/****************************************************************************** * * Copyright(c) 2009-2010 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * wlanfae * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, * Hsinchu 300, Taiwan. * * Larry Finger * *****************************************************************************/ #ifndef __RTL_WIFI_H__ #define __RTL_WIFI_H__ #include #include #include #include #include #include #include #include "debug.h" #define RF_CHANGE_BY_INIT 0 #define RF_CHANGE_BY_IPS BIT(28) #define RF_CHANGE_BY_PS BIT(29) #define RF_CHANGE_BY_HW BIT(30) #define RF_CHANGE_BY_SW BIT(31) #define IQK_ADDA_REG_NUM 16 #define IQK_MAC_REG_NUM 4 #define MAX_KEY_LEN 61 #define KEY_BUF_SIZE 5 /* QoS related. */ /*aci: 0x00 Best Effort*/ /*aci: 0x01 Background*/ /*aci: 0x10 Video*/ /*aci: 0x11 Voice*/ /*Max: define total number.*/ #define AC0_BE 0 #define AC1_BK 1 #define AC2_VI 2 #define AC3_VO 3 #define AC_MAX 4 #define QOS_QUEUE_NUM 4 #define RTL_MAC80211_NUM_QUEUE 5 #define QBSS_LOAD_SIZE 5 #define MAX_WMMELE_LENGTH 64 /*slot time for 11g. */ #define RTL_SLOT_TIME_9 9 #define RTL_SLOT_TIME_20 20 /*related with tcp/ip. */ /*if_ehther.h*/ #define ETH_P_PAE 0x888E /*Port Access Entity (IEEE 802.1X) */ #define ETH_P_IP 0x0800 /*Internet Protocol packet */ #define ETH_P_ARP 0x0806 /*Address Resolution packet */ #define SNAP_SIZE 6 #define PROTOC_TYPE_SIZE 2 /*related with 802.11 frame*/ #define MAC80211_3ADDR_LEN 24 #define MAC80211_4ADDR_LEN 30 #define CHANNEL_MAX_NUMBER (14 + 24 + 21) /* 14 is the max channel no */ #define CHANNEL_GROUP_MAX (3 + 9) /* ch1~3, 4~9, 10~14 = three groups */ #define MAX_PG_GROUP 13 #define CHANNEL_GROUP_MAX_2G 3 #define CHANNEL_GROUP_IDX_5GL 3 #define CHANNEL_GROUP_IDX_5GM 6 #define CHANNEL_GROUP_IDX_5GH 9 #define CHANNEL_GROUP_MAX_5G 9 #define CHANNEL_MAX_NUMBER_2G 14 #define AVG_THERMAL_NUM 8 /* for early mode */ #define EM_HDR_LEN 8 enum intf_type { INTF_PCI = 0, INTF_USB = 1, }; enum radio_path { RF90_PATH_A = 0, RF90_PATH_B = 1, RF90_PATH_C = 2, RF90_PATH_D = 3, }; enum rt_eeprom_type { EEPROM_93C46, EEPROM_93C56, EEPROM_BOOT_EFUSE, }; enum rtl_status { RTL_STATUS_INTERFACE_START = 0, }; enum hardware_type { HARDWARE_TYPE_RTL8192E, HARDWARE_TYPE_RTL8192U, HARDWARE_TYPE_RTL8192SE, HARDWARE_TYPE_RTL8192SU, HARDWARE_TYPE_RTL8192CE, HARDWARE_TYPE_RTL8192CU, HARDWARE_TYPE_RTL8192DE, HARDWARE_TYPE_RTL8192DU, HARDWARE_TYPE_RTL8723E, HARDWARE_TYPE_RTL8723U, /* keep it last */ HARDWARE_TYPE_NUM }; #define IS_HARDWARE_TYPE_8192SU(rtlhal) \ (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SU) #define IS_HARDWARE_TYPE_8192SE(rtlhal) \ (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) #define IS_HARDWARE_TYPE_8192CE(rtlhal) \ (rtlhal->hw_type == HARDWARE_TYPE_RTL8192CE) #define IS_HARDWARE_TYPE_8192CU(rtlhal) \ (rtlhal->hw_type == HARDWARE_TYPE_RTL8192CU) #define IS_HARDWARE_TYPE_8192DE(rtlhal) \ (rtlhal->hw_type == HARDWARE_TYPE_RTL8192DE) #define IS_HARDWARE_TYPE_8192DU(rtlhal) \ (rtlhal->hw_type == HARDWARE_TYPE_RTL8192DU) #define IS_HARDWARE_TYPE_8723E(rtlhal) \ (rtlhal->hw_type == HARDWARE_TYPE_RTL8723E) #define IS_HARDWARE_TYPE_8723U(rtlhal) \ (rtlhal->hw_type == HARDWARE_TYPE_RTL8723U) #define IS_HARDWARE_TYPE_8192S(rtlhal) \ (IS_HARDWARE_TYPE_8192SE(rtlhal) || IS_HARDWARE_TYPE_8192SU(rtlhal)) #define IS_HARDWARE_TYPE_8192C(rtlhal) \ (IS_HARDWARE_TYPE_8192CE(rtlhal) || IS_HARDWARE_TYPE_8192CU(rtlhal)) #define IS_HARDWARE_TYPE_8192D(rtlhal) \ (IS_HARDWARE_TYPE_8192DE(rtlhal) || IS_HARDWARE_TYPE_8192DU(rtlhal)) #define IS_HARDWARE_TYPE_8723(rtlhal) \ (IS_HARDWARE_TYPE_8723E(rtlhal) || IS_HARDWARE_TYPE_8723U(rtlhal)) enum scan_operation_backup_opt { SCAN_OPT_BACKUP = 0, SCAN_OPT_RESTORE, SCAN_OPT_MAX }; /*RF state.*/ enum rf_pwrstate { ERFON, ERFSLEEP, ERFOFF }; struct bb_reg_def { u32 rfintfs; u32 rfintfi; u32 rfintfo; u32 rfintfe; u32 rf3wire_offset; u32 rflssi_select; u32 rftxgain_stage; u32 rfhssi_para1; u32 rfhssi_para2; u32 rfswitch_control; u32 rfagc_control1; u32 rfagc_control2; u32 rfrxiq_imbalance; u32 rfrx_afe; u32 rftxiq_imbalance; u32 rftx_afe; u32 rflssi_readback; u32 rflssi_readbackpi; }; enum io_type { IO_CMD_PAUSE_DM_BY_SCAN = 0, IO_CMD_RESUME_DM_BY_SCAN = 1, }; enum hw_variables { HW_VAR_ETHER_ADDR, HW_VAR_MULTICAST_REG, HW_VAR_BASIC_RATE, HW_VAR_BSSID, HW_VAR_MEDIA_STATUS, HW_VAR_SECURITY_CONF, HW_VAR_BEACON_INTERVAL, HW_VAR_ATIM_WINDOW, HW_VAR_LISTEN_INTERVAL, HW_VAR_CS_COUNTER, HW_VAR_DEFAULTKEY0, HW_VAR_DEFAULTKEY1, HW_VAR_DEFAULTKEY2, HW_VAR_DEFAULTKEY3, HW_VAR_SIFS, HW_VAR_DIFS, HW_VAR_EIFS, HW_VAR_SLOT_TIME, HW_VAR_ACK_PREAMBLE, HW_VAR_CW_CONFIG, HW_VAR_CW_VALUES, HW_VAR_RATE_FALLBACK_CONTROL, HW_VAR_CONTENTION_WINDOW, HW_VAR_RETRY_COUNT, HW_VAR_TR_SWITCH, HW_VAR_COMMAND, HW_VAR_WPA_CONFIG, HW_VAR_AMPDU_MIN_SPACE, HW_VAR_SHORTGI_DENSITY, HW_VAR_AMPDU_FACTOR, HW_VAR_MCS_RATE_AVAILABLE, HW_VAR_AC_PARAM, HW_VAR_ACM_CTRL, HW_VAR_DIS_Req_Qsize, HW_VAR_CCX_CHNL_LOAD, HW_VAR_CCX_NOISE_HISTOGRAM, HW_VAR_CCX_CLM_NHM, HW_VAR_TxOPLimit, HW_VAR_TURBO_MODE, HW_VAR_RF_STATE, HW_VAR_RF_OFF_BY_HW, HW_VAR_BUS_SPEED, HW_VAR_SET_DEV_POWER, HW_VAR_RCR, HW_VAR_RATR_0, HW_VAR_RRSR, HW_VAR_CPU_RST, HW_VAR_CECHK_BSSID, HW_VAR_LBK_MODE, HW_VAR_AES_11