/* * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_mount.h" #include "xfs_inode.h" #include "xfs_trans.h" #include "xfs_inode_item.h" #include "xfs_alloc.h" #include "xfs_btree.h" #include "xfs_bmap_btree.h" #include "xfs_bmap.h" #include "xfs_error.h" #include "xfs_quota.h" #include "xfs_trace.h" #include "xfs_cksum.h" /* * Determine the extent state. */ /* ARGSUSED */ STATIC xfs_exntst_t xfs_extent_state( xfs_filblks_t blks, int extent_flag) { if (extent_flag) { ASSERT(blks != 0); /* saved for DMIG */ return XFS_EXT_UNWRITTEN; } return XFS_EXT_NORM; } /* * Convert on-disk form of btree root to in-memory form. */ void xfs_bmdr_to_bmbt( struct xfs_inode *ip, xfs_bmdr_block_t *dblock, int dblocklen, struct xfs_btree_block *rblock, int rblocklen) { struct xfs_mount *mp = ip->i_mount; int dmxr; xfs_bmbt_key_t *fkp; __be64 *fpp; xfs_bmbt_key_t *tkp; __be64 *tpp; if (xfs_sb_version_hascrc(&mp->m_sb)) xfs_btree_init_block_int(mp, rblock, XFS_BUF_DADDR_NULL, XFS_BMAP_CRC_MAGIC, 0, 0, ip->i_ino, XFS_BTREE_LONG_PTRS | XFS_BTREE_CRC_BLOCKS); else xfs_btree_init_block_int(mp, rblock, XFS_BUF_DADDR_NULL, XFS_BMAP_MAGIC, 0, 0, ip->i_ino, XFS_BTREE_LONG_PTRS); rblock->bb_level = dblock->bb_level; ASSERT(be16_to_cpu(rblock->bb_level) > 0); rblock->bb_numrecs = dblock->bb_numrecs; dmxr = xfs_bmdr_maxrecs(dblocklen, 0); fkp = XFS_BMDR_KEY_ADDR(dblock, 1); tkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1); fpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr); tpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen); dmxr = be16_to_cpu(dblock->bb_numrecs); memcpy(tkp, fkp, sizeof(*fkp) * dmxr); memcpy(tpp, fpp, sizeof(*fpp) * dmxr); } /* * Convert a compressed bmap extent record to an uncompressed form. * This code must be in sync with the routines xfs_bmbt_get_startoff, * xfs_bmbt_get_startblock, xfs_bmbt_get_blockcount and xfs_bmbt_get_state. */ STATIC void __xfs_bmbt_get_all( __uint64_t l0, __uint64_t l1, xfs_bmbt_irec_t *s) { int ext_flag; xfs_exntst_t st; ext_flag = (int)(l0 >> (64 - BMBT_EXNTFLAG_BITLEN)); s->br_startoff = ((xfs_fileoff_t)l0 & xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; s->br_startblock = (((xfs_fsblock_t)l0 & xfs_mask64lo(9)) << 43) | (((xfs_fsblock_t)l1) >> 21); s->br_blockcount = (xfs_filblks_t)(l1 & xfs_mask64lo(21)); /* This is xfs_extent_state() in-line */ if (ext_flag) { ASSERT(s->br_blockcount != 0); /* saved for DMIG */ st = XFS_EXT_UNWRITTEN; } else st = XFS_EXT_NORM; s->br_state = st; } void xfs_bmbt_get_all( xfs_bmbt_rec_host_t *r, xfs_bmbt_irec_t *s) { __xfs_bmbt_get_all(r->l0, r->l1, s); } /* * Extract the blockcount field from an in memory bmap extent record. */ xfs_filblks_t xfs_bmbt_get_blockcount( xfs_bmbt_rec_host_t *r) { return (xfs_filblks_t)(r->l1 & xfs_mask64lo(21)); } /* * Extract the startblock field from an in memory bmap extent record. */ xfs_fsblock_t xfs_bmbt_get_startblock( xfs_bmbt_rec_host_t *r) { return (((xfs_fsblock_t)r->l0 & xfs_mask64lo(9)) << 43) | (((xfs_fsblock_t)r->l1) >> 21); } /* * Extract the startoff field from an in memory bmap extent record. */ xfs_fileoff_t xfs_bmbt_get_startoff( xfs_bmbt_rec_host_t *r) { return ((xfs_fileoff_t)r->l0 & xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; } xfs_exntst_t xfs_bmbt_get_state( xfs_bmbt_rec_host_t *r) { int ext_flag; ext_flag = (int)((r->l0) >> (64 - BMBT_EXNTFLAG_BITLEN)); return xfs_extent_state(xfs_bmbt_get_blockcount(r), ext_flag); } /* * Extract the blockcount field from an on disk bmap extent record. */ xfs_filblks_t