/* * pNFS functions to call and manage layout drivers. * * Copyright (c) 2002 [year of first publication] * The Regents of the University of Michigan * All Rights Reserved * * Dean Hildebrand * * Permission is granted to use, copy, create derivative works, and * redistribute this software and such derivative works for any purpose, * so long as the name of the University of Michigan is not used in * any advertising or publicity pertaining to the use or distribution * of this software without specific, written prior authorization. If * the above copyright notice or any other identification of the * University of Michigan is included in any copy of any portion of * this software, then the disclaimer below must also be included. * * This software is provided as is, without representation or warranty * of any kind either express or implied, including without limitation * the implied warranties of merchantability, fitness for a particular * purpose, or noninfringement. The Regents of the University of * Michigan shall not be liable for any damages, including special, * indirect, incidental, or consequential damages, with respect to any * claim arising out of or in connection with the use of the software, * even if it has been or is hereafter advised of the possibility of * such damages. */ #include #include "internal.h" #include "pnfs.h" #include "iostat.h" #define NFSDBG_FACILITY NFSDBG_PNFS /* Locking: * * pnfs_spinlock: * protects pnfs_modules_tbl. */ static DEFINE_SPINLOCK(pnfs_spinlock); /* * pnfs_modules_tbl holds all pnfs modules */ static LIST_HEAD(pnfs_modules_tbl); /* Return the registered pnfs layout driver module matching given id */ static struct pnfs_layoutdriver_type * find_pnfs_driver_locked(u32 id) { struct pnfs_layoutdriver_type *local; list_for_each_entry(local, &pnfs_modules_tbl, pnfs_tblid) if (local->id == id) goto out; local = NULL; out: dprintk("%s: Searching for id %u, found %p\n", __func__, id, local); return local; } static struct pnfs_layoutdriver_type * find_pnfs_driver(u32 id) { struct pnfs_layoutdriver_type *local; spin_lock(&pnfs_spinlock); local = find_pnfs_driver_locked(id); spin_unlock(&pnfs_spinlock); return local; } void unset_pnfs_layoutdriver(struct nfs_server *nfss) { if (nfss->pnfs_curr_ld) module_put(nfss->pnfs_curr_ld->owner); nfss->pnfs_curr_ld = NULL; } /* * Try to set the server's pnfs module to the pnfs layout type specified by id. * Currently only one pNFS layout driver per filesystem is supported. * * @id layout type. Zero (illegal layout type) indicates pNFS not in use. */ void set_pnfs_layoutdriver(struct nfs_server *server, u32 id) { struct pnfs_layoutdriver_type *ld_type = NULL; if (id == 0) goto out_no_driver; if (!(server->nfs_client->cl_exchange_flags & (EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_USE_PNFS_MDS))) { printk(KERN_ERR "%s: id %u cl_exchange_flags 0x%x\n", __func__, id, server->nfs_client->cl_exchange_flags); goto out_no_driver; } ld_type = find_pnfs_driver(id); if (!ld_type) { request_module("%s-%u", LAYOUT_NFSV4_1_MODULE_PREFIX, id); ld_type = find_pnfs_driver(id); if (!ld_type) { dprintk("%s: No pNFS module found for %u.\n", __func__, id); goto out_no_driver; } } if (!try_module_get(ld_type->owner)) { dprintk("%s: Could not grab reference on module\n", __func__); goto out_no_driver; } server->pnfs_curr_ld = ld_type; dprintk("%s: pNFS module for %u set\n", __func__, id); return; out_no_driver: dprintk("%s: Using NFSv4 I/O\n", __func__); server->pnfs_curr_ld = NULL; } int pnfs_register_layoutdriver(struct pnfs_layoutdriver_type *ld_type) { int status = -EINVAL; struct pnfs_layoutdriver_type *tmp; if (ld_type->id == 0) { printk(KERN_ERR "%s id 0 is reserved\n", __func__); return status; } if (!ld_type->alloc_lseg || !ld_type->free_lseg) { printk(KERN_ERR "%s Layout driver must provide " "alloc_lseg and free_lseg.\n", __func__); return status; } spin_lock(&pnfs_spinlock); tmp = find_pnfs_driver_locked(ld_type->id); if (!tmp) { list_add(&ld_type->pnfs_tblid, &pnfs_modules_tbl); status = 0; dprintk("%s Registering id:%u name:%s\n", __func__, ld_type->id, ld_type->name); } else { printk(KERN_ERR "%s Module with id %d already loaded!