/* * Analog Devices SPI3 controller driver * * Copyright (c) 2014 Analog Devices Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include enum adi_spi_state { START_STATE, RUNNING_STATE, DONE_STATE, ERROR_STATE }; struct adi_spi_master; struct adi_spi_transfer_ops { void (*write) (struct adi_spi_master *); void (*read) (struct adi_spi_master *); void (*duplex) (struct adi_spi_master *); }; /* runtime info for spi master */ struct adi_spi_master { /* SPI framework hookup */ struct spi_master *master; /* Regs base of SPI controller */ struct adi_spi_regs __iomem *regs; /* Pin request list */ u16 *pin_req; /* Message Transfer pump */ struct tasklet_struct pump_transfers; /* Current message transfer state info */ struct spi_message *cur_msg; struct spi_transfer *cur_transfer; struct adi_spi_device *cur_chip; unsigned transfer_len; /* transfer buffer */ void *tx; void *tx_end; void *rx; void *rx_end; /* dma info */ unsigned int tx_dma; unsigned int rx_dma; dma_addr_t tx_dma_addr; dma_addr_t rx_dma_addr; unsigned long dummy_buffer; /* used in unidirectional transfer */ unsigned long tx_dma_size; unsigned long rx_dma_size; int tx_num; int rx_num; /* store register value for suspend/resume */ u32 control; u32 ssel; unsigned long sclk; enum adi_spi_state state; const struct adi_spi_transfer_ops *ops; }; struct adi_spi_device { u32 control; u32 clock; u32 ssel; u8 cs; u16 cs_chg_udelay; /* Some devices require > 255usec delay */ u32 cs_gpio; u32 tx_dummy_val; /* tx value for rx only transfer */ bool enable_dma; const struct adi_spi_transfer_ops *ops; }; static void adi_spi_enable(struct adi_spi_master *drv_data) { u32 ctl; ctl = ioread32(&drv_data->regs->control); ctl |= SPI_CTL_EN; iowrite32(ctl, &drv_data->regs->control); } static void adi_spi_disable(struct adi_spi_master *drv_data) { u32 ctl; ctl = ioread32(&drv_data->regs->control); ctl &= ~SPI_CTL_EN; iowrite32(ctl, &drv_data->regs->control); } /* Caculate the SPI_CLOCK register value based on input HZ */ static u32 hz_to_spi_clock(u32 sclk, u32 speed_hz) { u32 spi_clock = sclk / speed_hz; if (spi_clock) spi_clock--; return spi_clock; } static int adi_spi_flush(struct adi_spi_master *drv_data) { unsigned long limit = loops_per_jiffy << 1; /* wait for stop and clear stat */ while (!(ioread32(&drv_data->regs->status) & SPI_STAT_SPIF) && --limit) cpu_relax(); iowrite32(0xFFFFFFFF, &drv_data->regs->status); return limit; } /* Chip select operation functions for cs_change flag */ static void adi_spi_cs_active(struct adi_spi_master *drv_data, struct adi_spi_device *chip) { if (likely(chip->cs < MAX_CTRL_CS)) { u32 reg; reg = ioread32(&drv_data->regs->ssel); reg &= ~chip->ssel; iowrite32(reg, &drv_data->regs->ssel); } else { gpio_set_value(chip->cs_gpio, 0); } } static void adi_spi_cs_deactive(struct adi_spi_master *drv_data, struct adi_spi_device *chip) { if (likely(chip->cs < MAX_CTRL_CS)) { u32 reg; reg = ioread32(&drv_data->regs->ssel); reg |= chip->ssel; iowrite32(reg, &drv_data->regs->ssel); } else { gpio_set_value(chip->cs_gpio, 1); } /* Move delay here for consistency */ if (chip->cs_chg_udelay) udelay(chip->cs_chg_udelay); } /* enable or disable the pin muxed by GPIO and SPI CS to work as SPI CS */ static inline void adi_spi_cs_enable(struct adi_spi_master *drv_data, struct adi_spi_device *chip) { if (chip->cs < MAX_CTRL_CS) { u32 