/* * This file is part of UBIFS. * * Copyright (C) 2006-2008 Nokia Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 51 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * Authors: Artem Bityutskiy (Битюцкий Артём) * Adrian Hunter */ /* * This file implements UBIFS journal. * * The journal consists of 2 parts - the log and bud LEBs. The log has fixed * length and position, while a bud logical eraseblock is any LEB in the main * area. Buds contain file system data - data nodes, inode nodes, etc. The log * contains only references to buds and some other stuff like commit * start node. The idea is that when we commit the journal, we do * not copy the data, the buds just become indexed. Since after the commit the * nodes in bud eraseblocks become leaf nodes of the file system index tree, we * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will * become leafs in the future. * * The journal is multi-headed because we want to write data to the journal as * optimally as possible. It is nice to have nodes belonging to the same inode * in one LEB, so we may write data owned by different inodes to different * journal heads, although at present only one data head is used. * * For recovery reasons, the base head contains all inode nodes, all directory * entry nodes and all truncate nodes. This means that the other heads contain * only data nodes. * * Bud LEBs may be half-indexed. For example, if the bud was not full at the * time of commit, the bud is retained to continue to be used in the journal, * even though the "front" of the LEB is now indexed. In that case, the log * reference contains the offset where the bud starts for the purposes of the * journal. * * The journal size has to be limited, because the larger is the journal, the * longer it takes to mount UBIFS (scanning the journal) and the more memory it * takes (indexing in the TNC). * * All the journal write operations like 'ubifs_jnl_update()' here, which write * multiple UBIFS nodes to the journal at one go, are atomic with respect to * unclean reboots. Should the unclean reboot happen, the recovery code drops * all the nodes. */ #include "ubifs.h" /** * zero_ino_node_unused - zero out unused fields of an on-flash inode node. * @ino: the inode to zero out */ static inline void zero_ino_node_unused(struct ubifs_ino_node *ino) { memset(ino->padding1, 0, 4); memset(ino->padding2, 0, 26); } /** * zero_dent_node_unused - zero out unused fields of an on-flash directory * entry node. * @dent: the directory entry to zero out */ static inline void zero_dent_node_unused(struct ubifs_dent_node *dent) { dent->padding1 = 0; } /** * zero_trun_node_unused - zero out unused fields of an on-flash truncation * node. * @trun: the truncation node to zero out */ static inline void zero_trun_node_unused(struct ubifs_trun_node *trun) { memset(trun->padding, 0, 12); } /** * reserve_space - reserve space in the journal. * @c: UBIFS file-system description object * @jhead: journal head number * @len: node length * * This function reserves space in journal head @head. If the reservation * succeeded, the journal head stays locked and later has to be unlocked using * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and * other negative error codes in case of other failures. */ static int reserve_space(struct ubifs_info *c, int jhead, int len) { int err = 0, err1, retries = 0, avail, lnum, offs, squeeze; struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; /* * Typically, the base head has smaller nodes written to it, so it is * better to try to allocate space at the ends of eraseblocks. This is * what the squeeze parameter does. */ ubifs_assert(!c->ro_media && !c->ro_mount); squeeze = (jhead == BASEHD); again: mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); if (c->ro_error) { err = -EROFS; goto out_unlock; } avail = c->leb_size - wbuf->offs - wbuf->used; if (wbuf->lnum != -1 && avail >= len) return 0; /* * Write buffer wasn't seek'ed or there is no enough space - look for an * LEB with some empty space. */ lnum = ubifs_find_free_space(c, len, &offs, squeeze); if (lnum >= 0) goto out; err = lnum; if (err != -ENOSPC) goto out_unlock; /* * No free space, we have to run garbage collector to make * some. But the write-buffer mutex has to be unlocked because * GC also takes it. */ dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead)); mutex_unlock(&wbuf->io_mutex); lnum = ubifs_garbage_collect(c, 0); if (lnum < 0) { err = lnum; if (err != -ENOSPC) return err; /* * GC could not make a free LEB. But someone else may * have allocated new bud for this journal head, * because we dropped @wbuf->io_mutex, so try once * again. */ dbg_jnl("GC couldn't make a free LEB for jhead %s", dbg_jhead(jhead)); if (retries++ < 2) { dbg_jnl("retry (%d)", retries); goto again; } dbg_jnl("return -ENOSPC"); return err; } mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead)); avail = c->leb_size - wbuf->offs - wbuf->used; if (wbuf->lnum != -1 && avail >= len) { /* * Someone else has switched the journal head and we have * enough space now. This happens when more than one process is * trying to write to the same journal head at the same time. */ dbg_jnl("return LEB %d back, already have LEB %d:%d", lnum, wbuf->lnum, wbuf->offs + wbuf->used); err = ubifs_return_leb(c, lnum); if (err) goto out_unlock; return 0; } offs = 0; out: /* * Make sure we synchronize the write-buffer before we add the new bud * to the log. Otherwise we may have a power cut after the log * reference node for the last bud (@lnum) is written but before the * write-buffer data are written to the next-to-last bud * (@wbuf->lnum). And the