N_FIX, HW_VAR_USB_RX_AGGR, HW_VAR_USER_CONTROL_TURBO_MODE, HW_VAR_RETRY_LIMIT, HW_VAR_INIT_TX_RATE, HW_VAR_TX_RATE_REG, HW_VAR_EFUSE_USAGE, HW_VAR_EFUSE_BYTES, HW_VAR_AUTOLOAD_STATUS, HW_VAR_RF_2R_DISABLE, HW_VAR_SET_RPWM, HW_VAR_H2C_FW_PWRMODE, HW_VAR_H2C_FW_JOINBSSRPT, HW_VAR_FW_PSMODE_STATUS, HW_VAR_1X1_RECV_COMBINE, HW_VAR_STOP_SEND_BEACON, HW_VAR_TSF_TIMER, HW_VAR_IO_CMD, HW_VAR_RF_RECOVERY, HW_VAR_H2C_FW_UPDATE_GTK, HW_VAR_WF_MASK, HW_VAR_WF_CRC, HW_VAR_WF_IS_MAC_ADDR, HW_VAR_H2C_FW_OFFLOAD, HW_VAR_RESET_WFCRC, HW_VAR_HANDLE_FW_C2H, HW_VAR_DL_FW_RSVD_PAGE, HW_VAR_AID, HW_VAR_HW_SEQ_ENABLE, HW_VAR_CORRECT_TSF, HW_VAR_BCN_VALID, HW_VAR_FWLPS_RF_ON, HW_VAR_DUAL_TSF_RST, HW_VAR_SWITCH_EPHY_WoWLAN, HW_VAR_INT_MIGRATION, HW_VAR_INT_AC, HW_VAR_RF_TIMING, HW_VAR_MRC, HW_VAR_MGT_FILTER, HW_VAR_CTRL_FILTER, HW_VAR_DATA_FILTER, }; enum _RT_MEDIA_STATUS { RT_MEDIA_DISCONNECT = 0, RT_MEDIA_CONNECT = 1 }; enum rt_oem_id { RT_CID_DEFAULT = 0, RT_CID_8187_ALPHA0 = 1, RT_CID_8187_SERCOMM_PS = 2, RT_CID_8187_HW_LED = 3, RT_CID_8187_NETGEAR = 4, RT_CID_WHQL = 5, RT_CID_819x_CAMEO = 6, RT_CID_819x_RUNTOP = 7, RT_CID_819x_Senao = 8, RT_CID_TOSHIBA = 9, RT_CID_819x_Netcore = 10, RT_CID_Nettronix = 11, RT_CID_DLINK = 12, RT_CID_PRONET = 13, RT_CID_COREGA = 14, RT_CID_819x_ALPHA = 15, RT_CID_819x_Sitecom = 16, RT_CID_CCX = 17, RT_CID_819x_Lenovo = 18, RT_CID_819x_QMI = 19, RT_CID_819x_Edimax_Belkin = 20, RT_CID_819x_Sercomm_Belkin = 21, RT_CID_819x_CAMEO1 = 22, RT_CID_819x_MSI = 23, RT_CID_819x_Acer = 24, RT_CID_819x_HP = 27, RT_CID_819x_CLEVO = 28, RT_CID_819x_Arcadyan_Belkin = 29, RT_CID_819x_SAMSUNG = 30, RT_CID_819x_WNC_COREGA = 31, RT_CID_819x_Foxcoon = 32, RT_CID_819x_DELL = 33, }; enum hw_descs { HW_DESC_OWN, HW_DESC_RXOWN, HW_DESC_TX_NEXTDESC_ADDR, HW_DESC_TXBUFF_ADDR, HW_DESC_RXBUFF_ADDR, HW_DESC_RXPKT_LEN, HW_DESC_RXERO, }; enum prime_sc { PRIME_CHNL_OFFSET_DONT_CARE = 0, PRIME_CHNL_OFFSET_LOWER = 1, PRIME_CHNL_OFFSET_UPPER = 2, }; enum rf_type { RF_1T1R = 0, RF_1T2R = 1, RF_2T2R = 2, RF_2T2R_GREEN = 3, }; enum ht_channel_width { HT_CHANNEL_WIDTH_20 = 0, HT_CHANNEL_WIDTH_20_40 = 1, }; /* Ref: 802.11i sepc D10.0 7.3.2.25.1 Cipher Suites Encryption Algorithms */ enum rt_enc_alg { NO_ENCRYPTION = 0, WEP40_ENCRYPTION = 1, TKIP_ENCRYPTION = 2, RSERVED_ENCRYPTION = 3, AESCCMP_ENCRYPTION = 4, WEP104_ENCRYPTION = 5, }; enum rtl_hal_state { _HAL_STATE_STOP = 0, _HAL_STATE_START = 1, }; enum rtl_var_map { /*reg map */ SYS_ISO_CTRL = 0, SYS_FUNC_EN, SYS_CLK, MAC_RCR_AM, MAC_RCR_AB, MAC_RCR_ACRC32, MAC_RCR_ACF, MAC_RCR_AAP, /*efuse map */ EFUSE_TEST, EFUSE_CTRL, EFUSE_CLK, EFUSE_CLK_CTRL, EFUSE_PWC_EV12V, EFUSE_FEN_ELDR, EFUSE_LOADER_CLK_EN, EFUSE_ANA8M, EFUSE_HWSET_MAX_SIZE, EFUSE_MAX_SECTION_MAP, EFUSE_REAL_CONTENT_SIZE, /*CAM map */ RWCAM, WCAMI, RCAMO, CAMDBG, SECR, SEC_CAM_NONE, SEC_CAM_WEP40, SEC_CAM_TKIP, SEC_CAM_AES, SEC_CAM_WEP104, /*IMR map */ RTL_IMR_BCNDMAINT6, /*Beacon DMA Interrupt 6 */ RTL_IMR_BCNDMAINT5, /*Beacon DMA Interrupt 5 */ RTL_IMR_BCNDMAINT4, /*Beacon DMA Interrupt 4 */ RTL_IMR_BCNDMAINT3, /*Beacon DMA Interrupt 3 */ RTL_IMR_BCNDMAINT2, /*Beacon DMA Interrupt 2 */ RTL_IMR_BCNDMAINT1, /*Beacon DMA Interrupt 1 */ RTL_IMR_BCNDOK8, /*Beacon Queue DMA OK Interrup 8 */ RTL_IMR_BCNDOK7, /*Beacon Queue DMA OK Interrup 7 */ RTL_IMR_BCNDOK6, /*Beacon Queue DMA OK Interrup 6 */ RTL_IMR_BCNDOK5, /*Beacon Queue DMA OK Interrup 5 */ RTL_IMR_BCNDOK4, /*Beacon Queue DMA OK Interrup 4 */ RTL_IMR_BCNDOK3, /*Beacon Queue DMA OK Interrup 3 */ RTL_IMR_BCNDOK2, /*Beacon Queue DMA OK Interrup 2 */ RTL_IMR_BCNDOK1, /*Beacon Queue DMA OK Interrup 1 */ RTL_IMR_TIMEOUT2, /*Timeout interrupt 2 */ RTL_IMR_TIMEOUT1, /*Timeout interrupt 1 */ RTL_IMR_TXFOVW, /*Transmit FIFO Overflow */ RTL_IMR_PSTIMEOUT, /*Power save time out interrupt */ RTL_IMR_BcnInt, /*Beacon DMA Interrupt 0 */ RTL_IMR_RXFOVW, /*Receive FIFO Overflow */ RTL_IMR_RDU, /*Receive Descriptor Unavailable */ RTL_IMR_ATIMEND, /*For 92C,ATIM Window End Interrupt */ RTL_IMR_BDOK, /*Beacon Queue DMA OK Interrup */ RTL_IMR_HIGHDOK, /*High Queue DMA OK Interrupt */ RTL_IMR_COMDOK, /*Command Queue DMA OK Interrupt*/ RTL_IMR_TBDOK, /*Transmit Beacon OK interrup */ RTL_IMR_MGNTDOK, /*Management Queue DMA OK Interrupt */ RTL_IMR_TBDER, /*For 92C,Transmit Beacon Error Interrupt */ RTL_IMR_BKDOK, /*AC_BK DMA OK Interrupt */ RTL_IMR_BEDOK, /*AC_BE DMA OK Interrupt */ RTL_IMR_VIDOK, /*AC_VI DMA OK Interrupt */ RTL_IMR_VODOK, /*AC_VO DMA Interrupt */ RTL_IMR_ROK, /*Receive DMA OK Interrupt */ RTL_IBSS_INT_MASKS, /*(RTL_IMR_BcnInt | RTL_IMR_TBDOK | * RTL_IMR_TBDER) */ /*CCK Rates, TxHT = 0 */ RTL_RC_CCK_RATE1M, RTL_RC_CCK_RATE2M, RTL_RC_CCK_RATE5_5M, RTL_RC_CCK_RATE11M, /*OFDM Rates, TxHT = 0 */ RTL_RC_OFDM_RATE6M, RTL_RC_OFDM_RATE9M, RTL_RC_OFDM_RATE12M, RTL_RC_OFDM_RATE18M, RTL_RC_OFDM_RATE24M, RTL_RC_OFDM_RATE36M, RTL_RC_OFDM_RATE48M, RTL_RC_OFDM_RATE54M, RTL_RC_HT_RATEMCS7, RTL_RC_HT_RATEMCS15, /*keep it last */ RTL_VAR_MAP_MAX, }; /*Firmware PS mode for control LPS.*/ enum _fw_ps_mode { FW_PS_ACTIVE_MODE = 0, FW_PS_MIN_MODE = 1, FW_PS_MAX_MODE = 2, FW_PS_DTIM_MODE = 3, FW_PS_VOIP_MODE = 4, FW_PS_UAPSD_WMM_MODE = 5, FW_PS_UAPSD_MODE = 6, FW_PS_IBSS_MODE = 7, FW_PS_WWLAN_MODE = 8, FW_PS_PM_Radio_Off = 9, FW_PS_PM_Card_Disable = 10, }; enum rt_psmode { EACTIVE, /*Active/Continuous access. */ EMAXPS, /*Max power save mode. */ EFASTPS, /*Fast power save mode. */ EAUTOPS, /*Auto power save mode. */ }; /*LED related.