reg; reg = ioread32(&drv_data->regs->ssel); reg |= chip->ssel >> 8; iowrite32(reg, &drv_data->regs->ssel); } } static inline void adi_spi_cs_disable(struct adi_spi_master *drv_data, struct adi_spi_device *chip) { if (chip->cs < MAX_CTRL_CS) { u32 reg; reg = ioread32(&drv_data->regs->ssel); reg &= ~(chip->ssel >> 8); iowrite32(reg, &drv_data->regs->ssel); } } /* stop controller and re-config current chip*/ static void adi_spi_restore_state(struct adi_spi_master *drv_data) { struct adi_spi_device *chip = drv_data->cur_chip; /* Clear status and disable clock */ iowrite32(0xFFFFFFFF, &drv_data->regs->status); iowrite32(0x0, &drv_data->regs->rx_control); iowrite32(0x0, &drv_data->regs->tx_control); adi_spi_disable(drv_data); /* Load the registers */ iowrite32(chip->control, &drv_data->regs->control); iowrite32(chip->clock, &drv_data->regs->clock); adi_spi_enable(drv_data); drv_data->tx_num = drv_data->rx_num = 0; /* we always choose tx transfer initiate */ iowrite32(SPI_RXCTL_REN, &drv_data->regs->rx_control); iowrite32(SPI_TXCTL_TEN | SPI_TXCTL_TTI, &drv_data->regs->tx_control); adi_spi_cs_active(drv_data, chip); } /* discard invalid rx data and empty rfifo */ static inline void dummy_read(struct adi_spi_master *drv_data) { while (!(ioread32(&drv_data->regs->status) & SPI_STAT_RFE)) ioread32(&drv_data->regs->rfifo); } static void adi_spi_u8_write(struct adi_spi_master *drv_data) { dummy_read(drv_data); while (drv_data->tx < drv_data->tx_end) { iowrite32(*(u8 *)(drv_data->tx++), &drv_data->regs->tfifo); while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE) cpu_relax(); ioread32(&drv_data->regs->rfifo); } } static void adi_spi_u8_read(struct adi_spi_master *drv_data) { u32 tx_val = drv_data->cur_chip->tx_dummy_val; dummy_read(drv_data); while (drv_data->rx < drv_data->rx_end) { iowrite32(tx_val, &drv_data->regs->tfifo); while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE) cpu_relax(); *(u8 *)(drv_data->rx++) = ioread32(&drv_data->regs->rfifo); } } static void adi_spi_u8_duplex(struct adi_spi_master *drv_data) { dummy_read(drv_data); while (drv_data->rx < drv_data->rx_end) { iowrite32(*(u8 *)(drv_data->tx++), &drv_data->regs->tfifo); while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE) cpu_relax(); *(u8 *)(drv_data->rx++) = ioread32(&drv_data->regs->rfifo); } } static const struct adi_spi_transfer_ops adi_spi_transfer_ops_u8 = { .write = adi_spi_u8_write, .read = adi_spi_u8_read, .duplex = adi_spi_u8_duplex, }; static void adi_spi_u16_write(struct adi_spi_master *drv_data) { dummy_read(drv_data); while (drv_data->tx < drv_data->tx_end) { iowrite32(*(u16 *)drv_data->tx, &drv_data->regs->tfifo); drv_data->tx += 2; while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE) cpu_relax(); ioread32(&drv_data->regs->rfifo); } } static void adi_spi_u16_read(struct adi_spi_master *drv_data) { u32 tx_val = drv_data->cur_chip->tx_dummy_val; dummy_read(drv_data); while (drv_data->rx < drv_data->rx_end) { iowrite32(tx_val, &drv_data->regs->tfifo); while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE) cpu_relax(); *(u16 *)drv_data->rx = ioread32(&drv_data->regs->rfifo); drv_data->rx += 2; } } static void adi_spi_u16_duplex(struct adi_spi_master *drv_data) { dummy_read(drv_data); while (drv_data->rx < drv_data->rx_end) { iowrite32(*(u16 *)drv_data->tx, &drv_data->regs->tfifo); drv_data->tx += 2; while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE) cpu_relax(); *(u16 *)drv_data->rx = ioread32(&drv_data->regs->rfifo); drv_data->rx += 2; } } static const struct adi_spi_transfer_ops adi_spi_transfer_ops_u16 = { .write = adi_spi_u16_write, .read = adi_spi_u16_read, .duplex = adi_spi_u16_duplex, }; static void adi_spi_u32_write(struct adi_spi_master *drv_data) { dummy_read(drv_data); while (drv_data->tx < drv_data->tx_end) { iowrite32(*(u32 *)drv_data->tx, &drv_data->regs->tfifo); drv_data->tx += 4; while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE) cpu_relax(); ioread32(&drv_data->regs->rfifo); } } static void adi_spi_u32_read(struct adi_spi_master *drv_data) { u32 tx_val = drv_data->cur_chip->tx_dummy_val; dummy_read(drv_data); while (drv_data->rx < drv_data->rx_end) { iowrite32(tx_val, &drv_data->regs->tfifo); while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE) cpu_relax(); *(u32 *)drv_data->rx = ioread32(&drv_data->regs->rfifo); drv_data->rx += 4; } } static void adi_spi_u32_duplex(struct adi_spi_master *drv_data) { dummy_read(drv_data); while (drv_data->rx < drv_data->rx_end) { iowrite32(*(u32 *)drv_data->tx, &drv_data->regs->tfifo); drv_data->tx += 4; while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE) cpu_relax(); *(u32 *)drv_data->rx = ioread32(&drv_data->regs->rfifo); drv_data->rx += 4; } } static const struct adi_spi_transfer_ops adi_spi_transfer_ops_u32 = { .write = adi_spi_u32_write, .read = adi_spi_u32_read, .duplex = adi_spi_u32_duplex, }; /* test if there is more transfer to be done */ static void adi_spi_next_transfer(struct adi_spi_master *drv) { struct spi_message *msg = drv->cur_msg; struct spi_transfer *t = drv->cur_transfer; /* Move to next transfer */ if (t->transfer_list.next != &msg->transfers) { drv->cur_transfer = list_entry(t->transfer_list.next, struct spi_transfer, transfer_list); drv->state = RUNNING_STATE; } else { drv->state = DONE_STATE; drv->cur_transfer = NULL; } } static void adi_spi_giveback(struct adi_spi_master *drv_data) { struct adi_spi_device *chip = drv_data->cur_chip; adi_spi_cs_deactive(drv_data, chip); spi_finalize_current_message(drv_data->master); } static int adi_spi_setup_transfer(struct adi_spi_master *drv) { struct spi_transfer *t = drv->cur_transfer; u32 cr, cr_width; if (t->tx_buf) { drv->tx = (void *)t->tx_buf; drv->tx_end = drv->tx + t->len; } else { drv->tx = NULL; } if (t->rx_buf) { drv->rx = t->rx_buf; drv->rx_end = drv->rx + t->len; } else { drv->rx = NULL; } drv->transfer_len = t->len; /* bits per word setup */ switch (t->bits_per_word) { case 8: cr_width = SPI_CTL_SIZE08; drv->ops = &adi_spi_transfer_ops_u8; break; case 16: cr_width = SPI_CTL_SIZE16; drv->ops = &adi_spi_transfer_ops_u16; break; case 32: cr_width = SPI_CTL_SIZE32; drv->ops = &adi_spi_transfer_ops_u32; break; default: return -EINVAL; } cr = ioread32(&drv->regs->control) & ~SPI_CTL_SIZE; cr |= cr_width; iowrite32(cr, &drv->regs->control); /* speed setup */ iowrite32(hz_to_spi_clock(drv->sclk, t->speed_hz), &drv->regs->clock); return 0; } static int adi_spi_dma_xfer(struct adi_spi_master *drv_data) { struct spi_transfer *t = drv_data->cur_transfer; struct spi_message *msg = drv_data->cur_msg; struct adi_spi_device *chip = drv_data->cur_chip; u32 dma_config; unsigned long word_count, word_size; void *tx_buf, *rx_buf; switch (t->bits_per_word) { case 8: dma_config = WDSIZE_8 | PSIZE_8; word_count = drv_data->transfer_len; word_size = 1; break; case 16: dma_config = WDSIZE_16 | PSIZE_16; word_count = drv_data->transfer_len / 2; word_size = 2; break; default: dma_config = WDSIZE_32 | PSIZE_32; word_count = drv_data->transfer_len / 4; word_size = 4; break; } if (!drv_data->rx) { tx_buf = drv_data->tx; rx_buf = &drv_data->dummy_buffer; drv_data->tx_dma_size = drv_data->transfer_len; drv_data->rx_dma_size = sizeof(drv_data->dummy_buffer); set_dma_x_modify(drv_data->tx_dma, word_size); set_dma_x_modify(drv_data->rx_dma, 0); } else if (!drv_data->tx) { drv_data->dummy_buffer = chip->tx_dummy_val; tx_buf = &drv_data->dummy_buffer; rx_buf = drv_data->rx; drv_data->tx_dma_size = sizeof(drv_data->dummy_buffer); drv_data->rx_dma_size = drv_data->transfer_len; set_dma_x_modify(drv_data->tx_dma, 0); set_dma_x_modify(drv_data->rx_dma, word_size); } else { tx_buf = drv_data->tx; rx_buf = drv_data->rx; drv_data->tx_dma_size = drv_data->rx_dma_size = drv_data->transfer_len; set_dma_x_modify(drv_data->tx_dma, word_size); set_dma_x_modify(drv_data->rx_dma, word_size); } drv_data->tx_dma_addr = dma_map_single(&msg->spi->dev, (void *)tx_buf, drv_data->tx_dma_size, DMA_TO_DEVICE); if (dma_mapping_error(&msg->spi->dev, drv_data->tx_dma_addr)) return -ENOMEM; drv_data->rx_dma_addr = dma_map_single(&msg->spi->dev, (void *)rx_buf, drv_data->rx_dma_size, DMA_FROM_DEVICE); if (dma_mapping_error(&msg->spi->dev, drv_data->rx_dma_addr)) { dma_unmap_single(&msg->spi->dev, drv_data->tx_dma_addr, drv_data->tx_dma_size, DMA_TO_DEVICE); return -ENOMEM; } dummy_read(drv_data); set_dma_x_count(drv_data->tx_dma, word_count); set_dma_x_count(drv_data->rx_dma, word_count); set_dma_start_addr(drv_data->tx_dma, drv_data->tx_dma_addr); set_dma_start_addr(drv_data->rx_dma, drv_data->rx_dma_addr); dma_config |= DMAFLOW_STOP | RESTART | DI_EN; set_dma_config(drv_data->tx_dma, dma_config); set_dma_config(drv_data->rx_dma, dma_config | WNR); enable_dma(drv_data->tx_dma); enable_dma(drv_data->rx_dma); iowrite32(SPI_RXCTL_REN | SPI_RXCTL_RDR_NE, &drv_data->regs->rx_control); iowrite32(SPI_TXCTL_TEN | SPI_TXCTL_TTI | SPI_TXCTL_TDR_NF, &drv_data->regs->tx_control); return 0; } static int adi_spi_pio_xfer(struct adi_spi_master *drv_data) { struct spi_message *msg = drv_data->cur_msg; if (!drv_data->rx) { /* write only half duplex */ drv_data->ops->write(drv_data); if (drv_data->tx != drv_data->tx_end) return -EIO; } else if (!drv_data->tx) { /* read only half duplex */ drv_data->ops->read(drv_data); if (drv_data->rx != drv_data->rx_end) return -EIO; } else { /* full duplex mode */ drv_data->ops->duplex(drv_data); if (drv_data->tx != drv_data->tx_end) return -EIO; } if (!adi_spi_flush(drv_data)) return -EIO; msg->actual_length += drv_data->transfer_len; tasklet_schedule(&drv_data->pump_transfers); return 0; } static void adi_spi_pump_transfers(unsigned long data) { struct adi_spi_master *drv_data = (struct adi_spi_master *)data; struct spi_message *msg = NULL; struct spi_transfer *t = NULL; struct adi_spi_device *chip = NULL; int ret; /* Get current state information */ msg = drv_data->cur_msg; t = drv_data->cur_transfer; chip = drv_data->cur_chip; /* Handle for abort */ if (drv_data->state == ERROR_STATE) { msg->status = -EIO; adi_spi_giveback(drv_data); return; } if (drv_data->state == RUNNING_STATE) { if (t->delay_usecs) udelay(t->delay_usecs); if (t->cs_change) adi_spi_cs_deactive(drv_data, chip); adi_spi_next_transfer(drv_data); t = drv_data->cur_transfer; } /* Handle end of message */ if (drv_data->state == DONE_STATE) { msg->status = 0; adi_spi_giveback(drv_data); return; } if ((t->len == 0) || (t->tx_buf == NULL && t->rx_buf == NULL)) { /* Schedule next transfer tasklet */ tasklet_schedule(&drv_data->pump_transfers); return; } ret = adi_spi_setup_transfer(drv_data); if (ret) { msg->status = ret; adi_spi_giveback(drv_data); } iowrite32(0xFFFFFFFF, &drv_data->regs->status); adi_spi_cs_active(drv_data, chip); drv_data->state = RUNNING_STATE; if (chip->enable_dma) ret = adi_spi_dma_xfer(drv_data); else ret = adi_spi_pio_xfer(drv_data); if (ret) { msg->status = ret; adi_spi_giveback(drv_data); } } static int adi_spi_transfer_one_message(struct spi_master *master, struct spi_message *m) { struct adi_spi_master *drv_data = spi_master_get_devdata(master); drv_data->cur_msg = m; drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi); adi_spi_restore_state(drv_data); drv_data->state = START_STATE; drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next, struct spi_transfer, transfer_list); tasklet_schedule(&drv_data->pump_transfers); return 0; } #define MAX_SPI_SSEL 7 static const u16 ssel[][MAX_SPI_SSEL] = { {P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3, P_SPI0_SSEL4, P_SPI0_SSEL5, P_SPI0_SSEL6, P_SPI0_SSEL7}, {P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3, P_SPI1_SSEL4, P_SPI1_SSEL5, P_SPI1_SSEL6, P_SPI1_SSEL7}, {P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3, P_SPI2_SSEL4, P_SPI2_SSEL5, P_SPI2_SSEL6, P_SPI2_SSEL7}, }; static int adi_spi_setup(struct spi_device *spi) { struct adi_spi_master *drv_data = spi_master_get_devdata(spi->master); struct adi_spi_device *chip = spi_get_ctldata(spi); u32 ctl_reg = SPI_CTL_ODM | SPI_CTL_PSSE; int ret = -EINVAL; if (!chip) { struct adi_spi3_chip *chip_info = spi->controller_data; chip = kzalloc(sizeof(*chip), GFP_KERNEL); if (!chip) { dev_err(&spi->dev, "can not allocate chip data\n"); return -ENOMEM; } if (chip_info) { if (chip_info->control & ~ctl_reg) { dev_err(&spi->dev, "do not set bits that the SPI framework manages\n"); goto error; } chip->control = chip_info->control; chip->cs_chg_udelay = chip_info->cs_chg_udelay; chip->tx_dummy_val = chip_info->tx_dummy_val; chip->enable_dma = chip_info->enable_dma; } chip->cs = spi->chip_select; if (chip->cs < MAX_CTRL_CS) { chip->ssel = (1 << chip->cs) << 8; ret = peripheral_request(ssel[spi->master->bus_num] [chip->cs-1], dev_name(&spi->dev)); if (ret) { dev_err(&spi->dev, "peripheral_request() error\n"); goto error; } } else { chip->cs_gpio = chip->cs - MAX_CTRL_CS; ret = gpio_request_one(chip->cs_gpio, GPIOF_OUT_INIT_HIGH, dev_name(&spi->dev)); if (ret) { dev_err(&spi->dev, "gpio_request_one() error\n"); goto error; } } spi_set_ctldata(spi, chip); } /* force a default base state */ chip->control &= ctl_reg; if (spi->mode & SPI_CPOL) chip->control |= SPI_CTL_CPOL; if (spi->mode & SPI_CPHA) chip->control |= SPI_CTL_CPHA; if (spi->mode & SPI_LSB_FIRST) chip->control |= SPI_CTL_LSBF; chip->control |= SPI_CTL_MSTR; /* we choose software to controll cs */ chip->control &= ~SPI_CTL_ASSEL; chip->clock = hz_to_spi_clock(drv_data->sclk, spi->max_speed_hz); adi_spi_cs_enable(drv_data, chip); adi_spi_cs_deactive(drv_data, chip); return 0; error: if (chip) { kfree(chip); spi_set_ctldata(spi, NULL); } return ret; } static void adi_spi_cleanup(struct spi_device *spi) { struct adi_spi_device *chip = spi_get_ctldata(spi); struct adi_spi_master *drv_data = spi_master_get_devdata(spi->master); if (!chip) return; if (chip->cs < MAX_CTRL_CS) { peripheral_free(ssel[spi->master->bus_num] [chip->cs-1]); adi_spi_cs_disable(drv_data, chip); } else { gpio_free(chip->cs_gpio); } kfree(chip); spi_set_ctldata(spi, NULL); } static irqreturn_t adi_spi_tx_dma_isr(int irq, void *dev_id) { struct adi_spi_master *drv_data = dev_id; u32 dma_stat = get_dma_curr_irqstat(drv_data->tx_dma); u32 tx_ctl; clear_dma_irqstat(drv_data->tx_dma); if (dma_stat & DMA_DONE) { drv_data->tx_num++; } else { dev_err(&drv_data->master->dev, "spi tx dma error: %d\n", dma_stat); if (drv_data->tx) drv_data->state = ERROR_STATE; } tx_ctl = ioread32(&drv_data->regs->tx_control); tx_ctl &= ~SPI_TXCTL_TDR_NF; iowrite32(tx_ctl, &drv_data->regs->tx_control); return IRQ_HANDLED; } static irqreturn_t adi_spi_rx_dma_isr(int irq, void *dev_id) { struct adi_spi_master *drv_data = dev_id; struct spi_message *msg = drv_data->cur_msg; u32 dma_stat = get_dma_curr_irqstat(drv_data->rx_dma); clear_dma_irqstat(drv_data->rx_dma); if (dma_stat & DMA_DONE) { drv_data->rx_num++; /* we may fail on tx dma */ if (drv_data->state != ERROR_STATE) msg->actual_length += drv_data->transfer_len; } else { drv_data->state = ERROR_STATE; dev_err(&drv_data->master->dev, "spi rx dma error: %d\n", dma_stat); } iowrite32(0, &drv_data->regs->tx_control); iowrite32(0, &drv_data->regs->rx_control); if (drv_data->rx_num != drv_data->tx_num) dev_dbg(&drv_data->master->dev, "dma interrupt missing: tx=%d,rx=%d\n", drv_data->tx_num, drv_data->rx_num); tasklet_schedule(&drv_data->pump_transfers); return IRQ_HANDLED; } static int adi_spi_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct adi_spi3_master *info = dev_get_platdata(dev); struct spi_master *master; struct adi_spi_master *drv_data; struct resource *mem, *res; unsigned int tx_dma, rx_dma; unsigned long sclk; int ret; if (!info) { dev_err(dev, "platform data missing!\n"); return -ENODEV; } sclk = get_sclk1(); if (!sclk) { dev_err(dev, "can not get sclk1\n"); return -ENXIO; } res = platform_get_resource(pdev, IORESOURCE_DMA, 0); if (!res) { dev_err(dev, "can not get tx dma resource\n"); return -ENXIO; } tx_dma = res->start; res = platform_get_resource(pdev, IORESOURCE_DMA, 1); if (!res) { dev_err(dev, "can not get rx dma resource\n"); return -ENXIO; } rx_dma = res->start; /* allocate master with space for drv_data */ master = spi_alloc_master(dev, sizeof(*drv_data)); if (!master) { dev_err(dev, "can not alloc spi_master\n"); return -ENOMEM; } platform_set_drvdata(pdev, master); /* the mode bits supported by this driver */ master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST; master->bus_num = pdev->id; master->num_chipselect = info->num_chipselect; master->cleanup = adi_spi_cleanup; master->setup = adi_spi_setup; master->transfer_one_message = adi_spi_transfer_one_message; master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) | SPI_BPW_MASK(8); drv_data = spi_master_get_devdata(master); drv_data->master = master; drv_data->tx_dma = tx_dma; drv_data->rx_dma = rx_dma; drv_data->pin_req = info->pin_req; drv_data->sclk = sclk; mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); drv_data->regs = devm_ioremap_resource(dev, mem); if (IS_ERR(drv_data->regs)) { ret = PTR_ERR(drv_data->regs); goto err_put_master; } /* request tx and rx dma */ ret = request_dma(tx_dma, "SPI_TX_DMA"); if (ret) { dev_err(dev, "can not request SPI TX DMA channel\n"); goto err_put_master; } set_dma_callback(tx_dma, adi_spi_tx_dma_isr, drv_data); ret = request_dma(rx_dma, "SPI_RX_DMA"); if (ret) { dev_err(dev, "can not request SPI RX DMA channel\n"); goto err_free_tx_dma; } set_dma_callback(drv_data->rx_dma, adi_spi_rx_dma_isr, drv_data); /* request CLK, MOSI and MISO */ ret = peripheral_request_list(drv_data->pin_req, "adi-spi3"); if (ret < 0) { dev_err(dev, "can not request spi pins\n"); goto err_free_rx_dma; } iowrite32(SPI_CTL_MSTR | SPI_CTL_CPHA, &drv_data->regs->control); iowrite32(0x0000FE00, &drv_data->regs->ssel); iowrite32(0x0, &drv_data->regs->delay); tasklet_init(&drv_data->pump_transfers, adi_spi_pump_transfers, (unsigned long)drv_data); /* register with the SPI framework */ ret = devm_spi_register_master(dev, master); if (ret) { dev_err(dev, "can not register spi master\n"); goto err_free_peripheral; } return ret; err_free_peripheral: peripheral_free_list(drv_data->pin_req); err_free_rx_dma: free_dma(rx_dma); err_free_tx_dma: free_dma(tx_dma); err_put_master: spi_master_put(master); return ret; } static int adi_spi_remove(struct platform_device *pdev) { struct spi_master *master = platform_get_drvdata(pdev); struct adi_spi_master *drv_data = spi_master_get_devdata(master); adi_spi_disable(drv_data); peripheral_free_list(drv_data->pin_req); free_dma(drv_data->rx_dma); free_dma(drv_data->tx_dma); return 0; } #ifdef CONFIG_PM static int adi_spi_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct adi_spi_master *drv_data = spi_master_get_devdata(master); spi_master_suspend(master); drv_data->control = ioread32(&drv_data->regs->control); drv_data->ssel = ioread32(&drv_data->regs->ssel); iowrite32(SPI_CTL_MSTR | SPI_CTL_CPHA, &drv_data->regs->control); iowrite32(0x0000FE00, &drv_data->regs->ssel); dma_disable_irq(drv_data->rx_dma); dma_disable_irq(drv_data->tx_dma); return 0; } static int adi_spi_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct adi_spi_master *drv_data = spi_master_get_devdata(master); int ret = 0; /* bootrom may modify spi and dma status when resume in spi boot mode */ disable_dma(drv_data->rx_dma); dma_enable_irq(drv_data->rx_dma); dma_enable_irq(drv_data->tx_dma); iowrite32(drv_data->control, &drv_data->regs->control); iowrite32(drv_data->ssel, &drv_data->regs->ssel); ret = spi_master_resume(master); if (ret) { free_dma(drv_data->rx_dma); free_dma(drv_data->tx_dma); } return ret; } #endif static const struct dev_pm_ops adi_spi_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(adi_spi_suspend, adi_spi_resume) }; MODULE_ALIAS("platform:adi-spi3"); static struct platform_driver adi_spi_driver = { .driver = { .name = "adi-spi3", .owner = THIS_MODULE, .pm = &adi_spi_pm_ops, }, .remove = adi_spi_remove, }; module_platform_driver_probe(adi_spi_driver, adi_spi_probe); MODULE_DESCRIPTION("Analog Devices SPI3 controller driver"); MODULE_AUTHOR("Scott Jiang "); MODULE_LICENSE("GPL v2");