effect would be that the recovery would see * that there is corruption in the next-to-last bud. */ err = ubifs_wbuf_sync_nolock(wbuf); if (err) goto out_return; err = ubifs_add_bud_to_log(c, jhead, lnum, offs); if (err) goto out_return; err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs); if (err) goto out_unlock; return 0; out_unlock: mutex_unlock(&wbuf->io_mutex); return err; out_return: /* An error occurred and the LEB has to be returned to lprops */ ubifs_assert(err < 0); err1 = ubifs_return_leb(c, lnum); if (err1 && err == -EAGAIN) /* * Return original error code only if it is not %-EAGAIN, * which is not really an error. Otherwise, return the error * code of 'ubifs_return_leb()'. */ err = err1; mutex_unlock(&wbuf->io_mutex); return err; } /** * write_node - write node to a journal head. * @c: UBIFS file-system description object * @jhead: journal head * @node: node to write * @len: node length * @lnum: LEB number written is returned here * @offs: offset written is returned here * * This function writes a node to reserved space of journal head @jhead. * Returns zero in case of success and a negative error code in case of * failure. */ static int write_node(struct ubifs_info *c, int jhead, void *node, int len, int *lnum, int *offs) { struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; ubifs_assert(jhead != GCHD); *lnum = c->jheads[jhead].wbuf.lnum; *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used; dbg_jnl("jhead %s, LEB %d:%d, len %d", dbg_jhead(jhead), *lnum, *offs, len); ubifs_prepare_node(c, node, len, 0); return ubifs_wbuf_write_nolock(wbuf, node, len); } /** * write_head - write data to a journal head. * @c: UBIFS file-system description object * @jhead: journal head * @buf: buffer to write * @len: length to write * @lnum: LEB number written is returned here * @offs: offset written is returned here * @sync: non-zero if the write-buffer has to by synchronized * * This function is the same as 'write_node()' but it does not assume the * buffer it is writing is a node, so it does not prepare it (which means * initializing common header and calculating CRC). */ static int write_head(struct ubifs_info *c, int jhead, void *buf, int len, int *lnum, int *offs, int sync) { int err; struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; ubifs_assert(jhead != GCHD); *lnum = c->jheads[jhead].wbuf.lnum; *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used; dbg_jnl("jhead %s, LEB %d:%d, len %d", dbg_jhead(jhead), *lnum, *offs, len); err = ubifs_wbuf_write_nolock(wbuf, buf, len); if (err) return err; if (sync) err = ubifs_wbuf_sync_nolock(wbuf); return err; } /** * make_reservation - reserve journal space. * @c: UBIFS file-system description object * @jhead: journal head * @len: how many bytes to reserve * * This function makes space reservation in journal head @jhead. The function * takes the commit lock and locks the journal head, and the caller has to * unlock the head and finish the reservation with 'finish_reservation()'. * Returns zero in case of success and a negative error code in case of * failure. * * Note, the journal head may be unlocked as soon as the data is written, while * the commit lock has to be released after the data has been added to the * TNC. */ static int make_reservation(struct ubifs_info *c, int jhead, int len) { int err, cmt_retries = 0, nospc_retries = 0; again: down_read(&c->commit_sem); err = reserve_space(c, jhead, len); if (!err) return 0; up_read(&c->commit_sem); if (err == -ENOSPC) { /* * GC could not make any progress. We should try to commit * once because it could make some dirty space and GC would * make progress, so make the error -EAGAIN so that the below * will commit and re-try. */ if (nospc_retries++ < 2) { dbg_jnl("no space, retry"); err = -EAGAIN; } /* * This means that the budgeting is incorrect. We always have * to be able to write to the media, because all operations are * budgeted. Deletions are not budgeted, though, but we reserve * an extra LEB for them. */ } if (err != -EAGAIN) goto out; /* * -EAGAIN means that the journal is full or too large, or the above * code wants to do one commit. Do this and re-try. */ if (cmt_retries > 128) { /* * This should not happen unless the journal size limitations * are too tough. */ ubifs_err(c, "stuck in space allocation"); err = -ENOSPC; goto out; } else if (cmt_retries > 32) ubifs_warn(c, "too many space allocation re-tries (%d)", cmt_retries); dbg_jnl("-EAGAIN, commit and retry (retried %d times)", cmt_retries); cmt_retries += 1; err = ubifs_run_commit(c); if (err) return err; goto again; out: ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d", len, jhead, err); if (err == -ENOSPC) { /* This are some budgeting problems, print useful information */ down_write(&c->commit_sem); dump_stack(); ubifs_dump_budg(c, &c->bi); ubifs_dump_lprops(c); cmt_retries = dbg_check_lprops(c); up_write(&c->commit_sem); } return err; } /** * release_head - release a journal head. * @c: UBIFS file-system description object * @jhead: journal head * * This function releases journal head @jhead which was locked by * the 'make_reservation()' function. It has to be called after each successful * 'make_reservation()' invocation. */ static inline void release_head(struct ubifs_info *c, int jhead) { mutex_unlock(&c->jheads[jhead].wbuf.io_mutex); } /** * finish_reservation - finish a reservation. * @c: UBIFS file-system description object * * This function finishes journal space reservation. It must be called after * 'make_reservation()'. */ static void finish_reservation(struct ubifs_info *c) { up_read(&c->commit_sem); } /** * get_dent_type - translate