*/ enum led_ctl_mode { LED_CTL_POWER_ON = 1, LED_CTL_LINK = 2, LED_CTL_NO_LINK = 3, LED_CTL_TX = 4, LED_CTL_RX = 5, LED_CTL_SITE_SURVEY = 6, LED_CTL_POWER_OFF = 7, LED_CTL_START_TO_LINK = 8, LED_CTL_START_WPS = 9, LED_CTL_STOP_WPS = 10, }; enum rtl_led_pin { LED_PIN_GPIO0, LED_PIN_LED0, LED_PIN_LED1, LED_PIN_LED2 }; /*QoS related.*/ /*acm implementation method.*/ enum acm_method { eAcmWay0_SwAndHw = 0, eAcmWay1_HW = 1, eAcmWay2_SW = 2, }; enum macphy_mode { SINGLEMAC_SINGLEPHY = 0, DUALMAC_DUALPHY, DUALMAC_SINGLEPHY, }; enum band_type { BAND_ON_2_4G = 0, BAND_ON_5G, BAND_ON_BOTH, BANDMAX }; /*aci/aifsn Field. Ref: WMM spec 2.2.2: WME Parameter Element, p.12.*/ union aci_aifsn { u8 char_data; struct { u8 aifsn:4; u8 acm:1; u8 aci:2; u8 reserved:1; } f; /* Field */ }; /*mlme related.*/ enum wireless_mode { WIRELESS_MODE_UNKNOWN = 0x00, WIRELESS_MODE_A = 0x01, WIRELESS_MODE_B = 0x02, WIRELESS_MODE_G = 0x04, WIRELESS_MODE_AUTO = 0x08, WIRELESS_MODE_N_24G = 0x10, WIRELESS_MODE_N_5G = 0x20 }; #define IS_WIRELESS_MODE_A(wirelessmode) \ (wirelessmode == WIRELESS_MODE_A) #define IS_WIRELESS_MODE_B(wirelessmode) \ (wirelessmode == WIRELESS_MODE_B) #define IS_WIRELESS_MODE_G(wirelessmode) \ (wirelessmode == WIRELESS_MODE_G) #define IS_WIRELESS_MODE_N_24G(wirelessmode) \ (wirelessmode == WIRELESS_MODE_N_24G) #define IS_WIRELESS_MODE_N_5G(wirelessmode) \ (wirelessmode == WIRELESS_MODE_N_5G) enum ratr_table_mode { RATR_INX_WIRELESS_NGB = 0, RATR_INX_WIRELESS_NG = 1, RATR_INX_WIRELESS_NB = 2, RATR_INX_WIRELESS_N = 3, RATR_INX_WIRELESS_GB = 4, RATR_INX_WIRELESS_G = 5, RATR_INX_WIRELESS_B = 6, RATR_INX_WIRELESS_MC = 7, RATR_INX_WIRELESS_A = 8, }; enum rtl_link_state { MAC80211_NOLINK = 0, MAC80211_LINKING = 1, MAC80211_LINKED = 2, MAC80211_LINKED_SCANNING = 3, }; enum act_category { ACT_CAT_QOS = 1, ACT_CAT_DLS = 2, ACT_CAT_BA = 3, ACT_CAT_HT = 7, ACT_CAT_WMM = 17, }; enum ba_action { ACT_ADDBAREQ = 0, ACT_ADDBARSP = 1, ACT_DELBA = 2, }; struct octet_string { u8 *octet; u16 length; }; struct rtl_hdr_3addr { __le16 frame_ctl; __le16 duration_id; u8 addr1[ETH_ALEN]; u8 addr2[ETH_ALEN]; u8 addr3[ETH_ALEN]; __le16 seq_ctl; u8 payload[0]; } __packed; struct rtl_info_element { u8 id; u8 len; u8 data[0]; } __packed; struct rtl_probe_rsp { struct rtl_hdr_3addr header; u32 time_stamp[2]; __le16 beacon_interval; __le16 capability; /*SSID, supported rates, FH params, DS params, CF params, IBSS params, TIM (if beacon), RSN */ struct rtl_info_element info_element[0]; } __packed; /*LED related.*/ /*ledpin Identify how to implement this SW led.*/ struct rtl_led { void *hw; enum rtl_led_pin ledpin; bool ledon; }; struct rtl_led_ctl { bool led_opendrain; struct rtl_led sw_led0; struct rtl_led sw_led1; }; struct rtl_qos_parameters { __le16 cw_min; __le16 cw_max; u8 aifs; u8 flag; __le16 tx_op; } __packed; struct rt_smooth_data { u32 elements[100]; /*array to store values */ u32 index; /*index to current array to store */ u32 total_num; /*num of valid elements */ u32 total_val; /*sum of valid elements */ }; struct false_alarm_statistics { u32 cnt_parity_fail; u32 cnt_rate_illegal; u32 cnt_crc8_fail; u32 cnt_mcs_fail; u32 cnt_fast_fsync_fail; u32 cnt_sb_search_fail; u32 cnt_ofdm_fail; u32 cnt_cck_fail; u32 cnt_all; }; struct init_gain { u8 xaagccore1; u8 xbagccore1; u8 xcagccore1; u8 xdagccore1; u8 cca; }; struct wireless_stats { unsigned long txbytesunicast; unsigned long txbytesmulticast; unsigned long txbytesbroadcast; unsigned long rxbytesunicast; long rx_snr_db[4]; /*Correct smoothed ss in Dbm, only used in driver to report real power now. */ long recv_signal_power; long signal_quality; long last_sigstrength_inpercent; u32 rssi_calculate_cnt; /*Transformed, in dbm. Beautified signal strength for UI, not correct. */ long signal_strength; u8 rx_rssi_percentage[4]; u8 rx_evm_percentage[2]; struct rt_smooth_data ui_rssi; struct rt_smooth_data ui_link_quality; }; struct rate_adaptive { u8 rate_adaptive_disabled; u8 ratr_state; u16 reserve; u32 high_rssi_thresh_for_ra; u32 high2low_rssi_thresh_for_ra; u8 low2high_rssi_thresh_for_ra40m; u32 low_rssi_thresh_for_ra40M; u8 low2high_rssi_thresh_for_ra20m; u32 low_rssi_thresh_for_ra20M; u32 upper_rssi_threshold_ratr; u32 middleupper_rssi_threshold_ratr; u32 middle_rssi_threshold_ratr; u32 middlelow_rssi_threshold_ratr; u32 low_rssi_threshold_ratr; u32 ultralow_rssi_threshold_ratr; u32 low_rssi_threshold_ratr_40m; u32 low_rssi_threshold_ratr_20m; u8 ping_rssi_enable; u32 ping_rssi_ratr; u32 ping_rssi_thresh_for_ra; u32 last_ratr; u8 pre_ratr_state; }; struct regd_pair_mapping { u16 reg_dmnenum; u16 reg_5ghz_ctl; u16 reg_2ghz_ctl; }; struct rtl_regulatory { char alpha2[2]; u16 country_code; u16 max_power_level; u32 tp_scale; u16 current_rd; u16 current_rd_ext; int16_t power_limit; struct regd_pair_mapping *regpair; }; struct rtl_rfkill { bool rfkill_state; /*0 is off, 1 is on */ }; #define IQK_MATRIX_REG_NUM 8 #define IQK_MATRIX_SETTINGS_NUM (1 + 24 + 21) struct iqk_matrix_regs { bool