\n", __func__, ld_type->id); } spin_unlock(&pnfs_spinlock); return status; } EXPORT_SYMBOL_GPL(pnfs_register_layoutdriver); void pnfs_unregister_layoutdriver(struct pnfs_layoutdriver_type *ld_type) { dprintk("%s Deregistering id:%u\n", __func__, ld_type->id); spin_lock(&pnfs_spinlock); list_del(&ld_type->pnfs_tblid); spin_unlock(&pnfs_spinlock); } EXPORT_SYMBOL_GPL(pnfs_unregister_layoutdriver); /* * pNFS client layout cache */ /* Need to hold i_lock if caller does not already hold reference */ void get_layout_hdr(struct pnfs_layout_hdr *lo) { atomic_inc(&lo->plh_refcount); } static struct pnfs_layout_hdr * pnfs_alloc_layout_hdr(struct inode *ino, gfp_t gfp_flags) { struct pnfs_layoutdriver_type *ld = NFS_SERVER(ino)->pnfs_curr_ld; return ld->alloc_layout_hdr ? ld->alloc_layout_hdr(ino, gfp_flags) : kzalloc(sizeof(struct pnfs_layout_hdr), gfp_flags); } static void pnfs_free_layout_hdr(struct pnfs_layout_hdr *lo) { struct pnfs_layoutdriver_type *ld = NFS_SERVER(lo->plh_inode)->pnfs_curr_ld; return ld->alloc_layout_hdr ? ld->free_layout_hdr(lo) : kfree(lo); } static void destroy_layout_hdr(struct pnfs_layout_hdr *lo) { dprintk("%s: freeing layout cache %p\n", __func__, lo); BUG_ON(!list_empty(&lo->plh_layouts)); NFS_I(lo->plh_inode)->layout = NULL; pnfs_free_layout_hdr(lo); } static void put_layout_hdr_locked(struct pnfs_layout_hdr *lo) { if (atomic_dec_and_test(&lo->plh_refcount)) destroy_layout_hdr(lo); } void put_layout_hdr(struct pnfs_layout_hdr *lo) { struct inode *inode = lo->plh_inode; if (atomic_dec_and_lock(&lo->plh_refcount, &inode->i_lock)) { destroy_layout_hdr(lo); spin_unlock(&inode->i_lock); } } static void init_lseg(struct pnfs_layout_hdr *lo, struct pnfs_layout_segment *lseg) { INIT_LIST_HEAD(&lseg->pls_list); atomic_set(&lseg->pls_refcount, 1); smp_mb(); set_bit(NFS_LSEG_VALID, &lseg->pls_flags); lseg->pls_layout = lo; } static void free_lseg(struct pnfs_layout_segment *lseg) { struct inode *ino = lseg->pls_layout->plh_inode; NFS_SERVER(ino)->pnfs_curr_ld->free_lseg(lseg); /* Matched by get_layout_hdr in pnfs_insert_layout */ put_layout_hdr(NFS_I(ino)->layout); } static void put_lseg_common(struct pnfs_layout_segment *lseg) { struct inode *inode = lseg->pls_layout->plh_inode; WARN_ON(test_bit(NFS_LSEG_VALID, &lseg->pls_flags)); list_del_init(&lseg->pls_list); if (list_empty(&lseg->pls_layout->plh_segs)) { set_bit(NFS_LAYOUT_DESTROYED, &lseg->pls_layout->plh_flags); /* Matched by initial refcount set in alloc_init_layout_hdr */ put_layout_hdr_locked(lseg->pls_layout); } rpc_wake_up(&NFS_SERVER(inode)->roc_rpcwaitq); } void put_lseg(struct pnfs_layout_segment *lseg) { struct inode *inode; if (!lseg) return; dprintk("%s: lseg %p ref %d valid %d\n", __func__, lseg, atomic_read(&lseg->pls_refcount), test_bit(NFS_LSEG_VALID, &lseg->pls_flags)); inode = lseg->pls_layout->plh_inode; if (atomic_dec_and_lock(&lseg->pls_refcount, &inode->i_lock)) { LIST_HEAD(free_me); put_lseg_common(lseg); list_add(&lseg->pls_list, &free_me); spin_unlock(&inode->i_lock); pnfs_free_lseg_list(&free_me); } } EXPORT_SYMBOL_GPL(put_lseg); static inline u64 end_offset(u64 start, u64 len) { u64 end; end = start + len; return end >= start ? end : NFS4_MAX_UINT64; } /* last octet in a range */ static inline u64 last_byte_offset(u64 start, u64 len) { u64 end; BUG_ON(!len); end = start + len; return end > start ? end - 1 : NFS4_MAX_UINT64; } /* * is l2 fully contained in l1? * start1 end1 * [----------------------------------) * start2 end2 * [----------------) */ static inline int lo_seg_contained(struct pnfs_layout_range *l1, struct pnfs_layout_range *l2) { u64 start1 = l1->offset; u64 end1 = end_offset(start1, l1->length); u64 start2 = l2->offset; u64 end2 = end_offset(start2, l2->length); return (start1 <= start2) && (end1 >= end2); } /* * is l1 and l2 intersecting? * start1 end1 * [----------------------------------) * start2 end2 * [----------------) */ static inline int lo_seg_intersecting(struct pnfs_layout_range *l1, struct pnfs_layout_range *l2) { u64 start1 = l1->offset; u64 end1 = end_offset(start1, l1->length); u64 start2 = l2->offset; u64 end2 = end_offset(start2, l2->length); return (end1 == NFS4_MAX_UINT64 || end1 > start2) && (end2 == NFS4_MAX_UINT64 || end2 > start1); } static bool should_free_lseg(struct pnfs_layout_range *lseg_range, struct pnfs_layout_range *recall_range) { return (recall_range->iomode == IOMODE_ANY || lseg_range->iomode == recall_range->iomode) && lo_seg_intersecting(lseg_range, recall_range); } /* Returns 1 if lseg is removed from list, 0 otherwise */ static int mark_lseg_invalid(struct pnfs_layout_segment *lseg, struct list_head *tmp_list) { int rv = 0; if (test_and_clear_bit(NFS_LSEG_VALID, &lseg->pls_flags)) { /* Remove the reference keeping the lseg in the * list. It will now be removed when all * outstanding io is finished. */ dprintk("%s: lseg %p ref %d\n", __func__, lseg, atomic_read(&lseg->pls_refcount)); if (atomic_dec_and_test(&lseg->pls_refcount)) { put_lseg_common(lseg); list_add(&lseg->pls_list, tmp_list); rv = 1; } } return rv; } /* Returns count of number of matching invalid lsegs remaining in list * after call. */ int mark_matching_lsegs_invalid(struct pnfs_layout_hdr *lo, struct list_head *tmp_list, struct pnfs_layout_range *recall_range) { struct pnfs_layout_segment *lseg, *next; int invalid = 0, removed = 0; dprintk("%s:Begin lo %p\n", __func__, lo); if (list_empty(&lo->plh_segs)) { if (!test_and_set_bit(NFS_LAYOUT_DESTROYED, &lo->plh_flags)) put_layout_hdr_locked(lo); return 0; } list_for_each_entry_safe(lseg, next, &lo->plh_segs, pls_list) if (!recall_range || should_free_lseg(&lseg->pls_range, recall_range)) { dprintk("%s: freeing lseg %p iomode %d " "offset %llu length %llu\n", __func__, lseg, lseg->pls_range.iomode, lseg->pls_range.offset, lseg->pls_range.length); invalid++; removed += mark_lseg_invalid(lseg, tmp_list); } dprintk("%s:Return %i\n", __func__, invalid - removed); return invalid - removed; } /* note free_me must contain lsegs from a single layout_hdr */ void pnfs_free_lseg_list(struct list_head *free_me) { struct pnfs_layout_segment *lseg, *tmp; struct pnfs_layout_hdr *lo; if (list_empty(free_me)) return; lo = list_first_entry(free_me, struct pnfs_layout_segment, pls_list)->pls_layout; if (test_bit(NFS_LAYOUT_DESTROYED, &lo->plh_flags)) { struct nfs_client *clp; clp = NFS_SERVER(lo->plh_inode)->nfs_client; spin_lock(&clp->cl_lock); list_del_init(&lo->plh_layouts); spin_unlock(&clp->cl_lock); } list_for_each_entry_safe(lseg, tmp, free_me, pls_list) { list_del(&lseg->pls_list); free_lseg(lseg); } } void pnfs_destroy_layout(struct nfs_inode *nfsi) { struct pnfs_layout_hdr *lo; LIST_HEAD(tmp_list); spin_lock(&nfsi->vfs_inode.i_lock); lo = nfsi->layout; if (lo) { lo->plh_block_lgets++; /* permanently block new LAYOUTGETs */ mark_matching_lsegs_invalid(lo, &tmp_list, NULL); } spin_unlock(&nfsi->vfs_inode.i_lock); pnfs_free_lseg_list(&tmp_list); } /* * Called by the state manger to remove all layouts established under an * expired lease. */ void pnfs_destroy_all_layouts(struct nfs_client *clp) { struct nfs_server *server; struct pnfs_layout_hdr *lo; LIST_HEAD(tmp_list); spin_lock(&clp->cl_lock); rcu_read_lock(); list_for_each_entry_rcu(server, &clp->cl_superblocks, client_link) { if (!list_empty(&server->layouts)) list_splice_init(&server->layouts, &tmp_list); } rcu_read_unlock(); spin_unlock(&clp->cl_lock); while (!list_empty(&tmp_list)) { lo = list_entry(tmp_list.next, struct pnfs_layout_hdr, plh_layouts); dprintk("%s freeing layout for inode %lu\n", __func__, lo->plh_inode->i_ino); list_del_init(&lo->plh_layouts); pnfs_destroy_layout(NFS_I(lo->plh_inode)); } } /* update lo->plh_stateid with new if is more recent */ void pnfs_set_layout_stateid(struct pnfs_layout_hdr *lo, const nfs4_stateid *new, bool update_barrier) { u32 oldseq, newseq; oldseq = be32_to_cpu(lo->plh_stateid.stateid.seqid); newseq = be32_to_cpu(new->stateid.seqid); if ((int)(newseq - oldseq) > 0) { memcpy(&lo->plh_stateid, &new->stateid, sizeof(new->stateid)); if (update_barrier) { u32 new_barrier = be32_to_cpu(new->stateid.seqid); if ((int)(new_barrier - lo->plh_barrier)) lo->plh_barrier = new_barrier; } else { /* Because of wraparound, we want to keep the barrier * "close" to the current seqids. It needs to be * within 2**31 to count as "behind", so if it * gets too near that limit, give us a litle leeway * and bring it to within 2**30. * NOTE - and yes, this is all unsigned arithmetic. */ if (unlikely((newseq - lo->plh_barrier) > (3 << 29))) lo->plh_barrier = newseq - (1 << 30); } } } /* lget is set to 1 if called from inside send_layoutget call chain */ static bool pnfs_layoutgets_blocked(struct pnfs_layout_hdr *lo, nfs4_stateid *stateid, int lget) { if ((stateid) && (int)(lo->plh_barrier - be32_to_cpu(stateid->stateid.seqid)) >= 0) return true; return lo->plh_block_lgets || test_bit(NFS_LAYOUT_DESTROYED, &lo->plh_flags) || test_bit(NFS_LAYOUT_BULK_RECALL, &lo->plh_flags) || (list_empty(&lo->plh_segs) && (atomic_read(&lo->plh_outstanding) > lget)); } int pnfs_choose_layoutget_stateid(nfs4_stateid *dst, struct pnfs_layout_hdr *lo, struct nfs4_state *open_state) { int status = 0; dprintk("--> %s\n", __func__); spin_lock(&lo->plh_inode->i_lock); if (pnfs_layoutgets_blocked(lo, NULL, 1)) { status = -EAGAIN; } else if (list_empty(&lo->plh_segs)) { int seq; do { seq = read_seqbegin(&open_state->seqlock); memcpy(dst->data, open_state->stateid.data, sizeof(open_state->stateid.data)); } while (read_seqretry(&open_state->seqlock, seq)); } else memcpy(dst->data, lo->plh_stateid.data, sizeof(lo->plh_stateid.data)); spin_unlock(&lo->plh_inode->i_lock); dprintk("<-- %s\n", __func__); return status; } /* * Get layout from server. * for now, assume that whole file layouts are requested. * arg->offset: 0 * arg->length: all ones */ static struct pnfs_layout_segment * send_layoutget(struct pnfs_layout_hdr *lo, struct nfs_open_context *ctx, struct pnfs_layout_range *range, gfp_t gfp_flags) { struct inode *ino = lo->plh_inode; struct nfs_server *server = NFS_SERVER(ino); struct nfs4_layoutget *lgp; struct pnfs_layout_segment *lseg = NULL; struct page **pages = NULL; int i; u32 max_resp_sz, max_pages; dprintk("--> %s\n", __func__); BUG_ON(ctx == NULL); lgp = kzalloc(sizeof(*lgp), gfp_flags); if (lgp == NULL) return NULL; /* allocate pages for xdr post processing */ max_resp_sz = server->nfs_client->cl_session->fc_attrs.max_resp_sz; max_pages = max_resp_sz >> PAGE_SHIFT; pages = kzalloc(max_pages * sizeof(struct page *), gfp_flags); if (!pages) goto out_err_free; for (i = 0; i < max_pages; i++) { pages[i] = alloc_page(gfp_flags); if (!pages[i]) goto out_err_free; } lgp->args.minlength = PAGE_CACHE_SIZE; if (lgp->args.minlength > range->length) lgp->args.minlength = range->length; lgp->args.maxcount = PNFS_LAYOUT_MAXSIZE; lgp->args.range = *range; lgp->args.type = server->pnfs_curr_ld->id; lgp->args.inode = ino; lgp->args.ctx = get_nfs_open_context(ctx); lgp->args.layout.pages = pages; lgp->args.layout.pglen = max_pages * PAGE_SIZE; lgp->lsegpp = &lseg; lgp->gfp_flags = gfp_flags; /* Synchronously retrieve layout information from server and * store in lseg. */ nfs4_proc_layoutget(lgp); if (!lseg) { /* remember that LAYOUTGET failed and suspend trying */ set_bit(lo_fail_bit(range->iomode), &lo->plh_flags); } /* free xdr pages */ for (i = 0; i < max_pages; i++) __free_page(pages[i]); kfree(pages); return lseg; out_err_free: /* free any allocated xdr pages, lgp as it's not used */ if (pages) { for (i = 0; i < max_pages; i++) { if (!pages[i]) break; __free_page(pages[i]); } kfree(pages); } kfree(lgp); return NULL; } /* Initiates a LAYOUTRETURN(FILE) */ int _pnfs_return_layout(struct inode *ino) { struct pnfs_layout_hdr *lo = NULL; struct nfs_inode *nfsi = NFS_I(ino); LIST_HEAD(tmp_list); struct nfs4_layoutreturn *lrp; nfs4_stateid stateid; int status = 0; dprintk("--> %s\n", __func__); spin_lock(&ino->i_lock); lo = nfsi->layout; if (!lo) { spin_unlock(&ino->i_lock); dprintk("%s: no layout to return\n", __func__); return status; } stateid = nfsi->layout->plh_stateid; /* Reference matched in nfs4_layoutreturn_release */ get_layout_hdr(lo); mark_matching_lsegs_invalid(lo, &tmp_list, NULL); lo->plh_block_lgets++; spin_unlock(&ino->i_lock); pnfs_free_lseg_list(&tmp_list); WARN_ON(test_bit(NFS_INO_LAYOUTCOMMIT, &nfsi->flags)); lrp = kzalloc(sizeof(*lrp), GFP_KERNEL); if (unlikely(lrp == NULL)) { status = -ENOMEM; set_bit(NFS_LAYOUT_RW_FAILED, &lo->plh_flags); set_bit(NFS_LAYOUT_RO_FAILED, &lo->plh_flags); put_layout_hdr(lo); goto out; } lrp->args.stateid = stateid; lrp->args.layout_type = NFS_SERVER(ino)->pnfs_curr_ld->id; lrp->args.inode = ino; lrp->args.layout = lo; lrp->clp = NFS_SERVER(ino)->nfs_client; status = nfs4_proc_layoutreturn(lrp); out: dprintk("<-- %s status: %d\n", __func__, status); return status; } bool pnfs_roc(struct inode *ino) { struct pnfs_layout_hdr *lo; struct pnfs_layout_segment *lseg, *tmp; LIST_HEAD(tmp_list); bool found = false; spin_lock(&ino->i_lock); lo = NFS_I(ino)->layout; if (!lo || !test_and_clear_bit(NFS_LAYOUT_ROC, &lo->plh_flags) || test_bit(NFS_LAYOUT_BULK_RECALL, &lo->plh_flags)) goto out_nolayout; list_for_each_entry_safe(lseg, tmp, &lo->plh_segs, pls_list) if (test_bit(NFS_LSEG_ROC, &lseg->pls_flags)) { mark_lseg_invalid(lseg, &tmp_list); found = true; } if (!found) goto out_nolayout; lo->plh_block_lgets++; get_layout_hdr(lo); /* matched in pnfs_roc_release */ spin_unlock(&ino->i_lock); pnfs_free_lseg_list(&tmp_list); return true; out_nolayout: spin_unlock(&ino->i_lock); return false; } void pnfs_roc_release(struct inode *ino) { struct pnfs_layout_hdr *lo; spin_lock(&ino->i_lock); lo = NFS_I(ino)->layout; lo->plh_block_lgets--; put_layout_hdr_locked(lo); spin_unlock(&ino->i_lock); } void pnfs_roc_set_barrier(struct inode *ino, u32 barrier) { struct pnfs_layout_hdr *lo; spin_lock(&ino->i_lock); lo = NFS_I(ino)->layout; if ((int)(barrier - lo->plh_barrier) > 0) lo->plh_barrier = barrier; spin_unlock(&ino->i_lock); } bool pnfs_roc_drain(struct inode *ino, u32 *barrier) { struct nfs_inode *nfsi = NFS_I(ino); struct pnfs_layout_segment *lseg; bool found = false; spin_lock(&ino->i_lock); list_for_each_entry(lseg, &nfsi->layout->plh_segs, pls_list) if (test_bit(NFS_LSEG_ROC, &lseg->pls_flags)) { found = true; break; } if (!found) { struct pnfs_layout_hdr *lo = nfsi->layout; u32 current_seqid = be32_to_cpu(lo->plh_stateid.stateid.seqid); /* Since close does not return a layout stateid for use as * a barrier, we choose the worst-case barrier. */ *barrier = current_seqid + atomic_read(&lo->plh_outstanding); } spin_unlock(&ino->i_lock); return found; } /* * Compare two layout segments for sorting into layout cache. * We want to preferentially return RW over RO layouts, so ensure those * are seen first. */ static s64 cmp_layout(struct pnfs_layout_range *l1, struct pnfs_layout_range *l2) { s64 d; /* high offset > low offset */ d = l1->offset - l2->offset; if (d) return d; /* short length > long length */ d = l2->length - l1->length; if (d) return d; /* read > read/write */ return (int)(l1->iomode == IOMODE_READ) - (int)(l2->iomode == IOMODE_READ); } static void pnfs_insert_layout(struct pnfs_layout_hdr *lo, struct pnfs_layout_segment *lseg) { struct pnfs_layout_segment *lp; dprintk("%s:Begin\n", __func__); assert_spin_locked(&lo->plh_inode->i_lock); list_for_each_entry(lp, &lo->plh_segs, pls_list) { if (cmp_layout(&lseg->pls_range, &lp->pls_range) > 0) continue; list_add_tail(&lseg->pls_list, &lp->pls_list); dprintk("%s: inserted lseg %p " "iomode %d offset %llu length %llu before " "lp %p iomode %d offset %llu length %llu\n", __func__, lseg, lseg->pls_range.iomode, lseg->pls_range.offset, lseg->pls_range.length, lp, lp->pls_range.iomode, lp->pls_range.offset, lp->pls_range.length); goto out; } list_add_tail(&lseg->pls_list, &lo->plh_segs); dprintk("%s: inserted lseg %p " "iomode %d offset %llu length %llu at tail\n", __func__, lseg, lseg->pls_range.iomode, lseg->pls_range.offset, lseg->pls_range.length); out: get_layout_hdr(lo); dprintk("%s:Return\n", __func__); } static struct pnfs_layout_hdr * alloc_init_layout_hdr(struct inode *ino, gfp_t gfp_flags) { struct pnfs_layout_hdr *lo; lo = pnfs_alloc_layout_hdr(ino, gfp_flags); if (!lo) return NULL; atomic_set(&lo->plh_refcount, 1); INIT_LIST_HEAD(&lo->plh_layouts); INIT_LIST_HEAD(&lo->plh_segs); INIT_LIST_HEAD(&lo->plh_bulk_recall); lo->plh_inode = ino; return lo; } static struct pnfs_layout_hdr * pnfs_find_alloc_layout(struct inode *ino, gfp_t gfp_flags) { struct nfs_inode *nfsi = NFS_I(ino); struct pnfs_layout_hdr *new = NULL; dprintk("%s Begin ino=%p layout=%p\n", __func__, ino, nfsi->layout); assert_spin_locked(&ino->i_lock); if (nfsi->layout) { if (test_bit(NFS_LAYOUT_DESTROYED, &nfsi->layout->plh_flags)) return NULL; else return nfsi->layout; } spin_unlock(&ino->i_lock); new = alloc_init_layout_hdr(ino, gfp_flags); spin_lock(&ino->i_lock); if (likely(nfsi->layout == NULL)) /* Won the race? */ nfsi->layout = new; else