/* * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * The full GNU General Public License is included in this distribution * in the file called LICENSE.GPL. * * BSD LICENSE * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "isci.h" #include "task.h" #include "request.h" #include "sata.h" #include "scu_completion_codes.h" #include "sas.h" /** * This method returns the sgl element pair for the specificed sgl_pair index. * @sci_req: This parameter specifies the IO request for which to retrieve * the Scatter-Gather List element pair. * @sgl_pair_index: This parameter specifies the index into the SGL element * pair to be retrieved. * * This method returns a pointer to an struct scu_sgl_element_pair. */ static struct scu_sgl_element_pair *scic_sds_request_get_sgl_element_pair( struct scic_sds_request *sci_req, u32 sgl_pair_index ) { struct scu_task_context *task_context; task_context = (struct scu_task_context *)sci_req->task_context_buffer; if (sgl_pair_index == 0) { return &task_context->sgl_pair_ab; } else if (sgl_pair_index == 1) { return &task_context->sgl_pair_cd; } return &sci_req->sg_table[sgl_pair_index - 2]; } /** * This function will build the SGL list for an IO request. * @sci_req: This parameter specifies the IO request for which to build * the Scatter-Gather List. * */ void scic_sds_request_build_sgl(struct scic_sds_request *sds_request) { struct isci_request *isci_request = sci_req_to_ireq(sds_request); struct isci_host *isci_host = isci_request->isci_host; struct sas_task *task = isci_request_access_task(isci_request); struct scatterlist *sg = NULL; dma_addr_t dma_addr; u32 sg_idx = 0; struct scu_sgl_element_pair *scu_sg = NULL; struct scu_sgl_element_pair *prev_sg = NULL; if (task->num_scatter > 0) { sg = task->scatter; while (sg) { scu_sg = scic_sds_request_get_sgl_element_pair( sds_request, sg_idx); SCU_SGL_COPY(scu_sg->A, sg); sg = sg_next(sg); if (sg) { SCU_SGL_COPY(scu_sg->B, sg); sg = sg_next(sg); } else SCU_SGL_ZERO(scu_sg->B); if (prev_sg) { dma_addr = scic_io_request_get_dma_addr( sds_request, scu_sg); prev_sg->next_pair_upper = upper_32_bits(dma_addr); prev_sg->next_pair_lower = lower_32_bits(dma_addr); } prev_sg = scu_sg; sg_idx++; } } else { /* handle when no sg */ scu_sg = scic_sds_request_get_sgl_element_pair(sds_request, sg_idx); dma_addr = dma_map_single(&isci_host->pdev->dev, task->scatter, task->total_xfer_len, task->data_dir); isci_request->zero_scatter_daddr = dma_addr; scu_sg->A.length = task->total_xfer_len; scu_sg->A.address_upper = upper_32_bits(dma_addr); scu_sg->A.address_lower = lower_32_bits(dma_addr); } if (scu_sg) { scu_sg->next_pair_upper = 0; scu_sg->next_pair_lower = 0; } } static void scic_sds_io_request_build_ssp_command_iu(struct scic_sds_request *sci_req) { struct ssp_cmd_iu *cmd_iu; struct isci_request *ireq = sci_req_to_ireq(sci_req); struct sas_task *task = isci_request_access_task(ireq); cmd_iu = &sci_req->ssp.cmd; memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8); cmd_iu->add_cdb_len = 0; cmd_iu->_r_a = 0; cmd_iu->_r_b = 0; cmd_iu->en_fburst = 0; /* unsupported */ cmd_iu->task_prio = task->ssp_task.task_prio; cmd_iu->task_attr = task->ssp_task.task_attr; cmd_iu->_r_c = 0; sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cdb, sizeof(task->ssp_task.cdb) / sizeof(u32)); } static void scic_sds_task_request_build_ssp_task_iu(struct scic_sds_request *sci_req) { struct ssp_task_iu *task_iu; struct isci_request *ireq = sci_req_to_ireq(sci_req); struct sas_task *task = isci_request_access_task(ireq); struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq); task_iu = &sci_req->ssp.tmf; memset(task_iu, 0, sizeof(struct ssp_task_iu)); memcpy(task_iu->LUN, task->ssp_task.LUN, 8); task_iu->task_func = isci_tmf->tmf_code; task_iu->task_tag = (ireq->ttype == tmf_task) ? isci_tmf->io_tag : SCI_CONTROLLER_INVALID_IO_TAG; } /** * This method is will fill in the SCU Task Context for any type of SSP request. * @sci_req: * @task_context: * */ static void scu_ssp_reqeust_construct_task_context( struct scic_sds_request *sds_request, struct scu_task_context *task_context) { dma_addr_t dma_addr; struct scic_sds_controller *controller; struct scic_sds_remote_device *target_device; struct scic_sds_port *target_port; controller = scic_sds_request_get_controller(sds_request); target_device = scic_sds_request_get_device(sds_request); target_port = scic_sds_request_get_port(sds_request); /* Fill in the TC with the its required data */ task_context->abort = 0; task_context->priority = 0; task_context->initiator_request = 1; task_context->connection_rate = target_device->connection_rate; task_context->protocol_engine_index = scic_sds_controller_get_protocol_engine_group(controller); task_context->logical_port_index = scic_sds_port_get_index(target_port); task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP; task_context->valid = SCU_TASK_CONTEXT_VALID; task_context->context_type = SCU_TASK_CONTEXT_TYPE; task_context->remote_node_index = scic_sds_remote_device_get_index(sds_request->target_device); task_context->command_code = 0; task_context->link_layer_control = 0; task_context->do_not_dma_ssp_good_response = 1; task_context->strict_ordering = 0; task_context->control_frame = 0; task_context->timeout_enable = 0; task_context->block_guard_enable = 0; task_context->address_modifier = 0; /* task_context->type.ssp.tag = sci_req->io_tag; */ task_context->task_phase = 0x01; if (sds_request->was_tag_assigned_by_user) { /* * Build the task context now since we have already read * the data */ sds_request->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC | (scic_sds_controller_get_protocol_engine_group( controller) << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) | (scic_sds_port_get_index(target_port) << SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) | scic_sds_io_tag_get_index(sds_request->io_tag)); } else { /* * Build the task context now since we have already read * the data * * I/O tag index is not assigned because we have to wait * until we get a TCi */ sds_request->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC | (scic_sds_controller_get_protocol_engine_group( owning_controller) << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) | (scic_sds_port_get_index(target_port) << SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT)); } /* * Copy the physical address for the command buffer to the * SCU Task Context */ dma_addr = scic_io_request_get_dma_addr(sds_request, &sds_request->ssp.cmd); task_context->command_iu_upper = upper_32_bits(dma_addr); task_context->command_iu_lower = lower_32_bits(dma_addr); /* * Copy the physical address for the response buffer to the * SCU Task Context */ dma_addr = scic_io_request_get_dma_addr(sds_request, &sds_request->ssp.rsp); task_context->response_iu_upper = upper_32_bits(dma_addr); task_context->response_iu_lower = lower_32_bits(dma_addr); } /** * This method is will fill in the SCU Task Context for a SSP IO request. * @sci_req: * */ static void scu_ssp_io_request_construct_task_context( struct scic_sds_request *sci_req, enum dma_data_direction dir, u32 len) { struct scu_task_context *task_context; task_context = scic_sds_request_get_task_context(sci_req); scu_ssp_reqeust_construct_task_context(sci_req, task_context); task_context->ssp_command_iu_length = sizeof(struct ssp_cmd_iu) / sizeof(u32); task_context->type.ssp.frame_type = SSP_COMMAND; switch (dir) { case DMA_FROM_DEVICE: case DMA_NONE: default: task_context->task_type = SCU_TASK_TYPE_IOREAD; break; case DMA_TO_DEVICE: task_context->task_type = SCU_TASK_TYPE_IOWRITE; break; } task_context->transfer_length_bytes = len; if (task_context->transfer_length_bytes > 0) scic_sds_request_build_sgl(sci_req); } /** * This method will fill in the SCU Task Context for a SSP Task request. The * following important settings are utilized: -# priority == * SCU_TASK_PRIORITY_HIGH. This ensures that the task request is issued * ahead of other task destined for the same Remote Node. -# task_type == * SCU_TASK_TYPE_IOREAD. This simply indicates that a normal request type * (i.e. non-raw frame) is being utilized to perform task management. -# * control_frame == 1. This ensures that the proper endianess is set so * that the bytes are transmitted in the right order for a task frame. * @sci_req: This parameter specifies the task request object being * constructed. * */ static void scu_ssp_task_request_construct_task_context( struct scic_sds_request *sci_req) { struct scu_task_context *task_context; task_context = scic_sds_request_get_task_context(sci_req); scu_ssp_reqeust_construct_task_context(sci_req, task_context); task_context->control_frame = 1; task_context->priority = SCU_TASK_PRIORITY_HIGH; task_context->task_type = SCU_TASK_TYPE_RAW_FRAME; task_context->transfer_length_bytes = 0; task_context->type.ssp.frame_type = SSP_TASK; task_context->ssp_command_iu_length = sizeof(struct ssp_task_iu) / sizeof(u32); } /** * This method constructs the SSP Command IU data for this ssp passthrough * comand request object. * @sci_req: This parameter specifies the request object for which the SSP * command information unit is being built. * * enum sci_status, returns invalid parameter is cdb > 16 */ /** * This method constructs the SATA request object. * @sci_req: * @sat_protocol: * @transfer_length: * @data_direction: * @copy_rx_frame: * * enum sci_status */ static enum sci_status scic_io_request_construct_sata(struct scic_sds_request *sci_req, u32 len, enum dma_data_direction dir, bool copy) { enum sci_status status = SCI_SUCCESS; struct isci_request *ireq = sci_req_to_ireq(sci_req); struct sas_task *task = isci_request_access_task(ireq); /* check for management protocols */ if (ireq->ttype == tmf_task) { struct isci_tmf *tmf = isci_request_access_tmf(ireq); if (tmf->tmf_code == isci_tmf_sata_srst_high || tmf->tmf_code == isci_tmf_sata_srst_low) return scic_sds_stp_soft_reset_request_construct(sci_req); else { dev_err(scic_to_dev(sci_req->owning_controller), "%s: Request 0x%p received un-handled SAT " "management protocol 0x%x.