/* SPDX-License-Identifier: GPL-2.0-or-later */ /* memcontrol.h - Memory Controller * * Copyright IBM Corporation, 2007 * Author Balbir Singh * * Copyright 2007 OpenVZ SWsoft Inc * Author: Pavel Emelianov */ #ifndef _LINUX_MEMCONTROL_H #define _LINUX_MEMCONTROL_H #include #include #include #include #include #include #include #include #include #include #include struct mem_cgroup; struct obj_cgroup; struct page; struct mm_struct; struct kmem_cache; /* Cgroup-specific page state, on top of universal node page state */ enum memcg_stat_item { MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, MEMCG_SOCK, MEMCG_PERCPU_B, MEMCG_NR_STAT, }; enum memcg_memory_event { MEMCG_LOW, MEMCG_HIGH, MEMCG_MAX, MEMCG_OOM, MEMCG_OOM_KILL, MEMCG_SWAP_HIGH, MEMCG_SWAP_MAX, MEMCG_SWAP_FAIL, MEMCG_NR_MEMORY_EVENTS, }; struct mem_cgroup_reclaim_cookie { pg_data_t *pgdat; unsigned int generation; }; #ifdef CONFIG_MEMCG #define MEM_CGROUP_ID_SHIFT 16 #define MEM_CGROUP_ID_MAX USHRT_MAX struct mem_cgroup_id { int id; refcount_t ref; }; /* * Per memcg event counter is incremented at every pagein/pageout. With THP, * it will be incremented by the number of pages. This counter is used * to trigger some periodic events. This is straightforward and better * than using jiffies etc. to handle periodic memcg event. */ enum mem_cgroup_events_target { MEM_CGROUP_TARGET_THRESH, MEM_CGROUP_TARGET_SOFTLIMIT, MEM_CGROUP_NTARGETS, }; struct memcg_vmstats_percpu { /* Local (CPU and cgroup) page state & events */ long state[MEMCG_NR_STAT]; unsigned long events[NR_VM_EVENT_ITEMS]; /* Delta calculation for lockless upward propagation */ long state_prev[MEMCG_NR_STAT]; unsigned long events_prev[NR_VM_EVENT_ITEMS]; /* Cgroup1: threshold notifications & softlimit tree updates */ unsigned long nr_page_events; unsigned long targets[MEM_CGROUP_NTARGETS]; }; struct memcg_vmstats { /* Aggregated (CPU and subtree) page state & events */ long state[MEMCG_NR_STAT]; unsigned long events[NR_VM_EVENT_ITEMS]; /* Pending child counts during tree propagation */ long state_pending[MEMCG_NR_STAT]; unsigned long events_pending[NR_VM_EVENT_ITEMS]; }; struct mem_cgroup_reclaim_iter { struct mem_cgroup *position; /* scan generation, increased every round-trip */ unsigned int generation; }; /* * Bitmap and deferred work of shrinker::id corresponding to memcg-aware * shrinkers, which have elements charged to this memcg. */ struct shrinker_info { struct rcu_head rcu; atomic_long_t *nr_deferred; unsigned long *map; }; struct lruvec_stats_percpu { /* Local (CPU and cgroup) state */ long state[NR_VM_NODE_STAT_ITEMS]; /* Delta calculation for lockless upward propagation */ long state_prev[NR_VM_NODE_STAT_ITEMS]; }; struct lruvec_stats { /* Aggregated (CPU and subtree) state */ long state[NR_VM_NODE_STAT_ITEMS]; /* Pending child counts during tree propagation */ long state_pending[NR_VM_NODE_STAT_ITEMS]; }; /* * per-node information in memory controller. */ struct mem_cgroup_per_node { struct lruvec lruvec; struct lruvec_stats_percpu __percpu *lruvec_stats_percpu; struct lruvec_stats lruvec_stats; unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; struct mem_cgroup_reclaim_iter iter; struct shrinker_info __rcu *shrinker_info; struct rb_node tree_node; /* RB tree node */ unsigned long usage_in_excess;/* Set to the value by which */ /* the soft limit is exceeded*/ bool on_tree; struct mem_cgroup *memcg; /* Back pointer, we cannot */ /* use container_of */ }; struct mem_cgroup_threshold { struct eventfd_ctx *eventfd; unsigned long threshold; }; /* For threshold */ struct mem_cgroup_threshold_ary { /* An array index points to threshold just below or equal to usage. */ int current_threshold; /* Size of entries[] */ unsigned int size; /* Array of thresholds */ struct mem_cgroup_threshold entries[]; }; struct mem_cgroup_thresholds { /* Primary thresholds array */ struct mem_cgroup_threshold_ary *primary; /* * Spare threshold array. * This is needed to make mem_cgroup_unregister_event() "never fail". * It must be able to store at least primary->size - 1 entries. */ struct mem_cgroup_threshold_ary *spare; }; enum memcg_kmem_state { KMEM_NONE, KMEM_ALLOCATED, KMEM_ONLINE, }; #if defined(CONFIG_SMP) struct memcg_padding { char x[0]; } ____cacheline_internodealigned_in_smp; #define MEMCG_PADDING(name) struct memcg_padding name #else #define MEMCG_PADDING(name) #endif /* * Remember four most recent foreign writebacks with dirty pages in this * cgroup. Inode sharing is expected to be uncommon and, even if we miss * one in a given round, we're likely to catch it later if it keeps * foreign-dirtying, so a fairly low count should be enough. * * See mem_cgroup_track_foreign_dirty_slowpath() for details. */ #define MEMCG_CGWB_FRN_CNT 4 struct memcg_cgwb_frn { u64 bdi_id; /* bdi->id of the foreign inode */ int memcg_id; /* memcg->css.id of foreign inode */ u64 at; /* jiffies_64 at the time of dirtying */ struct wb_completion done; /* tracks in-flight foreign writebacks */ }; /* * Bucket for arbitrarily byte-sized objects charged to a memory * cgroup. The bucket can be reparented in one piece when the cgroup * is destroyed, without having to round up the individual references * of all live memory objects in the wild. */ struct obj_cgroup { struct percpu_ref refcnt; struct mem_cgroup *memcg; atomic_t nr_charged_bytes; union { struct list_head list; /* protected by objcg_lock */ struct rcu_head rcu; }; }; /* * The memory controller data structure. The memory controller controls both * page cache and RSS per cgroup. We would eventually like to provide * statistics based on the statistics developed by Rik Van Riel for clock-pro, * to help the administrator determine what knobs to tune. */ struct mem_cgroup { struct cgroup_subsys_state css; /* Private memcg ID. Used to ID objects that outlive the cgroup */ struct mem_cgroup_id id; /* Accounted resources */ struct page_counter memory; /* Both v1 & v2 */ union { struct page_counter swap; /* v2 only */ struct page_counter memsw; /* v1 only */ }; /* Legacy consumer-oriented counters */ struct page_counter kmem; /* v1 only */ struct page_counter tcpmem; /* v1 only */ /* Range enforcement for interrupt charges */ struct work_struct high_work; unsigned long soft_limit; /* vmpressure notifications */ struct vmpressure vmpressure; /* * Should the OOM killer kill all belonging tasks, had it kill one? */ bool oom_group; /* protected by memcg_oom_lock */ bool oom_lock; int under_oom; int swappiness; /* OOM-Killer disable */ int oom_kill_disable; /* memory.events and memory.events.local */ struct cgroup_file events_file; struct cgroup_file events_local_file; /* handle for "memory.swap.events" */ struct cgroup_file swap_events_file; /* protect arrays of thresholds */ struct mutex thresholds_lock; /* thresholds for memory usage. RCU-protected */ struct mem_cgroup_thresholds thresholds; /* thresholds for mem+swap usage. RCU-protected */ struct mem_cgroup_thresholds memsw_thresholds; /* For oom notifier event fd */ struct list_head oom_notify; /* * Should we move charges of a task when a task is moved into this * mem_cgroup ? And what type of charges should we move ? */ unsigned long move_charge_at_immigrate; /* taken only while moving_account > 0 */ spinlock_t move_lock; unsigned long move_lock_flags; MEMCG_PADDING(_pad1_); /* memory.stat */ struct memcg_vmstats vmstats; /* memory.events */ atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; unsigned long socket_pressure; /* Legacy tcp memory accounting */ bool tcpmem_active; int tcpmem_pressure; #ifdef CONFIG_MEMCG_KMEM int kmemcg_id; enum memcg_kmem_state kmem_state; struct obj_cgroup __rcu *objcg; /* list of inherited objcgs, protected by objcg_lock */ struct list_head objcg_list; #endif MEMCG_PADDING(_pad2_); /* * set > 0 if pages under this cgroup are moving to other cgroup. */ atomic_t moving_account; struct task_struct *move_lock_task; struct memcg_vmstats_percpu __percpu *vmstats_percpu; #ifdef CONFIG_CGROUP_WRITEBACK struct list_head cgwb_list; struct wb_domain cgwb_domain; struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; #endif /* List of events which userspace want to receive */ struct list_head event_list; spinlock_t event_list_lock; #ifdef CONFIG_TRANSPARENT_HUGEPAGE struct deferred_split deferred_split_queue; #endif struct mem_cgroup_per_node *nodeinfo[]; }; /* * size of first charge trial. "32" comes from vmscan.c's magic value. * TODO: maybe necessary to use big numbers in big irons. */ #define MEMCG_CHARGE_BATCH 32U extern struct mem_cgroup *root_mem_cgroup; enum page_memcg_data_flags { /* page->memcg_data is a pointer to an objcgs vector */ MEMCG_DATA_OBJCGS = (1UL << 0), /* page has been accounted as a non-slab kernel page */ MEMCG_DATA_KMEM = (1UL << 1), /* the next bit after the last actual flag */ __NR_MEMCG_DATA_FLAGS = (1UL << 2), }; #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1) static inline bool PageMemcgKmem(struct page *page); /* * After the initialization objcg->memcg is always pointing at * a valid memcg, but can be atomically swapped to the parent memcg. * * The caller must ensure that the returned memcg won't be released: * e.g. acquire the rcu_read_lock or css_set_lock. */ static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) { return READ_ONCE(objcg->memcg); } /* * __page_memcg - get the memory cgroup associated with a non-kmem page * @page: a pointer to the page struct * * Returns a pointer to the memory cgroup associated with the page, * or NULL. This function assumes that the page is known to have a * proper memory cgroup pointer. It's not safe to call this function * against some type of pages, e.g. slab pages or ex-slab pages or * kmem pages. */ static inline struct mem_cgroup *__page_memcg(struct page *page) { unsigned long memcg_data = page->memcg_data; VM_BUG_ON_PAGE(PageSlab(page), page); VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page); VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page); return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); } /* * __page_objcg - get the object cgroup associated with a kmem page * @page: a pointer to the page struct * * Returns a pointer to the object cgroup associated with the page, * or NULL. This function assumes that the page is known to have a * proper object cgroup pointer. It's not safe to call this function * against some type of pages, e.g. slab pages or ex-slab pages or * LRU pages. */ static inline struct obj_cgroup *__page_objcg(struct page *page) { unsigned long memcg_data = page->memcg_data; VM_BUG_ON_PAGE(PageSlab(page), page); VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page); VM_BUG_ON_PAGE(!