/* * New driver for Marvell Yukon chipset and SysKonnect Gigabit * Ethernet adapters. Based on earlier sk98lin, e100 and * FreeBSD if_sk drivers. * * This driver intentionally does not support all the features * of the original driver such as link fail-over and link management because * those should be done at higher levels. * * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/in.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/pci.h> #include <linux/if_vlan.h> #include <linux/ip.h> #include <linux/delay.h> #include <linux/crc32.h> #include <linux/dma-mapping.h> #include <linux/debugfs.h> #include <linux/sched.h> #include <linux/seq_file.h> #include <linux/mii.h> #include <asm/irq.h> #include "skge.h" #define DRV_NAME "skge" #define DRV_VERSION "1.13" #define PFX DRV_NAME " " #define DEFAULT_TX_RING_SIZE 128 #define DEFAULT_RX_RING_SIZE 512 #define MAX_TX_RING_SIZE 1024 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1) #define MAX_RX_RING_SIZE 4096 #define RX_COPY_THRESHOLD 128 #define RX_BUF_SIZE 1536 #define PHY_RETRIES 1000 #define ETH_JUMBO_MTU 9000 #define TX_WATCHDOG (5 * HZ) #define NAPI_WEIGHT 64 #define BLINK_MS 250 #define LINK_HZ HZ #define SKGE_EEPROM_MAGIC 0x9933aabb MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver"); MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); static const u32 default_msg = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN; static int debug = -1; /* defaults above */ module_param(debug, int, 0); MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); static const struct pci_device_id skge_id_table[] = { { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) }, { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) }, { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) }, { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) }, { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) }, { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) }, { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */ { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) }, { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) }, { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, { 0 } }; MODULE_DEVICE_TABLE(pci, skge_id_table); static int skge_up(struct net_device *dev); static int skge_down(struct net_device *dev); static void skge_phy_reset(struct skge_port *skge); static void skge_tx_clean(struct net_device *dev); static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); static void genesis_get_stats(struct skge_port *skge, u64 *data); static void yukon_get_stats(struct skge_port *skge, u64 *data); static void yukon_init(struct skge_hw *hw, int port); static void genesis_mac_init(struct skge_hw *hw, int port); static void genesis_link_up(struct skge_port *skge); static void skge_set_multicast(struct net_device *dev); /* Avoid conditionals by using array */ static const int txqaddr[] = { Q_XA1, Q_XA2 }; static const int rxqaddr[] = { Q_R1, Q_R2 }; static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F }; static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F }; static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F }; static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 }; static int skge_get_regs_len(struct net_device *dev) { return 0x4000; } /* * Returns copy of whole control register region * Note: skip RAM address register because accessing it will * cause bus hangs! */ static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p) { const struct skge_port *skge = netdev_priv(dev); const void __iomem *io = skge->hw->regs; regs->version = 1; memset(p, 0, regs->len); memcpy_fromio(p, io, B3_RAM_ADDR); memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1, regs->len - B3_RI_WTO_R1); } /* Wake on Lan only supported on Yukon chips with rev 1 or above */ static u32 wol_supported(const struct skge_hw *hw) { if (hw->chip_id == CHIP_ID_GENESIS) return 0; if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0) return 0; return WAKE_MAGIC | WAKE_PHY; } static void skge_wol_init(struct skge_port *skge) { struct skge_hw *hw = skge->hw; int port = skge->port; u16 ctrl; skge_write16(hw, B0_CTST, CS_RST_CLR); skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR); /* Turn on Vaux */ skge_write8(hw, B0_POWER_CTRL, PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF); /* WA code for COMA mode -- clear PHY reset */ if (hw->chip_id == CHIP_ID_YUKON_LITE && hw->chip_rev >= CHIP_REV_YU_LITE_A3) { u32 reg = skge_read32(hw, B2_GP_IO); reg |= GP_DIR_9; reg &= ~GP_IO_9; skge_write32(hw, B2_GP_IO, reg); } skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_DIS_SLEEP | GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 | GPC_ANEG_1 | GPC_RST_SET); skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_DIS_SLEEP | GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 | GPC_ANEG_1 | GPC_RST_CLR); skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR); /* Force to 10/100 skge_reset will re-enable on resume */ gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, PHY_AN_100FULL | PHY_AN_100HALF | PHY_AN_10FULL | PHY_AN_10HALF| PHY_AN_CSMA); /* no 1000 HD/FD */ gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0); gm_phy_write(hw, port, PHY_MARV_CTRL, PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE | PHY_CT_RE_CFG | PHY_CT_DUP_MD); /* Set GMAC to no flow control and auto update for speed/duplex */ gma_write16(hw, port, GM_GP_CTRL, GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA| GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS); /* Set WOL address */ memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR), skge->netdev->dev_addr, ETH_ALEN); /* Turn on appropriate WOL control bits */ skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT); ctrl = 0; if (skge->wol & WAKE_PHY) ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT; else ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT; if (skge->wol & WAKE_MAGIC) ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT; else ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT; ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT; skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl); /* block receiver */ skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); } static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct skge_port *skge = netdev_priv(dev); wol->supported = wol_supported(skge->hw); wol->wolopts = skge->wol; } static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct skge_port *skge = netdev_priv(dev); struct skge_hw *hw = skge->hw; if ((wol->wolopts & ~wol_supported(hw)) || !device_can_wakeup(&hw->pdev->dev)) return -EOPNOTSUPP; skge->wol = wol->wolopts; device_set_wakeup_enable(&hw->pdev->dev, skge->wol); return 0; } /* Determine supported/advertised modes based on hardware. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx */ static u32 skge_supported_modes(const struct skge_hw *hw) { u32 supported; if (hw->copper) { supported = SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg| SUPPORTED_TP; if (hw->chip_id == CHIP_ID_GENESIS) supported &= ~(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full); else if (hw->chip_id == CHIP_ID_YUKON) supported &= ~SUPPORTED_1000baseT_Half; } else supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half | SUPPORTED_FIBRE | SUPPORTED_Autoneg; return supported; } static int skge_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) { struct skge_port *skge = netdev_priv(dev); struct skge_hw *hw = skge->hw; ecmd->transceiver = XCVR_INTERNAL; ecmd->supported = skge_supported_modes(hw); if (hw->copper) { ecmd->port = PORT_TP; ecmd->phy_address = hw->phy_addr; } else ecmd->port = PORT_FIBRE; ecmd->advertising = skge->advertising; ecmd->autoneg = skge->autoneg; ecmd->speed = skge->speed; ecmd->duplex = skge->duplex; return 0; } static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) { struct skge_port *skge = netdev_priv(dev); const struct skge_hw *hw = skge->hw; u32 supported = skge_supported_modes(hw); int err = 0; if (ecmd->autoneg == AUTONEG_ENABLE) { ecmd->advertising = supported; skge->duplex = -1; skge->speed = -1; } else { u32 setting; switch (ecmd->speed) { case SPEED_1000: if (ecmd->duplex == DUPLEX_FULL) setting = SUPPORTED_1000baseT_Full; else if (ecmd->duplex == DUPLEX_HALF) setting = SUPPORTED_1000baseT_Half; else return -EINVAL; break; case SPEED_100: if (ecmd->duplex == DUPLEX_FULL) setting = SUPPORTED_100baseT_Full; else if (ecmd->duplex == DUPLEX_HALF) setting = SUPPORTED_100baseT_Half; else return -EINVAL; break; case SPEED_10: if (ecmd->duplex == DUPLEX_FULL) setting = SUPPORTED_10baseT_Full; else if (ecmd->duplex == DUPLEX_HALF) setting = SUPPORTED_10baseT_Half; else return -EINVAL; break; default: return -EINVAL; } if ((setting & supported) == 0) return -EINVAL; skge->speed = ecmd->speed; skge->duplex = ecmd->duplex; } skge->autoneg = ecmd->autoneg; skge->advertising = ecmd->advertising; if (netif_running(dev)) { skge_down(dev); err = skge_up(dev); if (err) { dev_close(dev); return err; } } return (0); } static void