pnfs_free_layout_hdr(new); return nfsi->layout; } /* * iomode matching rules: * iomode lseg match * ----- ----- ----- * ANY READ true * ANY RW true * RW READ false * RW RW true * READ READ true * READ RW true */ static int is_matching_lseg(struct pnfs_layout_range *ls_range, struct pnfs_layout_range *range) { struct pnfs_layout_range range1; if ((range->iomode == IOMODE_RW && ls_range->iomode != IOMODE_RW) || !lo_seg_intersecting(ls_range, range)) return 0; /* range1 covers only the first byte in the range */ range1 = *range; range1.length = 1; return lo_seg_contained(ls_range, &range1); } /* * lookup range in layout */ static struct pnfs_layout_segment * pnfs_find_lseg(struct pnfs_layout_hdr *lo, struct pnfs_layout_range *range) { struct pnfs_layout_segment *lseg, *ret = NULL; dprintk("%s:Begin\n", __func__); assert_spin_locked(&lo->plh_inode->i_lock); list_for_each_entry(lseg, &lo->plh_segs, pls_list) { if (test_bit(NFS_LSEG_VALID, &lseg->pls_flags) && is_matching_lseg(&lseg->pls_range, range)) { ret = get_lseg(lseg); break; } if (lseg->pls_range.offset > range->offset) break; } dprintk("%s:Return lseg %p ref %d\n", __func__, ret, ret ? atomic_read(&ret->pls_refcount) : 0); return ret; } /* * Layout segment is retreived from the server if not cached. * The appropriate layout segment is referenced and returned to the caller. */ struct pnfs_layout_segment * pnfs_update_layout(struct inode *ino, struct nfs_open_context *ctx, loff_t pos, u64 count, enum pnfs_iomode iomode, gfp_t gfp_flags) { struct pnfs_layout_range arg = { .iomode = iomode, .offset = pos, .length = count, }; unsigned pg_offset; struct nfs_inode *nfsi = NFS_I(ino); struct nfs_server *server = NFS_SERVER(ino); struct nfs_client *clp = server->nfs_client; struct pnfs_layout_hdr *lo; struct pnfs_layout_segment *lseg = NULL; bool first = false; if (!pnfs_enabled_sb(NFS_SERVER(ino))) return NULL; spin_lock(&ino->i_lock); lo = pnfs_find_alloc_layout(ino, gfp_flags); if (lo == NULL) { dprintk("%s ERROR: can't get pnfs_layout_hdr\n", __func__); goto out_unlock; } /* Do we even need to bother with this? */ if (test_bit(NFS4CLNT_LAYOUTRECALL, &clp->cl_state) || test_bit(NFS_LAYOUT_BULK_RECALL, &lo->plh_flags)) { dprintk("%s matches recall, use MDS\n", __func__); goto out_unlock; } /* if LAYOUTGET already failed once we don't try again */ if (test_bit(lo_fail_bit(iomode), &nfsi->layout->plh_flags)) goto out_unlock; /* Check to see if the layout for the given range already exists */ lseg = pnfs_find_lseg(lo, &arg); if (lseg) goto out_unlock; if (pnfs_layoutgets_blocked(lo, NULL, 0)) goto out_unlock; atomic_inc(&lo->plh_outstanding); get_layout_hdr(lo); if (list_empty(&lo->plh_segs)) first = true; spin_unlock(&ino->i_lock); if (first) { /* The lo must be on the clp list if there is any * chance of a CB_LAYOUTRECALL(FILE) coming in. */ spin_lock(&clp->cl_lock); BUG_ON(!list_empty(&lo->plh_layouts)); list_add_tail(&lo->plh_layouts, &server->layouts); spin_unlock(&clp->cl_lock); } pg_offset = arg.offset & ~PAGE_CACHE_MASK; if (pg_offset) { arg.offset -= pg_offset; arg.length += pg_offset; } if (arg.length != NFS4_MAX_UINT64) arg.length = PAGE_CACHE_ALIGN(arg.length); lseg = send_layoutget(lo, ctx, &arg, gfp_flags); if (!lseg && first) { spin_lock(&clp->cl_lock); list_del_init(&lo->plh_layouts); spin_unlock(&clp->cl_lock); } atomic_dec(&lo->plh_outstanding); put_layout_hdr(lo); out: dprintk("%s end, state 0x%lx lseg %p\n", __func__, nfsi->layout ? nfsi->layout->plh_flags : -1, lseg); return lseg; out_unlock: spin_unlock(&ino->i_lock); goto out; } EXPORT_SYMBOL_GPL(pnfs_update_layout); int pnfs_layout_process(struct nfs4_layoutget *lgp) { struct pnfs_layout_hdr *lo = NFS_I(lgp->args.inode)->layout; struct nfs4_layoutget_res *res = &lgp->res; struct pnfs_layout_segment *lseg; struct inode *ino = lo->plh_inode; struct nfs_client *clp = NFS_SERVER(ino)->nfs_client; int status = 0; /* Inject layout blob into I/O device driver */ lseg = NFS_SERVER(ino)->pnfs_curr_ld->alloc_lseg(lo, res, lgp->gfp_flags); if (!lseg || IS_ERR(lseg)) { if (!lseg) status = -ENOMEM; else status = PTR_ERR(lseg); dprintk("%s: Could not allocate layout: error %d\n", __func__, status); goto out; } spin_lock(&ino->i_lock); if (test_bit(NFS4CLNT_LAYOUTRECALL, &clp->cl_state) || test_bit(NFS_LAYOUT_BULK_RECALL, &lo->plh_flags)) { dprintk("%s forget reply due to recall\n", __func__); goto out_forget_reply; } if (pnfs_layoutgets_blocked(lo, &res->stateid, 1)) { dprintk("%s forget reply due to state\n", __func__); goto out_forget_reply; } init_lseg(lo, lseg); lseg->pls_range = res->range; *lgp->lsegpp = get_lseg(lseg); pnfs_insert_layout(lo, lseg); if (res->return_on_close) { set_bit(NFS_LSEG_ROC, &lseg->pls_flags); set_bit(NFS_LAYOUT_ROC, &lo->plh_flags); } /* Done processing layoutget. Set the layout stateid */ pnfs_set_layout_stateid(lo, &res->stateid, false); spin_unlock(&ino->i_lock); out: return status; out_forget_reply: spin_unlock(&ino->i_lock); lseg->pls_layout = lo; NFS_SERVER(ino)->pnfs_curr_ld->free_lseg(lseg); goto out; } void pnfs_generic_pg_init_read(struct nfs_pageio_descriptor *pgio, struct nfs_page *req) { BUG_ON(pgio->pg_lseg != NULL); pgio->pg_lseg = pnfs_update_layout(pgio->pg_inode, req->wb_context, req_offset(req), req->wb_bytes, IOMODE_READ, GFP_KERNEL); /* If no lseg, fall back to read through mds */ if (pgio->pg_lseg == NULL) nfs_pageio_init_read_mds(pgio, pgio->pg_inode); } EXPORT_SYMBOL_GPL(pnfs_generic_pg_init_read); void pnfs_generic_pg_init_write(struct nfs_pageio_descriptor *pgio, struct nfs_page *req) { BUG_ON(pgio->pg_lseg != NULL); pgio->pg_lseg = pnfs_update_layout(pgio->pg_inode, req->wb_context, req_offset(req), req->wb_bytes, IOMODE_RW, GFP_NOFS); /* If no lseg, fall back to write through mds */ if (pgio->pg_lseg == NULL) nfs_pageio_init_write_mds(pgio, pgio->pg_inode, pgio->pg_ioflags); } EXPORT_SYMBOL_GPL(pnfs_generic_pg_init_write); bool pnfs_pageio_init_read(struct nfs_pageio_descriptor *pgio, struct inode *inode) { struct nfs_server *server = NFS_SERVER(inode); struct pnfs_layoutdriver_type *ld = server->pnfs_curr_ld; if (ld == NULL) return false; nfs_pageio_init(pgio, inode, ld->pg_read_ops, server->rsize, 0); return true; } bool pnfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, struct inode *inode, int ioflags) { struct nfs_server *server = NFS_SERVER(inode); struct pnfs_layoutdriver_type *ld = server->pnfs_curr_ld; if (ld == NULL) return false; nfs_pageio_init(pgio, inode, ld->pg_write_ops, server->wsize, ioflags); return true; } bool pnfs_generic_pg_test(struct nfs_pageio_descriptor *pgio, struct nfs_page *prev, struct nfs_page *req) { if (pgio->pg_lseg == NULL) return nfs_generic_pg_test(pgio, prev, req); /* * Test if a nfs_page is fully contained in the pnfs_layout_range. * Note that this test makes several assumptions: * - that the previous nfs_page in the struct nfs_pageio_descriptor * is known to lie within the range. * - that the nfs_page being tested is known to be contiguous with the * previous nfs_page. * - Layout ranges are page aligned, so we only have to test the * start offset of the request. * * Please also note that 'end_offset' is actually the offset of the * first byte that lies outside the pnfs_layout_range. FIXME? * */ return req_offset(req) < end_offset(pgio->pg_lseg->pls_range.offset, pgio->pg_lseg->pls_range.length); } EXPORT_SYMBOL_GPL(pnfs_generic_pg_test); /* * Called by non rpc-based layout drivers */ int pnfs_ld_write_done(struct nfs_write_data *data) { int status; if (!data->pnfs_error) { pnfs_set_layoutcommit(data); data->mds_ops->rpc_call_done(&data->task, data); data->mds_ops->rpc_release(data); return 0; } dprintk("%s: pnfs_error=%d, retry via MDS\n", __func__, data->pnfs_error); status = nfs_initiate_write(data, NFS_CLIENT(data->inode), data->mds_ops, NFS_FILE_SYNC); return status ? : -EAGAIN; } EXPORT_SYMBOL_GPL(pnfs_ld_write_done); enum pnfs_try_status pnfs_try_to_write_data(struct nfs_write_data *wdata, const struct rpc_call_ops *call_ops, int how) { struct inode *inode = wdata->inode; enum pnfs_try_status trypnfs; struct nfs_server *nfss = NFS_SERVER(inode); wdata->mds_ops = call_ops; dprintk("%s: Writing ino:%lu %u@%llu (how %d)\n", __func__, inode->i_ino, wdata->args.count, wdata->args.offset, how); trypnfs = nfss->pnfs_curr_ld->write_pagelist(wdata, how); if (trypnfs == PNFS_NOT_ATTEMPTED) { put_lseg(wdata->lseg); wdata->lseg = NULL; } else nfs_inc_stats(inode, NFSIOS_PNFS_WRITE); dprintk("%s End (trypnfs:%d)\n", __func__, trypnfs); return trypnfs; } /* * Called by non rpc-based layout drivers */ int pnfs_ld_read_done(struct nfs_read_data *data) { int status; if (!data->pnfs_error) { __nfs4_read_done_cb(data); data->mds_ops->rpc_call_done(&data->task, data); data->mds_ops->rpc_release(data); return 0; } dprintk("%s: pnfs_error=%d, retry via MDS\n", __func__, data->pnfs_error); status = nfs_initiate_read(data, NFS_CLIENT(data->inode), data->mds_ops); return status ? : -EAGAIN; } EXPORT_SYMBOL_GPL(pnfs_ld_read_done); /* * Call the appropriate parallel I/O subsystem read function. */ enum pnfs_try_status pnfs_try_to_read_data(struct nfs_read_data *rdata, const struct rpc_call_ops *call_ops) { struct inode *inode = rdata->inode; struct nfs_server *nfss = NFS_SERVER(inode); enum pnfs_try_status trypnfs; rdata->mds_ops = call_ops; dprintk("%s: Reading ino:%lu %u@%llu\n", __func__, inode->i_ino, rdata->args.count, rdata->args.offset); trypnfs = nfss->pnfs_curr_ld->read_pagelist(rdata); if (trypnfs == PNFS_NOT_ATTEMPTED) { put_lseg(rdata->lseg); rdata->lseg = NULL; } else { nfs_inc_stats(inode, NFSIOS_PNFS_READ); } dprintk("%s End (trypnfs:%d)\n", __func__, trypnfs); return trypnfs; } /* * Currently there is only one (whole file) write lseg. */ static struct pnfs_layout_segment *pnfs_list_write_lseg(struct inode *inode) { struct pnfs_layout_segment *lseg, *rv = NULL; list_for_each_entry(lseg, &NFS_I(inode)->layout->plh_segs, pls_list) if (lseg->pls_range.iomode == IOMODE_RW) rv = lseg; return rv; } void pnfs_set_layoutcommit(struct nfs_write_data *wdata) { struct nfs_inode *nfsi = NFS_I(wdata->inode); loff_t end_pos = wdata->mds_offset + wdata->res.count; bool mark_as_dirty = false; spin_lock(&nfsi->vfs_inode.i_lock); if (!test_and_set_bit(NFS_INO_LAYOUTCOMMIT, &nfsi->flags)) { /* references matched in nfs4_layoutcommit_release */ get_lseg(wdata->lseg); wdata->lseg->pls_lc_cred = get_rpccred(wdata->args.context->state->owner->so_cred); mark_as_dirty = true; dprintk("%s: Set layoutcommit for inode %lu ", __func__, wdata->inode->i_ino); } if (end_pos > wdata->lseg->pls_end_pos) wdata->lseg->pls_end_pos = end_pos; spin_unlock(&nfsi->vfs_inode.i_lock); /* if pnfs_layoutcommit_inode() runs between inode locks, the next one * will be a noop because NFS_INO_LAYOUTCOMMIT will not be set */ if (mark_as_dirty) mark_inode_dirty_sync(wdata->inode); } EXPORT_SYMBOL_GPL(pnfs_set_layoutcommit); /* * For the LAYOUT4_NFSV4_1_FILES layout type, NFS_DATA_SYNC WRITEs and * NFS_UNSTABLE WRITEs with a COMMIT to data servers must store enough * data to disk to allow the server to recover the data if it crashes. * LAYOUTCOMMIT is only needed when the NFL4_UFLG_COMMIT_THRU_MDS flag * is off, and a COMMIT is sent to a data server, or * if WRITEs to a data server return NFS_DATA_SYNC. */ int pnfs_layoutcommit_inode(struct inode *inode, bool sync) { struct nfs4_layoutcommit_data *data; struct nfs_inode *nfsi = NFS_I(inode); struct pnfs_layout_segment *lseg; struct rpc_cred *cred; loff_t end_pos; int status = 0; dprintk("--> %s inode %lu\n", __func__, inode->i_ino); if (!test_bit(NFS_INO_LAYOUTCOMMIT, &nfsi->flags)) return 0; /* Note kzalloc ensures data->res.seq_res.sr_slot == NULL */ data = kzalloc(sizeof(*data), GFP_NOFS); if (!data) { mark_inode_dirty_sync(inode); status = -ENOMEM; goto out; } spin_lock(&inode->i_lock); if (!test_and_clear_bit(NFS_INO_LAYOUTCOMMIT, &nfsi->flags)) { spin_unlock(&inode->i_lock); kfree(data); goto out; } /* * Currently only one (whole file) write lseg which is referenced * in pnfs_set_layoutcommit and will be found. */ lseg = pnfs_list_write_lseg(inode); end_pos = lseg->pls_end_pos; cred = lseg->pls_lc_cred; lseg->pls_end_pos = 0; lseg->pls_lc_cred = NULL; memcpy(&data->args.stateid.data, nfsi->layout->plh_stateid.data, sizeof(nfsi->layout->plh_stateid.data)); spin_unlock(&inode->i_lock); data->args.inode = inode; data->lseg = lseg; data->cred = cred; nfs_fattr_init(&data->fattr); data->args.bitmask = NFS_SERVER(inode)->cache_consistency_bitmask; data->res.fattr = &data->fattr; data->args.lastbytewritten = end_pos - 1; data->res.server = NFS_SERVER(inode); status = nfs4_proc_layoutcommit(data, sync); out: dprintk("<-- %s status %d\n", __func__, status); return status; }