(memcg_data & MEMCG_DATA_KMEM), page); return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); } /* * page_memcg - get the memory cgroup associated with a page * @page: a pointer to the page struct * * Returns a pointer to the memory cgroup associated with the page, * or NULL. This function assumes that the page is known to have a * proper memory cgroup pointer. It's not safe to call this function * against some type of pages, e.g. slab pages or ex-slab pages. * * For a non-kmem page any of the following ensures page and memcg binding * stability: * * - the page lock * - LRU isolation * - lock_page_memcg() * - exclusive reference * * For a kmem page a caller should hold an rcu read lock to protect memcg * associated with a kmem page from being released. */ static inline struct mem_cgroup *page_memcg(struct page *page) { if (PageMemcgKmem(page)) return obj_cgroup_memcg(__page_objcg(page)); else return __page_memcg(page); } /* * page_memcg_rcu - locklessly get the memory cgroup associated with a page * @page: a pointer to the page struct * * Returns a pointer to the memory cgroup associated with the page, * or NULL. This function assumes that the page is known to have a * proper memory cgroup pointer. It's not safe to call this function * against some type of pages, e.g. slab pages or ex-slab pages. */ static inline struct mem_cgroup *page_memcg_rcu(struct page *page) { unsigned long memcg_data = READ_ONCE(page->memcg_data); VM_BUG_ON_PAGE(PageSlab(page), page); WARN_ON_ONCE(!rcu_read_lock_held()); if (memcg_data & MEMCG_DATA_KMEM) { struct obj_cgroup *objcg; objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); return obj_cgroup_memcg(objcg); } return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); } /* * page_memcg_check - get the memory cgroup associated with a page * @page: a pointer to the page struct * * Returns a pointer to the memory cgroup associated with the page, * or NULL. This function unlike page_memcg() can take any page * as an argument. It has to be used in cases when it's not known if a page * has an associated memory cgroup pointer or an object cgroups vector or * an object cgroup. * * For a non-kmem page any of the following ensures page and memcg binding * stability: * * - the page lock * - LRU isolation * - lock_page_memcg() * - exclusive reference * * For a kmem page a caller should hold an rcu read lock to protect memcg * associated with a kmem page from being released. */ static inline struct mem_cgroup *page_memcg_check(struct page *page) { /* * Because page->memcg_data might be changed asynchronously * for slab pages, READ_ONCE() should be used here. */ unsigned long memcg_data = READ_ONCE(page->memcg_data); if (memcg_data & MEMCG_DATA_OBJCGS) return NULL; if (memcg_data & MEMCG_DATA_KMEM) { struct obj_cgroup *objcg; objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); return obj_cgroup_memcg(objcg); } return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); } #ifdef CONFIG_MEMCG_KMEM /* * PageMemcgKmem - check if the page has MemcgKmem flag set * @page: a pointer to the page struct * * Checks if the page has MemcgKmem flag set. The caller must ensure that * the page has an associated memory cgroup. It's not safe to call this function * against some types of pages, e.g. slab pages. */ static inline bool PageMemcgKmem(struct page *page) { VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page); return page->memcg_data & MEMCG_DATA_KMEM; } /* * page_objcgs - get the object cgroups vector associated with a page * @page: a pointer to the page struct * * Returns a pointer to the object cgroups vector associated with the page, * or NULL. This function assumes that the page is known to have an * associated object cgroups vector. It's not safe to call this function * against pages, which might have an associated memory cgroup: e.g. * kernel stack pages. */ static inline struct obj_cgroup **page_objcgs(struct page *page) { unsigned long memcg_data = READ_ONCE(page->memcg_data); VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page); VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page); return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); } /* * page_objcgs_check - get the object cgroups vector associated with a page * @page: a pointer to the page struct * * Returns a pointer to the object cgroups vector associated with the page, * or NULL. This function is safe to use if the page can be directly associated * with a memory cgroup. */ static inline struct obj_cgroup **page_objcgs_check(struct page *page) { unsigned long memcg_data = READ_ONCE(page->memcg_data); if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS)) return NULL; VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page); return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); } #else static inline bool PageMemcgKmem(struct page *page) { return false; } static inline struct obj_cgroup **page_objcgs(struct page *page) { return NULL; } static inline struct obj_cgroup **page_objcgs_check(struct page *page) { return NULL; } #endif static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) { return (memcg == root_mem_cgroup); } static inline bool mem_cgroup_disabled(void) { return !cgroup_subsys_enabled(memory_cgrp_subsys); } static inline void mem_cgroup_protection(struct mem_cgroup *root, struct mem_cgroup *memcg, unsigned long *min, unsigned long *low) { *min = *low = 0; if (mem_cgroup_disabled()) return; /* * There is no reclaim protection applied to a targeted reclaim. * We are special casing this specific case here because * mem_cgroup_protected calculation is not robust enough to keep * the protection invariant for calculated effective values for * parallel reclaimers with different reclaim target. This is * especially a problem for tail memcgs (as they have pages on LRU) * which would want to have effective values 0 for targeted reclaim * but a different value for external reclaim. * * Example * Let's have global and A's reclaim in parallel: * | * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) * |\ * | C (low = 1G, usage = 2.5G) * B (low = 1G, usage = 0.5G) * * For the global reclaim * A.elow = A.low * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow * C.elow = min(C.usage, C.low) * * With the effective values resetting we have A reclaim * A.elow = 0 * B.elow = B.low * C.elow = C.low * * If the global reclaim races with A's reclaim then * B.elow = C.elow = 0 because children_low_usage > A.elow) * is possible and reclaiming B would be violating the protection. * */ if (root == memcg) return; *min = READ_ONCE(memcg->memory.emin); *low = READ_ONCE(memcg->memory.elow); } void mem_cgroup_calculate_protection(struct mem_cgroup *root, struct mem_cgroup *memcg); static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg) { /* * The root memcg doesn't account charges, and doesn't support * protection. */ return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg); } static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) { if (!mem_cgroup_supports_protection(memcg)) return false; return READ_ONCE(memcg->memory.elow) >= page_counter_read(&memcg->memory); } static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) { if (!mem_cgroup_supports_protection(memcg)) return false; return READ_ONCE(memcg->memory.emin) >= page_counter_read(&memcg->memory); } int __mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask); static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) { if (mem_cgroup_disabled()) return 0; return __mem_cgroup_charge(page, mm, gfp_mask); } int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm, gfp_t gfp, swp_entry_t entry); void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry); void __mem_cgroup_uncharge(struct page *page); static inline void mem_cgroup_uncharge(struct page *page) { if (mem_cgroup_disabled()) return; __mem_cgroup_uncharge(page); } void __mem_cgroup_uncharge_list(struct list_head *page_list); static inline void mem_cgroup_uncharge_list(struct list_head *page_list) { if (mem_cgroup_disabled()) return; __mem_cgroup_uncharge_list(page_list); } void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); /** * mem_cgroup_lruvec - get the lru list vector for a memcg & node * @memcg: memcg of the wanted lruvec * @pgdat: pglist_data * * Returns the lru list vector holding pages for a given @memcg & * @pgdat combination. This can be the node lruvec, if the memory * controller is disabled. */ static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, struct pglist_data *pgdat) { struct mem_cgroup_per_node *mz; struct lruvec *lruvec; if (mem_cgroup_disabled()) { lruvec = &pgdat->__lruvec; goto out; } if (!memcg) memcg = root_mem_cgroup; mz = memcg->nodeinfo[pgdat->node_id]; lruvec = &mz->lruvec; out: /* * Since a node can be onlined after the mem_cgroup was created, * we have to be prepared to initialize lruvec->pgdat here; * and if offlined then reonlined, we need to reinitialize it. */ if (unlikely(lruvec->pgdat != pgdat)) lruvec->pgdat = pgdat; return lruvec; } /** * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page * @page: the page * * This function relies on page->mem_cgroup being stable. */ static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page) { pg_data_t *pgdat = page_pgdat(page); struct