/* * Copyright (C) 2016 Felix Fietkau * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include "mt76x2.h" #include "mt76x2_eeprom.h" #define EE_FIELD(_name, _value) [MT_EE_##_name] = (_value) | 1 static int mt76x2_eeprom_copy(struct mt76x2_dev *dev, enum mt76x2_eeprom_field field, void *dest, int len) { if (field + len > dev->mt76.eeprom.size) return -1; memcpy(dest, dev->mt76.eeprom.data + field, len); return 0; } static int mt76x2_eeprom_get_macaddr(struct mt76x2_dev *dev) { void *src = dev->mt76.eeprom.data + MT_EE_MAC_ADDR; memcpy(dev->mt76.macaddr, src, ETH_ALEN); return 0; } static void mt76x2_eeprom_parse_hw_cap(struct mt76x2_dev *dev) { u16 val = mt76x2_eeprom_get(dev, MT_EE_NIC_CONF_0); switch (FIELD_GET(MT_EE_NIC_CONF_0_BOARD_TYPE, val)) { case BOARD_TYPE_5GHZ: dev->mt76.cap.has_5ghz = true; break; case BOARD_TYPE_2GHZ: dev->mt76.cap.has_2ghz = true; break; default: dev->mt76.cap.has_2ghz = true; dev->mt76.cap.has_5ghz = true; break; } } static int mt76x2_efuse_read(struct mt76x2_dev *dev, u16 addr, u8 *data) { u32 val; int i; val = mt76_rr(dev, MT_EFUSE_CTRL); val &= ~(MT_EFUSE_CTRL_AIN | MT_EFUSE_CTRL_MODE); val |= FIELD_PREP(MT_EFUSE_CTRL_AIN, addr & ~0xf); val |= MT_EFUSE_CTRL_KICK; mt76_wr(dev, MT_EFUSE_CTRL, val); if (!mt76_poll(dev, MT_EFUSE_CTRL, MT_EFUSE_CTRL_KICK, 0, 1000)) return -ETIMEDOUT; udelay(2); val = mt76_rr(dev, MT_EFUSE_CTRL); if ((val & MT_EFUSE_CTRL_AOUT) == MT_EFUSE_CTRL_AOUT) { memset(data, 0xff, 16); return 0; } for (i = 0; i < 4; i++) { val = mt76_rr(dev, MT_EFUSE_DATA(i)); put_unaligned_le32(val, data + 4 * i); } return 0; } static int mt76x2_get_efuse_data(struct mt76x2_dev *dev, void *buf, int len) { int ret, i; for (i = 0; i + 16 <= len; i += 16) { ret = mt76x2_efuse_read(dev, i, buf + i); if (ret) return ret; } return 0; } static bool mt76x2_has_cal_free_data(struct mt76x2_dev *dev, u8 *efuse) { u16 *efuse_w = (u16 *) efuse; if (efuse_w[MT_EE_NIC_CONF_0] != 0) return false; if (efuse_w[MT_EE_XTAL_TRIM_1] == 0xffff) return false; if (efuse_w[MT_EE_TX_POWER_DELTA_BW40] != 0) return false; if (efuse_w[MT_EE_TX_POWER_0_START_2G] == 0xffff) return false; if (efuse_w[MT_EE_TX_POWER_0_GRP3_TX_POWER_DELTA] != 0) return false; if (efuse_w[MT_EE_TX_POWER_0_GRP4_TSSI_SLOPE] == 0xffff) return false; return true; } static void mt76x2_apply_cal_free_data(struct mt76x2_dev *dev, u8 *efuse) { #define GROUP_5G(_id) \ MT_EE_TX_POWER_0_START_5G + MT_TX_POWER_GROUP_SIZE_5G * (_id), \ MT_EE_TX_POWER_0_START_5G + MT_TX_POWER_GROUP_SIZE_5G * (_id) + 1, \ MT_EE_TX_POWER_1_START_5G + MT_TX_POWER_GROUP_SIZE_5G * (_id), \ MT_EE_TX_POWER_1_START_5G + MT_TX_POWER_GROUP_SIZE_5G * (_id) + 1 static const u8 cal_free_bytes[] = { MT_EE_XTAL_TRIM_1, MT_EE_TX_POWER_EXT_PA_5G + 1, MT_EE_TX_POWER_0_START_2G, MT_EE_TX_POWER_0_START_2G + 1, MT_EE_TX_POWER_1_START_2G, MT_EE_TX_POWER_1_START_2G + 1, GROUP_5G(0), GROUP_5G(1), GROUP_5G(2), GROUP_5G(3), GROUP_5G(4), GROUP_5G(5), MT_EE_RF_2G_TSSI_OFF_TXPOWER, MT_EE_RF_2G_RX_HIGH_GAIN + 1, MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN, MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN + 1, MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN, MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN + 1, MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN, MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN + 1, }; u8 *eeprom = dev->mt76.eeprom.data; u8 prev_grp0[4] = { eeprom[MT_EE_TX_POWER_0_START_5G], eeprom[MT_EE_TX_POWER_0_START_5G + 1], eeprom[MT_EE_TX_POWER_1_START_5G], eeprom[MT_EE_TX_POWER_1_START_5G + 1] }; u16 val; int i; if (!mt76x2_has_cal_free_data(dev, efuse)) return; for (i = 0; i < ARRAY_SIZE(cal_free_bytes); i++) { int offset = cal_free_bytes[i]; eeprom[offset] = efuse[offset]; } if (!(efuse[MT_EE_TX_POWER_0_START_5G] | efuse[MT_EE_TX_POWER_0_START_5G + 1])) memcpy(eeprom + MT_EE_TX_POWER_0_START_5G, prev_grp0, 2); if (!(efuse[MT_EE_TX_POWER_1_START_5G] | efuse[MT_EE_TX_POWER_1_START_5G + 1])) memcpy(eeprom + MT_EE_TX_POWER_1_START_5G, prev_grp0 + 2, 2); val = get_unaligned_le16(efuse + MT_EE_BT_RCAL_RESULT); if (val != 0xffff) eeprom[MT_EE_BT_RCAL_RESULT] = val & 0xff; val = get_unaligned_le16(efuse + MT_EE_BT_VCDL_CALIBRATION); if (val != 0xffff) eeprom[MT_EE_BT_VCDL_CALIBRATION + 1] = val >> 8; val = get_unaligned_le16(efuse + MT_EE_BT_PMUCFG); if (val != 0xffff) eeprom[MT_EE_BT_PMUCFG] = val & 0xff; } static int mt76x2_check_eeprom(struct mt76x2_dev *dev) { u16 val = get_unaligned_le16(dev->mt76.eeprom.data); if (!val) val = get_unaligned_le16(dev->mt76.eeprom.data + MT_EE_PCI_ID); switch (val) { case 0x7662: case 0x7612: return 0; default: dev_err(dev->mt76.dev, "EEPROM data check failed: %04x\n", val); return -EINVAL; } } static int mt76x2_eeprom_load(struct mt76x2_dev *dev) { void *efuse; int len = MT7662_EEPROM_SIZE; bool found; int ret; ret = mt76_eeprom_init(&dev->mt76, len); if (ret < 0) return ret; found = ret; if (found) found = !mt76x2_check_eeprom(dev); dev->mt76.otp.data = devm_kzalloc(dev->mt76.dev, len, GFP_KERNEL); dev->mt76.otp.size = len; if (!dev->mt76.otp.data) return -ENOMEM; efuse = dev->mt76.otp.data; if (mt76x2_get_efuse_data(dev, efuse, len)) goto out; if (found) { mt76x2_apply_cal_free_data(dev, efuse); } else { /* FIXME: check if efuse data is complete */ found = true; memcpy(dev->mt76.eeprom.data, efuse, len); } out: if (!found) return -ENOENT; return 0; } static inline int mt76x2_sign_extend(u32 val, unsigned int size) { bool sign = val & BIT(size - 1); val &= BIT(size - 1) - 1; return sign ? val : -val; } static inline int mt76x2_sign_extend_optional(u32 val, unsigned int size) { bool enable = val & BIT(size); return enable ? mt76x2_sign_extend(val, size) : 0; } static bool field_valid(u8 val) { return val != 0 && val != 0xff; } static void mt76x2_set_rx_gain_group(struct mt76x2_dev *dev, u8 val) { s8 *dest = dev->cal.rx.high_gain; if (!field_valid(val)) { dest[0] = 0; dest[1] = 0; return; } dest[0] = mt76x2_sign_extend(val, 4); dest[1] = mt76x2_sign_extend(val >> 4, 4); } static void mt76x2_set_rssi_offset(struct mt76x2_dev *dev, int chain, u8 val) { s8 *dest = dev->cal.rx.rssi_offset; if (!field_valid(val)) { dest[chain] = 0; return; } dest[chain] = mt76x2_sign_extend_optional(val, 