VFS inode mode to UBIFS directory entry type. * @mode: inode mode */ static int get_dent_type(int mode) { switch (mode & S_IFMT) { case S_IFREG: return UBIFS_ITYPE_REG; case S_IFDIR: return UBIFS_ITYPE_DIR; case S_IFLNK: return UBIFS_ITYPE_LNK; case S_IFBLK: return UBIFS_ITYPE_BLK; case S_IFCHR: return UBIFS_ITYPE_CHR; case S_IFIFO: return UBIFS_ITYPE_FIFO; case S_IFSOCK: return UBIFS_ITYPE_SOCK; default: BUG(); } return 0; } /** * pack_inode - pack an inode node. * @c: UBIFS file-system description object * @ino: buffer in which to pack inode node * @inode: inode to pack * @last: indicates the last node of the group */ static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino, const struct inode *inode, int last) { int data_len = 0, last_reference = !inode->i_nlink; struct ubifs_inode *ui = ubifs_inode(inode); ino->ch.node_type = UBIFS_INO_NODE; ino_key_init_flash(c, &ino->key, inode->i_ino); ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum); ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec); ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec); ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec); ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); ino->uid = cpu_to_le32(i_uid_read(inode)); ino->gid = cpu_to_le32(i_gid_read(inode)); ino->mode = cpu_to_le32(inode->i_mode); ino->flags = cpu_to_le32(ui->flags); ino->size = cpu_to_le64(ui->ui_size); ino->nlink = cpu_to_le32(inode->i_nlink); ino->compr_type = cpu_to_le16(ui->compr_type); ino->data_len = cpu_to_le32(ui->data_len); ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt); ino->xattr_size = cpu_to_le32(ui->xattr_size); ino->xattr_names = cpu_to_le32(ui->xattr_names); zero_ino_node_unused(ino); /* * Drop the attached data if this is a deletion inode, the data is not * needed anymore. */ if (!last_reference) { memcpy(ino->data, ui->data, ui->data_len); data_len = ui->data_len; } ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last); } /** * mark_inode_clean - mark UBIFS inode as clean. * @c: UBIFS file-system description object * @ui: UBIFS inode to mark as clean * * This helper function marks UBIFS inode @ui as clean by cleaning the * @ui->dirty flag and releasing its budget. Note, VFS may still treat the * inode as dirty and try to write it back, but 'ubifs_write_inode()' would * just do nothing. */ static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui) { if (ui->dirty) ubifs_release_dirty_inode_budget(c, ui); ui->dirty = 0; } static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent) { if (c->double_hash) dent->cookie = prandom_u32(); else dent->cookie = 0; } /** * ubifs_jnl_update - update inode. * @c: UBIFS file-system description object * @dir: parent inode or host inode in case of extended attributes * @nm: directory entry name * @inode: inode to update * @deletion: indicates a directory entry deletion i.e unlink or rmdir * @xent: non-zero if the directory entry is an extended attribute entry * * This function updates an inode by writing a directory entry (or extended * attribute entry), the inode itself, and the parent directory inode (or the * host inode) to the journal. * * The function writes the host inode @dir last, which is important in case of * extended attributes. Indeed, then we guarantee that if the host inode gets * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed, * the extended attribute inode gets flushed too. And this is exactly what the * user expects - synchronizing the host inode synchronizes its extended * attributes. Similarly, this guarantees that if @dir is synchronized, its * directory entry corresponding to @nm gets synchronized too. * * If the inode (@inode) or the parent directory (@dir) are synchronous, this * function synchronizes the write-buffer. * * This function marks the @dir and @inode inodes as clean and returns zero on * success. In case of failure, a negative error code is returned. */ int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir, const struct fscrypt_name *nm, const struct inode *inode, int deletion, int xent) { int err, dlen, ilen, len, lnum, ino_offs, dent_offs; int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir); int last_reference = !!(deletion && inode->i_nlink == 0); struct ubifs_inode *ui = ubifs_inode(inode); struct ubifs_inode *host_ui = ubifs_inode(dir); struct ubifs_dent_node *dent; struct ubifs_ino_node *ino; union ubifs_key dent_key, ino_key; ubifs_assert(mutex_is_locked(&host_ui->ui_mutex)); dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1; ilen = UBIFS_INO_NODE_SZ; /* * If the last reference to the inode is being deleted, then there is * no need to attach and write inode data, it is being deleted anyway. * And if the inode is being deleted, no need to synchronize * write-buffer even if the inode is synchronous. */ if (!last_reference) { ilen += ui->data_len; sync |= IS_SYNC(inode); } aligned_dlen = ALIGN(dlen, 8); aligned_ilen = ALIGN(ilen, 8); len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ; /* Make sure to also account for extended attributes */ len += host_ui->data_len; dent = kzalloc(len, GFP_NOFS); if (!dent) return -ENOMEM; /* Make reservation before allocating sequence numbers */ err = make_reservation(c, BASEHD, len); if (err) goto out_free; if (!xent) { dent->ch.node_type = UBIFS_DENT_NODE; if (nm->hash) dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash); else dent_key_init(c, &dent_key, dir->i_ino, nm); } else { dent->ch.node_type = UBIFS_XENT_NODE; xent_key_init(c, &dent_key, dir->i_ino, nm); } key_write(c, &dent_key, dent->key); dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino); dent->type = get_dent_type(inode->i_mode); dent->nlen = cpu_to_le16(fname_len(nm)); memcpy(dent->name, fname_name(nm), fname_len(nm)); dent->name[fname_len(nm)] = '\0'; set_dent_cookie(c, dent); zero_dent_node_unused(dent); ubifs_prep_grp_node(c, dent, dlen, 0); ino = (void *)dent + aligned_dlen; pack_inode(c, ino, inode, 0); ino = (void *)ino + aligned_ilen; pack_inode(c, ino, dir, 1); if (last_reference) { err = ubifs_add_orphan(c, inode->i_ino); if (err) { release_head(c, BASEHD); goto out_finish; } ui->del_cmtno = c->cmt_no; } err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync); if (err) goto out_release; if (!sync) { struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino); } release_head(c, BASEHD); kfree(dent); if (deletion) { if (nm->hash) err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash); else err = ubifs_tnc_remove_nm(c, &dent_key, nm); if (err) goto out_ro; err = ubifs_add_dirt(c, lnum, dlen); } else err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm); if (err) goto out_ro; /* * Note, we do not remove the inode from TNC even if the last reference * to it has just been deleted, because the inode may still be opened. * Instead, the inode has been added to orphan lists and the orphan * subsystem will take further care about it. */ ino_key_init(c, &ino_key, inode->i_ino); ino_offs = dent_offs + aligned_dlen; err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen); if (err) goto out_ro; ino_key_init(c, &ino_key, dir->i_ino); ino_offs += aligned_ilen; err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, UBIFS_INO_NODE_SZ + host_ui->data_len); if (err) goto out_ro; finish_reservation(c); spin_lock(&ui->ui_lock); ui->synced_i_size = ui->ui_size; spin_unlock(&ui->ui_lock); mark_inode_clean(c, ui); mark_inode_clean(c, host_ui); return 0; out_finish: finish_reservation(c); out_free: kfree(dent); return err; out_release: release_head(c, BASEHD); kfree(dent); out_ro: ubifs_ro_mode(c, err); if (last_reference) ubifs_delete_orphan(c, inode->i_ino); finish_reservation(c); return err; } /** * ubifs_jnl_write_data - write a data node to the journal. * @c: UBIFS file-system description object * @inode: inode the data node belongs to * @key: node key * @buf: buffer to write * @len: data length (must not exceed %UBIFS_BLOCK_SIZE) * * This function writes a data node to the journal. Returns %0 if the data node * was successfully written, and a negative error code in case of failure. */ int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode, const union ubifs_key *key, const void *buf, int len) { struct ubifs_data_node *data; int err, lnum, offs, compr_type, out_len, compr_len; int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1; struct ubifs_inode *ui = ubifs_inode(inode); bool encrypted = ubifs_crypt_is_encrypted(inode); dbg_jnlk(key, "ino %lu, blk %u, len %d, key ", (unsigned long)key_inum(c, key), key_block(c, key), len); ubifs_assert(len <= UBIFS_BLOCK_SIZE); if (encrypted) dlen += UBIFS_CIPHER_BLOCK_SIZE; data = kmalloc(dlen, GFP_NOFS | __GFP_NOWARN); if (!data) { /* * Fall-back to the write reserve buffer. Note, we might be * currently on the memory reclaim path, when the kernel is * trying to free some memory by writing out dirty pages. The * write reserve buffer helps us to guarantee that we are * always able to write the data. */ allocated = 0; mutex_lock(&c->write_reserve_mutex); data = c->write_reserve_buf; } data->ch.node_type = UBIFS_DATA_NODE; key_write(c, key, &data->key); data->size = cpu_to_le32(len); if (!(ui->flags & UBIFS_COMPR_FL)) /* Compression is disabled for this inode */ compr_type = UBIFS_COMPR_NONE; else compr_type = ui->compr_type; out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ; ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type); ubifs_assert(compr_len <= UBIFS_BLOCK_SIZE); if (encrypted) { err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key)); if (err) goto out_free; } else { data->compr_size = 0; out_len = compr_len; } dlen = UBIFS_DATA_NODE_SZ + out_len; data->compr_type = cpu_to_le16(compr_type); /* Make reservation before allocating sequence numbers */ err = make_reservation(c, DATAHD, dlen); if (err) goto out_free; err = write_node(c, DATAHD, data, dlen, &lnum, &offs); if (err) goto out_release; ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key)); release_head(c, DATAHD); err = ubifs_tnc_add(c, key, lnum, offs, dlen); if (err) goto out_ro; finish_reservation(c); if (!allocated) mutex_unlock(&c->write_reserve_mutex); else kfree(data); return 0; out_release: release_head(c, DATAHD); out_ro: ubifs_ro_mode(c, err); finish_reservation(c); out_free: if (!allocated) mutex_unlock(&c->write_reserve_mutex); else kfree(data); return err; } /** * ubifs_jnl_write_inode - flush inode to the journal. * @c: UBIFS file-system description object * @inode: inode to flush * * This function writes inode @inode to the journal. If the inode is * synchronous, it also synchronizes the write-buffer. Returns zero in case of * success and a negative error code in case of failure. */ int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode) { int err, lnum, offs; struct ubifs_ino_node *ino; struct ubifs_inode *ui = ubifs_inode(inode); int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink; dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink); /* * If the inode is being deleted, do not write the attached data. No * need to synchronize the write-buffer either. */ if (!last_reference) { len += ui->data_len; sync = IS_SYNC(inode); } ino = kmalloc(len, GFP_NOFS); if (!ino) return -ENOMEM; /* Make reservation before allocating sequence numbers */ err = make_reservation(c, BASEHD, len); if (err) goto out_free; pack_inode(c, ino, inode, 1); err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync); if (err) goto out_release; if (!sync) ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inode->i_ino); release_head(c, BASEHD); if (last_reference) { err = ubifs_tnc_remove_ino(c, inode->i_ino); if (err) goto out_ro; ubifs_delete_orphan(c, inode->i_ino); err = ubifs_add_dirt(c, lnum, len); } else { union ubifs_key key; ino_key_init(c, &key, inode->i_ino); err = ubifs_tnc_add(c, &key, lnum, offs, len); } if (err) goto out_ro; finish_reservation(c); spin_lock(&ui->ui_lock); ui->synced_i_size = ui->ui_size; spin_unlock(&ui->ui_lock); kfree(ino); return 0; out_release: release_head(c, BASEHD); out_ro: ubifs_ro_mode(c, err); finish_reservation(c); out_free: kfree(ino); return err; } /** * ubifs_jnl_delete_inode - delete an inode. * @c: UBIFS file-system description object * @inode: inode to delete * * This function deletes inode @inode which includes removing it from orphans, * deleting it from TNC and, in some cases, writing a deletion inode to the * journal. * * When regular file inodes are unlinked or a directory inode is removed, the * 'ubifs_jnl_update()' function writes a corresponding deletion inode and * direntry to the media, and adds the inode to orphans. After this, when the * last reference to this inode has been dropped, this function is called. In * general, it has to write one more deletion inode to the media, because if * a commit happened between 'ubifs_jnl_update()' and * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal * anymore, and in fact it might not be on the flash anymore, because it might * have been garbage-collected already. And for optimization reasons UBIFS does * not read the orphan area if it has been unmounted cleanly, so it would have * no indication in the journal that there is a deleted inode which has to be * removed from TNC. * * However, if there was no commit between 'ubifs_jnl_update()' and * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion * inode to the media for the second time. And this is quite a typical case. * * This function returns zero in case of success and a negative error code in * case of failure. */ int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode) { int err; struct ubifs_inode *ui = ubifs_inode(inode); ubifs_assert(inode->i_nlink == 0); if (ui->del_cmtno != c->cmt_no) /* A commit happened for sure */ return ubifs_jnl_write_inode(c, inode); down_read(&c->commit_sem); /* * Check commit number again, because the first test has been done * without @c->commit_sem, so a commit might have happened. */ if (ui->del_cmtno != c->cmt_no) { up_read(&c->commit_sem); return ubifs_jnl_write_inode(c, inode); } err = ubifs_tnc_remove_ino(c, inode->i_ino); if (err) ubifs_ro_mode(c, err); else ubifs_delete_orphan(c, inode->i_ino); up_read(&c->commit_sem); return err; } /** * ubifs_jnl_xrename - cross rename two directory entries. * @c: UBIFS file-system description object * @fst_dir: parent inode of 1st directory entry to exchange * @fst_inode: 1st inode to exchange * @fst_nm: name of 1st inode to exchange * @snd_dir: parent inode of 2nd directory entry to exchange * @snd_inode: 2nd inode to exchange * @snd_nm: name of 2nd inode to exchange * @sync: non-zero if the write-buffer has to be synchronized * * This function implements the cross rename operation which may involve * writing 2 inodes and 2 directory entries. It marks the written inodes as clean * and returns zero on success. In case of failure, a negative error code is * returned. */ int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir, const struct inode *fst_inode, const struct fscrypt_name *fst_nm, const struct inode *snd_dir, const struct inode *snd_inode, const struct fscrypt_name *snd_nm, int sync) { union ubifs_key key; struct ubifs_dent_node *dent1, *dent2; int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ; int aligned_dlen1, aligned_dlen2; int twoparents = (fst_dir != snd_dir); void *p; ubifs_assert(ubifs_inode(fst_dir)->data_len == 0); ubifs_assert(ubifs_inode(snd_dir)->data_len == 0); ubifs_assert(mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex)); ubifs_assert(mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex)); dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1; dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1; aligned_dlen1 = ALIGN(dlen1, 8); aligned_dlen2 = ALIGN(dlen2, 8); len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8); if (twoparents) len += plen; dent1 = kzalloc(len, GFP_NOFS); if (!dent1) return -ENOMEM; /* Make reservation before allocating sequence numbers */ err = make_reservation(c, BASEHD, len); if (err) goto out_free; /* Make new dent for 1st entry */ dent1->ch.node_type = UBIFS_DENT_NODE; dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm); dent1->inum = cpu_to_le64(fst_inode->i_ino); dent1->type = get_dent_type(fst_inode->i_mode); dent1->nlen = cpu_to_le16(fname_len(snd_nm)); memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm)); dent1->name[fname_len(snd_nm)] = '\0'; zero_dent_node_unused(dent1); ubifs_prep_grp_node(c, dent1, dlen1, 0); /* Make new dent for 2nd entry */ dent2 = (void *)dent1 + aligned_dlen1; dent2->ch.node_type = UBIFS_DENT_NODE; dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm); dent2->inum = cpu_to_le64(snd_inode->i_ino); dent2->type = get_dent_type(snd_inode->i_mode); dent2->nlen = cpu_to_le16(fname_len(fst_nm)); memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm)); dent2->name[fname_len(fst_nm)] = '\0'; zero_dent_node_unused(dent2); ubifs_prep_grp_node(c, dent2, dlen2, 