mem_cgroup *memcg = page_memcg(page); VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page); return mem_cgroup_lruvec(memcg, pgdat); } struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); struct lruvec *lock_page_lruvec(struct page *page); struct lruvec *lock_page_lruvec_irq(struct page *page); struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags); #ifdef CONFIG_DEBUG_VM void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page); #else static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page) { } #endif static inline struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ return css ? container_of(css, struct mem_cgroup, css) : NULL; } static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) { return percpu_ref_tryget(&objcg->refcnt); } static inline void obj_cgroup_get(struct obj_cgroup *objcg) { percpu_ref_get(&objcg->refcnt); } static inline void obj_cgroup_get_many(struct obj_cgroup *objcg, unsigned long nr) { percpu_ref_get_many(&objcg->refcnt, nr); } static inline void obj_cgroup_put(struct obj_cgroup *objcg) { percpu_ref_put(&objcg->refcnt); } static inline void mem_cgroup_put(struct mem_cgroup *memcg) { if (memcg) css_put(&memcg->css); } #define mem_cgroup_from_counter(counter, member) \ container_of(counter, struct mem_cgroup, member) struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, struct mem_cgroup *, struct mem_cgroup_reclaim_cookie *); void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); int mem_cgroup_scan_tasks(struct mem_cgroup *, int (*)(struct task_struct *, void *), void *); static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) { if (mem_cgroup_disabled()) return 0; return memcg->id.id; } struct mem_cgroup *mem_cgroup_from_id(unsigned short id); static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) { return mem_cgroup_from_css(seq_css(m)); } static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) { struct mem_cgroup_per_node *mz; if (mem_cgroup_disabled()) return NULL; mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); return mz->memcg; } /** * parent_mem_cgroup - find the accounting parent of a memcg * @memcg: memcg whose parent to find * * Returns the parent memcg, or NULL if this is the root or the memory * controller is in legacy no-hierarchy mode. */ static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) { if (!memcg->memory.parent) return NULL; return mem_cgroup_from_counter(memcg->memory.parent, memory); } static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root) { if (root == memcg) return true; return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); } static inline bool mm_match_cgroup(struct mm_struct *mm, struct mem_cgroup *memcg) { struct mem_cgroup *task_memcg; bool match = false; rcu_read_lock(); task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); if (task_memcg) match = mem_cgroup_is_descendant(task_memcg, memcg); rcu_read_unlock(); return match; } struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); ino_t page_cgroup_ino(struct page *page); static inline bool mem_cgroup_online(struct mem_cgroup *memcg) { if (mem_cgroup_disabled()) return true; return !!(memcg->css.flags & CSS_ONLINE); } void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, int zid, int nr_pages); static inline unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) { struct mem_cgroup_per_node *mz; mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); } void mem_cgroup_handle_over_high(void); unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); unsigned long mem_cgroup_size(struct mem_cgroup *memcg); void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p); void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); static inline void mem_cgroup_enter_user_fault(void) { WARN_ON(current->in_user_fault); current->in_user_fault = 1; } static inline void mem_cgroup_exit_user_fault(void) { WARN_ON(!current->in_user_fault); current->in_user_fault = 0; } static inline bool task_in_memcg_oom(struct task_struct *p) { return p->memcg_in_oom; } bool mem_cgroup_oom_synchronize(bool wait); struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, struct mem_cgroup *oom_domain); void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); #ifdef CONFIG_MEMCG_SWAP extern bool cgroup_memory_noswap; #endif void lock_page_memcg(struct page *page); void unlock_page_memcg(struct page *page); void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) { unsigned long flags; local_irq_save(flags); __mod_memcg_state(memcg, idx, val); local_irq_restore(flags); } static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) { return READ_ONCE(memcg->vmstats.state[idx]); } static inline unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) { struct mem_cgroup_per_node *pn; if (mem_cgroup_disabled()) return node_page_state(lruvec_pgdat(lruvec), idx); pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); return READ_ONCE(pn->lruvec_stats.state[idx]); } static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, enum