iqk_done; long value[1][IQK_MATRIX_REG_NUM]; }; struct phy_parameters { u16 length; u32 *pdata; }; enum hw_param_tab_index { PHY_REG_2T, PHY_REG_1T, PHY_REG_PG, RADIOA_2T, RADIOB_2T, RADIOA_1T, RADIOB_1T, MAC_REG, AGCTAB_2T, AGCTAB_1T, MAX_TAB }; struct rtl_phy { struct bb_reg_def phyreg_def[4]; /*Radio A/B/C/D */ struct init_gain initgain_backup; enum io_type current_io_type; u8 rf_mode; u8 rf_type; u8 current_chan_bw; u8 set_bwmode_inprogress; u8 sw_chnl_inprogress; u8 sw_chnl_stage; u8 sw_chnl_step; u8 current_channel; u8 h2c_box_num; u8 set_io_inprogress; u8 lck_inprogress; /* record for power tracking */ s32 reg_e94; s32 reg_e9c; s32 reg_ea4; s32 reg_eac; s32 reg_eb4; s32 reg_ebc; s32 reg_ec4; s32 reg_ecc; u8 rfpienable; u8 reserve_0; u16 reserve_1; u32 reg_c04, reg_c08, reg_874; u32 adda_backup[16]; u32 iqk_mac_backup[IQK_MAC_REG_NUM]; u32 iqk_bb_backup[10]; /* Dual mac */ bool need_iqk; struct iqk_matrix_regs iqk_matrix_regsetting[IQK_MATRIX_SETTINGS_NUM]; bool rfpi_enable; u8 pwrgroup_cnt; u8 cck_high_power; /* MAX_PG_GROUP groups of pwr diff by rates */ u32 mcs_txpwrlevel_origoffset[MAX_PG_GROUP][16]; u8 default_initialgain[4]; /* the current Tx power level */ u8 cur_cck_txpwridx; u8 cur_ofdm24g_txpwridx; u32 rfreg_chnlval[2]; bool apk_done; u32 reg_rf3c[2]; /* pathA / pathB */ u8 framesync; u32 framesync_c34; u8 num_total_rfpath; struct phy_parameters hwparam_tables[MAX_TAB]; u16 rf_pathmap; }; #define MAX_TID_COUNT 9 #define RTL_AGG_OFF 0 #define RTL_AGG_ON 1 #define RTL_AGG_EMPTYING_HW_QUEUE_ADDBA 2 #define RTL_AGG_EMPTYING_HW_QUEUE_DELBA 3 struct rtl_ht_agg { u16 txq_id; u16 wait_for_ba; u16 start_idx; u64 bitmap; u32 rate_n_flags; u8 agg_state; }; struct rtl_tid_data { u16 seq_number; struct rtl_ht_agg agg; }; struct rtl_priv; struct rtl_io { struct device *dev; struct mutex bb_mutex; /*PCI MEM map */ unsigned long pci_mem_end; /*shared mem end */ unsigned long pci_mem_start; /*shared mem start */ /*PCI IO map */ unsigned long pci_base_addr; /*device I/O address */ void (*write8_async) (struct rtl_priv *rtlpriv, u32 addr, u8 val); void (*write16_async) (struct rtl_priv *rtlpriv, u32 addr, u16 val); void (*write32_async) (struct rtl_priv *rtlpriv, u32 addr, u32 val); int (*writeN_async) (struct rtl_priv *rtlpriv, u32 addr, u16 len, u8 *pdata); u8(*read8_sync) (struct rtl_priv *rtlpriv, u32 addr); u16(*read16_sync) (struct rtl_priv *rtlpriv, u32 addr); u32(*read32_sync) (struct rtl_priv *rtlpriv, u32 addr); int (*readN_sync) (struct rtl_priv *rtlpriv, u32 addr, u16 len, u8 *pdata); }; struct rtl_mac { u8 mac_addr[ETH_ALEN]; u8 mac80211_registered; u8 beacon_enabled; u32 tx_ss_num; u32 rx_ss_num; struct ieee80211_supported_band bands[IEEE80211_NUM_BANDS]; struct ieee80211_hw *hw; struct ieee80211_vif *vif; enum nl80211_iftype opmode; /*Probe Beacon management */ struct rtl_tid_data tids[MAX_TID_COUNT]; enum rtl_link_state link_state; int n_channels; int n_bitrates; /*filters */ u32 rx_conf; u16 rx_mgt_filter; u16 rx_ctrl_filter; u16 rx_data_filter; bool act_scanning; u8 cnt_after_linked; /* early mode */ /* skb wait queue */ struct sk_buff_head skb_waitq[MAX_TID_COUNT]; u8 earlymode_threshold; /*RDG*/ bool rdg_en; /*AP*/ u8 bssid[6]; u32 vendor; u8 mcs[16]; /* 16 bytes mcs for HT rates. */ u32 basic_rates; /* b/g rates */ u8 ht_enable; u8 sgi_40; u8 sgi_20; u8 bw_40; u8 mode; /* wireless mode */ u8 slot_time; u8 short_preamble; u8 use_cts_protect; u8 cur_40_prime_sc; u8 cur_40_prime_sc_bk; u64 tsf; u8 retry_short; u8 retry_long; u16 assoc_id; /*IBSS*/ int beacon_interval; /*AMPDU*/ u8 min_space_cfg; /*For Min spacing configurations */ u8 max_mss_density; u8 current_ampdu_factor; u8 current_ampdu_density; /*QOS & EDCA */ struct ieee80211_tx_queue_params edca_param[RTL_MAC80211_NUM_QUEUE]; struct rtl_qos_parameters ac[AC_MAX]; }; struct rtl_hal { struct ieee80211_hw *hw; enum intf_type interface; u16 hw_type; /*92c or 92d or 92s and so on */ u8 ic_class; u8 oem_id; u32 version; /*version of chip */ u8 state; /*stop 0, start 1 */ /*firmware */ u32 fwsize; u8 *pfirmware; u16 fw_version; u16 fw_subversion; bool h2c_setinprogress; u8 last_hmeboxnum; bool fw_ready; /*Reserve page start offset except beacon in TxQ. */ u8 fw_rsvdpage_startoffset; u8 h2c_txcmd_seq; /* FW Cmd IO related */ u16 fwcmd_iomap; u32 fwcmd_ioparam; bool set_fwcmd_inprogress; u8 current_fwcmd_io; /**/ bool driver_going2unload; /*AMPDU init min space*/ u8 minspace_cfg; /*For Min spacing configurations */ /* Dual mac */ enum macphy_mode macphymode; enum band_type current_bandtype; /* 0:2.4G, 1:5G */ enum band_type current_bandtypebackup; enum band_type bandset; /* dual MAC 0--Mac0 1--Mac1 */ u32 interfaceindex; /* just for DualMac S3S4 */ u8 macphyctl_reg; bool earlymode_enable; /* Dual mac*/ bool during_mac0init_radiob; bool during_mac1init_radioa; bool reloadtxpowerindex; /* True if IMR or IQK have done for 2.4G in scan progress */ bool load_imrandiqk_setting_for2g; bool disable_amsdu_8k; }; struct rtl_security { /*default 0 */ bool use_sw_sec; bool being_setkey; bool use_defaultkey; /*Encryption Algorithm for Unicast Packet */ enum rt_enc_alg pairwise_enc_algorithm; /*Encryption Algorithm for Brocast/Multicast */ enum rt_enc_alg