0); p = (void *)dent2 + aligned_dlen2; if (!twoparents) pack_inode(c, p, fst_dir, 1); else { pack_inode(c, p, fst_dir, 0); p += ALIGN(plen, 8); pack_inode(c, p, snd_dir, 1); } err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync); if (err) goto out_release; if (!sync) { struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino); ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino); } release_head(c, BASEHD); dent_key_init(c, &key, snd_dir->i_ino, snd_nm); err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, snd_nm); if (err) goto out_ro; offs += aligned_dlen1; dent_key_init(c, &key, fst_dir->i_ino, fst_nm); err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, fst_nm); if (err) goto out_ro; offs += aligned_dlen2; ino_key_init(c, &key, fst_dir->i_ino); err = ubifs_tnc_add(c, &key, lnum, offs, plen); if (err) goto out_ro; if (twoparents) { offs += ALIGN(plen, 8); ino_key_init(c, &key, snd_dir->i_ino); err = ubifs_tnc_add(c, &key, lnum, offs, plen); if (err) goto out_ro; } finish_reservation(c); mark_inode_clean(c, ubifs_inode(fst_dir)); if (twoparents) mark_inode_clean(c, ubifs_inode(snd_dir)); kfree(dent1); return 0; out_release: release_head(c, BASEHD); out_ro: ubifs_ro_mode(c, err); finish_reservation(c); out_free: kfree(dent1); return err; } /** * ubifs_jnl_rename - rename a directory entry. * @c: UBIFS file-system description object * @old_dir: parent inode of directory entry to rename * @old_dentry: directory entry to rename * @new_dir: parent inode of directory entry to rename * @new_dentry: new directory entry (or directory entry to replace) * @sync: non-zero if the write-buffer has to be synchronized * * This function implements the re-name operation which may involve writing up * to 4 inodes and 2 directory entries. It marks the written inodes as clean * and returns zero on success. In case of failure, a negative error code is * returned. */ int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir, const struct inode *old_inode, const struct fscrypt_name *old_nm, const struct inode *new_dir, const struct inode *new_inode, const struct fscrypt_name *new_nm, const struct inode *whiteout, int sync) { void *p; union ubifs_key key; struct ubifs_dent_node *dent, *dent2; int err, dlen1, dlen2, ilen, lnum, offs, len; int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ; int last_reference = !!(new_inode && new_inode->i_nlink == 0); int move = (old_dir != new_dir); struct ubifs_inode *uninitialized_var(new_ui); ubifs_assert(ubifs_inode(old_dir)->data_len == 0); ubifs_assert(ubifs_inode(new_dir)->data_len == 0); ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex)); ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex)); dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1; dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1; if (new_inode) { new_ui = ubifs_inode(new_inode); ubifs_assert(mutex_is_locked(&new_ui->ui_mutex)); ilen = UBIFS_INO_NODE_SZ; if (!last_reference) ilen += new_ui->data_len; } else ilen = 0; aligned_dlen1 = ALIGN(dlen1, 8); aligned_dlen2 = ALIGN(dlen2, 8); len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8); if (move) len += plen; dent = kzalloc(len, GFP_NOFS); if (!dent) return -ENOMEM; /* Make reservation before allocating sequence numbers */ err = make_reservation(c, BASEHD, len); if (err) goto out_free; /* Make new dent */ dent->ch.node_type = UBIFS_DENT_NODE; dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm); dent->inum = cpu_to_le64(old_inode->i_ino); dent->type = get_dent_type(old_inode->i_mode); dent->nlen = cpu_to_le16(fname_len(new_nm)); memcpy(dent->name, fname_name(new_nm), fname_len(new_nm)); dent->name[fname_len(new_nm)] = '\0'; set_dent_cookie(c, dent); zero_dent_node_unused(dent); ubifs_prep_grp_node(c, dent, dlen1, 0); dent2 = (void *)dent + aligned_dlen1; dent2->ch.node_type = UBIFS_DENT_NODE; dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm); if (whiteout) { dent2->inum = cpu_to_le64(whiteout->i_ino); dent2->type = get_dent_type(whiteout->i_mode); } else { /* Make deletion dent */ dent2->inum = 0; dent2->type = DT_UNKNOWN; } dent2->nlen = cpu_to_le16(fname_len(old_nm)); memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm)); dent2->name[fname_len(old_nm)] = '\0'; set_dent_cookie(c, dent2); zero_dent_node_unused(dent2); ubifs_prep_grp_node(c, dent2, dlen2, 0); p = (void *)dent2 + aligned_dlen2; if (new_inode) { pack_inode(c, p, new_inode, 0); p += ALIGN(ilen, 8); } if (!move) pack_inode(c, p, old_dir, 1); else { pack_inode(c, p, old_dir, 0); p += ALIGN(plen, 8); pack_inode(c, p, new_dir, 1); } if (last_reference) { err = ubifs_add_orphan(c, new_inode->i_ino); if (err) { release_head(c, BASEHD); goto out_finish; } new_ui->del_cmtno = c->cmt_no; } err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync); if (err) goto out_release; if (!sync) { struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino); ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino); if (new_inode) ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, new_inode->i_ino); } release_head(c, BASEHD); dent_key_init(c, &key, new_dir->i_ino, new_nm); err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, new_nm); if (err) goto out_ro; offs += aligned_dlen1; if (whiteout) { dent_key_init(c, &key, old_dir->i_ino, old_nm); err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, old_nm); if (err) goto out_ro; ubifs_delete_orphan(c, whiteout->i_ino); } else { err = ubifs_add_dirt(c, lnum, dlen2); if (err) goto out_ro; dent_key_init(c, &key, old_dir->i_ino, old_nm); err = ubifs_tnc_remove_nm(c, &key, old_nm); if (err) goto out_ro; } offs += aligned_dlen2; if (new_inode) { ino_key_init(c, &key, new_inode->i_ino); err = ubifs_tnc_add(c, &key, lnum, offs, ilen); if (err) goto out_ro; offs += ALIGN(ilen, 8); } ino_key_init(c, &key, old_dir->i_ino); err = ubifs_tnc_add(c, &key, lnum, offs, plen); if (err) goto out_ro; if (move) { offs += ALIGN(plen, 8); ino_key_init(c, &key, new_dir->i_ino); err = ubifs_tnc_add(c, &key, lnum, offs, plen); if (err) goto out_ro; } finish_reservation(c); if (new_inode) { mark_inode_clean(c, new_ui); spin_lock(&new_ui->ui_lock); new_ui->synced_i_size = new_ui->ui_size; spin_unlock(&new_ui->ui_lock); } mark_inode_clean(c, ubifs_inode(old_dir)); if (move) mark_inode_clean(c, ubifs_inode(new_dir)); kfree(dent); return 0; out_release: release_head(c, BASEHD); out_ro: ubifs_ro_mode(c, err); if (last_reference) ubifs_delete_orphan(c, new_inode->i_ino); out_finish: finish_reservation(c); out_free: kfree(dent); return err; } /** * truncate_data_node - re-compress/encrypt a truncated data node. * @c: UBIFS file-system description object * @inode: inode which referes to the data node * @block: data block number * @dn: data node to re-compress * @new_len: new length * * This function is used when an inode is truncated and the last data node of * the inode has to be re-compressed/encrypted and re-written. */ static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode, unsigned int block, struct ubifs_data_node *dn, int *new_len) { void *buf; int err, dlen, compr_type, out_len, old_dlen; out_len = le32_to_cpu(dn->size); buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS); if (!buf) return -ENOMEM; dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; compr_type = le16_to_cpu(dn->compr_type); if (ubifs_crypt_is_encrypted(inode)) { err = ubifs_decrypt(inode, dn, &dlen, block); if (err) goto out; } if (compr_type == UBIFS_COMPR_NONE) { out_len = *new_len; } else { err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type); if (err) goto out; ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type); } if (ubifs_crypt_is_encrypted(inode)) { err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block); if (err) goto out; out_len = old_dlen; } else { dn->compr_size = 0; } ubifs_assert(out_len <= UBIFS_BLOCK_SIZE); dn->compr_type = cpu_to_le16(compr_type); dn->size = cpu_to_le32(*new_len); *new_len = UBIFS_DATA_NODE_SZ + out_len; err = 0; out: kfree(buf); return err; } /** * ubifs_jnl_truncate - update the journal for a truncation. * @c: UBIFS file-system description object * @inode: inode to truncate * @old_size: old size * @new_size: new size * * When the size of a file decreases due to truncation, a truncation node is * written, the journal tree is updated, and the last data block is re-written * if it has been affected. The inode is also updated in order to synchronize * the new inode size. * * This function marks the inode as clean and returns zero on success. In case * of failure, a negative error code is returned. */ int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode, loff_t old_size, loff_t new_size) { union ubifs_key key, to_key; struct ubifs_ino_node *ino; struct ubifs_trun_node *trun; struct ubifs_data_node *uninitialized_var(dn); int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode); struct ubifs_inode *ui = ubifs_inode(inode); ino_t inum = inode->i_ino; unsigned int blk; dbg_jnl("ino %lu, size %lld -> %lld", (unsigned long)inum, old_size, new_size); ubifs_assert(!ui->data_len); ubifs_assert(S_ISREG(inode->i_mode)); ubifs_assert(mutex_is_locked(&ui->ui_mutex)); sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ + UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR; ino = kmalloc(sz, GFP_NOFS); if (!ino) return -ENOMEM; trun = (void *)ino + UBIFS_INO_NODE_SZ; trun->ch.node_type = UBIFS_TRUN_NODE; trun->inum = cpu_to_le32(inum); trun->old_size = cpu_to_le64(old_size); trun->new_size = cpu_to_le64(new_size); zero_trun_node_unused(trun); dlen = new_size & (UBIFS_BLOCK_SIZE - 1); if (dlen) { /* Get last data block so it can be truncated */ dn = (void *)trun + UBIFS_TRUN_NODE_SZ; blk = new_size >> UBIFS_BLOCK_SHIFT; data_key_init(c, &key, inum, blk); dbg_jnlk(&key, "last block key "); err = ubifs_tnc_lookup(c, &key, dn); if (err == -ENOENT) dlen = 0; /* Not found (so it is a hole) */ else if (err) goto out_free; else { if (le32_to_cpu(dn->size) <= dlen) dlen = 0; /* Nothing to do */ else { err = truncate_data_node(c, inode, blk, dn, &dlen); if (err) goto out_free; } } } /* Must make reservation before allocating sequence numbers */ len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ; if (dlen) len += dlen; err = make_reservation(c, BASEHD, len); if (err) goto out_free; pack_inode(c, ino, inode, 0); ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1); if (dlen) ubifs_prep_grp_node(c, dn, dlen, 1); err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync); if (err) goto out_release; if (!sync) ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum); release_head(c, BASEHD); if (dlen) { sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ; err = ubifs_tnc_add(c, &key, lnum, sz, dlen); if (err) goto out_ro; } ino_key_init(c, &key, inum); err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ); if (err) goto out_ro; err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ); if (err) goto out_ro; bit = new_size & (UBIFS_BLOCK_SIZE - 1); blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0); data_key_init(c, &key, inum, blk); bit = old_size & (UBIFS_BLOCK_SIZE - 1); blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1); data_key_init(c, &to_key, inum, blk); err = ubifs_tnc_remove_range(c, &key, &to_key); if (err) goto