/* * Copyright (C) 2016 Felix Fietkau * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include "mt76.h" #include "dma.h" #define DMA_DUMMY_TXWI ((void *) ~0) static int mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q) { int size; int i; spin_lock_init(&q->lock); INIT_LIST_HEAD(&q->swq); size = q->ndesc * sizeof(struct mt76_desc); q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL); if (!q->desc) return -ENOMEM; size = q->ndesc * sizeof(*q->entry); q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL); if (!q->entry) return -ENOMEM; /* clear descriptors */ for (i = 0; i < q->ndesc; i++) q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE); iowrite32(q->desc_dma, &q->regs->desc_base); iowrite32(0, &q->regs->cpu_idx); iowrite32(0, &q->regs->dma_idx); iowrite32(q->ndesc, &q->regs->ring_size); return 0; } static int mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q, struct mt76_queue_buf *buf, int nbufs, u32 info, struct sk_buff *skb, void *txwi) { struct mt76_desc *desc; u32 ctrl; int i, idx = -1; if (txwi) q->entry[q->head].txwi = DMA_DUMMY_TXWI; for (i = 0; i < nbufs; i += 2, buf += 2) { u32 buf0 = buf[0].addr, buf1 = 0; ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len); if (i < nbufs - 1) { buf1 = buf[1].addr; ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len); } if (i == nbufs - 1) ctrl |= MT_DMA_CTL_LAST_SEC0; else if (i == nbufs - 2) ctrl |= MT_DMA_CTL_LAST_SEC1; idx = q->head; q->head = (q->head + 1) % q->ndesc; desc = &q->desc[idx]; WRITE_ONCE(desc->buf0, cpu_to_le32(buf0)); WRITE_ONCE(desc->buf1, cpu_to_le32(buf1)); WRITE_ONCE(desc->info, cpu_to_le32(info)); WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl)); q->queued++; } q->entry[idx].txwi = txwi; q->entry[idx].skb = skb; return idx; } static void mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx, struct mt76_queue_entry *prev_e) { struct mt76_queue_entry *e = &q->entry[idx]; __le32 __ctrl = READ_ONCE(q->desc[idx].ctrl); u32 ctrl = le32_to_cpu(__ctrl); if (!e->txwi || !e->skb) { __le32 addr = READ_ONCE(q->desc[idx].buf0); u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctrl); dma_unmap_single(dev->dev, le32_to_cpu(addr), len, DMA_TO_DEVICE); } if (!(ctrl & MT_DMA_CTL_LAST_SEC0)) { __le32 addr = READ_ONCE(q->desc[idx].buf1); u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN1, ctrl); dma_unmap_single(dev->dev, le32_to_cpu(addr), len, DMA_TO_DEVICE); } if (e->txwi == DMA_DUMMY_TXWI) e->txwi = NULL; *prev_e = *e; memset(e, 0, sizeof(*e)); } static void mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q) { q->head = ioread32(&q->regs->dma_idx); q->tail = q->head; iowrite32(q->head, &q->regs->cpu_idx); } static void mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush) { struct mt76_queue *q = &dev->q_tx[qid]; struct mt76_queue_entry entry; bool wake = false; int last; if (!q->ndesc) return; spin_lock_bh(&q->lock); if (flush) last = -1; else last = ioread32(&q->regs->dma_idx); while (q->queued && q->tail != last) { mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry); if (entry.schedule) q->swq_queued--; if (entry.skb) dev->drv->tx_complete_skb(dev, q, &entry, flush); if (entry.txwi) { mt76_put_txwi(dev, entry.txwi); wake = true; } q->tail = (q->tail + 1) % q->ndesc; q->queued--; if (!flush && q->tail == last) last = ioread32(&q->regs->dma_idx); } if (!flush) mt76_txq_schedule(dev, q); else mt76_dma_sync_idx(dev, q); wake = wake && qid < IEEE80211_NUM_ACS && q->queued < q->ndesc - 8; spin_unlock_bh(&q->lock); if (wake) ieee80211_wake_queue(dev->hw, qid); } static void * mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx, int *len, u32 *info, bool *more) { struct mt76_queue_entry *e = &q->entry[idx]; struct mt76_desc *desc = &q->desc[idx]; dma_addr_t buf_addr; void *buf = e->buf; int buf_len = SKB_WITH_OVERHEAD(q->buf_size); buf_addr = le32_to_cpu(READ_ONCE(desc->buf0)); if (len) { u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl)); *len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl); *more = !(ctl & MT_DMA_CTL_LAST_SEC0); } if (info) *info = le32_to_cpu(desc->info); dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE); e->buf = NULL; return buf; } static void * mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush, int *len, u32 *info, bool *more) { int idx = q->tail; *more = false; if (!q->queued) return NULL; if (!flush && !