group_enc_algorithm; /*local Key buffer, indx 0 is for pairwise key 1-4 is for agoup key. */ u8 key_buf[KEY_BUF_SIZE][MAX_KEY_LEN]; u8 key_len[KEY_BUF_SIZE]; /*The pointer of Pairwise Key, it always points to KeyBuf[4] */ u8 *pairwise_key; }; struct rtl_dm { /*PHY status for Dynamic Management */ long entry_min_undecoratedsmoothed_pwdb; long undecorated_smoothed_pwdb; /*out dm */ long entry_max_undecoratedsmoothed_pwdb; bool dm_initialgain_enable; bool dynamic_txpower_enable; bool current_turbo_edca; bool is_any_nonbepkts; /*out dm */ bool is_cur_rdlstate; bool txpower_trackingInit; bool disable_framebursting; bool cck_inch14; bool txpower_tracking; bool useramask; bool rfpath_rxenable[4]; bool inform_fw_driverctrldm; bool current_mrc_switch; u8 txpowercount; u8 thermalvalue_rxgain; u8 thermalvalue_iqk; u8 thermalvalue_lck; u8 thermalvalue; u8 last_dtp_lvl; u8 thermalvalue_avg[AVG_THERMAL_NUM]; u8 thermalvalue_avg_index; bool done_txpower; u8 dynamic_txhighpower_lvl; /*Tx high power level */ u8 dm_flag; /*Indicate each dynamic mechanism's status. */ u8 dm_type; u8 txpower_track_control; bool interrupt_migration; bool disable_tx_int; char ofdm_index[2]; char cck_index; u8 power_index_backup[6]; }; #define EFUSE_MAX_LOGICAL_SIZE 256 struct rtl_efuse { bool autoLoad_ok; bool bootfromefuse; u16 max_physical_size; u8 efuse_map[2][EFUSE_MAX_LOGICAL_SIZE]; u16 efuse_usedbytes; u8 efuse_usedpercentage; #ifdef EFUSE_REPG_WORKAROUND bool efuse_re_pg_sec1flag; u8 efuse_re_pg_data[8]; #endif u8 autoload_failflag; u8 autoload_status; short epromtype; u16 eeprom_vid; u16 eeprom_did; u16 eeprom_svid; u16 eeprom_smid; u8 eeprom_oemid; u16 eeprom_channelplan; u8 eeprom_version; u8 board_type; u8 external_pa; u8 dev_addr[6]; bool txpwr_fromeprom; u8 eeprom_crystalcap; u8 eeprom_tssi[2]; u8 eeprom_tssi_5g[3][2]; /* for 5GL/5GM/5GH band. */ u8 eeprom_pwrlimit_ht20[CHANNEL_GROUP_MAX]; u8 eeprom_pwrlimit_ht40[CHANNEL_GROUP_MAX]; u8 eeprom_chnlarea_txpwr_cck[2][CHANNEL_GROUP_MAX_2G]; u8 eeprom_chnlarea_txpwr_ht40_1s[2][CHANNEL_GROUP_MAX]; u8 eeprom_chnlarea_txpwr_ht40_2sdiif[2][CHANNEL_GROUP_MAX]; u8 txpwrlevel_cck[2][CHANNEL_MAX_NUMBER_2G]; u8 txpwrlevel_ht40_1s[2][CHANNEL_MAX_NUMBER]; /*For HT 40MHZ pwr */ u8 txpwrlevel_ht40_2s[2][CHANNEL_MAX_NUMBER]; /*For HT 40MHZ pwr */ u8 internal_pa_5g[2]; /* pathA / pathB */ u8 eeprom_c9; u8 eeprom_cc; /*For power group */ u8 eeprom_pwrgroup[2][3]; u8 pwrgroup_ht20[2][CHANNEL_MAX_NUMBER]; u8 pwrgroup_ht40[2][CHANNEL_MAX_NUMBER]; char txpwr_ht20diff[2][CHANNEL_MAX_NUMBER]; /*HT 20<->40 Pwr diff */ /*For HT<->legacy pwr diff*/ u8 txpwr_legacyhtdiff[2][CHANNEL_MAX_NUMBER]; u8 txpwr_safetyflag; /* Band edge enable flag */ u16 eeprom_txpowerdiff; u8 legacy_httxpowerdiff; /* Legacy to HT rate power diff */ u8 antenna_txpwdiff[3]; u8 eeprom_regulatory; u8 eeprom_thermalmeter; u8 thermalmeter[2]; /*ThermalMeter, index 0 for RFIC0, 1 for RFIC1 */ u16 tssi_13dbm; u8 crystalcap; /* CrystalCap. */ u8 delta_iqk; u8 delta_lck; u8 legacy_ht_txpowerdiff; /*Legacy to HT rate power diff */ bool apk_thermalmeterignore; bool b1x1_recvcombine; bool b1ss_support; /*channel plan */ u8 channel_plan; }; struct rtl_ps_ctl { bool pwrdomain_protect; bool set_rfpowerstate_inprogress; bool in_powersavemode; bool rfchange_inprogress; bool swrf_processing; bool hwradiooff; /* * just for PCIE ASPM * If it supports ASPM, Offset[560h] = 0x40, * otherwise Offset[560h] = 0x00. * */ bool support_aspm; bool support_backdoor; /*for LPS */ enum rt_psmode dot11_psmode; /*Power save mode configured. */ bool swctrl_lps; bool leisure_ps; bool fwctrl_lps; u8 fwctrl_psmode; /*For Fw control LPS mode */ u8 reg_fwctrl_lps; /*Record Fw PS mode status. */ bool fw_current_inpsmode; u8 reg_max_lps_awakeintvl; bool report_linked; /*for IPS */ bool inactiveps; u32 rfoff_reason; /*RF OFF Level */ u32 cur_ps_level; u32 reg_rfps_level; /*just for PCIE ASPM */ u8 const_amdpci_aspm; bool pwrdown_mode; enum rf_pwrstate inactive_pwrstate; enum rf_pwrstate rfpwr_state; /*cur power state */ /* for SW LPS*/ bool sw_ps_enabled; bool state; bool state_inap; bool multi_buffered; u16 nullfunc_seq; unsigned int dtim_counter; unsigned int sleep_ms; unsigned long last_sleep_jiffies; unsigned long last_awake_jiffies; unsigned long last_delaylps_stamp_jiffies; unsigned long last_dtim; unsigned long last_beacon; unsigned long last_action; unsigned long last_slept; }; struct rtl_stats { u32 mac_time[2]; s8 rssi; u8 signal; u8 noise; u16 rate; /*in 100 kbps */ u8 received_channel; u8 control; u8 mask; u8 freq; u16 len; u64 tsf; u32 beacon_time; u8 nic_type; u16 length; u8 signalquality; /*in 0-100 index. */ /* * Real power in dBm for this packet, * no beautification and aggregation. * */ s32 recvsignalpower; s8 rxpower; /*in dBm Translate from PWdB */ u8 signalstrength; /*in 0-100 index. */ u16 hwerror:1; u16 crc:1; u16 icv:1; u16 shortpreamble:1; u16 antenna:1; u16 decrypted:1; u16 wakeup:1; u32 timestamp_low; u32 timestamp_high; u8 rx_drvinfo_size; u8 rx_bufshift; bool isampdu; bool isfirst_ampdu; bool rx_is40Mhzpacket; u32 rx_pwdb_all; u8 rx_mimo_signalstrength[4]; /*in 0~100 index */ s8 rx_mimo_signalquality[2]; bool packet_matchbssid; bool is_cck; bool packet_toself; bool