out_ro; finish_reservation(c); spin_lock(&ui->ui_lock); ui->synced_i_size = ui->ui_size; spin_unlock(&ui->ui_lock); mark_inode_clean(c, ui); kfree(ino); return 0; out_release: release_head(c, BASEHD); out_ro: ubifs_ro_mode(c, err); finish_reservation(c); out_free: kfree(ino); return err; } /** * ubifs_jnl_delete_xattr - delete an extended attribute. * @c: UBIFS file-system description object * @host: host inode * @inode: extended attribute inode * @nm: extended attribute entry name * * This function delete an extended attribute which is very similar to * un-linking regular files - it writes a deletion xentry, a deletion inode and * updates the target inode. Returns zero in case of success and a negative * error code in case of failure. */ int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host, const struct inode *inode, const struct fscrypt_name *nm) { int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen; struct ubifs_dent_node *xent; struct ubifs_ino_node *ino; union ubifs_key xent_key, key1, key2; int sync = IS_DIRSYNC(host); struct ubifs_inode *host_ui = ubifs_inode(host); ubifs_assert(inode->i_nlink == 0); ubifs_assert(mutex_is_locked(&host_ui->ui_mutex)); /* * Since we are deleting the inode, we do not bother to attach any data * to it and assume its length is %UBIFS_INO_NODE_SZ. */ xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1; aligned_xlen = ALIGN(xlen, 8); hlen = host_ui->data_len + UBIFS_INO_NODE_SZ; len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8); xent = kzalloc(len, GFP_NOFS); if (!xent) return -ENOMEM; /* Make reservation before allocating sequence numbers */ err = make_reservation(c, BASEHD, len); if (err) { kfree(xent); return err; } xent->ch.node_type = UBIFS_XENT_NODE; xent_key_init(c, &xent_key, host->i_ino, nm); key_write(c, &xent_key, xent->key); xent->inum = 0; xent->type = get_dent_type(inode->i_mode); xent->nlen = cpu_to_le16(fname_len(nm)); memcpy(xent->name, fname_name(nm), fname_len(nm)); xent->name[fname_len(nm)] = '\0'; zero_dent_node_unused(xent); ubifs_prep_grp_node(c, xent, xlen, 0); ino = (void *)xent + aligned_xlen; pack_inode(c, ino, inode, 0); ino = (void *)ino + UBIFS_INO_NODE_SZ; pack_inode(c, ino, host, 1); err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync); if (!sync && !err) ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino); release_head(c, BASEHD); kfree(xent); if (err) goto out_ro; /* Remove the extended attribute entry from TNC */ err = ubifs_tnc_remove_nm(c, &xent_key, nm); if (err) goto out_ro; err = ubifs_add_dirt(c, lnum, xlen); if (err) goto out_ro; /* * Remove all nodes belonging to the extended attribute inode from TNC. * Well, there actually must be only one node - the inode itself. */ lowest_ino_key(c, &key1, inode->i_ino); highest_ino_key(c, &key2, inode->i_ino); err = ubifs_tnc_remove_range(c, &key1, &key2); if (err) goto out_ro; err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ); if (err) goto out_ro; /* And update TNC with the new host inode position */ ino_key_init(c, &key1, host->i_ino); err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen); if (err) goto out_ro; finish_reservation(c); spin_lock(&host_ui->ui_lock); host_ui->synced_i_size = host_ui->ui_size; spin_unlock(&host_ui->ui_lock); mark_inode_clean(c, host_ui); return 0; out_ro: ubifs_ro_mode(c, err); finish_reservation(c); return err; } /** * ubifs_jnl_change_xattr - change an extended attribute. * @c: UBIFS file-system description object * @inode: extended attribute inode * @host: host inode * * This function writes the updated version of an extended attribute inode and * the host inode to the journal (to the base head). The host inode is written * after the extended attribute inode in order to guarantee that the extended * attribute will be flushed when the inode is synchronized by 'fsync()' and * consequently, the write-buffer is synchronized. This function returns zero * in case of success and a negative error code in case of failure. */ int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode, const struct inode *host) { int err, len1, len2, aligned_len, aligned_len1, lnum, offs; struct ubifs_inode *host_ui = ubifs_inode(host); struct ubifs_ino_node *ino; union ubifs_key key; int sync = IS_DIRSYNC(host); dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino); ubifs_assert(host->i_nlink > 0); ubifs_assert(inode->i_nlink > 0); ubifs_assert(mutex_is_locked(&host_ui->ui_mutex)); len1 = UBIFS_INO_NODE_SZ + host_ui->data_len; len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len; aligned_len1 = ALIGN(len1, 8); aligned_len = aligned_len1 + ALIGN(len2, 8); ino = kzalloc(aligned_len, GFP_NOFS); if (!ino) return -ENOMEM; /* Make reservation before allocating sequence numbers */ err = make_reservation(c, BASEHD, aligned_len); if (err) goto out_free; pack_inode(c, ino, host, 0); pack_inode(c, (void *)ino + aligned_len1, inode, 1); err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0); if (!sync && !err) { struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino); ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); } release_head(c, BASEHD); if (err) goto out_ro; ino_key_init(c, &key, host->i_ino); err = ubifs_tnc_add(c, &key, lnum, offs, len1); if (err) goto out_ro; ino_key_init(c, &key, inode->i_ino); err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2); if (err) goto out_ro; finish_reservation(c); spin_lock(&host_ui->ui_lock); host_ui->synced_i_size = host_ui->ui_size; spin_unlock(&host_ui->ui_lock); mark_inode_clean(c, host_ui); kfree(ino); return 0; out_ro: ubifs_ro_mode(c, err); finish_reservation(c); out_free: kfree(ino); return err; }