\n", __func__, sci_req, tmf->tmf_code); return SCI_FAILURE; } } if (!sas_protocol_ata(task->task_proto)) { dev_err(scic_to_dev(sci_req->owning_controller), "%s: Non-ATA protocol in SATA path: 0x%x\n", __func__, task->task_proto); return SCI_FAILURE; } /* non data */ if (task->data_dir == DMA_NONE) return scic_sds_stp_non_data_request_construct(sci_req); /* NCQ */ if (task->ata_task.use_ncq) return scic_sds_stp_ncq_request_construct(sci_req, len, dir); /* DMA */ if (task->ata_task.dma_xfer) return scic_sds_stp_udma_request_construct(sci_req, len, dir); else /* PIO */ return scic_sds_stp_pio_request_construct(sci_req, copy); return status; } static enum sci_status scic_io_request_construct_basic_ssp(struct scic_sds_request *sci_req) { struct isci_request *ireq = sci_req_to_ireq(sci_req); struct sas_task *task = isci_request_access_task(ireq); sci_req->protocol = SCIC_SSP_PROTOCOL; scu_ssp_io_request_construct_task_context(sci_req, task->data_dir, task->total_xfer_len); scic_sds_io_request_build_ssp_command_iu(sci_req); sci_base_state_machine_change_state( &sci_req->state_machine, SCI_BASE_REQUEST_STATE_CONSTRUCTED); return SCI_SUCCESS; } enum sci_status scic_task_request_construct_ssp( struct scic_sds_request *sci_req) { /* Construct the SSP Task SCU Task Context */ scu_ssp_task_request_construct_task_context(sci_req); /* Fill in the SSP Task IU */ scic_sds_task_request_build_ssp_task_iu(sci_req); sci_base_state_machine_change_state(&sci_req->state_machine, SCI_BASE_REQUEST_STATE_CONSTRUCTED); return SCI_SUCCESS; } static enum sci_status scic_io_request_construct_basic_sata(struct scic_sds_request *sci_req) { enum sci_status status; struct scic_sds_stp_request *stp_req; bool copy = false; struct isci_request *isci_request = sci_req_to_ireq(sci_req); struct sas_task *task = isci_request_access_task(isci_request); stp_req = &sci_req->stp.req; sci_req->protocol = SCIC_STP_PROTOCOL; copy = (task->data_dir == DMA_NONE) ? false : true; status = scic_io_request_construct_sata(sci_req, task->total_xfer_len, task->data_dir, copy); if (status == SCI_SUCCESS) sci_base_state_machine_change_state(&sci_req->state_machine, SCI_BASE_REQUEST_STATE_CONSTRUCTED); return status; } enum sci_status scic_task_request_construct_sata(struct scic_sds_request *sci_req) { enum sci_status status = SCI_SUCCESS; struct isci_request *ireq = sci_req_to_ireq(sci_req); /* check for management protocols */ if (ireq->ttype == tmf_task) { struct isci_tmf *tmf = isci_request_access_tmf(ireq); if (tmf->tmf_code == isci_tmf_sata_srst_high || tmf->tmf_code == isci_tmf_sata_srst_low) { status = scic_sds_stp_soft_reset_request_construct(sci_req); } else { dev_err(scic_to_dev(sci_req->owning_controller), "%s: Request 0x%p received un-handled SAT " "Protocol 0x%x.\n", __func__, sci_req, tmf->tmf_code); return SCI_FAILURE; } } if (status == SCI_SUCCESS) sci_base_state_machine_change_state( &sci_req->state_machine, SCI_BASE_REQUEST_STATE_CONSTRUCTED); return status; } /** * sci_req_tx_bytes - bytes transferred when reply underruns request * @sci_req: request that was terminated early */ #define SCU_TASK_CONTEXT_SRAM 0x200000 static u32 sci_req_tx_bytes(struct scic_sds_request *sci_req) { struct scic_sds_controller *scic = sci_req->owning_controller; u32 ret_val = 0; if (readl(&scic->smu_registers->address_modifier) == 0) { void __iomem *scu_reg_base = scic->scu_registers; /* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where * BAR1 is the scu_registers * 0x20002C = 0x200000 + 0x2c * = start of task context SRAM + offset of (type.ssp.data_offset) * TCi is the io_tag of struct scic_sds_request */ ret_val = readl(scu_reg_base + (SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) + ((sizeof(struct scu_task_context)) * scic_sds_io_tag_get_index(sci_req->io_tag))); } return ret_val; } enum sci_status scic_sds_request_start(struct scic_sds_request *request) { if (request->device_sequence != scic_sds_remote_device_get_sequence(request->target_device)) return SCI_FAILURE; if (request->state_handlers->start_handler) return request->state_handlers->start_handler(request); dev_warn(scic_to_dev(request->owning_controller), "%s: SCIC IO Request requested to start while in wrong " "state %d\n", __func__, sci_base_state_machine_get_state(&request->state_machine)); return SCI_FAILURE_INVALID_STATE; } enum sci_status scic_sds_io_request_terminate(struct scic_sds_request *request) { if (request->state_handlers->abort_handler) return request->state_handlers->abort_handler(request); dev_warn(scic_to_dev(request->owning_controller), "%s: SCIC IO Request requested to abort while in wrong " "state %d\n", __func__, sci_base_state_machine_get_state(&request->state_machine)); return SCI_FAILURE_INVALID_STATE; } enum sci_status scic_sds_io_request_event_handler( struct scic_sds_request *request, u32 event_code) { if (request->state_handlers->event_handler) return request->state_handlers->event_handler(request, event_code); dev_warn(scic_to_dev(request->owning_controller), "%s: SCIC IO Request given event code notification %x while " "in wrong state %d\n", __func__, event_code, sci_base_state_machine_get_state(&request->state_machine)); return SCI_FAILURE_INVALID_STATE; } /** * * @sci_req: The SCIC_SDS_IO_REQUEST_T object for which the start * operation is to be executed. * @frame_index: The frame index returned by the hardware for the reqeust * object. * * This method invokes the core state frame handler for the * SCIC_SDS_IO_REQUEST_T object. enum sci_status */ enum sci_status scic_sds_io_request_frame_handler( struct scic_sds_request *request, u32 frame_index) { if (request->state_handlers->frame_handler) return request->state_handlers->frame_handler(request, frame_index); dev_warn(scic_to_dev(request->owning_controller), "%s: SCIC IO Request given unexpected frame %x while in " "state %d\n", __func__, frame_index, sci_base_state_machine_get_state(&request->state_machine)); scic_sds_controller_release_frame(request->owning_controller, frame_index); return SCI_FAILURE_INVALID_STATE; } /* * This function copies response data for requests returning response data * instead of sense data. * @sci_req: This parameter specifies the request object for which to copy * the response data. */ static void scic_sds_io_request_copy_response(struct scic_sds_request *sci_req) { void *resp_buf; u32 len; struct ssp_response_iu *ssp_response; struct isci_request *ireq = sci_req_to_ireq(sci_req); struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq); ssp_response = &sci_req->ssp.rsp; resp_buf = &isci_tmf->resp.resp_iu; len = min_t(u32, SSP_RESP_IU_MAX_SIZE, be32_to_cpu(ssp_response->response_data_len)); memcpy(resp_buf, ssp_response->resp_data, len); } /* * This method implements the action taken when a constructed * SCIC_SDS_IO_REQUEST_T object receives a scic_sds_request_start() request. * This method will, if necessary, allocate a TCi for the io request object and * then will, if necessary, copy the constructed TC data into the actual TC * buffer. If everything is successful the post context field is updated with * the TCi so the controller can post the request to the hardware. enum sci_status * SCI_SUCCESS SCI_FAILURE_INSUFFICIENT_RESOURCES */ static enum sci_status scic_sds_request_constructed_state_start_handler( struct scic_sds_request *request) { struct scu_task_context *task_context; if (request->io_tag == SCI_CONTROLLER_INVALID_IO_TAG) { request->io_tag = scic_controller_allocate_io_tag(request->owning_controller); } /* Record the IO Tag in the request */ if (request->io_tag != SCI_CONTROLLER_INVALID_IO_TAG) { task_context = request->task_context_buffer; task_context->task_index = scic_sds_io_tag_get_index(request->io_tag); switch (task_context->protocol_type) { case SCU_TASK_CONTEXT_PROTOCOL_SMP: case SCU_TASK_CONTEXT_PROTOCOL_SSP: /* SSP/SMP Frame */ task_context->type.ssp.tag = request->io_tag; task_context->type.ssp.target_port_transfer_tag = 0xFFFF; break; case SCU_TASK_CONTEXT_PROTOCOL_STP: /* * STP/SATA Frame * task_context->type.stp.ncq_tag = request->ncq_tag; */ break; case SCU_TASK_CONTEXT_PROTOCOL_NONE: /* / @todo When do we set no protocol type? */ break; default: /* This should never happen since we build the IO requests */ break; } /* * Check to see if we need to copy the task context buffer * or have been building into the task context buffer */ if (request->was_tag_assigned_by_user == false) { scic_sds_controller_copy_task_context( request->owning_controller, request); } /* Add to the post_context the io tag value */ request->post_context |= scic_sds_io_tag_get_index(request->io_tag); /* Everything is good go ahead and change state */ sci_base_state_machine_change_state(&request->state_machine, SCI_BASE_REQUEST_STATE_STARTED); return SCI_SUCCESS; } return SCI_FAILURE_INSUFFICIENT_RESOURCES; } /* * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T * object receives a scic_sds_request_terminate() request. Since the request * has not yet been posted to the hardware the request transitions to the * completed state. enum sci_status SCI_SUCCESS */ static enum sci_status scic_sds_request_constructed_state_abort_handler( struct scic_sds_request *request) { /* * This request has been terminated by the user make sure that the correct * status code is returned */ scic_sds_request_set_status(request, SCU_TASK_DONE_TASK_ABORT, SCI_FAILURE_IO_TERMINATED); sci_base_state_machine_change_state(&request->state_machine, SCI_BASE_REQUEST_STATE_COMPLETED); return SCI_SUCCESS; } /* * ***************************************************************************** * * STARTED STATE HANDLERS * ***************************************************************************** */ /* * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T * object receives a scic_sds_request_terminate() request. Since the request * has been posted to the hardware the io request state is changed to the * aborting state. enum sci_status SCI_SUCCESS */ enum sci_status scic_sds_request_started_state_abort_handler( struct scic_sds_request *request) { if (request->has_started_substate_machine) sci_base_state_machine_stop(&request->started_substate_machine); sci_base_state_machine_change_state(&request->state_machine, SCI_BASE_REQUEST_STATE_ABORTING); return SCI_SUCCESS; } /* * scic_sds_request_started_state_tc_completion_handler() - This method process * TC (task context) completions for normal IO request (i.e. Task/Abort * Completions of type 0). This method will update the * SCIC_SDS_IO_REQUEST_T::status field. * @sci_req: This parameter specifies the request for which a completion * occurred. * @completion_code: This parameter specifies the completion code received from * the SCU. * */ static enum sci_status scic_sds_request_started_state_tc_completion_handler(struct scic_sds_request *sci_req, u32 completion_code) { u8 datapres; struct ssp_response_iu *resp_iu; /* * TODO: Any SDMA return code of other than 0 is bad * decode 0x003C0000 to determine SDMA status */ switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): scic_sds_request_set_status(sci_req, SCU_TASK_DONE_GOOD, SCI_SUCCESS); break; case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): { /* * There are times when the SCU hardware will return an early * response because the io request specified more data than is * returned by the target device (mode pages, inquiry data, * etc.). We must check the response stats to see if this is * truly a failed request or a good request that just got * completed early. */ struct ssp_response_iu *resp = &sci_req->ssp.rsp; ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32); sci_swab32_cpy(&sci_req->ssp.rsp, &sci_req->ssp.rsp, word_cnt); if (resp->status == 0) { scic_sds_request_set_status( sci_req, SCU_TASK_DONE_GOOD, SCI_SUCCESS_IO_DONE_EARLY); } else { scic_sds_request_set_status( sci_req, SCU_TASK_DONE_CHECK_RESPONSE, SCI_FAILURE_IO_RESPONSE_VALID); } } break; case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): { ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32); sci_swab32_cpy(&sci_req->ssp.rsp, &sci_req->ssp.rsp, word_cnt); scic_sds_request_set_status(sci_req, SCU_TASK_DONE_CHECK_RESPONSE, SCI_FAILURE_IO_RESPONSE_VALID); break; } case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR): /* * / @todo With TASK_DONE_RESP_LEN_ERR is the response frame * guaranteed to be received before this completion status is * posted? */ resp_iu = &sci_req->ssp.rsp; datapres = resp_iu->datapres; if ((datapres == 0x01) || (datapres == 0x02)) { scic_sds_request_set_status( sci_req, SCU_TASK_DONE_CHECK_RESPONSE, SCI_FAILURE_IO_RESPONSE_VALID); } else scic_sds_request_set_status( sci_req, SCU_TASK_DONE_GOOD, SCI_SUCCESS); break; /* only stp device gets suspended. */ case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR): if (sci_req->protocol == SCIC_STP_PROTOCOL) { scic_sds_request_set_status( sci_req, SCU_GET_COMPLETION_TL_STATUS(completion_code) >> SCU_COMPLETION_TL_STATUS_SHIFT, SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED); } else { scic_sds_request_set_status( sci_req, SCU_GET_COMPLETION_TL_STATUS(completion_code) >> SCU_COMPLETION_TL_STATUS_SHIFT, SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR); } break; /* both stp/ssp device gets suspended */ case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED): scic_sds_request_set_status( sci_req, SCU_GET_COMPLETION_TL_STATUS(completion_code) >> SCU_COMPLETION_TL_STATUS_SHIFT, SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED); break; /* neither ssp nor stp gets suspended. */ case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND): default: scic_sds_request_set_status( sci_req, SCU_GET_COMPLETION_TL_STATUS(completion_code) >> SCU_COMPLETION_TL_STATUS_SHIFT, SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR); break; } /* * TODO: This is probably wrong for ACK/NAK timeout conditions */ /* In all cases we will treat this as the completion of the IO req. */ sci_base_state_machine_change_state( &sci_req->state_machine, SCI_BASE_REQUEST_STATE_COMPLETED); return SCI_SUCCESS; } enum sci_status scic_sds_io_request_tc_completion(struct scic_sds_request *request, u32 completion_code) { if (request->state_machine.current_state_id == SCI_BASE_REQUEST_STATE_STARTED && request->has_started_substate_machine == false) return scic_sds_request_started_state_tc_completion_handler(request, completion_code); else if (request->state_handlers->tc_completion_handler) return request->state_handlers->tc_completion_handler(request, completion_code); dev_warn(scic_to_dev(request->owning_controller), "%s: SCIC IO Request given task completion notification %x " "while in wrong state %d\n", __func__, completion_code, sci_base_state_machine_get_state(&request->state_machine)); return SCI_FAILURE_INVALID_STATE; } /* * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T * object receives a scic_sds_request_frame_handler() request. This method * first determines the frame type received. If this is a response frame then * the response data is copied to the io request response buffer for processing * at completion time. If the frame type is not a response buffer an error is * logged. enum sci_status SCI_SUCCESS SCI_FAILURE_INVALID_PARAMETER_VALUE */ static enum sci_status scic_sds_request_started_state_frame_handler(struct scic_sds_request *sci_req, u32 frame_index) { enum sci_status status; u32 *frame_header; struct ssp_frame_hdr ssp_hdr; ssize_t word_cnt; status = scic_sds_unsolicited_frame_control_get_header( &(scic_sds_request_get_controller(sci_req)->uf_control), frame_index, (void **)&frame_header); word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32); sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt); if (ssp_hdr.frame_type == SSP_RESPONSE) { struct ssp_response_iu *resp_iu; ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32); status = scic_sds_unsolicited_frame_control_get_buffer( &(scic_sds_request_get_controller(sci_req)->uf_control), frame_index, (void **)&resp_iu); sci_swab32_cpy(&sci_req->ssp.rsp, resp_iu, word_cnt); resp_iu = &sci_req->ssp.rsp; if ((resp_iu->datapres == 0x01) || (resp_iu->datapres == 0x02)) { scic_sds_request_set_status( sci_req, SCU_TASK_DONE_CHECK_RESPONSE, SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR); } else scic_sds_request_set_status( sci_req, SCU_TASK_DONE_GOOD, SCI_SUCCESS); } else { /* This was not a response frame why did it get forwarded? */ dev_err(scic_to_dev(sci_req->owning_controller), "%s: SCIC IO Request 0x%p received unexpected " "frame %d type 0x%02x\n", __func__, sci_req, frame_index, ssp_hdr.frame_type); } /* * In any case we are done with this frame buffer return it to the * controller */ scic_sds_controller_release_frame( sci_req->owning_controller, frame_index); return SCI_SUCCESS; } /* * ***************************************************************************** * * COMPLETED STATE HANDLERS * ***************************************************************************** */ /* * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T * object receives a scic_sds_request_complete() request. This method frees up * any io request resources that have been allocated and transitions the * request to its final state. Consider stopping the state machine instead of * transitioning to the final state? enum sci_status SCI_SUCCESS */ static enum sci_status scic_sds_request_completed_state_complete_handler( struct scic_sds_request *request) { if (request->was_tag_assigned_by_user != true) { scic_controller_free_io_tag( request->owning_controller, request->io_tag); } if (request->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX) { scic_sds_controller_release_frame( request->owning_controller, request->saved_rx_frame_index); } sci_base_state_machine_change_state(&request->state_machine, SCI_BASE_REQUEST_STATE_FINAL); return SCI_SUCCESS; } /* * ***************************************************************************** * * ABORTING STATE HANDLERS * ***************************************************************************** */ /* * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T * object receives a scic_sds_request_terminate() request. This method is the * io request aborting state abort handlers. On receipt of a multiple * terminate requests the io request will transition to the completed state. * This should not happen in normal operation. enum sci_status SCI_SUCCESS */ static enum sci_status scic_sds_request_aborting_state_abort_handler( struct scic_sds_request *request) { sci_base_state_machine_change_state(&request->state_machine, SCI_BASE_REQUEST_STATE_COMPLETED); return SCI_SUCCESS; } /* * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T * object receives a scic_sds_request_task_completion() request. This method * decodes the completion type waiting for the abort task complete * notification. When the abort task complete is received the io request * transitions to the completed state. enum sci_status SCI_SUCCESS */ static enum sci_status scic_sds_request_aborting_state_tc_completion_handler( struct scic_sds_request *sci_req, u32 completion_code) { switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT): case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT): scic_sds_request_set_status( sci_req, SCU_TASK_DONE_TASK_ABORT, SCI_FAILURE_IO_TERMINATED ); sci_base_state_machine_change_state(&sci_req->state_machine, SCI_BASE_REQUEST_STATE_COMPLETED); break; default: /* * Unless we get some strange error wait for the task abort to complete * TODO: Should there be a state change for this completion? */ break; } return SCI_SUCCESS; } /* * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T * object receives a scic_sds_request_frame_handler() request. This method * discards the unsolicited frame since we are waiting for the abort task * completion. enum sci_status SCI_SUCCESS */ static enum sci_status scic_sds_request_aborting_state_frame_handler( struct scic_sds_request *sci_req, u32 frame_index) { /* TODO: Is it even possible to get an unsolicited frame in the aborting state? */ scic_sds_controller_release_frame( sci_req->owning_controller, frame_index); return SCI_SUCCESS; } /** * This method processes the completions transport layer (TL) status to * determine if the RAW task management frame was sent successfully. If the * raw frame was sent successfully, then the state for the task request * transitions to waiting for a response frame. * @sci_req: This parameter specifies the request for which the TC * completion was received. * @completion_code: This parameter indicates the completion status information * for the TC. * * Indicate if the tc completion handler was successful. SCI_SUCCESS currently * this method always returns success. */ static enum sci_status scic_sds_ssp_task_request_await_tc_completion_tc_completion_handler( struct scic_sds_request *sci_req, u32 completion_code) { switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): scic_sds_request_set_status(sci_req, SCU_TASK_DONE_GOOD, SCI_SUCCESS); sci_base_state_machine_change_state(&sci_req->state_machine, SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_RESPONSE); break; case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO): /* * Currently, the decision is to simply allow the task request to * timeout if the task IU wasn't received successfully. * There is a potential for receiving multiple task responses if we * decide to send the task IU again. */ dev_warn(scic_to_dev(sci_req->owning_controller), "%s: TaskRequest:0x%p CompletionCode:%x - " "ACK/NAK timeout\n", __func__, sci_req, completion_code); sci_base_state_machine_change_state(&sci_req->state_machine, SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_RESPONSE); break; default: /* * All other completion status cause the IO to be complete. If a NAK * was received, then it is up to the user to retry the request. */ scic_sds_request_set_status( sci_req, SCU_NORMALIZE_COMPLETION_STATUS(completion_code), SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR ); sci_base_state_machine_change_state(&sci_req->state_machine, SCI_BASE_REQUEST_STATE_COMPLETED); break; } return SCI_SUCCESS; } /** * This method is responsible for processing a terminate/abort request for this * TC while the request is waiting for the task management response * unsolicited frame. * @sci_req: This parameter specifies the request for which the * termination was requested. * * This method returns an indication as to