xfs_bmbt_disk_get_blockcount( xfs_bmbt_rec_t *r) { return (xfs_filblks_t)(be64_to_cpu(r->l1) & xfs_mask64lo(21)); } /* * Extract the startoff field from a disk format bmap extent record. */ xfs_fileoff_t xfs_bmbt_disk_get_startoff( xfs_bmbt_rec_t *r) { return ((xfs_fileoff_t)be64_to_cpu(r->l0) & xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9; } /* * Set all the fields in a bmap extent record from the arguments. */ void xfs_bmbt_set_allf( xfs_bmbt_rec_host_t *r, xfs_fileoff_t startoff, xfs_fsblock_t startblock, xfs_filblks_t blockcount, xfs_exntst_t state) { int extent_flag = (state == XFS_EXT_NORM) ? 0 : 1; ASSERT(state == XFS_EXT_NORM || state == XFS_EXT_UNWRITTEN); ASSERT((startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN)) == 0); ASSERT((blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN)) == 0); ASSERT((startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN)) == 0); r->l0 = ((xfs_bmbt_rec_base_t)extent_flag << 63) | ((xfs_bmbt_rec_base_t)startoff << 9) | ((xfs_bmbt_rec_base_t)startblock >> 43); r->l1 = ((xfs_bmbt_rec_base_t)startblock << 21) | ((xfs_bmbt_rec_base_t)blockcount & (xfs_bmbt_rec_base_t)xfs_mask64lo(21)); } /* * Set all the fields in a bmap extent record from the uncompressed form. */ void xfs_bmbt_set_all( xfs_bmbt_rec_host_t *r, xfs_bmbt_irec_t *s) { xfs_bmbt_set_allf(r, s->br_startoff, s->br_startblock, s->br_blockcount, s->br_state); } /* * Set all the fields in a disk format bmap extent record from the arguments. */ void xfs_bmbt_disk_set_allf( xfs_bmbt_rec_t *r, xfs_fileoff_t startoff, xfs_fsblock_t startblock, xfs_filblks_t blockcount, xfs_exntst_t state) { int extent_flag = (state == XFS_EXT_NORM) ? 0 : 1; ASSERT(state == XFS_EXT_NORM || state == XFS_EXT_UNWRITTEN); ASSERT((startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN)) == 0); ASSERT((blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN)) == 0); ASSERT((startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN)) == 0); r->l0 = cpu_to_be64( ((xfs_bmbt_rec_base_t)extent_flag << 63) | ((xfs_bmbt_rec_base_t)startoff << 9) | ((xfs_bmbt_rec_base_t)startblock >> 43)); r->l1 = cpu_to_be64( ((xfs_bmbt_rec_base_t)startblock << 21) | ((xfs_bmbt_rec_base_t)blockcount & (xfs_bmbt_rec_base_t)xfs_mask64lo(21))); } /* * Set all the fields in a bmap extent record from the uncompressed form. */ STATIC void xfs_bmbt_disk_set_all( xfs_bmbt_rec_t *r, xfs_bmbt_irec_t *s) { xfs_bmbt_disk_set_allf(r, s->br_startoff, s->br_startblock, s->br_blockcount, s->br_state); } /* * Set the blockcount field in a bmap extent record. */ void xfs_bmbt_set_blockcount( xfs_bmbt_rec_host_t *r, xfs_filblks_t v) { ASSERT((v & xfs_mask64hi(43)) == 0); r->l1 = (r->l1 & (xfs_bmbt_rec_base_t)xfs_mask64hi(43)) | (xfs_bmbt_rec_base_t)(v & xfs_mask64lo(21)); } /* * Set the startblock field in a bmap extent record. */ void xfs_bmbt_set_startblock( xfs_bmbt_rec_host_t *r, xfs_fsblock_t v) { ASSERT((v & xfs_mask64hi(12)) == 0); r->l0 = (r->l0 & (xfs_bmbt_rec_base_t)xfs_mask64hi(55)) | (xfs_bmbt_rec_base_t)(v >> 43); r->l1 = (r->l1 & (xfs_bmbt_rec_base_t)xfs_mask64lo(21)) | (xfs_bmbt_rec_base_t)(v << 21); } /* * Set the startoff field in a bmap extent record. */ void xfs_bmbt_set_startoff( xfs_bmbt_rec_host_t *r, xfs_fileoff_t v) { ASSERT((v & xfs_mask64hi(9)) == 0); r->l0 = (r->l0 & (xfs_bmbt_rec_base_t) xfs_mask64hi(1)) | ((xfs_bmbt_rec_base_t)v << 9) | (r->l0 & (xfs_bmbt_rec_base_t)xfs_mask64lo(9)); } /* * Set the extent state field in a bmap extent record. */ void xfs_bmbt_set_state( xfs_bmbt_rec_host_t *r, xfs_exntst_t