skge_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct skge_port *skge = netdev_priv(dev); strcpy(info->driver, DRV_NAME); strcpy(info->version, DRV_VERSION); strcpy(info->fw_version, "N/A"); strcpy(info->bus_info, pci_name(skge->hw->pdev)); } static const struct skge_stat { char name[ETH_GSTRING_LEN]; u16 xmac_offset; u16 gma_offset; } skge_stats[] = { { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI }, { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI }, { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK }, { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK }, { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK }, { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK }, { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK }, { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK }, { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE }, { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE }, { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL }, { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL }, { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL }, { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL }, { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR }, { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV }, { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT }, { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG }, { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR }, }; static int skge_get_sset_count(struct net_device *dev, int sset) { switch (sset) { case ETH_SS_STATS: return ARRAY_SIZE(skge_stats); default: return -EOPNOTSUPP; } } static void skge_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct skge_port *skge = netdev_priv(dev); if (skge->hw->chip_id == CHIP_ID_GENESIS) genesis_get_stats(skge, data); else yukon_get_stats(skge, data); } /* Use hardware MIB variables for critical path statistics and * transmit feedback not reported at interrupt. * Other errors are accounted for in interrupt handler. */ static struct net_device_stats *skge_get_stats(struct net_device *dev) { struct skge_port *skge = netdev_priv(dev); u64 data[ARRAY_SIZE(skge_stats)]; if (skge->hw->chip_id == CHIP_ID_GENESIS) genesis_get_stats(skge, data); else yukon_get_stats(skge, data); dev->stats.tx_bytes = data[0]; dev->stats.rx_bytes = data[1]; dev->stats.tx_packets = data[2] + data[4] + data[6]; dev->stats.rx_packets = data[3] + data[5] + data[7]; dev->stats.multicast = data[3] + data[5]; dev->stats.collisions = data[10]; dev->stats.tx_aborted_errors = data[12]; return &dev->stats; } static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data) { int i; switch (stringset) { case ETH_SS_STATS: for (i = 0; i < ARRAY_SIZE(skge_stats); i++) memcpy(data + i * ETH_GSTRING_LEN, skge_stats[i].name, ETH_GSTRING_LEN); break; } } static void skge_get_ring_param(struct net_device *dev, struct ethtool_ringparam *p) { struct skge_port *skge = netdev_priv(dev); p->rx_max_pending = MAX_RX_RING_SIZE; p->tx_max_pending = MAX_TX_RING_SIZE; p->rx_mini_max_pending = 0; p->rx_jumbo_max_pending = 0; p->rx_pending = skge->rx_ring.count; p->tx_pending = skge->tx_ring.count; p->rx_mini_pending = 0; p->rx_jumbo_pending = 0; } static int skge_set_ring_param(struct net_device *dev, struct ethtool_ringparam *p) { struct skge_port *skge = netdev_priv(dev); int err = 0; if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE || p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE) return -EINVAL; skge->rx_ring.count = p->rx_pending; skge->tx_ring.count = p->tx_pending; if (netif_running(dev)) { skge_down(dev); err = skge_up(dev); if (err) dev_close(dev); } return err; } static u32 skge_get_msglevel(struct net_device *netdev) { struct skge_port *skge = netdev_priv(netdev); return skge->msg_enable; } static void skge_set_msglevel(struct net_device *netdev, u32 value) { struct skge_port *skge = netdev_priv(netdev); skge->msg_enable = value; } static int skge_nway_reset(struct net_device *dev) { struct skge_port *skge = netdev_priv(dev); if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev)) return -EINVAL; skge_phy_reset(skge); return 0; } static int skge_set_sg(struct net_device *dev, u32 data) { struct skge_port *skge = netdev_priv(dev); struct skge_hw *hw = skge->hw; if (hw->chip_id == CHIP_ID_GENESIS && data) return -EOPNOTSUPP; return ethtool_op_set_sg(dev, data); } static int skge_set_tx_csum(struct net_device *dev, u32 data) { struct skge_port *skge = netdev_priv(dev); struct skge_hw *hw = skge->hw; if (hw->chip_id == CHIP_ID_GENESIS && data) return -EOPNOTSUPP; return ethtool_op_set_tx_csum(dev, data); } static u32 skge_get_rx_csum(struct net_device *dev) { struct skge_port *skge = netdev_priv(dev); return skge->rx_csum; } /* Only Yukon supports checksum offload. */ static int skge_set_rx_csum(struct net_device *dev, u32 data) { struct skge_port *skge = netdev_priv(dev); if (skge->hw->chip_id == CHIP_ID_GENESIS && data) return -EOPNOTSUPP; skge->rx_csum = data; return 0; } static void skge_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *ecmd) { struct skge_port *skge = netdev_priv(dev); ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) || (skge->flow_control == FLOW_MODE_SYM_OR_REM)); ecmd->tx_pause = (ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND)); ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause; } static int skge_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *ecmd) { struct skge_port *skge = netdev_priv(dev); struct ethtool_pauseparam old; int err = 0; skge_get_pauseparam(dev, &old); if (ecmd->autoneg != old.autoneg) skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC; else { if (ecmd->rx_pause && ecmd->tx_pause) skge->flow_control = FLOW_MODE_SYMMETRIC; else if (ecmd->rx_pause && !ecmd->tx_pause) skge->flow_control = FLOW_MODE_SYM_OR_REM; else if (!ecmd->rx_pause && ecmd->tx_pause) skge->flow_control = FLOW_MODE_LOC_SEND; else skge->flow_control = FLOW_MODE_NONE; } if (netif_running(dev)) { skge_down(dev); err = skge_up(dev); if (err) { dev_close(dev); return err; } } return 0; } /* Chip internal frequency for clock calculations */ static inline u32 hwkhz(const struct skge_hw *hw) { return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125; } /* Chip HZ to microseconds */ static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks) { return (ticks * 1000) / hwkhz(hw); } /* Microseconds to chip HZ */ static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec) { return hwkhz(hw) * usec / 1000; } static int skge_get_coalesce(struct net_device *dev, struct ethtool_coalesce *ecmd) { struct skge_port *skge = netdev_priv(dev); struct skge_hw *hw = skge->hw; int port = skge->port; ecmd->rx_coalesce_usecs = 0; ecmd->tx_coalesce_usecs = 0; if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) { u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI)); u32 msk = skge_read32(hw, B2_IRQM_MSK); if (msk & rxirqmask[port]) ecmd->rx_coalesce_usecs = delay; if (msk & txirqmask[port]) ecmd->tx_coalesce_usecs = delay; } return 0; } /* Note: interrupt timer is per board, but can turn on/off per port */ static int skge_set_coalesce(struct net_device *dev, struct ethtool_coalesce *ecmd) { struct skge_port *skge = netdev_priv(dev); struct skge_hw *hw = skge->hw; int port = skge->port; u32 msk = skge_read32(hw, B2_IRQM_MSK); u32 delay = 25; if (ecmd->rx_coalesce_usecs == 0) msk &= ~rxirqmask[port]; else if (ecmd->rx_coalesce_usecs < 25 || ecmd->rx_coalesce_usecs > 33333) return -EINVAL; else { msk |= rxirqmask[port]; delay = ecmd->rx_coalesce_usecs; } if (ecmd->tx_coalesce_usecs == 0) msk &= ~txirqmask[port]; else if (ecmd->tx_coalesce_usecs < 25 || ecmd->tx_coalesce_usecs > 33333) return -EINVAL; else { msk |= txirqmask[port]; delay = min(delay, ecmd->rx_coalesce_usecs); } skge_write32(hw, B2_IRQM_MSK, msk); if (msk == 0) skge_write32(hw, B2_IRQM_CTRL, TIM_STOP); else { skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay)); skge_write32(hw, B2_IRQM_CTRL, TIM_START); } return 0; } enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST }; static void skge_led(struct skge_port *skge, enum led_mode mode) { struct skge_hw *hw = skge->hw; int port = skge->port; spin_lock_bh(&hw->phy_lock); if (hw->chip_id == CHIP_ID_GENESIS) { switch (mode) { case LED_MODE_OFF: if (hw->phy_type == SK_PHY_BCOM) xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF); else { skge_write32(hw, SK_REG(port, TX_LED_VAL), 0); skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF); } skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF); skge_write32(hw, SK_REG(port, RX_LED_VAL), 0); skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF); break; case LED_MODE_ON: skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON); skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON); skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START); skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START); break; case LED_MODE_TST: skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON); skge_write32(hw, SK_REG(port, RX_LED_VAL), 100); skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START); if (hw->phy_type == SK_PHY_BCOM) xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON); else { skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON); skge_write32(hw, SK_REG(port, TX_LED_VAL), 100); skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START); } } } else { switch (mode) { case LED_MODE_OFF: gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); gm_phy_write(hw, port, PHY_MARV_LED_OVER, PHY_M_LED_MO_DUP(MO_LED_OFF) | PHY_M_LED_MO_10(MO_LED_OFF) | PHY_M_LED_MO_100(MO_LED_OFF) | PHY_M_LED_MO_1000(MO_LED_OFF) | PHY_M_LED_MO_RX(MO_LED_OFF)); break; case LED_MODE_ON: gm_phy_write(hw, port, PHY_MARV_LED_CTRL, PHY_M_LED_PULS_DUR(PULS_170MS) | PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL | PHY_M_LEDC_DP_CTRL); gm_phy_write(hw, port, PHY_MARV_LED_OVER, PHY_M_LED_MO_RX(MO_LED_OFF) | (skge->speed == SPEED_100 ? PHY_M_LED_MO_100(MO_LED_ON) : 0)); break; case LED_MODE_TST: gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); gm_phy_write(hw, port, PHY_MARV_LED_OVER, PHY_M_LED_MO_DUP(MO_LED_ON) | PHY_M_LED_MO_10(MO_LED_ON) | PHY_M_LED_MO_100(MO_LED_ON) | PHY_M_LED_MO_1000(MO_LED_ON) | PHY_M_LED_MO_RX(MO_LED_ON)); } } spin_unlock_bh(&hw->phy_lock); } /* blink LED's for finding board */ static int skge_phys_id(struct net_device *dev, u32 data) { struct skge_port *skge = netdev_priv(dev); unsigned long ms; enum led_mode mode = LED_MODE_TST; if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000; else ms = data * 1000; while (ms > 0) { skge_led(skge, mode); mode ^= LED_MODE_TST; if (msleep_interruptible(BLINK_MS)) break; ms -= BLINK_MS; } /* back to regular LED state */ skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF); return 0; } static int skge_get_eeprom_len(struct net_device *dev) { struct skge_port *skge = netdev_priv(dev); u32 reg2; pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, ®2); return 1 << ( ((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8); } static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset) { u32 val; pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset); do { pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset); } while (!(offset & PCI_VPD_ADDR_F)); pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val); return val; } static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val) { pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val); pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset | PCI_VPD_ADDR_F); do { pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset); } while (offset & PCI_VPD_ADDR_F); } static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) { struct skge_port *skge = netdev_priv(dev); struct pci_dev *pdev = skge->hw->pdev; int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD); int length = eeprom->len; u16 offset = eeprom->offset; if (!cap) return -EINVAL; eeprom->magic = SKGE_EEPROM_MAGIC; while (length > 0) { u32 val = skge_vpd_read(pdev, cap, offset); int n = min_t(int, length, sizeof(val)); memcpy(data, &val, n); length -= n; data += n; offset += n; } return 0; } static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) { struct skge_port *skge = netdev_priv(dev); struct pci_dev *pdev = skge->hw->pdev; int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD); int length = eeprom->len; u16 offset = eeprom->offset; if (!cap) return -EINVAL; if (eeprom->magic != SKGE_EEPROM_MAGIC) return -EINVAL; while (length > 0) { u32 val; int n = min_t(int, length, sizeof(val)); if (n < sizeof(val)) val = skge_vpd_read(pdev, cap, offset); memcpy(&val, data, n); skge_vpd_write(pdev, cap, offset, val); length -= n; data += n; offset += n; } return 0; } static const struct ethtool_ops skge_ethtool_ops = { .get_settings = skge_get_settings, .set_settings = skge_set_settings, .get_drvinfo = skge_get_drvinfo, .get_regs_len = skge_get_regs_len, .get_regs = skge_get_regs, .get_wol = skge_get_wol, .set_wol = skge_set_wol, .get_msglevel = skge_get_msglevel, .set_msglevel = skge_set_msglevel, .nway_reset = skge_nway_reset, .get_link = ethtool_op_get_link, .get_eeprom_len = skge_get_eeprom_len, .get_eeprom = skge_get_eeprom, .set_eeprom = skge_set_eeprom, .get_ringparam = skge_get_ring_param, .set_ringparam = skge_set_ring_param, .get_pauseparam = skge_get_pauseparam, .set_pauseparam = skge_set_pauseparam, .get_coalesce = skge_get_coalesce, .set_coalesce = skge_set_coalesce, .set_sg = skge_set_sg, .set_tx_csum = skge_set_tx_csum, .get_rx_csum = skge_get_rx_csum, .set_rx_csum = skge_set_rx_csum, .get_strings = skge_get_strings, .phys_id = skge_phys_id, .get_sset_count = skge_get_sset_count, .get_ethtool_stats = skge_get_ethtool_stats, }; /* * Allocate ring elements and chain them together * One-to-one association of board descriptors with ring elements */ static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base) { struct skge_tx_desc *d; struct skge_element *e; int i; ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL); if (!ring->start) return -ENOMEM; for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) { e->desc = d; if (i == ring->count - 1) { e->next = ring->start; d->next_offset = base; } else { e->next = e + 1; d->next_offset = base + (i+1) * sizeof(*d); } } ring->to_use = ring->to_clean = ring->start; return 0; } /* Allocate and setup a new buffer for receiving */ static void skge_rx_setup(struct skge_port *skge, struct skge_element *e, struct sk_buff *skb, unsigned int bufsize) { struct skge_rx_desc *rd = e->desc; u64 map; map = pci_map_single(skge->hw->pdev, skb->data, bufsize, PCI_DMA_FROMDEVICE); rd->dma_lo = map; rd->dma_hi = map >> 32; e->skb = skb; rd->csum1_start = ETH_HLEN; rd->csum2_start = ETH_HLEN; rd->csum1 = 0; rd->csum2 = 0; wmb(); rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize; pci_unmap_addr_set(e, mapaddr, map); pci_unmap_len_set(e, maplen, bufsize); } /* Resume receiving using existing skb, * Note: DMA address is not changed by chip. * MTU not changed while receiver active. */ static inline void skge_rx_reuse(struct skge_element *e, unsigned int size) { struct skge_rx_desc *rd = e->desc; rd->csum2 = 0; rd->csum2_start = ETH_HLEN; wmb(); rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size; } /* Free all buffers in receive ring, assumes receiver stopped */ static void skge_rx_clean(struct skge_port *skge) { struct skge_hw *hw = skge->hw; struct skge_ring *ring = &skge->rx_ring; struct skge_element *e; e = ring->start; do { struct skge_rx_desc *rd = e->desc; rd->control = 0; if (e->skb) { pci_unmap_single(hw->pdev, pci_unmap_addr(e, mapaddr), pci_unmap_len(e, maplen), PCI_DMA_FROMDEVICE); dev_kfree_skb(e->skb); e->skb = NULL; } } while ((e = e->next) != ring->start); } /* Allocate buffers for receive ring * For receive: to_clean is next received frame. */ static int skge_rx_fill(struct net_device *dev) { struct skge_port *skge = netdev_priv(dev); struct skge_ring *ring = &skge->rx_ring; struct skge_element *e; e = ring->start; do { struct sk_buff *skb; skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN, GFP_KERNEL); if (!skb) return -ENOMEM; skb_reserve(skb, NET_IP_ALIGN); skge_rx_setup(skge, e, skb, skge->rx_buf_size); } while ( (e = e->next) != ring->start); ring->to_clean = ring->start; return 0; } static const char *skge_pause(enum pause_status status) { switch(status) { case FLOW_STAT_NONE: return "none"; case FLOW_STAT_REM_SEND: return "rx only"; case FLOW_STAT_LOC_SEND: return "tx_only"; case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */ return "both"; default: return "indeterminated"; } } static void skge_link_up(struct skge_port *skge) { skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_BLK_OFF|LED_SYNC_OFF|LED_ON); netif_carrier_on(skge->netdev); netif_wake_queue(skge->netdev); if (netif_msg_link(skge)) { printk(KERN_INFO PFX "%s: Link is up at %d Mbps, %s duplex, flow control %s\n", skge->netdev->name, skge->speed, skge->duplex == DUPLEX_FULL ? "full" : "half", skge_pause(skge->flow_status)); } } static void skge_link_down(struct skge_port *skge) { skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF); netif_carrier_off(skge->netdev); netif_stop_queue(skge->netdev); if (netif_msg_link(skge)) printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name); } static void xm_link_down(struct skge_hw *hw, int port) { struct net_device *dev = hw->dev[port]; struct skge_port *skge = netdev_priv(dev); xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE); if (netif_carrier_ok(dev)) skge_link_down(skge); } static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val) { int i; xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); *val = xm_read16(hw, port, XM_PHY_DATA); if (hw->phy_type == SK_PHY_XMAC) goto ready; for (i = 0; i < PHY_RETRIES; i++) { if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY) goto ready; udelay(1); } return -ETIMEDOUT; ready: *val = xm_read16(hw, port, XM_PHY_DATA); return 0; } static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg) { u16 v = 0; if (__xm_phy_read(hw, port, reg, &v)) printk(KERN_WARNING