packet_beacon; /*for rssi */ char cck_adc_pwdb[4]; /*for rx path selection */ }; struct rt_link_detect { u32 num_tx_in4period[4]; u32 num_rx_in4period[4]; u32 num_tx_inperiod; u32 num_rx_inperiod; bool busytraffic; bool higher_busytraffic; bool higher_busyrxtraffic; }; struct rtl_tcb_desc { u8 packet_bw:1; u8 multicast:1; u8 broadcast:1; u8 rts_stbc:1; u8 rts_enable:1; u8 cts_enable:1; u8 rts_use_shortpreamble:1; u8 rts_use_shortgi:1; u8 rts_sc:1; u8 rts_bw:1; u8 rts_rate; u8 use_shortgi:1; u8 use_shortpreamble:1; u8 use_driver_rate:1; u8 disable_ratefallback:1; u8 ratr_index; u8 mac_id; u8 hw_rate; u8 last_inipkt:1; u8 cmd_or_init:1; u8 queue_index; /* early mode */ u8 empkt_num; /* The max value by HW */ u32 empkt_len[5]; }; struct rtl_hal_ops { int (*init_sw_vars) (struct ieee80211_hw *hw); void (*deinit_sw_vars) (struct ieee80211_hw *hw); void (*read_chip_version)(struct ieee80211_hw *hw); void (*read_eeprom_info) (struct ieee80211_hw *hw); void (*interrupt_recognized) (struct ieee80211_hw *hw, u32 *p_inta, u32 *p_intb); int (*hw_init) (struct ieee80211_hw *hw); void (*hw_disable) (struct ieee80211_hw *hw); void (*hw_suspend) (struct ieee80211_hw *hw); void (*hw_resume) (struct ieee80211_hw *hw); void (*enable_interrupt) (struct ieee80211_hw *hw); void (*disable_interrupt) (struct ieee80211_hw *hw); int (*set_network_type) (struct ieee80211_hw *hw, enum nl80211_iftype type); void (*set_chk_bssid)(struct ieee80211_hw *hw, bool check_bssid); void (*set_bw_mode) (struct ieee80211_hw *hw, enum nl80211_channel_type ch_type); u8(*switch_channel) (struct ieee80211_hw *hw); void (*set_qos) (struct ieee80211_hw *hw, int aci); void (*set_bcn_reg) (struct ieee80211_hw *hw); void (*set_bcn_intv) (struct ieee80211_hw *hw); void (*update_interrupt_mask) (struct ieee80211_hw *hw, u32 add_msr, u32 rm_msr); void (*get_hw_reg) (struct ieee80211_hw *hw, u8 variable, u8 *val); void (*set_hw_reg) (struct ieee80211_hw *hw, u8 variable, u8 *val); void (*update_rate_table) (struct ieee80211_hw *hw); void (*update_rate_mask) (struct ieee80211_hw *hw, u8 rssi_level); void (*fill_tx_desc) (struct ieee80211_hw *hw, struct ieee80211_hdr *hdr, u8 *pdesc_tx, struct ieee80211_tx_info *info, struct sk_buff *skb, unsigned int queue_index); void (*fill_fake_txdesc) (struct ieee80211_hw *hw, u8 * pDesc, u32 buffer_len, bool bIsPsPoll); void (*fill_tx_cmddesc) (struct ieee80211_hw *hw, u8 *pdesc, bool firstseg, bool lastseg, struct sk_buff *skb); bool (*cmd_send_packet)(struct ieee80211_hw *hw, struct sk_buff *skb); bool (*query_rx_desc) (struct ieee80211_hw *hw, struct rtl_stats *stats, struct ieee80211_rx_status *rx_status, u8 *pdesc, struct sk_buff *skb); void (*set_channel_access) (struct ieee80211_hw *hw); bool (*radio_onoff_checking) (struct ieee80211_hw *hw, u8 *valid); void (*dm_watchdog) (struct ieee80211_hw *hw); void (*scan_operation_backup) (struct ieee80211_hw *hw, u8 operation); bool (*set_rf_power_state) (struct ieee80211_hw *hw, enum rf_pwrstate rfpwr_state); void (*led_control) (struct ieee80211_hw *hw, enum led_ctl_mode ledaction); void (*set_desc) (u8 *pdesc, bool istx, u8 desc_name, u8 *val); u32 (*get_desc) (u8 *pdesc, bool istx, u8 desc_name); void (*tx_polling) (struct ieee80211_hw *hw, unsigned int hw_queue); void (*enable_hw_sec) (struct ieee80211_hw *hw); void (*set_key) (struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr, bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all); void (*init_sw_leds) (struct ieee80211_hw *hw); void (*deinit_sw_leds) (struct ieee80211_hw *hw); u32 (*get_bbreg) (struct ieee80211_hw *hw, u32 regaddr, u32 bitmask); void (*set_bbreg) (struct ieee80211_hw *hw, u32 regaddr, u32 bitmask, u32 data); u32 (*get_rfreg) (struct ieee80211_hw *hw, enum radio_path rfpath, u32 regaddr, u32 bitmask); void (*set_rfreg) (struct ieee80211_hw *hw, enum radio_path rfpath, u32 regaddr, u32 bitmask, u32 data); bool (*phy_rf6052_config) (struct ieee80211_hw *hw); void (*phy_rf6052_set_cck_txpower) (struct ieee80211_hw *hw, u8 *powerlevel); void (*phy_rf6052_set_ofdm_txpower) (struct ieee80211_hw *hw, u8 *ppowerlevel, u8 channel); bool (*config_bb_with_headerfile) (struct ieee80211_hw *hw, u8 configtype); bool (*config_bb_with_pgheaderfile) (struct ieee80211_hw *hw, u8 configtype); void (*phy_lc_calibrate) (struct ieee80211_hw *hw, bool is2t); void (*phy_set_bw_mode_callback) (struct ieee80211_hw *hw); void (*dm_dynamic_txpower) (struct ieee80211_hw *hw); }; struct rtl_intf_ops { /*com */ void (*read_efuse_byte)(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf); int (*adapter_start) (struct ieee80211_hw *hw); void (*adapter_stop) (struct ieee80211_hw *hw); int (*adapter_tx) (struct ieee80211_hw *hw, struct sk_buff *skb); int (*reset_trx_ring) (struct ieee80211_hw *hw); bool (*waitq_insert) (struct ieee80211_hw *hw, struct sk_buff *skb); /*pci */ void (*disable_aspm) (struct ieee80211_hw *hw); void (*enable_aspm) (struct ieee80211_hw *hw); /*usb */ }; struct rtl_mod_params { /* default: 0 = using hardware encryption */ int sw_crypto; }; struct rtl_hal_usbint_cfg { /* data - rx */ u32 in_ep_num; u32 rx_urb_num; u32 rx_max_size; /* op - rx */ void (*usb_rx_hdl)(struct ieee80211_hw *, struct sk_buff *); void (*usb_rx_segregate_hdl)(struct ieee80211_hw *, struct sk_buff *, struct sk_buff_head *); /* tx */ void (*usb_tx_cleanup)(struct ieee80211_hw *, struct sk_buff *); int (*usb_tx_post_hdl)(struct ieee80211_hw *, struct urb *, struct sk_buff *); struct sk_buff *(*usb_tx_aggregate_hdl)(struct ieee80211_hw *, struct sk_buff_head *); /* endpoint mapping */ int (*usb_endpoint_mapping)(struct ieee80211_hw *hw); u16 (*usb_mq_to_hwq)(__le16 fc, u16 mac80211_queue_index); }; struct rtl_hal_cfg { u8 bar_id; char *name; char *fw_name; struct rtl_hal_ops *ops; struct rtl_mod_params *mod_params; struct rtl_hal_usbint_cfg *usb_interface_cfg; /*this map used for some registers or vars defined int HAL but used in MAIN */ u32 maps[RTL_VAR_MAP_MAX]; }; struct rtl_locks { /* mutex */ struct mutex conf_mutex; /*spin lock */ spinlock_t ips_lock; spinlock_t irq_th_lock; spinlock_t h2c_lock; spinlock_t rf_ps_lock; spinlock_t rf_lock; spinlock_t lps_lock; spinlock_t waitq_lock; spinlock_t tx_urb_lock; /*Dual mac*/ spinlock_t cck_and_rw_pagea_lock; }; struct rtl_works { struct ieee80211_hw *hw; /*timer */ struct timer_list watchdog_timer; /*task */ struct tasklet_struct irq_tasklet; struct tasklet_struct irq_prepare_bcn_tasklet; /*work queue */ struct workqueue_struct *rtl_wq; struct delayed_work watchdog_wq; struct delayed_work ips_nic_off_wq; /* For SW LPS */ struct delayed_work ps_work; struct delayed_work ps_rfon_wq; }; struct rtl_debug { u32 dbgp_type[DBGP_TYPE_MAX]; u32 global_debuglevel; u64 global_debugcomponents; /* add for proc debug */ struct proc_dir_entry *proc_dir; char proc_name[20]; }; struct rtl_priv { struct rtl_locks locks; struct rtl_works works; struct rtl_mac mac80211; struct rtl_hal rtlhal; struct rtl_regulatory regd; struct rtl_rfkill rfkill; struct rtl_io io; struct rtl_phy phy; struct rtl_dm dm; struct rtl_security sec; struct rtl_efuse efuse; struct rtl_ps_ctl psc; struct rate_adaptive ra; struct wireless_stats stats; struct rt_link_detect link_info; struct false_alarm_statistics falsealm_cnt; struct rtl_rate_priv *rate_priv; struct rtl_debug dbg; /* *hal_cfg : for diff cards *intf_ops : for diff interrface usb/pcie */ struct rtl_hal_cfg *cfg; struct rtl_intf_ops *intf_ops; /*this var will be set by set_bit, and was used to indicate status of interface or hardware */ unsigned long status; /*This must be the last item so that it points to the data allocated beyond this structure like: rtl_pci_priv or rtl_usb_priv */ u8 priv[0]; }; #define rtl_priv(hw) (((struct rtl_priv *)(hw)->priv)) #define rtl_mac(rtlpriv) (&((rtlpriv)->mac80211)) #define rtl_hal(rtlpriv) (&((rtlpriv)->rtlhal)) #define rtl_efuse(rtlpriv) (&((rtlpriv)->efuse)) #define rtl_psc(rtlpriv) (&((rtlpriv)->psc)) /*************************************** Bluetooth Co-existance Related ****************************************/ enum bt_ant_num { ANT_X2 = 0, ANT_X1 = 1, }; enum bt_co_type { BT_2WIRE = 0, BT_ISSC_3WIRE = 1, BT_ACCEL = 2, BT_CSR_BC4 = 3, BT_CSR_BC8 = 4, BT_RTL8756 = 5, }; enum bt_cur_state { BT_OFF = 0, BT_ON = 1, }; enum bt_service_type { BT_SCO = 0, BT_A2DP = 1, BT_HID = 2, BT_HID_IDLE = 3, BT_SCAN = 4, BT_IDLE = 5, BT_OTHER_ACTION = 6, BT_BUSY = 7, BT_OTHERBUSY = 8, BT_PAN = 9, }; enum bt_radio_shared { BT_RADIO_SHARED = 0, BT_RADIO_INDIVIDUAL = 1, }; struct bt_coexist_info { /* EEPROM BT info. */ u8 eeprom_bt_coexist; u8 eeprom_bt_type; u8 eeprom_bt_ant_num; u8 eeprom_bt_ant_isolation; u8 eeprom_bt_radio_shared; u8 bt_coexistence; u8 bt_ant_num; u8 bt_coexist_type; u8 bt_state; u8 bt_cur_state; /* 0:on, 1:off */ u8 bt_ant_isolation; /* 0:good, 1:bad */ u8 bt_pape_ctrl; /* 0:SW, 1:SW/HW dynamic */ u8 bt_service; u8 bt_radio_shared_type; u8 bt_rfreg_origin_1e; u8 bt_rfreg_origin_1f; u8 bt_rssi_state; u32 ratio_tx; u32 ratio_pri; u32 bt_edca_ul; u32 bt_edca_dl; bool init_set; bool bt_busy_traffic; bool bt_traffic_mode_set; bool bt_non_traffic_mode_set; bool fw_coexist_all_off; bool sw_coexist_all_off; u32 current_state; u32 previous_state; u8 bt_pre_rssi_state; u8 reg_bt_iso; u8 reg_bt_sco; }; /**************************************** mem access macro define start Call endian free function when 1. Read/write packet content. 2. Before write integer to IO. 3. After read integer from IO. ****************************************/ /* Convert little data endian to host ordering */ #define EF1BYTE(_val) \ ((u8)(_val)) #define EF2BYTE(_val) \ (le16_to_cpu(_val)) #define EF4BYTE(_val) \ (le32_to_cpu(_val)) /* Read le16 data from memory and convert to host ordering */ #define READEF2BYTE(_ptr) \ EF2BYTE(*((u16 *)(_ptr))) /* Write le16 data to memory in host ordering */ #define WRITEEF2BYTE(_ptr, _val) \ (*((u16 *)(_ptr))) = EF2BYTE(_val) /* Create a bit mask * Examples: * BIT_LEN_MASK_32(0) => 0x00000000 * BIT_LEN_MASK_32(1) => 0x00000001 * BIT_LEN_MASK_32(2) => 0x00000003 * BIT_LEN_MASK_32(32) => 0xFFFFFFFF */ #define BIT_LEN_MASK_32(__bitlen) \ (0xFFFFFFFF >> (32 - (__bitlen))) #define BIT_LEN_MASK_16(__bitlen) \ (0xFFFF >> (16 - (__bitlen))) #define BIT_LEN_MASK_8(__bitlen) \ (0xFF >> (8 - (__bitlen))) /* Create an offset bit mask * Examples: * BIT_OFFSET_LEN_MASK_32(0, 2) => 0x00000003 * BIT_OFFSET_LEN_MASK_32(16, 2) => 0x00030000 */ #define