v) { ASSERT(v == XFS_EXT_NORM || v == XFS_EXT_UNWRITTEN); if (v == XFS_EXT_NORM) r->l0 &= xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN); else r->l0 |= xfs_mask64hi(BMBT_EXNTFLAG_BITLEN); } /* * Convert in-memory form of btree root to on-disk form. */ void xfs_bmbt_to_bmdr( struct xfs_mount *mp, struct xfs_btree_block *rblock, int rblocklen, xfs_bmdr_block_t *dblock, int dblocklen) { int dmxr; xfs_bmbt_key_t *fkp; __be64 *fpp; xfs_bmbt_key_t *tkp; __be64 *tpp; if (xfs_sb_version_hascrc(&mp->m_sb)) { ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_CRC_MAGIC)); ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid, &mp->m_sb.sb_uuid)); ASSERT(rblock->bb_u.l.bb_blkno == cpu_to_be64(XFS_BUF_DADDR_NULL)); } else ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_MAGIC)); ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK)); ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK)); ASSERT(rblock->bb_level != 0); dblock->bb_level = rblock->bb_level; dblock->bb_numrecs = rblock->bb_numrecs; dmxr = xfs_bmdr_maxrecs(dblocklen, 0); fkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1); tkp = XFS_BMDR_KEY_ADDR(dblock, 1); fpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen); tpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr); dmxr = be16_to_cpu(dblock->bb_numrecs); memcpy(tkp, fkp, sizeof(*fkp) * dmxr); memcpy(tpp, fpp, sizeof(*fpp) * dmxr); } /* * Check extent records, which have just been read, for * any bit in the extent flag field. ASSERT on debug * kernels, as this condition should not occur. * Return an error condition (1) if any flags found, * otherwise return 0. */ int xfs_check_nostate_extents( xfs_ifork_t *ifp, xfs_extnum_t idx, xfs_extnum_t num) { for (; num > 0; num--, idx++) { xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, idx); if ((ep->l0 >> (64 - BMBT_EXNTFLAG_BITLEN)) != 0) { ASSERT(0); return 1; } } return 0; } STATIC struct xfs_btree_cur * xfs_bmbt_dup_cursor( struct xfs_btree_cur *cur) { struct xfs_btree_cur *new; new = xfs_bmbt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_private.b.ip, cur->bc_private.b.whichfork); /* * Copy the firstblock, flist, and flags values, * since init cursor doesn't get them. */ new->bc_private.b.firstblock = cur->bc_private.b.firstblock; new->bc_private.b.flist = cur->bc_private.b.flist; new->bc_private.b.flags = cur->bc_private.b.flags; return new; } STATIC void xfs_bmbt_update_cursor( struct xfs_btree_cur *src, struct xfs_btree_cur *dst) { ASSERT((dst->bc_private.b.firstblock != NULLFSBLOCK) || (dst->bc_private.b.ip->i_d.di_flags & XFS_DIFLAG_REALTIME)); ASSERT(dst->bc_private.b.flist == src->bc_private.b.flist); dst->bc_private.b.allocated += src->bc_private.b.allocated; dst->bc_private.b.firstblock = src->bc_private.b.firstblock; src->bc_private.b.allocated = 0; } STATIC int xfs_bmbt_alloc_block( struct xfs_btree_cur *cur, union xfs_btree_ptr *start, union xfs_btree_ptr *new, int *stat) { xfs_alloc_arg_t args; /* block allocation args */ int error; /* error return value */ memset(&args, 0, sizeof(args)); args.tp = cur->bc_tp; args.mp = cur->bc_mp; args.fsbno = cur->bc_private.b.firstblock; args.firstblock = args.fsbno; if (args.fsbno == NULLFSBLOCK) { args.fsbno = be64_to_cpu(start->l); args.type = XFS_ALLOCTYPE_START_BNO; /* * Make sure there is sufficient room left in the AG to * complete a full tree split for an extent insert. If * we are converting the middle part of an extent then * we may need space for two tree splits. * * We are relying on the caller to make the correct block * reservation for this operation to succeed. If the * reservation amount is insufficient then we may fail a * block allocation here and corrupt the filesystem. */ args.minleft = xfs_trans_get_block_res(args.tp); } else if (cur->bc_private.b.flist->xbf_low) { args.type = XFS_ALLOCTYPE_START_BNO; } else { args.type = XFS_ALLOCTYPE_NEAR_BNO; } args.minlen = args.maxlen = args.prod = 1; args.wasdel = cur->bc_private.b.flags & XFS_BTCUR_BPRV_WASDEL; if (!args.wasdel && xfs_trans_get_block_res(args.tp) == 0) { error = -ENOSPC; goto error0; } error = xfs_alloc_vextent(&args); if (error) goto error0; if (args.fsbno == NULLFSBLOCK && args.minleft) { /* * Could not find an AG with enough free space to satisfy * a full btree split. Try again without minleft and if * successful activate the lowspace algorithm. */ args.fsbno = 0; args.type = XFS_ALLOCTYPE_FIRST_AG; args.minleft = 0; error = xfs_alloc_vextent(&args); if (error) goto error0; cur->bc_private.b.flist->xbf_low = 1; } if (args.fsbno == NULLFSBLOCK) { XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); *stat = 0; return 0; } ASSERT(args.len == 1); cur->bc_private.b.firstblock = args.fsbno; cur->bc_private.b.allocated++; cur->bc_private.b.ip->i_d.di_nblocks++; xfs_trans_log_inode(args.tp, cur->bc_private.b.ip, XFS_ILOG_CORE); xfs_trans_mod_dquot_byino(args.tp, cur->bc_private.b.ip, XFS_TRANS_DQ_BCOUNT, 1L); new->l = cpu_to_be64(args.fsbno); XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); *stat = 1; return 0; error0: XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); return error; } STATIC int xfs_bmbt_free_block( struct xfs_btree_cur *cur, struct xfs_buf *bp) { struct xfs_mount *mp = cur->bc_mp; struct xfs_inode *ip = cur->bc_private.b.ip; struct xfs_trans *tp = cur->bc_tp; xfs_fsblock_t fsbno = XFS_DADDR_TO_FSB(mp, XFS_BUF_ADDR(bp)); xfs_bmap_add_free(fsbno, 1, cur->bc_private.b.flist, mp); ip->i_d.di_nblocks--; xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -1L); xfs_trans_binval(tp, bp); return 0; } STATIC int xfs_bmbt_get_minrecs( struct xfs_btree_cur *cur, int level) { if (level == cur->bc_nlevels - 1) { struct xfs_ifork *ifp; ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork); return xfs_bmbt_maxrecs(cur->bc_mp, ifp->if_broot_bytes, level == 0) / 2; } return cur->bc_mp->m_bmap_dmnr[level != 0]; } int xfs_bmbt_get_maxrecs( struct xfs_btree_cur *cur, int level) { if (level == cur->bc_nlevels - 1) { struct xfs_ifork *ifp; ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork); return xfs_bmbt_maxrecs(cur->bc_mp, ifp->if_broot_bytes, level == 0); } return cur->bc_mp->m_bmap_dmxr[level != 0]; } /* * Get the maximum records we could store in the on-disk format. * * For non-root nodes this is equivalent to xfs_bmbt_get_maxrecs, but * for the root node this checks the available space in the dinode fork * so that we can resize the in-memory buffer to match it. After a * resize to the maximum size this function returns the same value * as xfs_bmbt_get_maxrecs for the root node, too. */ STATIC int xfs_bmbt_get_dmaxrecs( struct xfs_btree_cur *cur, int level) { if (level != cur->bc_nlevels - 1) return cur->bc_mp->m_bmap_dmxr[level != 0]; return xfs_bmdr_maxrecs(cur->bc_private.b.forksize, level == 0); } STATIC void xfs_bmbt_init_key_from_rec( union xfs_btree_key *key, union xfs_btree_rec *rec) { key->bmbt.br_startoff = cpu_to_be64(xfs_bmbt_disk_get_startoff(&rec->bmbt)); } STATIC void xfs_bmbt_init_rec_from_key( union xfs_btree_key *key, union xfs_btree_rec *rec) { ASSERT(key->bmbt.br_startoff != 