whether the abort request was * successfully handled. need to update to ensure the received UF doesn't cause * damage to subsequent requests (i.e. put the extended tag in a holding * pattern for this particular device). */ static enum sci_status scic_sds_ssp_task_request_await_tc_response_abort_handler( struct scic_sds_request *request) { sci_base_state_machine_change_state(&request->state_machine, SCI_BASE_REQUEST_STATE_ABORTING); sci_base_state_machine_change_state(&request->state_machine, SCI_BASE_REQUEST_STATE_COMPLETED); return SCI_SUCCESS; } /** * This method processes an unsolicited frame while the task mgmt request is * waiting for a response frame. It will copy the response data, release * the unsolicited frame, and transition the request to the * SCI_BASE_REQUEST_STATE_COMPLETED state. * @sci_req: This parameter specifies the request for which the * unsolicited frame was received. * @frame_index: This parameter indicates the unsolicited frame index that * should contain the response. * * This method returns an indication of whether the TC response frame was * handled successfully or not. SCI_SUCCESS Currently this value is always * returned and indicates successful processing of the TC response. Should * probably update to check frame type and make sure it is a response frame. */ static enum sci_status scic_sds_ssp_task_request_await_tc_response_frame_handler( struct scic_sds_request *request, u32 frame_index) { scic_sds_io_request_copy_response(request); sci_base_state_machine_change_state(&request->state_machine, SCI_BASE_REQUEST_STATE_COMPLETED); scic_sds_controller_release_frame(request->owning_controller, frame_index); return SCI_SUCCESS; } /** * This method processes an abnormal TC completion while the SMP request is * waiting for a response frame. It decides what happened to the IO based * on TC completion status. * @sci_req: This parameter specifies the request for which the TC * completion was received. * @completion_code: This parameter indicates the completion status information * for the TC. * * Indicate if the tc completion handler was successful. SCI_SUCCESS currently * this method always returns success. */ static enum sci_status scic_sds_smp_request_await_response_tc_completion_handler( struct scic_sds_request *sci_req, u32 completion_code) { switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): /* * In the AWAIT RESPONSE state, any TC completion is unexpected. * but if the TC has success status, we complete the IO anyway. */ scic_sds_request_set_status( sci_req, SCU_TASK_DONE_GOOD, SCI_SUCCESS ); sci_base_state_machine_change_state( &sci_req->state_machine, SCI_BASE_REQUEST_STATE_COMPLETED); break; case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR): /* * These status has been seen in a specific LSI expander, which sometimes * is not able to send smp response within 2 ms. This causes our hardware * break the connection and set TC completion with one of these SMP_XXX_XX_ERR * status. For these type of error, we ask scic user to retry the request. */ scic_sds_request_set_status( sci_req, SCU_TASK_DONE_SMP_RESP_TO_ERR, SCI_FAILURE_RETRY_REQUIRED ); sci_base_state_machine_change_state( &sci_req->state_machine, SCI_BASE_REQUEST_STATE_COMPLETED); break; default: /* * All other completion status cause the IO to be complete. If a NAK * was received, then it is up to the user to retry the request. */ scic_sds_request_set_status( sci_req, SCU_NORMALIZE_COMPLETION_STATUS(completion_code), SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR ); sci_base_state_machine_change_state( &sci_req->state_machine, SCI_BASE_REQUEST_STATE_COMPLETED); break; } return SCI_SUCCESS; } /* * This function processes an unsolicited frame while the SMP request is waiting * for a response frame. It will copy the response data, release the * unsolicited frame, and transition the request to the * SCI_BASE_REQUEST_STATE_COMPLETED state. * @sci_req: This parameter specifies the request for which the * unsolicited frame was received. * @frame_index: This parameter indicates the unsolicited frame index that * should contain the response. * * This function returns an indication of whether the response frame was handled * successfully or not. SCI_SUCCESS Currently this value is always returned and * indicates successful processing of the TC response. */ static enum sci_status scic_sds_smp_request_await_response_frame_handler(struct scic_sds_request *sci_req, u32 frame_index) { enum sci_status status; void *frame_header; struct smp_resp *rsp_hdr = &sci_req->smp.rsp; ssize_t word_cnt = SMP_RESP_HDR_SZ / sizeof(u32); status = scic_sds_unsolicited_frame_control_get_header( &(scic_sds_request_get_controller(sci_req)->uf_control), frame_index, &frame_header); /* byte swap the header. */ sci_swab32_cpy(rsp_hdr, frame_header, word_cnt); if (rsp_hdr->frame_type == SMP_RESPONSE) { void *smp_resp; status = scic_sds_unsolicited_frame_control_get_buffer( &(scic_sds_request_get_controller(sci_req)->uf_control), frame_index, &smp_resp); word_cnt = (sizeof(struct smp_req) - SMP_RESP_HDR_SZ) / sizeof(u32); sci_swab32_cpy(((u8 *) rsp_hdr) + SMP_RESP_HDR_SZ, smp_resp, word_cnt); scic_sds_request_set_status( sci_req, SCU_TASK_DONE_GOOD, SCI_SUCCESS); sci_base_state_machine_change_state(&sci_req->state_machine, SCIC_SDS_SMP_REQUEST_STARTED_SUBSTATE_AWAIT_TC_COMPLETION); } else { /* This was not a response frame why did it get forwarded? */ dev_err(scic_to_dev(sci_req->owning_controller), "%s: SCIC SMP Request 0x%p received unexpected frame " "%d type 0x%02x\n", __func__, sci_req, frame_index, rsp_hdr->frame_type); scic_sds_request_set_status( sci_req, SCU_TASK_DONE_SMP_FRM_TYPE_ERR, SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR); sci_base_state_machine_change_state( &sci_req->state_machine, SCI_BASE_REQUEST_STATE_COMPLETED); } scic_sds_controller_release_frame(sci_req->owning_controller, frame_index); return SCI_SUCCESS; } /** * This method processes the completions transport layer (TL) status to * determine if the SMP request was sent successfully. If the SMP request * was sent successfully, then the state for the SMP request transits to * waiting for a response frame. * @sci_req: This parameter specifies the request for which the TC * completion was received. * @completion_code: This parameter indicates the completion status information * for the TC. * * Indicate if the tc completion handler was successful. SCI_SUCCESS currently * this method always returns success. */ static enum sci_status scic_sds_smp_request_await_tc_completion_tc_completion_handler( struct scic_sds_request *sci_req, u32 completion_code) { switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): scic_sds_request_set_status( sci_req, SCU_TASK_DONE_GOOD, SCI_SUCCESS ); sci_base_state_machine_change_state( &sci_req->state_machine, SCI_BASE_REQUEST_STATE_COMPLETED); break; default: /* * All other completion status cause the IO to be complete. If a NAK * was received, then it is up to the user to retry the request. */ scic_sds_request_set_status( sci_req, SCU_NORMALIZE_COMPLETION_STATUS(completion_code), SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR ); sci_base_state_machine_change_state( &sci_req->state_machine, SCI_BASE_REQUEST_STATE_COMPLETED); break; } return SCI_SUCCESS; } static const struct scic_sds_io_request_state_handler scic_sds_request_state_handler_table[] = { [SCI_BASE_REQUEST_STATE_INITIAL] = { }, [SCI_BASE_REQUEST_STATE_CONSTRUCTED] = { .start_handler = scic_sds_request_constructed_state_start_handler, .abort_handler = scic_sds_request_constructed_state_abort_handler, }, [SCI_BASE_REQUEST_STATE_STARTED] = { .abort_handler = scic_sds_request_started_state_abort_handler, .tc_completion_handler = scic_sds_request_started_state_tc_completion_handler, .frame_handler = scic_sds_request_started_state_frame_handler, }, [SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_COMPLETION] = { .abort_handler = scic_sds_request_started_state_abort_handler, .tc_completion_handler = scic_sds_ssp_task_request_await_tc_completion_tc_completion_handler, }, [SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_RESPONSE] = { .abort_handler = scic_sds_ssp_task_request_await_tc_response_abort_handler, .frame_handler = scic_sds_ssp_task_request_await_tc_response_frame_handler, }, [SCIC_SDS_SMP_REQUEST_STARTED_SUBSTATE_AWAIT_RESPONSE] = { .abort_handler = scic_sds_request_started_state_abort_handler, .tc_completion_handler = scic_sds_smp_request_await_response_tc_completion_handler, .frame_handler = scic_sds_smp_request_await_response_frame_handler, }, [SCIC_SDS_SMP_REQUEST_STARTED_SUBSTATE_AWAIT_TC_COMPLETION] = { .abort_handler = scic_sds_request_started_state_abort_handler, .tc_completion_handler = scic_sds_smp_request_await_tc_completion_tc_completion_handler, }, [SCI_BASE_REQUEST_STATE_COMPLETED] = { .complete_handler = scic_sds_request_completed_state_complete_handler, }, [SCI_BASE_REQUEST_STATE_ABORTING] = { .abort_handler = scic_sds_request_aborting_state_abort_handler, .tc_completion_handler = scic_sds_request_aborting_state_tc_completion_handler, .frame_handler = scic_sds_request_aborting_state_frame_handler, }, [SCI_BASE_REQUEST_STATE_FINAL] = { }, }; /** * isci_request_process_response_iu() - This function sets the status and * response iu, in the task struct, from the request object for the upper * layer driver. * @sas_task: This parameter is the task struct from the upper layer driver. * @resp_iu: This parameter points to the response iu of the completed request. * @dev: This parameter specifies the linux device struct. * * none. */ static void isci_request_process_response_iu( struct sas_task *task, struct ssp_response_iu *resp_iu, struct device *dev) { dev_dbg(dev, "%s: resp_iu = %p " "resp_iu->status = 0x%x,\nresp_iu->datapres = %d " "resp_iu->response_data_len = %x, " "resp_iu->sense_data_len = %x\nrepsonse data: ", __func__, resp_iu, resp_iu->status, resp_iu->datapres, resp_iu->response_data_len, resp_iu->sense_data_len); task->task_status.stat = resp_iu->status; /* libsas updates the task status fields based on the response iu. */ sas_ssp_task_response(dev, task, resp_iu); } /** * isci_request_set_open_reject_status() - This function prepares the I/O * completion for OPEN_REJECT conditions. * @request: This parameter is the completed isci_request object. * @response_ptr: This parameter specifies the service response for the I/O. * @status_ptr: This parameter specifies the exec status for the I/O. * @complete_to_host_ptr: This parameter specifies the action to be taken by * the LLDD with respect to completing this request or forcing an abort * condition on the I/O. * @open_rej_reason: This parameter specifies the encoded reason for the * abandon-class reject. * * none. */ static void isci_request_set_open_reject_status( struct isci_request *request, struct sas_task *task, enum service_response *response_ptr, enum exec_status *status_ptr, enum isci_completion_selection *complete_to_host_ptr, enum sas_open_rej_reason open_rej_reason) { /* Task in the target is done. */ request->complete_in_target = true; *response_ptr = SAS_TASK_UNDELIVERED; *status_ptr = SAS_OPEN_REJECT; *complete_to_host_ptr = isci_perform_normal_io_completion; task->task_status.open_rej_reason = open_rej_reason; } /** * isci_request_handle_controller_specific_errors() - This function decodes * controller-specific I/O completion error conditions. * @request: This parameter is the completed isci_request object. * @response_ptr: This parameter specifies the service response for the I/O. * @status_ptr: This parameter specifies the exec status for the I/O. * @complete_to_host_ptr: This parameter specifies the action to be taken by * the LLDD with respect to completing this request or forcing an abort * condition on the I/O. * * none. */ static void isci_request_handle_controller_specific_errors( struct isci_remote_device *isci_device, struct isci_request *request, struct sas_task *task, enum service_response *response_ptr, enum exec_status *status_ptr, enum isci_completion_selection *complete_to_host_ptr) { unsigned int cstatus; cstatus = request->sci.scu_status; dev_dbg(&request->isci_host->pdev->dev, "%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR " "- controller status = 0x%x\n", __func__, request, cstatus); /* Decode the controller-specific errors; most * important is to recognize those conditions in which * the target may still have a task outstanding that * must be aborted. * * Note that there are SCU completion codes being * named in the decode below for which SCIC has already * done work to handle them in a way other than as * a controller-specific completion code; these are left * in the decode below for completeness sake. */ switch (cstatus) { case SCU_TASK_DONE_DMASETUP_DIRERR: /* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */ case SCU_TASK_DONE_XFERCNT_ERR: /* Also SCU_TASK_DONE_SMP_UFI_ERR: */ if (task->task_proto == SAS_PROTOCOL_SMP) { /* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */ *response_ptr = SAS_TASK_COMPLETE; /* See if the device has been/is being stopped. Note * that we ignore the quiesce state, since we are * concerned about the actual device state. */ if ((isci_device->status == isci_stopping) || (isci_device->status == isci_stopped)) *status_ptr = SAS_DEVICE_UNKNOWN; else *status_ptr = SAS_ABORTED_TASK; request->complete_in_target = true; *complete_to_host_ptr = isci_perform_normal_io_completion; } else { /* Task in the target is not done. */ *response_ptr = SAS_TASK_UNDELIVERED; if ((isci_device->status == isci_stopping) || (isci_device->status == isci_stopped)) *status_ptr = SAS_DEVICE_UNKNOWN; else *status_ptr = SAM_STAT_TASK_ABORTED; request->complete_in_target = false; *complete_to_host_ptr = isci_perform_error_io_completion; } break; case SCU_TASK_DONE_CRC_ERR: case SCU_TASK_DONE_NAK_CMD_ERR: case SCU_TASK_DONE_EXCESS_DATA: case SCU_TASK_DONE_UNEXP_FIS: /* Also SCU_TASK_DONE_UNEXP_RESP: */ case SCU_TASK_DONE_VIIT_ENTRY_NV: /* TODO - conditions? */ case SCU_TASK_DONE_IIT_ENTRY_NV: /* TODO - conditions? */ case SCU_TASK_DONE_RNCNV_OUTBOUND: /* TODO - conditions? */ /* These are conditions in which the target * has completed the task, so that no cleanup * is necessary. */ *response_ptr = SAS_TASK_COMPLETE; /* See if the device has been/is being stopped. Note * that we ignore the quiesce state, since we are * concerned about the actual device state. */ if ((isci_device->status == isci_stopping) || (isci_device->status == isci_stopped)) *status_ptr = SAS_DEVICE_UNKNOWN; else *status_ptr = SAS_ABORTED_TASK; request->complete_in_target = true; *complete_to_host_ptr = isci_perform_normal_io_completion; break; /* Note that the only open reject completion codes seen here will be * abandon-class codes; all others are automatically retried in the SCU. */ case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION: isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_WRONG_DEST); break; case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION: /* Note - the return of AB0 will change when * libsas implements detection of zone violations. */ isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_RESV_AB0); break; case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1: isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_RESV_AB1); break; case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2: isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_RESV_AB2); break; case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3: isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_RESV_AB3); break; case SCU_TASK_OPEN_REJECT_BAD_DESTINATION: isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_BAD_DEST); break; case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY: isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_STP_NORES); break; case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED: isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_EPROTO); break; case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED: isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_CONN_RATE); break; case SCU_TASK_DONE_LL_R_ERR: /* Also SCU_TASK_DONE_ACK_NAK_TO: */ case SCU_TASK_DONE_LL_PERR: case SCU_TASK_DONE_LL_SY_TERM: /* Also SCU_TASK_DONE_NAK_ERR:*/ case SCU_TASK_DONE_LL_LF_TERM: /* Also SCU_TASK_DONE_DATA_LEN_ERR: */ case SCU_TASK_DONE_LL_ABORT_ERR: case SCU_TASK_DONE_SEQ_INV_TYPE: /* Also SCU_TASK_DONE_UNEXP_XR: */ case SCU_TASK_DONE_XR_IU_LEN_ERR: case SCU_TASK_DONE_INV_FIS_LEN: /* Also SCU_TASK_DONE_XR_WD_LEN: */ case SCU_TASK_DONE_SDMA_ERR: case SCU_TASK_DONE_OFFSET_ERR: case SCU_TASK_DONE_MAX_PLD_ERR: case SCU_TASK_DONE_LF_ERR: case SCU_TASK_DONE_SMP_RESP_TO_ERR: /* Escalate to dev reset? */ case SCU_TASK_DONE_SMP_LL_RX_ERR: case SCU_TASK_DONE_UNEXP_DATA: case SCU_TASK_DONE_UNEXP_SDBFIS: case SCU_TASK_DONE_REG_ERR: case SCU_TASK_DONE_SDB_ERR: case SCU_TASK_DONE_TASK_ABORT: default: /* Task in the target is not done. */ *response_ptr = SAS_TASK_UNDELIVERED; *status_ptr = SAM_STAT_TASK_ABORTED; request->complete_in_target = false; *complete_to_host_ptr = isci_perform_error_io_completion; break; } } /** * isci_task_save_for_upper_layer_completion() - This function saves the * request for later completion to the upper layer driver. * @host: This parameter is a pointer to the host on which the the request * should be queued (either as an error or success). * @request: This parameter is the completed request. * @response: This parameter is the response code for the completed task. * @status: This parameter is the status code for the completed task. * * none. */ static void isci_task_save_for_upper_layer_completion( struct isci_host *host, struct isci_request *request, enum service_response response, enum exec_status status, enum isci_completion_selection task_notification_selection) { struct sas_task *task = isci_request_access_task(request); task_notification_selection = isci_task_set_completion_status(task, response, status, task_notification_selection); /* Tasks aborted specifically by a call to the lldd_abort_task * function should not be completed to the host in the regular path. */ switch (task_notification_selection) { case isci_perform_normal_io_completion: /* Normal notification (task_done) */ dev_dbg(&host->pdev->dev, "%s: Normal - task = %p, response=%d (%d), status=%d (%d)\n", __func__, task, task->task_status.resp, response, task->task_status.stat, status); /* Add to the completed list. */ list_add(&request->completed_node, &host->requests_to_complete); /* Take the request off the device's pending request list. */ list_del_init(&request->dev_node); break; case isci_perform_aborted_io_completion: /* No notification to libsas because this request is * already in the abort path. */ dev_warn(&host->pdev->dev, "%s: Aborted - task = %p, response=%d (%d), status=%d (%d)\n", __func__, task, task->task_status.resp, response, task->task_status.stat, status); /* Wake up whatever process was waiting for this * request to complete. */ WARN_ON(request->io_request_completion == NULL); if (request->io_request_completion != NULL) { /* Signal whoever is waiting that this * request is complete. */ complete(request->io_request_completion); } break; case isci_perform_error_io_completion: /* Use sas_task_abort */ dev_warn(&host->pdev->dev, "%s: Error - task = %p, response=%d (%d), status=%d (%d)\n", __func__, task, task->task_status.resp, response, task->task_status.stat, status); /* Add to the aborted list. */ list_add(&request->completed_node, &host->requests_to_errorback); break; default: dev_warn(&host->pdev->dev, "%s: Unknown - task = %p, response=%d (%d), status=%d (%d)\n", __func__, task, task->task_status.resp, response, task->task_status.stat, status); /* Add to the error to libsas list. */ list_add(&request->completed_node, &host->requests_to_errorback); break; } } static void isci_request_io_request_complete(struct isci_host *isci_host, struct isci_request *request, enum sci_io_status completion_status) { struct sas_task *task = isci_request_access_task(request); struct ssp_response_iu *resp_iu; void *resp_buf; unsigned long task_flags; struct isci_remote_device *isci_device = request->isci_device; enum service_response response = SAS_TASK_UNDELIVERED; enum exec_status status = SAS_ABORTED_TASK; enum isci_request_status request_status; enum isci_completion_selection complete_to_host = isci_perform_normal_io_completion; dev_dbg(&isci_host->pdev->dev, "%s: request = %p, task = %p,\n" "task->data_dir = %d completion_status = 0x%x\n", __func__, request, task, task->data_dir, completion_status); spin_lock(&request->state_lock); request_status = isci_request_get_state(request); /* Decode the request status. Note that if the request has been * aborted by a task management function, we don't care * what the status is. */ switch (request_status) { case aborted: /* "aborted" indicates that the request was aborted by a task * management function, since once a task management request is * perfomed by the device, the request only completes because * of the subsequent driver terminate. * * Aborted also means an external thread is explicitly managing * this request, so that we do not complete it up the stack. * * The target is still there (since the TMF was successful). */ request->complete_in_target = true; response = SAS_TASK_COMPLETE; /* See if the device has been/is being stopped. Note * that we ignore the quiesce state, since we are * concerned about the actual device state. */ if ((isci_device->status == isci_stopping) || (isci_device->status == isci_stopped) ) status = SAS_DEVICE_UNKNOWN; else status = SAS_ABORTED_TASK; complete_to_host = isci_perform_aborted_io_completion; /* This was an aborted request. */ spin_unlock(&request->state_lock); break; case aborting: /* aborting means that the task management function tried and * failed to abort the request. We need to note the request * as SAS_TASK_UNDELIVERED, so that the scsi mid layer marks the * target as down. * * Aborting also means an external thread is explicitly managing * this request, so that we do not complete it up the stack. */ request->complete_in_target = true; response = SAS_TASK_UNDELIVERED; if ((isci_device->status == isci_stopping) || (isci_device->status == isci_stopped)) /* The device has been /is being stopped. Note that * we ignore the quiesce state, since we are * concerned about the actual device state. */ status = SAS_DEVICE_UNKNOWN; else status = SAS_PHY_DOWN; complete_to_host = isci_perform_aborted_io_completion; /* This was an aborted request. */ spin_unlock(&request->state_lock); break; case terminating: /* This was an terminated request. This happens when * the I/O is being terminated because of an action on * the device (reset, tear down, etc.), and the I/O needs * to be completed up the stack. */ request->complete_in_target = true; response = SAS_TASK_UNDELIVERED; /* See if the device has been/is being stopped. Note * that we ignore the quiesce state, since we are * concerned about the actual device state. */ if ((isci_device->status == isci_stopping) || (isci_device->status == isci_stopped)) status = SAS_DEVICE_UNKNOWN; else status = SAS_ABORTED_TASK; complete_to_host = isci_perform_aborted_io_completion; /* This was a terminated request. */ spin_unlock(&request->state_lock); break; default: /* The request is done from an SCU HW perspective. */ request->status = completed; spin_unlock(&request->state_lock); /* This is an active request being completed from the core. */ switch (completion_status) { case SCI_IO_FAILURE_RESPONSE_VALID: dev_dbg(&isci_host->pdev->dev, "%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n", __func__, request, task); if (sas_protocol_ata(task->task_proto)) { resp_buf = &request->sci.stp.rsp; isci_request_process_stp_response(task, resp_buf); } else if (SAS_PROTOCOL_SSP == task->task_proto) { /* crack the iu response buffer. */ resp_iu = &request->sci.ssp.rsp; isci_request_process_response_iu(task, resp_iu, &isci_host->pdev->dev); } else if (SAS_PROTOCOL_SMP == task->task_proto) { dev_err(&isci_host->pdev->dev, "%s: SCI_IO_FAILURE_RESPONSE_VALID: " "SAS_PROTOCOL_SMP protocol\n", __func__); } else dev_err(&isci_host->pdev->dev, "%s: unknown protocol\n", __func__); /* use the task status set in the task struct by the * isci_request_process_response_iu call. */ request->complete_in_target = true; response = task->task_status.resp; status = task->task_status.stat; break; case SCI_IO_SUCCESS: case SCI_IO_SUCCESS_IO_DONE_EARLY: response = SAS_TASK_COMPLETE; status = SAM_STAT_GOOD; request->complete_in_target = true; if (task->task_proto == SAS_PROTOCOL_SMP) { void *rsp = &request->sci.smp.rsp; dev_dbg(&isci_host->pdev->dev, "%s: SMP protocol completion\n", __func__); sg_copy_from_buffer( &task->smp_task.smp_resp, 1, rsp, sizeof(struct smp_resp)); } else if (completion_status == SCI_IO_SUCCESS_IO_DONE_EARLY) { /* This was an SSP / STP / SATA transfer. * There is a possibility that less data than * the maximum was transferred. */ u32 transferred_length = sci_req_tx_bytes(&request->sci); task->task_status.residual = task->total_xfer_len - transferred_length; /* If there were residual bytes, call this an * underrun. */ if (task->task_status.residual != 0) status = SAS_DATA_UNDERRUN; dev_dbg(&isci_host->pdev->dev, "%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n", __func__, status); } else dev_dbg(&isci_host->pdev->dev, "%s: SCI_IO_SUCCESS\n", __func__); break; case SCI_IO_FAILURE_TERMINATED: dev_dbg(&isci_host->pdev->dev, "%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n", __func__, request, task); /* The request was terminated explicitly. No handling * is needed in the SCSI error handler path. */ request->complete_in_target = true; response = SAS_TASK_UNDELIVERED; /* See if the device has been/is being stopped. Note * that we ignore the quiesce state, since we are * concerned about the actual device state. */ if ((isci_device->status == isci_stopping) || (isci_device->status == isci_stopped)) status = SAS_DEVICE_UNKNOWN; else status = SAS_ABORTED_TASK; complete_to_host = isci_perform_normal_io_completion; break; case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR: isci_request_handle_controller_specific_errors( isci_device, request, task, &response, &status, &complete_to_host); break; case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED: /* This is a special case, in that the I/O completion * is telling us that the device needs a reset. * In order for the device reset condition to be * noticed, the I/O has to be handled in the error * handler. Set the reset flag and cause the * SCSI error thread to be scheduled. */ spin_lock_irqsave(&task->task_state_lock, task_flags); task->task_state_flags |= SAS_TASK_NEED_DEV_RESET; spin_unlock_irqrestore(&task->task_state_lock, task_flags); /* Fail the I/O. */ response = SAS_TASK_UNDELIVERED; status = SAM_STAT_TASK_ABORTED; complete_to_host = isci_perform_error_io_completion; request->complete_in_target = false; break; default: /* Catch any otherwise unhandled error codes here. */ dev_warn(&isci_host->pdev->dev, "%s: invalid completion code: 0x%x - " "isci_request = %p\n", __func__, completion_status, request); response = SAS_TASK_UNDELIVERED; /* See if the device has been/is being stopped. Note * that we ignore the quiesce state, since we are * concerned about the actual device state. */ if ((isci_device->status == isci_stopping) || (isci_device->status == isci_stopped)) status = SAS_DEVICE_UNKNOWN; else status = SAS_ABORTED_TASK; complete_to_host = isci_perform_error_io_completion; request->complete_in_target = false; break; } break; } isci_request_unmap_sgl(request, isci_host->pdev); /* Put the completed request on the correct list */ isci_task_save_for_upper_layer_completion(isci_host, request, response, status, complete_to_host ); /* complete the io request to the core. */ scic_controller_complete_io(&isci_host->sci, &isci_device->sci, &request->sci); /* set terminated handle so it cannot be completed or * terminated again, and to cause any calls into abort * task to recognize the already completed case. */ request->terminated = true; isci_host_can_dequeue(isci_host, 1); } /** * scic_sds_request_initial_state_enter() - * @object: This parameter specifies the base object for which the state * transition is occurring. * * This method implements the actions taken when entering the * SCI_BASE_REQUEST_STATE_INITIAL state. This state is entered when the initial * base request is constructed. Entry into the initial state sets all handlers * for the io request object to their default handlers. none */ static void scic_sds_request_initial_state_enter(void *object) { struct scic_sds_request *sci_req = object; SET_STATE_HANDLER( sci_req, scic_sds_request_state_handler_table, SCI_BASE_REQUEST_STATE_INITIAL ); } /** * scic_sds_request_constructed_state_enter() - * @object: The io request object that is to enter the constructed state. * * This method implements the actions taken when entering the * SCI_BASE_REQUEST_STATE_CONSTRUCTED state. The method sets the state handlers * for the the constructed state. none */ static void scic_sds_request_constructed_state_enter(void *object) { struct scic_sds_request *sci_req = object; SET_STATE_HANDLER( sci_req, scic_sds_request_state_handler_table, SCI_BASE_REQUEST_STATE_CONSTRUCTED ); } /** * scic_sds_request_started_state_enter() - * @object: This parameter specifies the base object for which the state * transition is occurring. This is cast into a SCIC_SDS_IO_REQUEST object. * * This method implements the actions taken when entering the * SCI_BASE_REQUEST_STATE_STARTED state. If the io request object type is a * SCSI Task request we must enter the started substate machine. none */ static void scic_sds_request_started_state_enter(void *object) { struct scic_sds_request *sci_req = object; struct sci_base_state_machine *sm = &sci_req->state_machine; struct isci_request *ireq = sci_req_to_ireq(sci_req); struct domain_device *dev = sci_dev_to_domain(sci_req->target_device); struct sas_task *task; /* XXX as hch said always creating an internal sas_task for tmf * requests would simplify the driver */ task = ireq->ttype == io_task ? isci_request_access_task(ireq) : NULL; SET_STATE_HANDLER( sci_req, scic_sds_request_state_handler_table, SCI_BASE_REQUEST_STATE_STARTED ); /* Most of the request state machines have a started substate machine so * start its execution on the entry to the started state. */ if (sci_req->has_started_substate_machine == true) sci_base_state_machine_start(&sci_req->started_substate_machine); if (!task && dev->dev_type == SAS_END_DEV) { sci_base_state_machine_change_state(sm, SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_COMPLETION); } else if (task && task->task_proto == SAS_PROTOCOL_SMP) { sci_base_state_machine_change_state(sm, SCIC_SDS_SMP_REQUEST_STARTED_SUBSTATE_AWAIT_RESPONSE); } } /** * scic_sds_request_started_state_exit() - * @object: This parameter specifies the base object for which the state * transition is occurring. This object is cast into a SCIC_SDS_IO_REQUEST * object. * * This method implements the actions taken when exiting the * SCI_BASE_REQUEST_STATE_STARTED state. For task requests the action will be * to stop the started substate machine. none */ static void scic_sds_request_started_state_exit(void *object) { struct scic_sds_request *sci_req = object; if (sci_req->has_started_substate_machine == true) sci_base_state_machine_stop(&sci_req->started_substate_machine); } /** * scic_sds_request_completed_state_enter() - * @object: This parameter specifies the base object for which the state * transition is occurring. This object is cast into a SCIC_SDS_IO_REQUEST * object. * * This method implements the actions taken when entering the * SCI_BASE_REQUEST_STATE_COMPLETED state. This state is entered when the * SCIC_SDS_IO_REQUEST has completed. The method will decode the request * completion status and convert it to an enum sci_status to return in the * completion callback function. none */ static void scic_sds_request_completed_state_enter(void *object) { struct scic_sds_request *sci_req = object; struct scic_sds_controller *scic = scic_sds_request_get_controller(sci_req); struct isci_host *ihost = scic_to_ihost(scic); struct isci_request *ireq = sci_req_to_ireq(sci_req); SET_STATE_HANDLER(sci_req, scic_sds_request_state_handler_table, SCI_BASE_REQUEST_STATE_COMPLETED); /* Tell the SCI_USER that