BIT_OFFSET_LEN_MASK_32(__bitoffset, __bitlen) \ (BIT_LEN_MASK_32(__bitlen) << (__bitoffset)) #define BIT_OFFSET_LEN_MASK_16(__bitoffset, __bitlen) \ (BIT_LEN_MASK_16(__bitlen) << (__bitoffset)) #define BIT_OFFSET_LEN_MASK_8(__bitoffset, __bitlen) \ (BIT_LEN_MASK_8(__bitlen) << (__bitoffset)) /*Description: * Return 4-byte value in host byte ordering from * 4-byte pointer in little-endian system. */ #define LE_P4BYTE_TO_HOST_4BYTE(__pstart) \ (EF4BYTE(*((u32 *)(__pstart)))) #define LE_P2BYTE_TO_HOST_2BYTE(__pstart) \ (EF2BYTE(*((u16 *)(__pstart)))) #define LE_P1BYTE_TO_HOST_1BYTE(__pstart) \ (EF1BYTE(*((u8 *)(__pstart)))) /* Description: * Mask subfield (continuous bits in little-endian) of 4-byte value * and return the result in 4-byte value in host byte ordering. */ #define LE_BITS_CLEARED_TO_4BYTE(__pstart, __bitoffset, __bitlen) \ ( \ LE_P4BYTE_TO_HOST_4BYTE(__pstart) & \ (~BIT_OFFSET_LEN_MASK_32(__bitoffset, __bitlen)) \ ) #define LE_BITS_CLEARED_TO_2BYTE(__pstart, __bitoffset, __bitlen) \ ( \ LE_P2BYTE_TO_HOST_2BYTE(__pstart) & \ (~BIT_OFFSET_LEN_MASK_16(__bitoffset, __bitlen)) \ ) #define LE_BITS_CLEARED_TO_1BYTE(__pstart, __bitoffset, __bitlen) \ ( \ LE_P1BYTE_TO_HOST_1BYTE(__pstart) & \ (~BIT_OFFSET_LEN_MASK_8(__bitoffset, __bitlen)) \ ) /* Description: * Set subfield of little-endian 4-byte value to specified value. */ #define SET_BITS_TO_LE_1BYTE(__pstart, __bitoffset, __bitlen, __val) \ *((u8 *)(__pstart)) = EF1BYTE \ ( \ LE_BITS_CLEARED_TO_1BYTE(__pstart, __bitoffset, __bitlen) | \ ((((u8)__val) & BIT_LEN_MASK_8(__bitlen)) << (__bitoffset)) \ ); /**************************************** mem access macro define end ****************************************/ #define byte(x, n) ((x >> (8 * n)) & 0xff) #define RTL_WATCH_DOG_TIME 2000 #define MSECS(t) msecs_to_jiffies(t) #define WLAN_FC_GET_VERS(fc) (le16_to_cpu(fc) & IEEE80211_FCTL_VERS) #define WLAN_FC_GET_TYPE(fc) (le16_to_cpu(fc) & IEEE80211_FCTL_FTYPE) #define WLAN_FC_GET_STYPE(fc) (le16_to_cpu(fc) & IEEE80211_FCTL_STYPE) #define WLAN_FC_MORE_DATA(fc) (le16_to_cpu(fc) & IEEE80211_FCTL_MOREDATA) #define SEQ_TO_SN(seq) (((seq) & IEEE80211_SCTL_SEQ) >> 4) #define SN_TO_SEQ(ssn) (((ssn) << 4) & IEEE80211_SCTL_SEQ) #define MAX_SN ((IEEE80211_SCTL_SEQ) >> 4) #define RT_RF_OFF_LEVL_ASPM BIT(0) /*PCI ASPM */ #define RT_RF_OFF_LEVL_CLK_REQ BIT(1) /*PCI clock request */ #define RT_RF_OFF_LEVL_PCI_D3 BIT(2) /*PCI D3 mode */ /*NIC halt, re-initialize hw parameters*/ #define RT_RF_OFF_LEVL_HALT_NIC BIT(3) #define RT_RF_OFF_LEVL_FREE_FW BIT(4) /*FW free, re-download the FW */ #define RT_RF_OFF_LEVL_FW_32K BIT(5) /*FW in 32k */ /*Always enable ASPM and Clock Req in initialization.*/ #define RT_RF_PS_LEVEL_ALWAYS_ASPM BIT(6) /* no matter RFOFF or SLEEP we set PS_ASPM_LEVL*/ #define RT_PS_LEVEL_ASPM BIT(7) /*When LPS is on, disable 2R if no packet is received or transmittd.*/ #define RT_RF_LPS_DISALBE_2R BIT(30) #define RT_RF_LPS_LEVEL_ASPM BIT(31) /*LPS with ASPM */ #define RT_IN_PS_LEVEL(ppsc, _ps_flg) \ ((ppsc->cur_ps_level & _ps_flg) ? true : false) #define RT_CLEAR_PS_LEVEL(ppsc, _ps_flg) \ (ppsc->cur_ps_level &= (~(_ps_flg))) #define RT_SET_PS_LEVEL(ppsc, _ps_flg) \ (ppsc->cur_ps_level |= _ps_flg) #define container_of_dwork_rtl(x, y, z) \ container_of(container_of(x, struct delayed_work, work), y, z) static inline u8 rtl_read_byte(struct rtl_priv *rtlpriv, u32 addr) { return rtlpriv->io.read8_sync(rtlpriv, addr); } static inline u16 rtl_read_word(struct rtl_priv *rtlpriv, u32 addr) { return rtlpriv->io.read16_sync(rtlpriv, addr); } static inline u32 rtl_read_dword(struct rtl_priv *rtlpriv, u32 addr) { return rtlpriv->io.read32_sync(rtlpriv, addr); } static inline void rtl_write_byte(struct rtl_priv *rtlpriv, u32 addr, u8 val8) { rtlpriv->io.write8_async(rtlpriv, addr, val8); } static inline void rtl_write_word(struct rtl_priv *rtlpriv, u32 addr, u16 val16) { rtlpriv->io.write16_async(rtlpriv, addr, val16); } static inline void rtl_write_dword(struct rtl_priv *rtlpriv, u32 addr, u32 val32) { rtlpriv->io.write32_async(rtlpriv, addr, val32); } static inline u32 rtl_get_bbreg(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask) { return ((struct rtl_priv *)(hw)->priv)->cfg->ops->get_bbreg(hw, regaddr, bitmask); } static inline void rtl_set_bbreg(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask, u32 data) { ((struct rtl_priv *)(hw)->priv)->cfg->ops->set_bbreg(hw, regaddr, bitmask, data); } static inline u32 rtl_get_rfreg(struct ieee80211_hw *hw, enum radio_path rfpath, u32 regaddr, u32 bitmask) { return ((struct rtl_priv *)(hw)->priv)->cfg->ops->get_rfreg(hw, rfpath, regaddr, bitmask); } static inline void rtl_set_rfreg(struct ieee80211_hw *hw, enum radio_path rfpath, u32 regaddr, u32 bitmask, u32 data) { ((struct rtl_priv *)(hw)->priv)->cfg->ops->set_rfreg(hw, rfpath, regaddr, bitmask, data); } static inline bool is_hal_stop(struct rtl_hal *rtlhal) { return (_HAL_STATE_STOP == rtlhal->state); } static inline void set_hal_start(struct rtl_hal *rtlhal) { rtlhal->state = _HAL_STATE_START; } static inline void set_hal_stop(struct rtl_hal *rtlhal) { rtlhal->state = _HAL_STATE_STOP; } static inline u8 get_rf_type(struct rtl_phy *rtlphy) { return rtlphy->rf_type; } #endif