(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE))) return NULL; q->tail = (q->tail + 1) % q->ndesc; q->queued--; return mt76_dma_get_buf(dev, q, idx, len, info, more); } static void mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q) { iowrite32(q->head, &q->regs->cpu_idx); } static int mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q, bool napi) { dma_addr_t addr; void *buf; int frames = 0; int len = SKB_WITH_OVERHEAD(q->buf_size); int offset = q->buf_offset; int idx; void *(*alloc)(unsigned int fragsz); if (napi) alloc = napi_alloc_frag; else alloc = netdev_alloc_frag; spin_lock_bh(&q->lock); while (q->queued < q->ndesc - 1) { struct mt76_queue_buf qbuf; buf = alloc(q->buf_size); if (!buf) break; addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE); if (dma_mapping_error(dev->dev, addr)) { skb_free_frag(buf); break; } qbuf.addr = addr + offset; qbuf.len = len - offset; idx = mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL); frames++; } if (frames) mt76_dma_kick_queue(dev, q); spin_unlock_bh(&q->lock); return frames; } static void mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q) { void *buf; bool more; spin_lock_bh(&q->lock); do { buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more); if (!buf) break; skb_free_frag(buf); } while (1); spin_unlock_bh(&q->lock); } static void mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid) { struct mt76_queue *q = &dev->q_rx[qid]; int i; for (i = 0; i < q->ndesc; i++) q->desc[i].ctrl &= ~cpu_to_le32(MT_DMA_CTL_DMA_DONE); mt76_dma_rx_cleanup(dev, q); mt76_dma_sync_idx(dev, q); mt76_dma_rx_fill(dev, q, false); } static void mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data, int len, bool more) { struct page *page = virt_to_head_page(data); int offset = data - page_address(page); struct sk_buff *skb = q->rx_head; offset += q->buf_offset; skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, offset, len, q->buf_size); if (more) return; q->rx_head = NULL; dev->drv->rx_skb(dev, q - dev->q_rx, skb); } static int mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget) { struct sk_buff *skb; unsigned char *data; int len; int done = 0; bool more; while (done < budget) { u32 info; data = mt76_dma_dequeue(dev, q, false, &len, &info, &more); if (!data) break; if (q->rx_head) { mt76_add_fragment(dev, q, data, len, more); continue; } skb = build_skb(data, q->buf_size); if (!skb) { skb_free_frag(data); continue; } skb_reserve(skb, q->buf_offset); if (skb->tail + len > skb->end) { dev_kfree_skb(skb); continue; } if (q == &dev->q_rx[MT_RXQ_MCU]) { u32 *rxfce = (u32 *) skb->cb; *rxfce = info; } __skb_put(skb, len); done++; if (more) { q->rx_head = skb; continue; } dev->drv->rx_skb(dev, q - dev->q_rx, skb); } mt76_dma_rx_fill(dev, q, true); return done; } static int mt76_dma_rx_poll(struct napi_struct *napi, int budget) { struct mt76_dev *dev; int qid, done = 0, cur; dev = container_of(napi->dev, struct mt76_dev, napi_dev); qid = napi - dev->napi; rcu_read_lock(); do { cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done); mt76_rx_complete(dev, qid); done += cur; } while (cur && done < budget); rcu_read_unlock(); if (done < budget) { napi_complete(napi); dev->drv->rx_poll_complete(dev, qid); } return done; } static int mt76_dma_init(struct mt76_dev *dev) { int i; init_dummy_netdev(&dev->napi_dev); for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) { netif_napi_add(&dev->napi_dev, &dev->napi[i], mt76_dma_rx_poll, 64); mt76_dma_rx_fill(dev, &dev->q_rx[i], false); skb_queue_head_init(&dev->rx_skb[i]); napi_enable(&dev->napi[i]); } return 0; } static const struct mt76_queue_ops mt76_dma_ops = { .init = mt76_dma_init, .alloc = mt76_dma_alloc_queue, .add_buf = mt76_dma_add_buf, .tx_cleanup = mt76_dma_tx_cleanup, .rx_reset = mt76_dma_rx_reset, .kick = mt76_dma_kick_queue, }; int mt76_dma_attach(struct mt76_dev *dev) { dev->queue_ops = &mt76_dma_ops; return 0; } EXPORT_SYMBOL_GPL(mt76_dma_attach); void mt76_dma_cleanup(struct mt76_dev *dev) { int i; for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++) mt76_dma_tx_cleanup(dev, i, true); for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) { netif_napi_del(&dev->napi[i]); mt76_dma_rx_cleanup(dev, &dev->q_rx[i]); } } EXPORT_SYMBOL_GPL(mt76_dma_cleanup);