the IO request is complete */ if (sci_req->is_task_management_request == false) isci_request_io_request_complete(ihost, ireq, sci_req->sci_status); else isci_task_request_complete(ihost, ireq, sci_req->sci_status); } /** * scic_sds_request_aborting_state_enter() - * @object: This parameter specifies the base object for which the state * transition is occurring. This object is cast into a SCIC_SDS_IO_REQUEST * object. * * This method implements the actions taken when entering the * SCI_BASE_REQUEST_STATE_ABORTING state. none */ static void scic_sds_request_aborting_state_enter(void *object) { struct scic_sds_request *sci_req = object; /* Setting the abort bit in the Task Context is required by the silicon. */ sci_req->task_context_buffer->abort = 1; SET_STATE_HANDLER( sci_req, scic_sds_request_state_handler_table, SCI_BASE_REQUEST_STATE_ABORTING ); } /** * scic_sds_request_final_state_enter() - * @object: This parameter specifies the base object for which the state * transition is occurring. This is cast into a SCIC_SDS_IO_REQUEST object. * * This method implements the actions taken when entering the * SCI_BASE_REQUEST_STATE_FINAL state. The only action required is to put the * state handlers in place. none */ static void scic_sds_request_final_state_enter(void *object) { struct scic_sds_request *sci_req = object; SET_STATE_HANDLER( sci_req, scic_sds_request_state_handler_table, SCI_BASE_REQUEST_STATE_FINAL ); } static void scic_sds_io_request_started_task_mgmt_await_tc_completion_substate_enter( void *object) { struct scic_sds_request *sci_req = object; SET_STATE_HANDLER( sci_req, scic_sds_request_state_handler_table, SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_COMPLETION ); } static void scic_sds_io_request_started_task_mgmt_await_task_response_substate_enter( void *object) { struct scic_sds_request *sci_req = object; SET_STATE_HANDLER( sci_req, scic_sds_request_state_handler_table, SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_RESPONSE ); } static void scic_sds_smp_request_started_await_response_substate_enter(void *object) { struct scic_sds_request *sci_req = object; SET_STATE_HANDLER( sci_req, scic_sds_request_state_handler_table, SCIC_SDS_SMP_REQUEST_STARTED_SUBSTATE_AWAIT_RESPONSE ); } static void scic_sds_smp_request_started_await_tc_completion_substate_enter(void *object) { struct scic_sds_request *sci_req = object; SET_STATE_HANDLER( sci_req, scic_sds_request_state_handler_table, SCIC_SDS_SMP_REQUEST_STARTED_SUBSTATE_AWAIT_TC_COMPLETION ); } static const struct sci_base_state scic_sds_request_state_table[] = { [SCI_BASE_REQUEST_STATE_INITIAL] = { .enter_state = scic_sds_request_initial_state_enter, }, [SCI_BASE_REQUEST_STATE_CONSTRUCTED] = { .enter_state = scic_sds_request_constructed_state_enter, }, [SCI_BASE_REQUEST_STATE_STARTED] = { .enter_state = scic_sds_request_started_state_enter, .exit_state = scic_sds_request_started_state_exit }, [SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_COMPLETION] = { .enter_state = scic_sds_io_request_started_task_mgmt_await_tc_completion_substate_enter, }, [SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_RESPONSE] = { .enter_state = scic_sds_io_request_started_task_mgmt_await_task_response_substate_enter, }, [SCIC_SDS_SMP_REQUEST_STARTED_SUBSTATE_AWAIT_RESPONSE] = { .enter_state = scic_sds_smp_request_started_await_response_substate_enter, }, [SCIC_SDS_SMP_REQUEST_STARTED_SUBSTATE_AWAIT_TC_COMPLETION] = { .enter_state = scic_sds_smp_request_started_await_tc_completion_substate_enter, }, [SCI_BASE_REQUEST_STATE_COMPLETED] = { .enter_state = scic_sds_request_completed_state_enter, }, [SCI_BASE_REQUEST_STATE_ABORTING] = { .enter_state = scic_sds_request_aborting_state_enter, }, [SCI_BASE_REQUEST_STATE_FINAL] = { .enter_state = scic_sds_request_final_state_enter, }, }; static void scic_sds_general_request_construct(struct scic_sds_controller *scic, struct scic_sds_remote_device *sci_dev, u16 io_tag, struct scic_sds_request *sci_req) { sci_base_state_machine_construct(&sci_req->state_machine, sci_req, scic_sds_request_state_table, SCI_BASE_REQUEST_STATE_INITIAL); sci_base_state_machine_start(&sci_req->state_machine); sci_req->io_tag = io_tag; sci_req->owning_controller = scic; sci_req->target_device = sci_dev; sci_req->has_started_substate_machine = false; sci_req->protocol = SCIC_NO_PROTOCOL; sci_req->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX; sci_req->device_sequence = scic_sds_remote_device_get_sequence(sci_dev); sci_req->sci_status = SCI_SUCCESS; sci_req->scu_status = 0; sci_req->post_context = 0xFFFFFFFF; sci_req->is_task_management_request = false; if (io_tag == SCI_CONTROLLER_INVALID_IO_TAG) { sci_req->was_tag_assigned_by_user = false; sci_req->task_context_buffer = &sci_req->tc; } else { sci_req->was_tag_assigned_by_user = true; sci_req->task_context_buffer = scic_sds_controller_get_task_context_buffer(scic, io_tag); } } static enum sci_status scic_io_request_construct(struct scic_sds_controller *scic, struct scic_sds_remote_device *sci_dev, u16 io_tag, struct scic_sds_request *sci_req) { struct domain_device *dev = sci_dev_to_domain(sci_dev); enum sci_status status = SCI_SUCCESS; /* Build the common part of the request */ scic_sds_general_request_construct(scic, sci_dev, io_tag, sci_req); if (sci_dev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) return SCI_FAILURE_INVALID_REMOTE_DEVICE; if (dev->dev_type == SAS_END_DEV) /* pass */; else if (dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP)) memset(&sci_req->stp.cmd, 0, sizeof(sci_req->stp.cmd)); else if (dev_is_expander(dev)) memset(&sci_req->smp.cmd, 0, sizeof(sci_req->smp.cmd)); else return SCI_FAILURE_UNSUPPORTED_PROTOCOL; memset(sci_req->task_context_buffer, 0, offsetof(struct scu_task_context, sgl_pair_ab)); return status; } enum sci_status scic_task_request_construct(struct scic_sds_controller *scic, struct scic_sds_remote_device *sci_dev, u16 io_tag, struct scic_sds_request *sci_req) { struct domain_device *dev = sci_dev_to_domain(sci_dev); enum sci_status status = SCI_SUCCESS; /* Build the common part of the request */ scic_sds_general_request_construct(scic, sci_dev, io_tag, sci_req); if (dev->dev_type == SAS_END_DEV || dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP)) { sci_req->is_task_management_request = true; memset(sci_req->task_context_buffer, 0, sizeof(struct scu_task_context)); } else status = SCI_FAILURE_UNSUPPORTED_PROTOCOL; return status; } static enum sci_status isci_request_ssp_request_construct( struct isci_request *request) { enum sci_status status; dev_dbg(&request->isci_host->pdev->dev, "%s: request = %p\n", __func__, request); status = scic_io_request_construct_basic_ssp(&request->sci); return status; } static enum sci_status isci_request_stp_request_construct( struct isci_request *request) { struct sas_task *task = isci_request_access_task(request); enum sci_status status; struct host_to_dev_fis *register_fis; dev_dbg(&request->isci_host->pdev->dev, "%s: request = %p\n", __func__, request); /* Get the host_to_dev_fis from the core and copy * the fis from the task into it. */ register_fis = isci_sata_task_to_fis_copy(task); status = scic_io_request_construct_basic_sata(&request->sci); /* Set the ncq tag in the fis, from the queue * command in the task. */ if (isci_sata_is_task_ncq(task)) { isci_sata_set_ncq_tag( register_fis, task ); } return status; } /* * This function will fill in the SCU Task Context for a SMP request. The * following important settings are utilized: -# task_type == * SCU_TASK_TYPE_SMP. This simply indicates that a normal request type * (i.e. non-raw frame) is being utilized to perform task management. -# * control_frame == 1. This ensures that the proper endianess is set so * that the bytes are transmitted in the right order for a smp request frame. * @sci_req: This parameter specifies the smp request object being * constructed. * */ static void scu_smp_request_construct_task_context(struct scic_sds_request *sci_req, struct smp_req *smp_req) { dma_addr_t dma_addr; struct scic_sds_controller *scic; struct scic_sds_remote_device *sci_dev; struct scic_sds_port *sci_port; struct scu_task_context *task_context; ssize_t word_cnt = sizeof(struct smp_req) / sizeof(u32); /* byte swap the smp request. */ sci_swab32_cpy(&sci_req->smp.cmd, smp_req, word_cnt); task_context = scic_sds_request_get_task_context(sci_req); scic = scic_sds_request_get_controller(sci_req); sci_dev = scic_sds_request_get_device(sci_req); sci_port = scic_sds_request_get_port(sci_req); /* * Fill in the TC with the its required data * 00h */ task_context->priority = 0; task_context->initiator_request = 1; task_context->connection_rate = sci_dev->connection_rate; task_context->protocol_engine_index = scic_sds_controller_get_protocol_engine_group(scic); task_context->logical_port_index = scic_sds_port_get_index(sci_port); task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP; task_context->abort = 0; task_context->valid = SCU_TASK_CONTEXT_VALID; task_context->context_type = SCU_TASK_CONTEXT_TYPE; /* 04h */ task_context->remote_node_index = sci_dev->rnc.remote_node_index; task_context->command_code = 0; task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST; /* 08h */ task_context->link_layer_control = 0; task_context->do_not_dma_ssp_good_response = 1; task_context->strict_ordering = 0; task_context->control_frame = 1; task_context->timeout_enable = 0; task_context->block_guard_enable = 0; /* 0ch */ task_context->address_modifier = 0; /* 10h */ task_context->ssp_command_iu_length = smp_req->req_len; /* 14h */ task_context->transfer_length_bytes = 0; /* * 18h ~ 30h, protocol specific * since commandIU has been build by framework at this point, we just * copy the frist DWord from command IU to this location. */ memcpy(&task_context->type.smp, &sci_req->smp.cmd, sizeof(u32)); /* * 40h * "For SMP you could program it to zero. We would prefer that way * so that done code will be consistent." - Venki */ task_context->task_phase = 0; if (sci_req->was_tag_assigned_by_user) { /* * Build the task context now since we have already read * the data */ sci_req->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC | (scic_sds_controller_get_protocol_engine_group(scic) << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) | (scic_sds_port_get_index(sci_port) << SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) | scic_sds_io_tag_get_index(sci_req->io_tag)); } else { /* * Build the task context now since we have already read * the data. * I/O tag index is not assigned because we have to wait * until we get a TCi. */ sci_req->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC | (scic_sds_controller_get_protocol_engine_group(scic) << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) | (scic_sds_port_get_index(sci_port) << SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT)); } /* * Copy