node_stat_item idx) { struct mem_cgroup_per_node *pn; long x = 0; int cpu; if (mem_cgroup_disabled()) return node_page_state(lruvec_pgdat(lruvec), idx); pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); for_each_possible_cpu(cpu) x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } void mem_cgroup_flush_stats(void); void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val); void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_lruvec_kmem_state(p, idx, val); local_irq_restore(flags); } static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_memcg_lruvec_state(lruvec, idx, val); local_irq_restore(flags); } void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count); static inline void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count) { unsigned long flags; local_irq_save(flags); __count_memcg_events(memcg, idx, count); local_irq_restore(flags); } static inline void count_memcg_page_event(struct page *page, enum vm_event_item idx) { struct mem_cgroup *memcg = page_memcg(page); if (memcg) count_memcg_events(memcg, idx, 1); } static inline void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) { struct mem_cgroup *memcg; if (mem_cgroup_disabled()) return; rcu_read_lock(); memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); if (likely(memcg)) count_memcg_events(memcg, idx, 1); rcu_read_unlock(); } static inline void memcg_memory_event(struct mem_cgroup *memcg, enum memcg_memory_event event) { bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || event == MEMCG_SWAP_FAIL; atomic_long_inc(&memcg->memory_events_local[event]); if (!swap_event) cgroup_file_notify(&memcg->events_local_file); do { atomic_long_inc(&memcg->memory_events[event]); if (swap_event) cgroup_file_notify(&memcg->swap_events_file); else cgroup_file_notify(&memcg->events_file); if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) break; if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) break; } while ((memcg = parent_mem_cgroup(memcg)) && !mem_cgroup_is_root(memcg)); } static inline void memcg_memory_event_mm(struct mm_struct *mm, enum memcg_memory_event event) { struct mem_cgroup *memcg; if (mem_cgroup_disabled()) return; rcu_read_lock(); memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); if (likely(memcg)) memcg_memory_event(memcg, event); rcu_read_unlock(); } void split_page_memcg(struct page *head, unsigned int nr); unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, gfp_t gfp_mask, unsigned long *total_scanned); #else /* CONFIG_MEMCG */ #define MEM_CGROUP_ID_SHIFT 0 #define MEM_CGROUP_ID_MAX 0 static inline struct mem_cgroup *page_memcg(struct page *page) { return NULL; } static inline struct mem_cgroup *page_memcg_rcu(struct page *page) { WARN_ON_ONCE(!rcu_read_lock_held()); return NULL; } static inline struct mem_cgroup *page_memcg_check(struct page *page) { return NULL; } static inline bool PageMemcgKmem(struct page *page) { return false; } static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) { return true; } static inline bool mem_cgroup_disabled(void) { return true; } static inline void memcg_memory_event(struct mem_cgroup *memcg, enum memcg_memory_event event) { } static inline void memcg_memory_event_mm(struct mm_struct *mm, enum memcg_memory_event event) { } static inline void mem_cgroup_protection(struct mem_cgroup *root, struct mem_cgroup *memcg, unsigned long *min, unsigned long *low) { *min = *low = 0; } static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, struct mem_cgroup *memcg) { } static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) { return false; } static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) { return false; } static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) { return 0; } static inline int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm, gfp_t gfp, swp_entry_t entry) { return 0; } static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) { } static inline void mem_cgroup_uncharge(struct page *page) { } static inline void mem_cgroup_uncharge_list(struct list_head *page_list) { } static inline void mem_cgroup_migrate(struct page *old, struct page *new) { } static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, struct pglist_data *pgdat) { return &pgdat->__lruvec; } static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page) { pg_data_t *pgdat = page_pgdat(page); return &pgdat->__lruvec; } static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page) { } static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) { return NULL; } static inline bool mm_match_cgroup(struct mm_struct *mm, struct mem_cgroup *memcg) { return true; } static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) { return NULL; } static inline struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css) { return NULL; } static inline void mem_cgroup_put(struct mem_cgroup *memcg) { } static inline struct lruvec *lock_page_lruvec(struct page *page) { struct