7); } static enum mt76x2_cal_channel_group mt76x2_get_cal_channel_group(int channel) { if (channel >= 184 && channel <= 196) return MT_CH_5G_JAPAN; if (channel <= 48) return MT_CH_5G_UNII_1; if (channel <= 64) return MT_CH_5G_UNII_2; if (channel <= 114) return MT_CH_5G_UNII_2E_1; if (channel <= 144) return MT_CH_5G_UNII_2E_2; return MT_CH_5G_UNII_3; } static u8 mt76x2_get_5g_rx_gain(struct mt76x2_dev *dev, u8 channel) { enum mt76x2_cal_channel_group group; group = mt76x2_get_cal_channel_group(channel); switch (group) { case MT_CH_5G_JAPAN: return mt76x2_eeprom_get(dev, MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN); case MT_CH_5G_UNII_1: return mt76x2_eeprom_get(dev, MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN) >> 8; case MT_CH_5G_UNII_2: return mt76x2_eeprom_get(dev, MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN); case MT_CH_5G_UNII_2E_1: return mt76x2_eeprom_get(dev, MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN) >> 8; case MT_CH_5G_UNII_2E_2: return mt76x2_eeprom_get(dev, MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN); default: return mt76x2_eeprom_get(dev, MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN) >> 8; } } void mt76x2_read_rx_gain(struct mt76x2_dev *dev) { struct ieee80211_channel *chan = dev->mt76.chandef.chan; int channel = chan->hw_value; s8 lna_5g[3], lna_2g; u8 lna; u16 val; if (chan->band == NL80211_BAND_2GHZ) val = mt76x2_eeprom_get(dev, MT_EE_RF_2G_RX_HIGH_GAIN) >> 8; else val = mt76x2_get_5g_rx_gain(dev, channel); mt76x2_set_rx_gain_group(dev, val); if (chan->band == NL80211_BAND_2GHZ) { val = mt76x2_eeprom_get(dev, MT_EE_RSSI_OFFSET_2G_0); mt76x2_set_rssi_offset(dev, 0, val); mt76x2_set_rssi_offset(dev, 1, val >> 8); } else { val = mt76x2_eeprom_get(dev, MT_EE_RSSI_OFFSET_5G_0); mt76x2_set_rssi_offset(dev, 0, val); mt76x2_set_rssi_offset(dev, 1, val >> 8); } val = mt76x2_eeprom_get(dev, MT_EE_LNA_GAIN); lna_2g = val & 0xff; lna_5g[0] = val >> 8; val = mt76x2_eeprom_get(dev, MT_EE_RSSI_OFFSET_2G_1); lna_5g[1] = val >> 8; val = mt76x2_eeprom_get(dev, MT_EE_RSSI_OFFSET_5G_1); lna_5g[2] = val >> 8; if (!field_valid(lna_5g[1])) lna_5g[1] = lna_5g[0]; if (!field_valid(lna_5g[2])) lna_5g[2] = lna_5g[0]; dev->cal.rx.mcu_gain = (lna_2g & 0xff); dev->cal.rx.mcu_gain |= (lna_5g[0] & 0xff) << 8; dev->cal.rx.mcu_gain |= (lna_5g[1] & 0xff) << 16; dev->cal.rx.mcu_gain |= (lna_5g[2] & 0xff) << 24; val = mt76x2_eeprom_get(dev, MT_EE_NIC_CONF_1); if (val & MT_EE_NIC_CONF_1_LNA_EXT_2G) lna_2g = 0; if (val & MT_EE_NIC_CONF_1_LNA_EXT_5G) memset(lna_5g, 0, sizeof(lna_5g)); if (chan->band == NL80211_BAND_2GHZ) lna = lna_2g; else if (channel <= 64) lna = lna_5g[0]; else if (channel <= 128) lna = lna_5g[1]; else lna = lna_5g[2]; if (lna == 0xff) lna = 0; dev->cal.rx.lna_gain = mt76x2_sign_extend(lna, 8); } static s8 mt76x2_rate_power_val(u8 val) { if (!field_valid(val)) return 0; return mt76x2_sign_extend_optional(val, 7); } void mt76x2_get_rate_power(struct mt76x2_dev *dev, struct mt76_rate_power *t, struct ieee80211_channel *chan) { bool is_5ghz; u16 val; is_5ghz = chan->band == NL80211_BAND_5GHZ; memset(t, 0, sizeof(*t)); val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_CCK); t->cck[0] = t->cck[1] = mt76x2_rate_power_val(val); t->cck[2] = t->cck[3] = mt76x2_rate_power_val(val >> 8); if (is_5ghz) val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_OFDM_5G_6M); else val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_OFDM_2G_6M); t->ofdm[0] = t->ofdm[1] = mt76x2_rate_power_val(val); t->ofdm[2] = t->ofdm[3] = mt76x2_rate_power_val(val >> 8); if (is_5ghz) val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_OFDM_5G_24M); else val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_OFDM_2G_24M); t->ofdm[4] = t->ofdm[5] = mt76x2_rate_power_val(val); t->ofdm[6] = t->ofdm[7] = mt76x2_rate_power_val(val >> 8); val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_HT_MCS0); t->ht[0] = t->ht[1] = mt76x2_rate_power_val(val); t->ht[2] = t->ht[3] = mt76x2_rate_power_val(val >> 8); val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_HT_MCS4); t->ht[4] = t->ht[5] = mt76x2_rate_power_val(val); t->ht[6] = t->ht[7] = mt76x2_rate_power_val(val >> 8); val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_HT_MCS8); t->ht[8] = t->ht[9] = mt76x2_rate_power_val(val); t->ht[10] = t->ht[11] = mt76x2_rate_power_val(val >> 8); val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_HT_MCS12); t->ht[12] = t->ht[13] = mt76x2_rate_power_val(val); t->ht[14] = t->ht[15] = mt76x2_rate_power_val(val >> 8); val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_VHT_MCS0); t->vht[0] = t->vht[1] = mt76x2_rate_power_val(val); t->vht[2] = t->vht[3] = mt76x2_rate_power_val(val >> 8); val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_VHT_MCS4); t->vht[4] = t->vht[5] = mt76x2_rate_power_val(val); t->vht[6] = t->vht[7] = mt76x2_rate_power_val(val >> 8); val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_VHT_MCS8); if (!is_5ghz) val >>= 8; t->vht[8] = t->vht[9] = mt76x2_rate_power_val(val >> 8); } int mt76x2_get_max_rate_power(struct mt76_rate_power *r) { int i; s8 ret = 0; for (i = 0; i < sizeof(r->all); i++) ret = max(ret, r->all[i]); return ret; } static void mt76x2_get_power_info_2g(struct mt76x2_dev *dev, struct mt76x2_tx_power_info *t, struct ieee80211_channel *chan, int chain, int offset) { int channel = chan->hw_value; int delta_idx; u8 data[6]; u16 val; if (channel < 6) delta_idx = 3; else if (channel < 11) delta_idx = 4; else delta_idx = 5; mt76x2_eeprom_copy(dev, offset, data, sizeof(data)); t->chain[chain].tssi_slope = data[0]; t->chain[chain].tssi_offset = data[1]; t->chain[chain].target_power = data[2]; t->chain[chain].delta = mt76x2_sign_extend_optional(data[delta_idx], 7); val = mt76x2_eeprom_get(dev, MT_EE_RF_2G_TSSI_OFF_TXPOWER); t->target_power = val >> 8; } static void mt76x2_get_power_info_5g(struct mt76x2_dev *dev, struct mt76x2_tx_power_info *t, struct ieee80211_channel *chan, int chain, int offset) { int channel = chan->hw_value; enum mt76x2_cal_channel_group group; int delta_idx; u16 val; u8 data[5]; group = mt76x2_get_cal_channel_group(channel); offset += group * MT_TX_POWER_GROUP_SIZE_5G; if (channel >= 192) delta_idx = 4; else if (channel >= 184) delta_idx = 3; else if (channel < 44) delta_idx = 3; else if (channel < 52) delta_idx = 4; else if (channel < 58) delta_idx = 3; else if (channel < 98) delta_idx = 4; else if (channel < 106) delta_idx = 3; else if (channel < 116) delta_idx = 4; else if (channel < 130) delta_idx = 3; else if (channel < 149) delta_idx = 4; else if (channel < 157) delta_idx = 3; else delta_idx = 4; mt76x2_eeprom_copy(dev, offset, data, sizeof(data)); t->chain[chain].tssi_slope = data[0]; t->chain[chain].tssi_offset = data[1]; t->chain[chain].target_power = data[2]; t->chain[chain].delta = mt76x2_sign_extend_optional(data[delta_idx], 7); val = mt76x2_eeprom_get(dev, MT_EE_RF_2G_RX_HIGH_GAIN); t->target_power = val & 0xff; } void mt76x2_get_power_info(struct mt76x2_dev *dev, struct mt76x2_tx_power_info *t, struct ieee80211_channel *chan) { u16 bw40, bw80; memset(t, 0, sizeof(*t)); bw40 = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_DELTA_BW40); bw80 = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_DELTA_BW80); if (chan->band == NL80211_BAND_5GHZ) { bw40 >>= 8; mt76x2_get_power_info_5g(dev, t, chan, 0, MT_EE_TX_POWER_0_START_5G); mt76x2_get_power_info_5g(dev, t, chan, 1, MT_EE_TX_POWER_1_START_5G); } else { mt76x2_get_power_info_2g(dev, t, chan, 0, MT_EE_TX_POWER_0_START_2G); mt76x2_get_power_info_2g(dev, t, chan, 1, MT_EE_TX_POWER_1_START_2G); } if (mt76x2_tssi_enabled(dev) || !field_valid(t->target_power)) t->target_power = t->chain[0].target_power; t->delta_bw40 = mt76x2_rate_power_val(bw40); t->delta_bw80 = mt76x2_rate_power_val(bw80); } int mt76x2_get_temp_comp(struct mt76x2_dev *dev, struct mt76x2_temp_comp *t) { enum nl80211_band band = dev->mt76.chandef.chan->band; u16 val, slope; u8 bounds; memset(t, 0, sizeof(*t)); val = mt76x2_eeprom_get(dev, MT_EE_NIC_CONF_1); if (!(val & MT_EE_NIC_CONF_1_TEMP_TX_ALC)) return -EINVAL; if (!mt76x2_ext_pa_enabled(dev, band)) return -EINVAL; val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_EXT_PA_5G) >> 8; if (!(val & BIT(7))) return -EINVAL; t->temp_25_ref = val & 0x7f; if (band == NL80211_BAND_5GHZ) { slope = mt76x2_eeprom_get(dev, MT_EE_RF_TEMP_COMP_SLOPE_5G); bounds = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_EXT_PA_5G); } else { slope = mt76x2_eeprom_get(dev, MT_EE_RF_TEMP_COMP_SLOPE_2G); bounds = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_DELTA_BW80) >> 8; } t->high_slope = slope & 0xff; t->low_slope = slope >> 8; t->lower_bound = 0 - (bounds & 0xf); t->upper_bound = (bounds >> 4) & 0xf; return 0; } bool mt76x2_ext_pa_enabled(struct mt76x2_dev *dev, enum nl80211_band band) { u16 conf0 = mt76x2_eeprom_get(dev, MT_EE_NIC_CONF_0); if (band == NL80211_BAND_5GHZ) return !(conf0 & MT_EE_NIC_CONF_0_PA_INT_5G); else return !(conf0 & MT_EE_NIC_CONF_0_PA_INT_2G); } int mt76x2_eeprom_init(struct mt76x2_dev *dev) { int ret; ret = mt76x2_eeprom_load(dev); if (ret) return ret; mt76x2_eeprom_parse_hw_cap(dev); mt76x2_eeprom_get_macaddr(dev); mt76_eeprom_override(&dev->mt76); dev->mt76.macaddr[0] &= ~BIT(1); return 0; }