/* * linux/drivers/video/pxafb.c * * Copyright (C) 1999 Eric A. Thomas. * Copyright (C) 2004 Jean-Frederic Clere. * Copyright (C) 2004 Ian Campbell. * Copyright (C) 2004 Jeff Lackey. * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas * which in turn is * Based on acornfb.c Copyright (C) Russell King. * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive for * more details. * * Intel PXA250/210 LCD Controller Frame Buffer Driver * * Please direct your questions and comments on this driver to the following * email address: * * linux-arm-kernel@lists.arm.linux.org.uk * */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/interrupt.h> #include <linux/slab.h> #include <linux/fb.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/cpufreq.h> #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <asm/hardware.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/uaccess.h> #include <asm/div64.h> #include <asm/arch/pxa-regs.h> #include <asm/arch/bitfield.h> #include <asm/arch/pxafb.h> /* * Complain if VAR is out of range. */ #define DEBUG_VAR 1 #include "pxafb.h" /* Bits which should not be set in machine configuration structures */ #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM|LCCR0_BM|LCCR0_QDM|LCCR0_DIS|LCCR0_EFM|LCCR0_IUM|LCCR0_SFM|LCCR0_LDM|LCCR0_ENB) #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP|LCCR3_VSP|LCCR3_PCD|LCCR3_BPP) static void (*pxafb_backlight_power)(int); static void (*pxafb_lcd_power)(int); static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *); static void set_ctrlr_state(struct pxafb_info *fbi, u_int state); #ifdef CONFIG_FB_PXA_PARAMETERS #define PXAFB_OPTIONS_SIZE 256 static char g_options[PXAFB_OPTIONS_SIZE] __initdata = ""; #endif static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state) { unsigned long flags; local_irq_save(flags); /* * We need to handle two requests being made at the same time. * There are two important cases: * 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE) * We must perform the unblanking, which will do our REENABLE for us. * 2. When we are blanking, but immediately unblank before we have * blanked. We do the "REENABLE" thing here as well, just to be sure. */ if (fbi->task_state == C_ENABLE && state == C_REENABLE) state = (u_int) -1; if (fbi->task_state == C_DISABLE && state == C_ENABLE) state = C_REENABLE; if (state != (u_int)-1) { fbi->task_state = state; schedule_work(&fbi->task); } local_irq_restore(flags); } static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf) { chan &= 0xffff; chan >>= 16 - bf->length; return chan << bf->offset; } static int pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue, u_int trans, struct fb_info *info) { struct pxafb_info *fbi = (struct pxafb_info *)info; u_int val, ret = 1; if (regno < fbi->palette_size) { if (fbi->fb.var.grayscale) { val = ((blue >> 8) & 0x00ff); } else { val = ((red >> 0) & 0xf800); val |= ((green >> 5) & 0x07e0); val |= ((blue >> 11) & 0x001f); } fbi->palette_cpu[regno] = val; ret = 0; } return ret; } static int pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, u_int trans, struct fb_info *info) { struct pxafb_info *fbi = (struct pxafb_info *)info; unsigned int val; int ret = 1; /* * If inverse mode was selected, invert all the colours * rather than the register number. The register number * is what you poke into the framebuffer to produce the * colour you requested. */ if (fbi->cmap_inverse) { red = 0xffff - red; green = 0xffff - green; blue = 0xffff - blue; } /* * If greyscale is true, then we convert the RGB value * to greyscale no matter what visual we are using. */ if (fbi->fb.var.grayscale) red = green = blue = (19595 * red + 38470 * green + 7471 * blue) >> 16; switch (fbi->fb.fix.visual) { case FB_VISUAL_TRUECOLOR: /* * 16-bit True Colour. We encode the RGB value * according to the RGB bitfield information. */ if (regno < 16) { u32 *pal = fbi->fb.pseudo_palette; val = chan_to_field(red, &fbi->fb.var.red); val |= chan_to_field(green, &fbi->fb.var.green); val |= chan_to_field(blue, &fbi->fb.var.blue); pal[regno] = val; ret = 0; } break; case FB_VISUAL_STATIC_PSEUDOCOLOR: case FB_VISUAL_PSEUDOCOLOR: ret = pxafb_setpalettereg(regno, red, green, blue, trans, info); break; } return ret; } /* * pxafb_bpp_to_lccr3(): * Convert a bits per pixel value to the correct bit pattern for LCCR3 */ static int pxafb_bpp_to_lccr3(struct fb_var_screeninfo *var) { int ret = 0; switch (var->bits_per_pixel) { case 1: ret = LCCR3_1BPP; break; case 2: ret = LCCR3_2BPP; break; case 4: ret = LCCR3_4BPP; break; case 8: ret = LCCR3_8BPP; break; case 16: ret = LCCR3_16BPP; break; } return ret; } #ifdef CONFIG_CPU_FREQ /* * pxafb_display_dma_period() * Calculate the minimum period (in picoseconds) between two DMA * requests for the LCD controller. If we hit this, it means we're * doing nothing but LCD DMA. */ static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var) { /* * Period = pixclock * bits_per_byte * bytes_per_transfer * / memory_bits_per_pixel; */ return var->pixclock * 8 * 16 / var->bits_per_pixel; } extern unsigned int get_clk_frequency_khz(int info); #endif /* * pxafb_check_var(): * Get the video params out of 'var'. If a value doesn't fit, round it up, * if it's too big, return -EINVAL. * * Round up in the following order: bits_per_pixel, xres, * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale, * bitfields, horizontal timing, vertical timing. */ static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) { struct pxafb_info *fbi = (struct pxafb_info *)info; if (var->xres < MIN_XRES) var->xres = MIN_XRES; if (var->yres < MIN_YRES) var->yres = MIN_YRES; if (var->xres > fbi->max_xres) return -EINVAL; if (var->yres > fbi->max_yres) return -EINVAL; var->xres_virtual = max(var->xres_virtual, var->xres); var->yres_virtual = max(var->yres_virtual, var->yres); /* * Setup the RGB parameters for this display. * * The pixel packing format is described on page 7-11 of the * PXA2XX Developer's Manual. */ if (var->bits_per_pixel == 16) { var->red.offset = 11; var->red.length = 5; var->green.offset = 5; var->green.length = 6; var->blue.offset = 0; var->blue.length = 5; var->transp.offset = var->transp.length = 0; } else { var->red.offset = var->green.offset = var->blue.offset = var->transp.offset = 0; var->red.length = 8; var->green.length = 8; var->blue.length = 8; var->transp.length = 0; } #ifdef CONFIG_CPU_FREQ pr_debug("pxafb: dma period = %d ps, clock = %d kHz\n", pxafb_display_dma_period(var), get_clk_frequency_khz(0)); #endif return 0; } static inline void pxafb_set_truecolor(u_int is_true_color) { pr_debug("pxafb: true_color = %d\n", is_true_color); // do your machine-specific setup if needed } /* * pxafb_set_par(): * Set the user defined part of the display for the specified console */ static int pxafb_set_par(struct fb_info *info) { struct pxafb_info *fbi = (struct pxafb_info *)info; struct fb_var_screeninfo *var = &info->var; unsigned long palette_mem_size; pr_debug("pxafb: set_par\n"); if (var->bits_per_pixel == 16) fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR; else if (!fbi->cmap_static) fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR; else { /* * Some people have weird ideas about wanting static * pseudocolor maps. I suspect their user space * applications are broken. */ fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR; } fbi->fb.fix.line_length = var->xres_virtual * var->bits_per_pixel / 8; if (var->bits_per_pixel == 16) fbi->palette_size = 0; else fbi->palette_size = var->bits_per_pixel == 1 ? 4 : 1 << var->bits_per_pixel; palette_mem_size = fbi->palette_size * sizeof(u16); pr_debug("pxafb: palette_mem_size = 0x%08lx\n", palette_mem_size); fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size); fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size; /* * Set (any) board control register to handle new color depth */ pxafb_set_truecolor(fbi->fb.fix.visual == FB_VISUAL_TRUECOLOR); if (fbi->fb.var.bits_per_pixel == 16) fb_dealloc_cmap(&fbi->fb.cmap); else fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0); pxafb_activate_var(var, fbi); return 0; } /* * Formal definition of the VESA spec: * On * This refers to the state of the display when it is in full operation * Stand-By * This defines an optional operating state of minimal power reduction with * the shortest recovery time * Suspend * This refers to a level of power management in which substantial power * reduction is achieved by the display. The display can have a longer * recovery time from this state than from the Stand-by state * Off * This indicates that the display is consuming the lowest level of power * and is non-operational. Recovery from this state may optionally require * the user to manually power on the monitor * * Now, the fbdev driver adds an additional state, (blank), where they * turn off the video (maybe by colormap tricks), but don't mess with the * video itself: think of it semantically between on and Stand-By. * * So here's what we should do in our fbdev blank routine: * * VESA_NO_BLANKING (mode 0) Video on, front/back light on * VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off * VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off * VESA_POWERDOWN (mode 3) Video off, front/back light off * * This will match the matrox implementation. */ /* * pxafb_blank(): * Blank the display by setting all palette values to zero. Note, the * 16 bpp mode does not really use the palette, so this will not * blank the display in all modes. */ static int pxafb_blank(int blank, struct fb_info *info) { struct pxafb_info *fbi = (struct pxafb_info *)info; int i; pr_debug("pxafb: blank=%d\n", blank); switch (blank) { case FB_BLANK_POWERDOWN: case FB_BLANK_VSYNC_SUSPEND: case FB_BLANK_HSYNC_SUSPEND: case FB_BLANK_NORMAL: if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) for (i = 0; i < fbi->palette_size; i++) pxafb_setpalettereg(i, 0, 0, 0, 0, info); pxafb_schedule_work(fbi, C_DISABLE); //TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); break; case FB_BLANK_UNBLANK: //TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) fb_set_cmap(&fbi->fb.cmap, info); pxafb_schedule_work(fbi, C_ENABLE); } return 0; } static int pxafb_mmap(struct fb_info *info, struct vm_area_struct *vma) { struct pxafb_info *fbi = (struct pxafb_info *)info; unsigned long off = vma->vm_pgoff << PAGE_SHIFT; if (off < info->fix.smem_len) { vma->vm_pgoff += 1; return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu, fbi->map_dma, fbi->map_size); } return -EINVAL; } static struct fb_ops pxafb_ops = { .owner = THIS_MODULE, .fb_check_var = pxafb_check_var, .fb_set_par = pxafb_set_par, .fb_setcolreg = pxafb_setcolreg, .fb_fillrect = cfb_fillrect, .fb_copyarea = cfb_copyarea, .fb_imageblit = cfb_imageblit, .fb_blank = pxafb_blank, .fb_mmap = pxafb_mmap, }; /* * Calculate the PCD value from the clock rate (in picoseconds). * We take account of the PPCR clock setting. * From PXA Developer's Manual: * * PixelClock = LCLK * ------------- * 2 ( PCD + 1 ) * * PCD = LCLK * ------------- - 1 * 2(PixelClock) * * Where: * LCLK = LCD/Memory Clock * PCD = LCCR3[7:0] * * PixelClock here is in Hz while the pixclock argument given is the * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 ) * * The function get_lclk_frequency_10khz returns LCLK in units of * 10khz. Calling the result of this function lclk gives us the * following * * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 ) * -------------------------------------- - 1 * 2 * * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below. */ static inline unsigned int get_pcd(unsigned int pixclock) { unsigned long long pcd; /* FIXME: Need to take into account Double Pixel Clock mode * (DPC) bit? or perhaps set it based on the various clock * speeds */ pcd = (unsigned long long)get_lcdclk_frequency_10khz() * pixclock; do_div(pcd, 100000000 * 2); /* no need for this, since we should subtract 1 anyway. they cancel */ /* pcd += 1; */ /* make up for integer math truncations */ return (unsigned int)pcd; } /* * Some touchscreens need hsync information from the video driver to * function correctly. We export it here. */ static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd) { unsigned long long htime; if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) { fbi->hsync_time=0; return; } htime = (unsigned long long)get_lcdclk_frequency_10khz() * 10000; do_div(htime, pcd * fbi->fb.var.hsync_len); fbi->hsync_time = htime; } unsigned long pxafb_get_hsync_time(struct device *dev) { struct pxafb_info *fbi = dev_get_drvdata(dev); /* If display is blanked/suspended, hsync isn't active */ if (!fbi || (fbi->state != C_ENABLE)) return 0; return fbi->hsync_time; } EXPORT_SYMBOL(pxafb_get_hsync_time); /* * pxafb_activate_var(): * Configures LCD Controller based on entries in var parameter. Settings are * only written to the controller if changes were made. */ static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *fbi) { struct pxafb_lcd_reg new_regs; u_long flags; u_int lines_per_panel, pcd = get_pcd(var->pixclock); pr_debug("pxafb: Configuring PXA LCD\n"); pr_debug("var: xres=%d hslen=%d lm=%d rm=%d\n", var->xres, var->hsync_len, var->left_margin, var->right_margin); pr_debug("var: yres=%d vslen=%d um=%d bm=%d\n", var->yres, var->vsync_len, var->upper_margin, var->lower_margin); pr_debug("var: pixclock=%d pcd=%d\n", var->pixclock, pcd); #if DEBUG_VAR if (var->xres < 16 || var->xres > 1024) printk(KERN_ERR "%s: invalid xres %d\n", fbi->fb.fix.id, var->xres); switch(var->bits_per_pixel) { case 1: case 2: case 4: case 8: case 16: break; default: printk(KERN_ERR "%s: invalid bit depth %d\n", fbi->fb.fix.id, var->bits_per_pixel); break; } if (var->hsync_len < 1 || var->hsync_len > 64) printk(KERN_ERR "%s: invalid hsync_len %d\n", fbi->fb.fix.id, var->hsync_len); if (var->left_margin < 1 || var->left_margin > 255) printk(KERN_ERR "%s: invalid left_margin %d\n", fbi->fb.fix.id, var->left_margin); if (var->right_margin < 1 || var->right_margin > 255) printk(KERN_ERR "%s: invalid right_margin %d\n", fbi->fb.fix.id, var->right_margin); if (var->yres < 1 || var->yres > 1024) printk(KERN_ERR "%s: invalid yres %d\n", fbi->fb.fix.id, var->yres); if (var->vsync_len < 1 || var->vsync_len > 64) printk(KERN_ERR "%s: invalid vsync_len %d\n", fbi->fb.fix.id, var->vsync_len); if (var->upper_margin < 0 || var->upper_margin > 255) printk(KERN_ERR "%s: invalid upper_margin %d\n", fbi->fb.fix.id, var->upper_margin); if (var->lower_margin < 0 || var->lower_margin > 255) printk(KERN_ERR "%s: invalid lower_margin %d\n", fbi->fb.fix.id, var->lower_margin); #endif new_regs.lccr0 = fbi->lccr0 | (LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM | LCCR0_QDM | LCCR0_BM | LCCR0_OUM); new_regs.lccr1 = LCCR1_DisWdth(var->xres) + LCCR1_HorSnchWdth(var->hsync_len) + LCCR1_BegLnDel(var->left_margin) + LCCR1_EndLnDel(var->right_margin); /* * If we have a dual scan LCD, we need to halve * the YRES parameter. */ lines_per_panel = var->yres; if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual) lines_per_panel /= 2; new_regs.lccr2 = LCCR2_DisHght(lines_per_panel) + LCCR2_VrtSnchWdth(var->vsync_len) + LCCR2_BegFrmDel(var->upper_margin) + LCCR2_EndFrmDel(var->lower_margin); new_regs.lccr3 = fbi->lccr3 | pxafb_bpp_to_lccr3(var) | (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) | (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL); if (pcd) new_regs.lccr3 |= LCCR3_PixClkDiv(pcd); pr_debug("nlccr0 = 0x%08x\n", new_regs.lccr0); pr_debug("nlccr1 = 0x%08x\n", new_regs.lccr1); pr_debug("nlccr2 = 0x%08x\n", new_regs.lccr2); pr_debug("nlccr3 = 0x%08x\n", new_regs.lccr3); /* Update shadow copy atomically */ local_irq_save(flags); /* setup dma descriptors */ fbi->dmadesc_fblow_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 3*16); fbi->dmadesc_fbhigh_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 2*16); fbi->dmadesc_palette_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 1*16); fbi->dmadesc_fblow_dma = fbi->palette_dma - 3*16; fbi->dmadesc_fbhigh_dma = fbi->palette_dma - 2*16; fbi->dmadesc_palette_dma = fbi->palette_dma - 1*16; #define BYTES_PER_PANEL (lines_per_panel * fbi->fb.fix.line_length) /* populate descriptors */ fbi->dmadesc_fblow_cpu->fdadr = fbi->dmadesc_fblow_dma; fbi->dmadesc_fblow_cpu->fsadr = fbi->screen_dma + BYTES_PER_PANEL; fbi->dmadesc_fblow_cpu->fidr = 0; fbi->dmadesc_fblow_cpu->ldcmd = BYTES_PER_PANEL; fbi->fdadr1 = fbi->dmadesc_fblow_dma; /* only used in dual-panel mode */ fbi->dmadesc_fbhigh_cpu->fsadr = fbi->screen_dma; fbi->dmadesc_fbhigh_cpu->fidr = 0; fbi->dmadesc_fbhigh_cpu->ldcmd = BYTES_PER_PANEL; fbi->dmadesc_palette_cpu->fsadr = fbi->palette_dma; fbi->dmadesc_palette_cpu->fidr = 0; fbi->dmadesc_palette_cpu->ldcmd = (fbi->palette_size * 2) | LDCMD_PAL; if (var->bits_per_pixel == 16) { /* palette shouldn't be loaded in true-color mode */ fbi->dmadesc_fbhigh_cpu->fdadr = fbi->dmadesc_fbhigh_dma; fbi->fdadr0 = fbi->dmadesc_fbhigh_dma; /* no pal just fbhigh */ /* init it to something, even though we won't be using it */ fbi->dmadesc_palette_cpu->fdadr = fbi->dmadesc_palette_dma; } else { fbi->dmadesc_palette_cpu->fdadr = fbi->dmadesc_fbhigh_dma; fbi->dmadesc_fbhigh_cpu->fdadr = fbi->dmadesc_palette_dma; fbi->fdadr0 = fbi->dmadesc_palette_dma; /* flips back and forth between pal and fbhigh */ } #if 0 pr_debug("fbi->dmadesc_fblow_cpu = 0x%p\n", fbi->dmadesc_fblow_cpu); pr_debug("fbi->dmadesc_fbhigh_cpu = 0x%p\n", fbi->dmadesc_fbhigh_cpu); pr_debug("fbi->dmadesc_palette_cpu = 0x%p\n", fbi->dmadesc_palette_cpu); pr_debug("fbi->dmadesc_fblow_dma = 0x%x\n", fbi->dmadesc_fblow_dma); pr_debug("fbi->dmadesc_fbhigh_dma = 0x%x\n", fbi->dmadesc_fbhigh_dma); pr_debug("fbi->dmadesc_palette_dma = 0x%x\n", fbi->dmadesc_palette_dma); pr_debug("fbi->dmadesc_fblow_cpu->fdadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fdadr); pr_debug("fbi->dmadesc_fbhigh_cpu->fdadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fdadr); pr_debug("fbi->dmadesc_palette_cpu->fdadr = 0x%x\n", fbi->dmadesc_palette_cpu->fdadr); pr_debug("fbi->dmadesc_fblow_cpu->fsadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fsadr); pr_debug("fbi->dmadesc_fbhigh_cpu->fsadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fsadr); pr_debug("fbi->dmadesc_palette_cpu->fsadr = 0x%x\n", fbi->dmadesc_palette_cpu->fsadr); pr_debug("fbi->dmadesc_fblow_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fblow_cpu->ldcmd); pr_debug("fbi->dmadesc_fbhigh_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fbhigh_cpu->ldcmd); pr_debug("fbi->dmadesc_palette_cpu->ldcmd = 0x%x\n", fbi->dmadesc_palette_cpu->ldcmd); #endif fbi->reg_lccr0 = new_regs.lccr0; fbi->reg_lccr1 = new_regs.lccr1; fbi->reg_lccr2 = new_regs.lccr2; fbi->reg_lccr3 = new_regs.lccr3; set_hsync_time(fbi, pcd); local_irq_restore(flags); /* * Only update the registers if the controller is enabled * and something has changed. */ if ((LCCR0 != fbi->reg_lccr0) || (LCCR1 != fbi->reg_lccr1) || (LCCR2 != fbi->reg_lccr2) || (LCCR3 != fbi->reg_lccr3) || (FDADR0 != fbi->fdadr0) || (FDADR1 != fbi->fdadr1)) pxafb_schedule_work(fbi, C_REENABLE); return 0; } /* * NOTE! The following functions are purely helpers for set_ctrlr_state. * Do not call them directly; set_ctrlr_state does the correct serialisation * to ensure that things happen in the right way 100% of time time. * -- rmk */ static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on) { pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff"); if (pxafb_backlight_power) pxafb_backlight_power(on); } static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on) { pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff"); if (pxafb_lcd_power) pxafb_lcd_power(on); } static void pxafb_setup_gpio(struct pxafb_info *fbi) { int gpio, ldd_bits; unsigned int lccr0 = fbi->lccr0; /* * setup is based on type of panel supported */ /* 4 bit interface */ if ((lccr0 & LCCR0_CMS) == LCCR0_Mono && (lccr0 & LCCR0_SDS) == LCCR0_Sngl && (lccr0 & LCCR0_DPD) == LCCR0_4PixMono) ldd_bits = 4; /* 8 bit interface */ else if (((lccr0 & LCCR0_CMS) == LCCR0_Mono && ((lccr0 & LCCR0_SDS) == LCCR0_Dual || (lccr0 & LCCR0_DPD) == LCCR0_8PixMono)) || ((lccr0 & LCCR0_CMS) == LCCR0_Color && (lccr0 & LCCR0_PAS) == LCCR0_Pas && (lccr0 & LCCR0_SDS) == LCCR0_Sngl)) ldd_bits = 8; /* 16 bit interface */ else if ((lccr0 & LCCR0_CMS) == LCCR0_Color && ((lccr0 & LCCR0_SDS) == LCCR0_Dual || (lccr0 & LCCR0_PAS) == LCCR0_Act)) ldd_bits = 16; else { printk(KERN_ERR "pxafb_setup_gpio: unable to determine bits per pixel\n"); return; } for (gpio = 58; ldd_bits; gpio++, ldd_bits--) pxa_gpio_mode(gpio | GPIO_ALT_FN_2_OUT); pxa_gpio_mode(GPIO74_LCD_FCLK_MD); pxa_gpio_mode(GPIO75_LCD_LCLK_MD); pxa_gpio_mode(GPIO76_LCD_PCLK_MD); pxa_gpio_mode(GPIO77_LCD_ACBIAS_MD); } static void pxafb_enable_controller(struct pxafb_info *fbi) { pr_debug("pxafb: Enabling LCD controller\n"); pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr0); pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr1); pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0); pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1); pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2); pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3); /* enable LCD controller clock */ pxa_set_cken(CKEN16_LCD, 1); /* Sequence from 11.7.10 */ LCCR3 = fbi->reg_lccr3; LCCR2 = fbi->reg_lccr2; LCCR1 = fbi->reg_lccr1; LCCR0 = fbi->reg_lccr0 & ~LCCR0_ENB; FDADR0 = fbi->fdadr0; FDADR1 = fbi->fdadr1; LCCR0 |= LCCR0_ENB; pr_debug("FDADR0 0x%08x\n", (unsigned int) FDADR0); pr_debug("FDADR1 0x%08x\n", (unsigned int) FDADR1); pr_debug("LCCR0 0x%08x\n", (unsigned int) LCCR0); pr_debug("LCCR1 0x%08x\n", (unsigned int) LCCR1); pr_debug("LCCR2 0x%08x\n", (unsigned int) LCCR2); pr_debug("LCCR3 0x%08x\n", (unsigned int) LCCR3); } static void pxafb_disable_controller(struct pxafb_info *fbi) { DECLARE_WAITQUEUE(wait, current); pr_debug("pxafb: disabling LCD controller\n"); set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&fbi->ctrlr_wait, &wait); LCSR = 0xffffffff; /* Clear LCD Status Register */ LCCR0 &= ~LCCR0_LDM; /* Enable LCD Disable Done Interrupt */ LCCR0 |= LCCR0_DIS; /* Disable LCD Controller */ schedule_timeout(200 * HZ / 1000); remove_wait_queue(&fbi->ctrlr_wait, &wait); /* disable LCD controller clock */ pxa_set_cken(CKEN16_LCD, 0); } /* * pxafb_handle_irq: Handle 'LCD DONE' interrupts. */ static irqreturn_t pxafb_handle_irq(int irq, void *dev_id, struct pt_regs *regs) { struct pxafb_info *fbi = dev_id; unsigned int lcsr = LCSR; if (lcsr & LCSR_LDD) { LCCR0 |= LCCR0_LDM; wake_up(&fbi->ctrlr_wait); } LCSR = lcsr; return IRQ_HANDLED; } /* * This function must be called from task context only, since it will * sleep when disabling the LCD controller, or if we get two contending * processes trying to alter state. */ static void set_ctrlr_state(struct pxafb_info *fbi, u_int state) { u_int old_state; down(&fbi->ctrlr_sem); old_state = fbi->state; /* * Hack around fbcon initialisation. */ if (old_state == C_STARTUP && state == C_REENABLE) state = C_ENABLE; switch (state) { case C_DISABLE_CLKCHANGE: /* * Disable controller for clock change. If the * controller is already disabled, then do nothing. */ if (old_state != C_DISABLE && old_state != C_DISABLE_PM) { fbi->state = state; //TODO __pxafb_lcd_power(fbi, 0); pxafb_disable_controller(fbi); } break; case C_DISABLE_PM: case C_DISABLE: /* * Disable controller */ if (old_state != C_DISABLE) { fbi->state = state; __pxafb_backlight_power(fbi, 0); __pxafb_lcd_power(fbi, 0); if (old_state != C_DISABLE_CLKCHANGE) pxafb_disable_controller(fbi); } break; case C_ENABLE_CLKCHANGE: /* * Enable the controller after clock change. Only * do this if we were disabled for the clock change. */ if (old_state == C_DISABLE_CLKCHANGE) { fbi->state = C_ENABLE; pxafb_enable_controller(fbi); //TODO __pxafb_lcd_power(fbi, 1); } break; case C_REENABLE: /* * Re-enable the controller only if it was already * enabled. This is so we reprogram the control * registers. */ if (old_state == C_ENABLE) { pxafb_disable_controller(fbi); pxafb_setup_gpio(fbi); pxafb_enable_controller(fbi); } break; case C_ENABLE_PM: /* * Re-enable the controller after PM. This is not * perfect - think about the case where we were doing * a clock change, and we suspended half-way through. */ if (old_state != C_DISABLE_PM) break; /* fall through */ case C_ENABLE: /* * Power up the LCD screen, enable controller, and * turn on the backlight. */ if (old_state != C_ENABLE) { fbi->state = C_ENABLE; pxafb_setup_gpio(fbi); pxafb_enable_controller(fbi); __pxafb_lcd_power(fbi, 1); __pxafb_backlight_power(fbi, 1); } break; } up(&fbi->ctrlr_sem); } /* * Our LCD controller task (which is called when we blank or unblank) * via keventd. */ static void pxafb_task(void *dummy) { struct pxafb_info *fbi = dummy; u_int state = xchg(&fbi->task_state, -1); set_ctrlr_state(fbi, state); } #ifdef CONFIG_CPU_FREQ /* * CPU clock speed change handler. We need to adjust the LCD timing * parameters when the CPU clock is adjusted by the power management * subsystem. * * TODO: Determine why f->new != 10*get_lclk_frequency_10khz() */ static int pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data) { struct pxafb_info *fbi = TO_INF(nb, freq_transition); //TODO struct cpufreq_freqs *f = data; u_int pcd; switch (val) { case CPUFREQ_PRECHANGE: set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE); break; case CPUFREQ_POSTCHANGE: pcd = get_pcd(fbi->fb.var.pixclock); set_hsync_time(fbi, pcd); fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd); set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE); break; } return 0; } static int pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data) { struct pxafb_info *fbi = TO_INF(nb, freq_policy); struct fb_var_screeninfo *var = &fbi->fb.var; struct cpufreq_policy *policy = data; switch (val) { case CPUFREQ_ADJUST: case CPUFREQ_INCOMPATIBLE: printk(KERN_DEBUG "min dma period: %d ps, " "new clock %d kHz\n", pxafb_display_dma_period(var), policy->max); // TODO: fill in min/max values break; #if 0 case CPUFREQ_NOTIFY: printk(KERN_ERR "%s: got CPUFREQ_NOTIFY\n", __FUNCTION__); do {} while(0); /* todo: panic if min/max values aren't fulfilled * [can't really happen unless there's a bug in the * CPU policy verification process * */ break; #endif } return 0; } #endif #ifdef CONFIG_PM /* * Power management hooks. Note that we won't be called from IRQ context, * unlike the blank functions above, so we may sleep. */ static int pxafb_suspend(struct platform_device *dev, pm_message_t state) { struct pxafb_info *fbi = platform_get_drvdata(dev); set_ctrlr_state(fbi, C_DISABLE_PM); return 0; } static int pxafb_resume(struct platform_device *dev) { struct pxafb_info *fbi = platform_get_drvdata(dev); set_ctrlr_state(fbi, C_ENABLE_PM); return 0; } #else #define pxafb_suspend NULL #define pxafb_resume NULL #endif /* * pxafb_map_video_memory(): * Allocates the DRAM memory for the frame buffer. This buffer is * remapped into a non-cached, non-buffered, memory region to * allow palette and pixel writes to occur without flushing the * cache. Once this area is remapped, all virtual memory * access to the video memory should occur at the new region. */ static int __init pxafb_map_video_memory(struct pxafb_info *fbi) { u_long palette_mem_size; /* * We reserve one page for the palette, plus the size * of the framebuffer. */ fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE); fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size, &fbi->map_dma, GFP_KERNEL); if (fbi->map_cpu) { /* prevent initial garbage on screen */ memset(fbi->map_cpu, 0, fbi->map_size); fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE; fbi->screen_dma = fbi->map_dma + PAGE_SIZE; /* * FIXME: this is actually the wrong thing to place in * smem_start. But fbdev suffers from the problem that * it needs an API which doesn't exist (in this case, * dma_writecombine_mmap) */ fbi->fb.fix.smem_start = fbi->screen_dma; fbi->palette_size = fbi->fb.var.bits_per_pixel == 8 ? 256 : 16; palette_mem_size = fbi->palette_size * sizeof(u16); pr_debug("pxafb: palette_mem_size = 0x%08lx\n", palette_mem_size); fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size); fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size; } return fbi->map_cpu ? 0 : -ENOMEM; } static struct pxafb_info * __init pxafb_init_fbinfo(struct device *dev) { struct pxafb_info *fbi; void *addr; struct pxafb_mach_info *inf = dev->platform_data; /* Alloc the pxafb_info and pseudo_palette in one step */ fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL); if (!fbi) return NULL; memset(fbi, 0, sizeof(struct pxafb_info)); fbi->dev = dev; strcpy(fbi->fb.fix.id, PXA_NAME); fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS; fbi->fb.fix.type_aux = 0; fbi->fb.fix.xpanstep = 0; fbi->fb.fix.ypanstep = 0; fbi->fb.fix.ywrapstep = 0; fbi->fb.fix.accel = FB_ACCEL_NONE; fbi->fb.var.nonstd = 0; fbi->fb.var.activate = FB_ACTIVATE_NOW; fbi->fb.var.height = -1; fbi->fb.var.width = -1; fbi->fb.var.accel_flags = 0; fbi->fb.var.vmode = FB_VMODE_NONINTERLACED; fbi->fb.fbops = &pxafb_ops; fbi->fb.flags = FBINFO_DEFAULT; fbi->fb.node = -1; addr = fbi; addr = addr + sizeof(struct pxafb_info); fbi->fb.pseudo_palette = addr; fbi->max_xres = inf->xres; fbi->fb.var.xres = inf->xres; fbi->fb.var.xres_virtual = inf->xres; fbi->max_yres = inf->yres; fbi->fb.var.yres = inf->yres; fbi->fb.var.yres_virtual = inf->yres; fbi->max_bpp = inf->bpp; fbi->fb.var.bits_per_pixel = inf->bpp; fbi->fb.var.pixclock = inf->pixclock; fbi->fb.var.hsync_len = inf->hsync_len; fbi->fb.var.left_margin = inf->left_margin; fbi->fb.var.right_margin = inf->right_margin; fbi->fb.var.vsync_len = inf->vsync_len; fbi->fb.var.upper_margin = inf->upper_margin; fbi->fb.var.lower_margin = inf->lower_margin; fbi->fb.var.sync = inf->sync; fbi->fb.var.grayscale = inf->cmap_greyscale; fbi->cmap_inverse = inf->cmap_inverse; fbi->cmap_static = inf->cmap_static; fbi->lccr0 = inf->lccr0; fbi->lccr3 = inf->lccr3; fbi->state = C_STARTUP; fbi->task_state = (u_char)-1; fbi->fb.fix.smem_len = fbi->max_xres * fbi->max_yres * fbi->max_bpp / 8; init_waitqueue_head(&fbi->ctrlr_wait); INIT_WORK(&fbi->task, pxafb_task, fbi); init_MUTEX(&fbi->ctrlr_sem); return fbi; } #ifdef CONFIG_FB_PXA_PARAMETERS static int __init pxafb_parse_options(struct device *dev, char *options) { struct pxafb_mach_info *inf = dev->platform_data; char *this_opt; if (!options || !*options) return 0; dev_dbg(dev, "options are \"%s\"\n", options ? options : "null"); /* could be made table driven or similar?... */ while ((this_opt = strsep(&options, ",")) != NULL) { if (!strncmp(this_opt, "mode:", 5)) { const char *name = this_opt+5; unsigned int namelen = strlen(name); int res_specified = 0, bpp_specified = 0; unsigned int xres = 0, yres = 0, bpp = 0; int yres_specified = 0; int i; for (i = namelen-1; i >= 0; i--) { switch (name[i]) { case '-': namelen = i; if (!bpp_specified && !yres_specified) { bpp = simple_strtoul(&name[i+1], NULL, 0); bpp_specified = 1; } else goto done; break; case 'x': if (!yres_specified) { yres = simple_strtoul(&name[i+1], NULL, 0); yres_specified = 1; } else goto done; break; case '0'...'9': break; default: goto done; } } if (i < 0 && yres_specified) { xres = simple_strtoul(name, NULL, 0); res_specified = 1; } done: if (res_specified) { dev_info(dev, "overriding resolution: %dx%d\n", xres, yres); inf->xres = xres; inf->yres = yres; } if (bpp_specified) switch (bpp) { case 1: case 2: case 4: case 8: case 16: inf->bpp = bpp; dev_info(dev, "overriding bit depth: %d\n", bpp); break; default: dev_err(dev, "Depth %d is not valid\n", bpp); } } else if (!strncmp(this_opt, "pixclock:", 9)) { inf->pixclock = simple_strtoul(this_opt+9, NULL, 0); dev_info(dev, "override pixclock: %ld\n", inf->pixclock); } else if (!strncmp(this_opt, "left:", 5)) { inf->left_margin = simple_strtoul(this_opt+5, NULL, 0); dev_info(dev, "override left: %u\n", inf->left_margin); } else if (!strncmp(this_opt, "right:", 6)) { inf->right_margin = simple_strtoul(this_opt+6, NULL, 0); dev_info(dev, "override right: %u\n", inf->right_margin); } else if (!strncmp(this_opt, "upper:", 6)) { inf->upper_margin = simple_strtoul(this_opt+6, NULL, 0); dev_info(dev, "override upper: %u\n", inf->upper_margin); } else if (!strncmp(this_opt, "lower:", 6)) { inf->lower_margin = simple_strtoul(this_opt+6, NULL, 0); dev_info(dev, "override lower: %u\n", inf->lower_margin); } else if (!strncmp(this_opt, "hsynclen:", 9)) { inf->hsync_len = simple_strtoul(this_opt+9, NULL, 0); dev_info(dev, "override hsynclen: %u\n", inf->hsync_len); } else if (!strncmp(this_opt, "vsynclen:", 9)) { inf->vsync_len = simple_strtoul(this_opt+9, NULL, 0); dev_info(dev, "override vsynclen: %u\n", inf->vsync_len); } else if (!strncmp(this_opt, "hsync:", 6)) { if (simple_strtoul(this_opt+6, NULL, 0) == 0) { dev_info(dev, "override hsync: Active Low\n"); inf->sync &= ~FB_SYNC_HOR_HIGH_ACT; } else { dev_info(dev, "override hsync: Active High\n"); inf->sync |= FB_SYNC_HOR_HIGH_ACT; } } else if (!strncmp(this_opt, "vsync:", 6)) { if (simple_strtoul(this_opt+6, NULL, 0) == 0) { dev_info(dev, "override vsync: Active Low\n"); inf->sync &= ~FB_SYNC_VERT_HIGH_ACT; } else { dev_info(dev, "override vsync: Active High\n"); inf->sync |= FB_SYNC_VERT_HIGH_ACT; } } else if (!strncmp(this_opt, "dpc:", 4)) { if (simple_strtoul(this_opt+4, NULL, 0) == 0) { dev_info(dev, "override double pixel clock: false\n"); inf->lccr3 &= ~LCCR3_DPC; } else { dev_info(dev, "override double pixel clock: true\n"); inf->lccr3 |= LCCR3_DPC; } } else if (!strncmp(this_opt, "outputen:", 9)) { if (simple_strtoul(this_opt+9, NULL, 0) == 0) { dev_info(dev, "override output enable: active low\n"); inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL; } else { dev_info(dev, "override output enable: active high\n"); inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH; } } else if (!strncmp(this_opt, "pixclockpol:", 12)) { if (simple_strtoul(this_opt+12, NULL, 0) == 0) { dev_info(dev, "override pixel clock polarity: falling edge\n"); inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg; } else { dev_info(dev, "override pixel clock polarity: rising edge\n"); inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg; } } else