the physical address for the command buffer to the SCU Task * Context command buffer should not contain command header. */ dma_addr = scic_io_request_get_dma_addr(sci_req, ((char *) &sci_req->smp.cmd) + sizeof(u32)); task_context->command_iu_upper = upper_32_bits(dma_addr); task_context->command_iu_lower = lower_32_bits(dma_addr); /* SMP response comes as UF, so no need to set response IU address. */ task_context->response_iu_upper = 0; task_context->response_iu_lower = 0; } static enum sci_status scic_io_request_construct_smp(struct scic_sds_request *sci_req) { struct smp_req *smp_req = kmalloc(sizeof(*smp_req), GFP_KERNEL); if (!smp_req) return SCI_FAILURE_INSUFFICIENT_RESOURCES; sci_req->protocol = SCIC_SMP_PROTOCOL; /* Construct the SMP SCU Task Context */ memcpy(smp_req, &sci_req->smp.cmd, sizeof(*smp_req)); /* * Look at the SMP requests' header fields; for certain SAS 1.x SMP * functions under SAS 2.0, a zero request length really indicates * a non-zero default length. */ if (smp_req->req_len == 0) { switch (smp_req->func) { case SMP_DISCOVER: case SMP_REPORT_PHY_ERR_LOG: case SMP_REPORT_PHY_SATA: case SMP_REPORT_ROUTE_INFO: smp_req->req_len = 2; break; case SMP_CONF_ROUTE_INFO: case SMP_PHY_CONTROL: case SMP_PHY_TEST_FUNCTION: smp_req->req_len = 9; break; /* Default - zero is a valid default for 2.0. */ } } scu_smp_request_construct_task_context(sci_req, smp_req); sci_base_state_machine_change_state(&sci_req->state_machine, SCI_BASE_REQUEST_STATE_CONSTRUCTED); kfree(smp_req); return SCI_SUCCESS; } /* * isci_smp_request_build() - This function builds the smp request. * @ireq: This parameter points to the isci_request allocated in the * request construct function. * * SCI_SUCCESS on successfull completion, or specific failure code. */ static enum sci_status isci_smp_request_build(struct isci_request *ireq) { enum sci_status status = SCI_FAILURE; struct sas_task *task = isci_request_access_task(ireq); struct scic_sds_request *sci_req = &ireq->sci; dev_dbg(&ireq->isci_host->pdev->dev, "%s: request = %p\n", __func__, ireq); dev_dbg(&ireq->isci_host->pdev->dev, "%s: smp_req len = %d\n", __func__, task->smp_task.smp_req.length); /* copy the smp_command to the address; */ sg_copy_to_buffer(&task->smp_task.smp_req, 1, &sci_req->smp.cmd, sizeof(struct smp_req)); status = scic_io_request_construct_smp(sci_req); if (status != SCI_SUCCESS) dev_warn(&ireq->isci_host->pdev->dev, "%s: failed with status = %d\n", __func__, status); return status; } /** * isci_io_request_build() - This function builds the io request object. * @isci_host: This parameter specifies the ISCI host object * @request: This parameter points to the isci_request object allocated in the * request construct function. * @sci_device: This parameter is the handle for the sci core's remote device * object that is the destination for this request. * * SCI_SUCCESS on successfull completion, or specific failure code. */ static enum sci_status isci_io_request_build( struct isci_host *isci_host, struct isci_request *request, struct isci_remote_device *isci_device) { enum sci_status status = SCI_SUCCESS; struct sas_task *task = isci_request_access_task(request); struct scic_sds_remote_device *sci_device = &isci_device->sci; dev_dbg(&isci_host->pdev->dev, "%s: isci_device = 0x%p; request = %p, " "num_scatter = %d\n", __func__, isci_device, request, task->num_scatter); /* map the sgl addresses, if present. * libata does the mapping for sata devices * before we get the request. */ if (task->num_scatter && !sas_protocol_ata(task->task_proto) && !(SAS_PROTOCOL_SMP & task->task_proto)) { request->num_sg_entries = dma_map_sg( &isci_host->pdev->dev, task->scatter, task->num_scatter, task->data_dir ); if (request->num_sg_entries == 0) return SCI_FAILURE_INSUFFICIENT_RESOURCES; } /* build the common request object. For now, * we will let the core allocate the IO tag. */ status = scic_io_request_construct(&isci_host->sci, sci_device, SCI_CONTROLLER_INVALID_IO_TAG, &request->sci); if (status != SCI_SUCCESS) { dev_warn(&isci_host->pdev->dev, "%s: failed request construct\n", __func__); return SCI_FAILURE; } switch (task->task_proto) { case SAS_PROTOCOL_SMP: status = isci_smp_request_build(request); break; case SAS_PROTOCOL_SSP: status = isci_request_ssp_request_construct(request); break; case SAS_PROTOCOL_SATA: case SAS_PROTOCOL_STP: case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: status = isci_request_stp_request_construct(request); break; default: dev_warn(&isci_host->pdev->dev, "%s: unknown protocol\n", __func__); return SCI_FAILURE; } return SCI_SUCCESS; } /** * isci_request_alloc_core() - This function gets the request object from the * isci_host dma cache. * @isci_host: This parameter specifies the ISCI host object * @isci_request: This parameter will contain the pointer to the new * isci_request object. * @isci_device: This parameter is the pointer to the isci remote device object * that is the destination for this request. * @gfp_flags: This parameter specifies the os allocation flags. * * SCI_SUCCESS on successfull completion, or specific failure code. */ static int isci_request_alloc_core( struct isci_host *isci_host, struct isci_request **isci_request, struct isci_remote_device *isci_device, gfp_t gfp_flags) { int ret = 0; dma_addr_t handle; struct isci_request *request; /* get pointer to dma memory. This actually points * to both the isci_remote_device object and the * sci object. The isci object is at the beginning * of the memory allocated here. */ request = dma_pool_alloc(isci_host->dma_pool, gfp_flags, &handle); if (!request) { dev_warn(&isci_host->pdev->dev, "%s: dma_pool_alloc returned NULL\n", __func__); return -ENOMEM; } /* initialize the request object. */ spin_lock_init(&request->state_lock); request->request_daddr = handle; request->isci_host = isci_host; request->isci_device = isci_device; request->io_request_completion = NULL; request->terminated = false; request->num_sg_entries = 0; request->complete_in_target = false; INIT_LIST_HEAD(&request->completed_node); INIT_LIST_HEAD(&request->dev_node); *isci_request = request; isci_request_change_state(request, allocated); return ret; } static int isci_request_alloc_io( struct isci_host *isci_host, struct sas_task *task, struct isci_request **isci_request, struct isci_remote_device *isci_device, gfp_t gfp_flags) { int retval = isci_request_alloc_core(isci_host, isci_request, isci_device, gfp_flags); if (!retval) { (*isci_request)->ttype_ptr.io_task_ptr = task; (*isci_request)->ttype = io_task; task->lldd_task = *isci_request; } return retval; } /** * isci_request_alloc_tmf() - This function gets the request object from the * isci_host dma cache and initializes the relevant fields as a sas_task. * @isci_host: This parameter specifies the ISCI host object * @sas_task: This parameter is the task struct from the upper layer driver. * @isci_request: This parameter will contain the pointer to the new * isci_request object. * @isci_device: This parameter is the pointer to the isci remote device object * that is the destination for this request. * @gfp_flags: This parameter specifies the os allocation flags. * * SCI_SUCCESS on successfull completion, or specific failure code. */ int isci_request_alloc_tmf( struct isci_host *isci_host, struct isci_tmf *isci_tmf, struct isci_request **isci_request, struct isci_remote_device *isci_device, gfp_t gfp_flags) { int retval = isci_request_alloc_core(isci_host, isci_request, isci_device, gfp_flags); if (!retval) { (*isci_request)->ttype_ptr.tmf_task_ptr = isci_tmf; (*isci_request)->ttype = tmf_task; } return retval; } /** * isci_request_execute() - This function allocates the isci_request object, * all fills in some common fields. * @isci_host: This parameter specifies the ISCI host object * @sas_task: This parameter is the task struct from the upper layer driver. * @isci_request: This parameter will contain the pointer to the new * isci_request object. * @gfp_flags: This parameter specifies the os allocation flags. * * SCI_SUCCESS on successfull completion, or specific failure code. */ int isci_request_execute( struct isci_host *isci_host, struct sas_task *task, struct isci_request **isci_request, gfp_t gfp_flags) { int ret = 0; struct scic_sds_remote_device *sci_device; enum sci_status status = SCI_FAILURE_UNSUPPORTED_PROTOCOL; struct isci_remote_device *isci_device; struct isci_request *request; unsigned long flags; isci_device = task->dev->lldd_dev; sci_device = &isci_device->sci; /* do common allocation and init of request object. */ ret = isci_request_alloc_io( isci_host, task, &request, isci_device, gfp_flags ); if (ret) goto out; status = isci_io_request_build(isci_host, request, isci_device); if (status != SCI_SUCCESS) { dev_warn(&isci_host->pdev->dev, "%s: request_construct failed - status = 0x%x\n", __func__, status); goto out; } spin_lock_irqsave(&isci_host->scic_lock, flags); /* send the request, let the core assign the IO TAG. */ status = scic_controller_start_io(&isci_host->sci, sci_device, &request->sci, SCI_CONTROLLER_INVALID_IO_TAG); if (status != SCI_SUCCESS && status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) { dev_warn(&isci_host->pdev->dev, "%s: failed request start (0x%x)\n", __func__, status); spin_unlock_irqrestore(&isci_host->scic_lock, flags); goto out; } /* Either I/O started OK, or the core has signaled that * the device needs a target reset. * * In either case, hold onto the I/O for later. * * Update it's status and add it to the list in the * remote device object. */ isci_request_change_state(request, started); list_add(&request->dev_node, &isci_device->reqs_in_process); if (status == SCI_SUCCESS) { /* Save the tag for possible task mgmt later. */ request->io_tag = request->sci.io_tag; } else { /* The request did not really start in the * hardware, so clear the request handle * here so no terminations will be done. */ request->terminated = true; } spin_unlock_irqrestore(&isci_host->scic_lock, flags); if (status == SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) { /* Signal libsas that we need the SCSI error * handler thread to work on this I/O and that * we want a device reset. */ spin_lock_irqsave(&task->task_state_lock, flags); task->task_state_flags |= SAS_TASK_NEED_DEV_RESET; spin_unlock_irqrestore(&task->task_state_lock, flags); /* Cause this task to be scheduled in the SCSI error * handler thread. */ isci_execpath_callback(isci_host, task, sas_task_abort); /* Change the status, since we are holding * the I/O until it is managed by the SCSI * error handler. */ status = SCI_SUCCESS; } out: if (status != SCI_SUCCESS) { /* release dma memory on failure. */ isci_request_free(isci_host, request); request = NULL; ret = SCI_FAILURE; } *isci_request = request; return ret; }