0); xfs_bmbt_disk_set_allf(&rec->bmbt, be64_to_cpu(key->bmbt.br_startoff), 0, 0, XFS_EXT_NORM); } STATIC void xfs_bmbt_init_rec_from_cur( struct xfs_btree_cur *cur, union xfs_btree_rec *rec) { xfs_bmbt_disk_set_all(&rec->bmbt, &cur->bc_rec.b); } STATIC void xfs_bmbt_init_ptr_from_cur( struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr) { ptr->l = 0; } STATIC __int64_t xfs_bmbt_key_diff( struct xfs_btree_cur *cur, union xfs_btree_key *key) { return (__int64_t)be64_to_cpu(key->bmbt.br_startoff) - cur->bc_rec.b.br_startoff; } static bool xfs_bmbt_verify( struct xfs_buf *bp) { struct xfs_mount *mp = bp->b_target->bt_mount; struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); unsigned int level; switch (block->bb_magic) { case cpu_to_be32(XFS_BMAP_CRC_MAGIC): if (!xfs_sb_version_hascrc(&mp->m_sb)) return false; if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_uuid)) return false; if (be64_to_cpu(block->bb_u.l.bb_blkno) != bp->b_bn) return false; /* * XXX: need a better way of verifying the owner here. Right now * just make sure there has been one set. */ if (be64_to_cpu(block->bb_u.l.bb_owner) == 0) return false; /* fall through */ case cpu_to_be32(XFS_BMAP_MAGIC): break; default: return false; } /* * numrecs and level verification. * * We don't know what fork we belong to, so just verify that the level * is less than the maximum of the two. Later checks will be more * precise. */ level = be16_to_cpu(block->bb_level); if (level > max(mp->m_bm_maxlevels[0], mp->m_bm_maxlevels[1])) return false; if (be16_to_cpu(block->bb_numrecs) > mp->m_bmap_dmxr[level != 0]) return false; /* sibling pointer verification */ if (!block->bb_u.l.bb_leftsib || (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) && !XFS_FSB_SANITY_CHECK(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))) return false; if (!block->bb_u.l.bb_rightsib || (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) && !XFS_FSB_SANITY_CHECK(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))) return false; return true; } static void xfs_bmbt_read_verify( struct xfs_buf *bp) { if (!xfs_btree_lblock_verify_crc(bp)) xfs_buf_ioerror(bp, -EFSBADCRC); else if (!xfs_bmbt_verify(bp)) xfs_buf_ioerror(bp, -EFSCORRUPTED); if (bp->b_error) { trace_xfs_btree_corrupt(bp, _RET_IP_); xfs_verifier_error(bp); } } static void xfs_bmbt_write_verify( struct xfs_buf *bp) { if (!xfs_bmbt_verify(bp)) { trace_xfs_btree_corrupt(bp, _RET_IP_); xfs_buf_ioerror(bp, -EFSCORRUPTED); xfs_verifier_error(bp); return; } xfs_btree_lblock_calc_crc(bp); } const struct xfs_buf_ops xfs_bmbt_buf_ops = { .verify_read = xfs_bmbt_read_verify, .verify_write = xfs_bmbt_write_verify, }; #if defined(DEBUG) || defined(XFS_WARN) STATIC int xfs_bmbt_keys_inorder( struct xfs_btree_cur *cur, union xfs_btree_key *k1, union xfs_btree_key *k2) { return be64_to_cpu(k1->bmbt.br_startoff) < be64_to_cpu(k2->bmbt.br_startoff); } STATIC int xfs_bmbt_recs_inorder( struct xfs_btree_cur *cur, union xfs_btree_rec *r1, union xfs_btree_rec *r2) { return xfs_bmbt_disk_get_startoff(&r1->bmbt) + xfs_bmbt_disk_get_blockcount(&r1->bmbt) <= xfs_bmbt_disk_get_startoff(&r2->bmbt); } #endif /* DEBUG */ static const struct xfs_btree_ops xfs_bmbt_ops = { .rec_len = sizeof(xfs_bmbt_rec_t), .key_len = sizeof(xfs_bmbt_key_t), .dup_cursor = xfs_bmbt_dup_cursor, .update_cursor = xfs_bmbt_update_cursor, .alloc_block = xfs_bmbt_alloc_block, .free_block = xfs_bmbt_free_block, .get_maxrecs = xfs_bmbt_get_maxrecs, .get_minrecs = xfs_bmbt_get_minrecs, .get_dmaxrecs = xfs_bmbt_get_dmaxrecs, .init_key_from_rec = xfs_bmbt_init_key_from_rec, .init_rec_from_key = xfs_bmbt_init_rec_from_key, .init_rec_from_cur = xfs_bmbt_init_rec_from_cur, .init_ptr_from_cur = xfs_bmbt_init_ptr_from_cur, .key_diff = xfs_bmbt_key_diff, .buf_ops = &xfs_bmbt_buf_ops, #if defined(DEBUG) || defined(XFS_WARN) .keys_inorder = xfs_bmbt_keys_inorder, .recs_inorder = xfs_bmbt_recs_inorder, #endif }; /* * Allocate a new bmap btree cursor. */ struct xfs_btree_cur * /* new bmap btree cursor */ xfs_bmbt_init_cursor( struct xfs_mount *mp, /* file system mount point */ struct xfs_trans *tp, /* transaction pointer */ struct xfs_inode *ip, /* inode owning the btree */ int whichfork) /* data or attr fork */ { struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); struct xfs_btree_cur *cur; cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_SLEEP); cur->bc_tp = tp; cur->bc_mp = mp; cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1; cur->bc_btnum = XFS_BTNUM_BMAP; cur->bc_blocklog = mp->m_sb.sb_blocklog; cur->bc_ops = &xfs_bmbt_ops; cur->bc_flags = XFS_BTREE_LONG_PTRS | XFS_BTREE_ROOT_IN_INODE; if (xfs_sb_version_hascrc(&mp->m_sb)) cur->bc_flags |= XFS_BTREE_CRC_BLOCKS; cur->bc_private.b.forksize = XFS_IFORK_SIZE(ip, whichfork); cur->bc_private.b.ip = ip; cur->bc_private.b.firstblock = NULLFSBLOCK; cur->bc_private.b.flist = NULL; cur->bc_private.b.allocated = 0; cur->bc_private.b.flags = 0; cur->bc_private.b.whichfork = whichfork; return cur; } /* * Calculate number of records in a bmap btree block. */ int xfs_bmbt_maxrecs( struct xfs_mount *mp, int blocklen, int leaf) { blocklen -= XFS_BMBT_BLOCK_LEN(mp); if (leaf) return blocklen / sizeof(xfs_bmbt_rec_t); return blocklen / (sizeof(xfs_bmbt_key_t) + sizeof(xfs_bmbt_ptr_t)); } /* * Calculate number of records in a bmap btree inode root. */ int xfs_bmdr_maxrecs( int blocklen, int leaf) { blocklen -= sizeof(xfs_bmdr_block_t); if (leaf) return blocklen / sizeof(xfs_bmdr_rec_t); return blocklen / (sizeof(xfs_bmdr_key_t) + sizeof(xfs_bmdr_ptr_t)); } /* * Change the owner of a btree format fork fo the inode passed in. Change it to * the owner of that is passed in so that we can change owners before or after * we switch forks between inodes. The operation that the caller is doing will * determine whether is needs to change owner before or after the switch. * * For demand paged transactional modification, the fork switch should be done * after reading in all the blocks, modifying them and pinning them in the * transaction. For modification when the buffers are already pinned in memory, * the fork switch can be done before changing the owner as we won't need to * validate the owner until the btree buffers are unpinned and writes can occur * again. * * For recovery based ownership change, there is no transactional context and * so a buffer list must be supplied so that we can record the buffers that we * modified for the caller to issue IO on. */ int xfs_bmbt_change_owner( struct xfs_trans *tp, struct xfs_inode *ip, int whichfork, xfs_ino_t new_owner, struct list_head *buffer_list) { struct xfs_btree_cur *cur; int error; ASSERT(tp || buffer_list); ASSERT(!(tp && buffer_list)); if (whichfork == XFS_DATA_FORK) ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_BTREE); else ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE); cur = xfs_bmbt_init_cursor(ip->i_mount, tp, ip, whichfork); if (!cur) return -ENOMEM; error = xfs_btree_change_owner(cur, new_owner, buffer_list); xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR); return error; }