev->dev); if (ret) return ret; pd = pdev->dev.platform_data; } if (pd == NULL || (pd->netdev == NULL && pd->of_netdev == NULL)) return -EINVAL; if (pd->of_netdev) { dev = pd->of_netdev; dev_hold(dev); } else { dev = dsa_dev_to_net_device(pd->netdev); } if (dev == NULL) { ret = -EPROBE_DEFER; goto out; } if (dev->dsa_ptr != NULL) { dev_put(dev); ret = -EEXIST; goto out; } dst = devm_kzalloc(&pdev->dev, sizeof(*dst), GFP_KERNEL); if (dst == NULL) { dev_put(dev); ret = -ENOMEM; goto out; } platform_set_drvdata(pdev, dst); ret = dsa_setup_dst(dst, dev, &pdev->dev, pd); if (ret) { dev_put(dev); goto out; } return 0; out: dsa_of_remove(&pdev->dev); return ret; } static void dsa_remove_dst(struct dsa_switch_tree *dst) { int i; dst->cpu_dp->netdev->dsa_ptr = NULL; /* If we used a tagging format that doesn't have an ethertype * field, make sure that all packets from this point get sent * without the tag and go through the regular receive path. */ wmb(); for (i = 0; i < dst->pd->nr_chips; i++) { struct dsa_switch *ds = dst->ds[i]; if (ds) dsa_switch_destroy(ds); } dsa_cpu_port_ethtool_restore(dst->cpu_dp); dev_put(dst->cpu_dp->netdev); } static int dsa_remove(struct platform_device *pdev) { struct dsa_switch_tree *dst = platform_get_drvdata(pdev); dsa_remove_dst(dst); dsa_of_remove(&pdev->dev); return 0; } static void dsa_shutdown(struct platform_device *pdev) { } #ifdef CONFIG_PM_SLEEP static int dsa_suspend(struct device *d) { struct platform_device *pdev = to_platform_device(d); struct dsa_switch_tree *dst = platform_get_drvdata(pdev); int i, ret = 0; for (i = 0; i < dst->pd->nr_chips; i++) { struct dsa_switch *ds = dst->ds[i]; if (ds != NULL) ret = dsa_switch_suspend(ds); } return ret; } static int dsa_resume(struct device *d) { struct platform_device *pdev = to_platform_device(d); struct dsa_switch_tree *dst = platform_get_drvdata(pdev); int i, ret = 0; for (i = 0; i < dst->pd->nr_chips; i++) { struct dsa_switch *ds = dst->ds[i]; if (ds != NULL) ret = dsa_switch_resume(ds); } return ret; } #endif static SIMPLE_DEV_PM_OPS(dsa_pm_ops, dsa_suspend, dsa_resume); static const struct of_device_id dsa_of_match_table[] = { { .compatible = "marvell,dsa", }, {} }; MODULE_DEVICE_TABLE(of, dsa_of_match_table); static struct platform_driver dsa_driver = { .probe = dsa_probe, .remove = dsa_remove, .shutdown = dsa_shutdown, .driver = { .name = "dsa", .of_match_table = dsa_of_match_table, .pm = &dsa_pm_ops, }, }; int dsa_legacy_register(void) { return platform_driver_register(&dsa_driver); } void dsa_legacy_unregister(void) { platform_driver_unregister(&dsa_driver); }