pglist_data *pgdat = page_pgdat(page); spin_lock(&pgdat->__lruvec.lru_lock); return &pgdat->__lruvec; } static inline struct lruvec *lock_page_lruvec_irq(struct page *page) { struct pglist_data *pgdat = page_pgdat(page); spin_lock_irq(&pgdat->__lruvec.lru_lock); return &pgdat->__lruvec; } static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flagsp) { struct pglist_data *pgdat = page_pgdat(page); spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); return &pgdat->__lruvec; } static inline struct mem_cgroup * mem_cgroup_iter(struct mem_cgroup *root, struct mem_cgroup *prev, struct mem_cgroup_reclaim_cookie *reclaim) { return NULL; } static inline void mem_cgroup_iter_break(struct mem_cgroup *root, struct mem_cgroup *prev) { } static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, int (*fn)(struct task_struct *, void *), void *arg) { return 0; } static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) { return 0; } static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) { WARN_ON_ONCE(id); /* XXX: This should always return root_mem_cgroup */ return NULL; } static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) { return NULL; } static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) { return NULL; } static inline bool mem_cgroup_online(struct mem_cgroup *memcg) { return true; } static inline unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) { return 0; } static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) { return 0; } static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) { return 0; } static inline void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) { } static inline void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) { } static inline void lock_page_memcg(struct page *page) { } static inline void unlock_page_memcg(struct page *page) { } static inline void mem_cgroup_handle_over_high(void) { } static inline void mem_cgroup_enter_user_fault(void) { } static inline void mem_cgroup_exit_user_fault(void) { } static inline bool task_in_memcg_oom(struct task_struct *p) { return false; } static inline bool mem_cgroup_oom_synchronize(bool wait) { return false; } static inline struct mem_cgroup *mem_cgroup_get_oom_group( struct task_struct *victim, struct mem_cgroup *oom_domain) { return NULL; } static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) { } static inline void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int nr) { } static inline void mod_memcg_state(struct mem_cgroup *memcg, int idx, int nr) { } static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) { return 0; } static inline unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) { return node_page_state(lruvec_pgdat(lruvec), idx); } static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, enum node_stat_item idx) { return node_page_state(lruvec_pgdat(lruvec), idx); } static inline void mem_cgroup_flush_stats(void) { } static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { } static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) { struct page *page = virt_to_head_page(p); __mod_node_page_state(page_pgdat(page), idx, val); } static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) { struct page *page = virt_to_head_page(p); mod_node_page_state(page_pgdat(page), idx, val); } static inline void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count) { } static inline void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count) { } static inline void count_memcg_page_event(struct page *page, int idx) { } static inline void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) { } static inline void split_page_memcg(struct page *head, unsigned int nr) { } static inline unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, gfp_t gfp_mask, unsigned long *total_scanned) { return 0; } #endif /* CONFIG_MEMCG */ static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) { __mod_lruvec_kmem_state(p, idx, 1); } static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) { __mod_lruvec_kmem_state(p, idx, -1); } static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) { struct mem_cgroup *memcg; memcg = lruvec_memcg(lruvec); if (!memcg) return NULL; memcg = parent_mem_cgroup(memcg); if (!memcg) return NULL; return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); } static inline void unlock_page_lruvec(struct lruvec *lruvec) { spin_unlock(&lruvec->lru_lock); } static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) { spin_unlock_irq(&lruvec->lru_lock); } static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, unsigned long flags) { spin_unlock_irqrestore(&lruvec->lru_lock, flags); } /* Test requires a stable page->memcg binding, see page_memcg() */ static inline bool page_matches_lruvec(struct page *page, struct lruvec *lruvec) { return lruvec_pgdat(lruvec) == page_pgdat(page) && lruvec_memcg(lruvec) == page_memcg(page); } /* Don't lock again iff page's lruvec locked */ static inline struct lruvec *relock_page_lruvec_irq(struct page *page, struct lruvec *locked_lruvec) { if (locked_lruvec) { if (page_matches_lruvec(page, locked_lruvec)) return locked_lruvec; unlock_page_lruvec_irq(locked_lruvec); } return lock_page_lruvec_irq(page); } /* Don't lock again iff page's lruvec locked */ static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page, struct lruvec *locked_lruvec, unsigned long *flags) { if (locked_lruvec) { if (page_matches_lruvec(page, locked_lruvec)) return locked_lruvec; unlock_page_lruvec_irqrestore(locked_lruvec, *flags); } return lock_page_lruvec_irqsave(page, flags); } #ifdef CONFIG_CGROUP_WRITEBACK struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, unsigned long *pheadroom, unsigned long *pdirty, unsigned long *pwriteback); void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, struct bdi_writeback *wb); static inline void mem_cgroup_track_foreign_dirty(struct page *page, struct bdi_writeback *wb) { if (mem_cgroup_disabled()) return; if (unlikely(&page_memcg(page)->css != wb->memcg_css)) mem_cgroup_track_foreign_dirty_slowpath(page, wb); } void mem_cgroup_flush_foreign(struct bdi_writeback *wb); #else /* CONFIG_CGROUP_WRITEBACK */ static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) { return NULL; } static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, unsigned long *pheadroom, unsigned long *pdirty, unsigned long *pwriteback) { } static inline void mem_cgroup_track_foreign_dirty(struct page *page, struct bdi_writeback *wb) { } static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) { } #endif /* CONFIG_CGROUP_WRITEBACK */ struct sock; bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, gfp_t gfp_mask); void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); #ifdef CONFIG_MEMCG extern struct static_key_false memcg_sockets_enabled_key; #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) void mem_cgroup_sk_alloc(struct sock *sk); void mem_cgroup_sk_free(struct sock *sk); static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) { if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) return true; do { if (time_before(jiffies, memcg->socket_pressure)) return true; } while ((memcg = parent_mem_cgroup(memcg))); return false; } int alloc_shrinker_info(struct mem_cgroup *memcg); void free_shrinker_info(struct mem_cgroup *memcg); void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); void reparent_shrinker_deferred(struct mem_cgroup *memcg); #else #define mem_cgroup_sockets_enabled 0 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; static inline void mem_cgroup_sk_free(struct sock *sk) { }; static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) { return false; } static inline void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) { } #endif #ifdef CONFIG_MEMCG_KMEM bool mem_cgroup_kmem_disabled(void); int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); void __memcg_kmem_uncharge_page(struct page *page, int order); struct obj_cgroup *get_obj_cgroup_from_current(void); int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); extern struct static_key_false memcg_kmem_enabled_key; extern int memcg_nr_cache_ids; void memcg_get_cache_ids(void); void memcg_put_cache_ids(void); /* * Helper macro to loop through all memcg-specific caches. Callers must still * check if the cache is valid (it is either valid or NULL). * the slab_mutex must be held when looping through those caches */ #define for_each_memcg_cache_index(_idx) \ for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) static inline bool memcg_kmem_enabled(void) { return static_branch_likely(&memcg_kmem_enabled_key); } static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) { if (memcg_kmem_enabled()) return __memcg_kmem_charge_page(page, gfp, order); return 0; } static inline void memcg_kmem_uncharge_page(struct page *page, int order) { if (memcg_kmem_enabled()) __memcg_kmem_uncharge_page(page, order); } /* * A helper for accessing memcg's kmem_id, used for getting * corresponding LRU lists. */ static inline int memcg_cache_id(struct mem_cgroup *memcg) { return memcg ? memcg->kmemcg_id : -1; } struct mem_cgroup *mem_cgroup_from_obj(void *p); #else static inline bool mem_cgroup_kmem_disabled(void) { return true; } static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) { return 0; } static inline void memcg_kmem_uncharge_page(struct page *page, int order) { } static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) { return 0; } static inline void __memcg_kmem_uncharge_page(struct page *page, int order) { } #define for_each_memcg_cache_index(_idx) \ for (; NULL; ) static inline bool memcg_kmem_enabled(void) { return false; } static inline int memcg_cache_id(struct mem_cgroup *memcg) { return -1; } static inline void memcg_get_cache_ids(void) { } static inline void memcg_put_cache_ids(void) { } static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) { return NULL; } #endif /* CONFIG_MEMCG_KMEM */ #endif /* _LINUX_MEMCONTROL_H */