if (!strncmp(this_opt, "color", 5)) { inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color; } else if (!strncmp(this_opt, "mono", 4)) { inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono; } else if (!strncmp(this_opt, "active", 6)) { inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act; } else if (!strncmp(this_opt, "passive", 7)) { inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas; } else if (!strncmp(this_opt, "single", 6)) { inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl; } else if (!strncmp(this_opt, "dual", 4)) { inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual; } else if (!strncmp(this_opt, "4pix", 4)) { inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono; } else if (!strncmp(this_opt, "8pix", 4)) { inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono; } else { dev_err(dev, "unknown option: %s\n", this_opt); return -EINVAL; } } return 0; } #endif int __init pxafb_probe(struct platform_device *dev) { struct pxafb_info *fbi; struct pxafb_mach_info *inf; int ret; dev_dbg(&dev->dev, "pxafb_probe\n"); inf = dev->dev.platform_data; ret = -ENOMEM; fbi = NULL; if (!inf) goto failed; #ifdef CONFIG_FB_PXA_PARAMETERS ret = pxafb_parse_options(&dev->dev, g_options); if (ret < 0) goto failed; #endif #ifdef DEBUG_VAR /* Check for various illegal bit-combinations. Currently only * a warning is given. */ if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK) dev_warn(&dev->dev, "machine LCCR0 setting contains illegal bits: %08x\n", inf->lccr0 & LCCR0_INVALID_CONFIG_MASK); if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK) dev_warn(&dev->dev, "machine LCCR3 setting contains illegal bits: %08x\n", inf->lccr3 & LCCR3_INVALID_CONFIG_MASK); if (inf->lccr0 & LCCR0_DPD && ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas || (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl || (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono)) dev_warn(&dev->dev, "Double Pixel Data (DPD) mode is only valid in passive mono" " single panel mode\n"); if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act && (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual) dev_warn(&dev->dev, "Dual panel only valid in passive mode\n"); if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas && (inf->upper_margin || inf->lower_margin)) dev_warn(&dev->dev, "Upper and lower margins must be 0 in passive mode\n"); #endif dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",inf->xres, inf->yres, inf->bpp); if (inf->xres == 0 || inf->yres == 0 || inf->bpp == 0) { dev_err(&dev->dev, "Invalid resolution or bit depth\n"); ret = -EINVAL; goto failed; } pxafb_backlight_power = inf->pxafb_backlight_power; pxafb_lcd_power = inf->pxafb_lcd_power; fbi = pxafb_init_fbinfo(&dev->dev); if (!fbi) { dev_err(&dev->dev, "Failed to initialize framebuffer device\n"); ret = -ENOMEM; // only reason for pxafb_init_fbinfo to fail is kmalloc goto failed; } /* Initialize video memory */ ret = pxafb_map_video_memory(fbi); if (ret) { dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret); ret = -ENOMEM; goto failed; } ret = request_irq(IRQ_LCD, pxafb_handle_irq, IRQF_DISABLED, "LCD", fbi); if (ret) { dev_err(&dev->dev, "request_irq failed: %d\n", ret); ret = -EBUSY; goto failed; } /* * This makes sure that our colour bitfield * descriptors are correctly initialised. */ pxafb_check_var(&fbi->fb.var, &fbi->fb); pxafb_set_par(&fbi->fb); platform_set_drvdata(dev, fbi); ret = register_framebuffer(&fbi->fb); if (ret < 0) { dev_err(&dev->dev, "Failed to register framebuffer device: %d\n", ret); goto failed; } #ifdef CONFIG_PM // TODO #endif #ifdef CONFIG_CPU_FREQ fbi->freq_transition.notifier_call = pxafb_freq_transition; fbi->freq_policy.notifier_call = pxafb_freq_policy; cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER); cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER); #endif /* * Ok, now enable the LCD controller */ set_ctrlr_state(fbi, C_ENABLE); return 0; failed: platform_set_drvdata(dev, NULL); kfree(fbi); return ret; } static struct platform_driver pxafb_driver = { .probe = pxafb_probe, #ifdef CONFIG_PM .suspend = pxafb_suspend, .resume = pxafb_resume, #endif .driver = { .name = "pxa2xx-fb", }, }; #ifndef MODULE int __devinit pxafb_setup(char *options) { # ifdef CONFIG_FB_PXA_PARAMETERS if (options) strlcpy(g_options, options, sizeof(g_options)); # endif return 0; } #else # ifdef CONFIG_FB_PXA_PARAMETERS module_param_string(options, g_options, sizeof(g_options), 0); MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)"); # endif #endif int __devinit pxafb_init(void) { #ifndef MODULE char *option = NULL; if (fb_get_options("pxafb", &option)) return -ENODEV; pxafb_setup(option); #endif return platform_driver_register(&pxafb_driver); } module_init(pxafb_init); MODULE_DESCRIPTION("loadable framebuffer driver for PXA"); MODULE_LICENSE("GPL");