PFX "%s: phy read timed out\n", hw->dev[port]->name); return v; } static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) { int i; xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); for (i = 0; i < PHY_RETRIES; i++) { if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) goto ready; udelay(1); } return -EIO; ready: xm_write16(hw, port, XM_PHY_DATA, val); for (i = 0; i < PHY_RETRIES; i++) { if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) return 0; udelay(1); } return -ETIMEDOUT; } static void genesis_init(struct skge_hw *hw) { /* set blink source counter */ skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100); skge_write8(hw, B2_BSC_CTRL, BSC_START); /* configure mac arbiter */ skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); /* configure mac arbiter timeout values */ skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53); skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53); skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53); skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53); skge_write8(hw, B3_MA_RCINI_RX1, 0); skge_write8(hw, B3_MA_RCINI_RX2, 0); skge_write8(hw, B3_MA_RCINI_TX1, 0); skge_write8(hw, B3_MA_RCINI_TX2, 0); /* configure packet arbiter timeout */ skge_write16(hw, B3_PA_CTRL, PA_RST_CLR); skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX); skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX); skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX); skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX); } static void genesis_reset(struct skge_hw *hw, int port) { const u8 zero[8] = { 0 }; u32 reg; skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); /* reset the statistics module */ xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT); xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE); xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */ xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */ xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */ /* disable Broadcom PHY IRQ */ if (hw->phy_type == SK_PHY_BCOM) xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff); xm_outhash(hw, port, XM_HSM, zero); /* Flush TX and RX fifo */ reg = xm_read32(hw, port, XM_MODE); xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF); xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF); } /* Convert mode to MII values */ static const u16 phy_pause_map[] = { [FLOW_MODE_NONE] = 0, [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM, [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP, [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM, }; /* special defines for FIBER (88E1011S only) */ static const u16 fiber_pause_map[] = { [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE, [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD, [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD, [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD, }; /* Check status of Broadcom phy link */ static void bcom_check_link(struct skge_hw *hw, int port) { struct net_device *dev = hw->dev[port]; struct skge_port *skge = netdev_priv(dev); u16 status; /* read twice because of latch */ xm_phy_read(hw, port, PHY_BCOM_STAT); status = xm_phy_read(hw, port, PHY_BCOM_STAT); if ((status & PHY_ST_LSYNC) == 0) { xm_link_down(hw, port); return; } if (skge->autoneg == AUTONEG_ENABLE) { u16 lpa, aux; if (!(status & PHY_ST_AN_OVER)) return; lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP); if (lpa & PHY_B_AN_RF) { printk(KERN_NOTICE PFX "%s: remote fault\n", dev->name); return; } aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT); /* Check Duplex mismatch */ switch (aux & PHY_B_AS_AN_RES_MSK) { case PHY_B_RES_1000FD: skge->duplex = DUPLEX_FULL; break; case PHY_B_RES_1000HD: skge->duplex = DUPLEX_HALF; break; default: printk(KERN_NOTICE PFX "%s: duplex mismatch\n", dev->name); return; } /* We are using IEEE 802.3z/D5.0 Table 37-4 */ switch (aux & PHY_B_AS_PAUSE_MSK) { case PHY_B_AS_PAUSE_MSK: skge->flow_status = FLOW_STAT_SYMMETRIC; break; case PHY_B_AS_PRR: skge->flow_status = FLOW_STAT_REM_SEND; break; case PHY_B_AS_PRT: skge->flow_status = FLOW_STAT_LOC_SEND; break; default: skge->flow_status = FLOW_STAT_NONE; } skge->speed = SPEED_1000; } if (!netif_carrier_ok(dev)) genesis_link_up(skge); } /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional * Phy on for 100 or 10Mbit operation */ static void bcom_phy_init(struct skge_port *skge) { struct skge_hw *hw = skge->hw; int port = skge->port; int i; u16 id1, r, ext, ctl; /* magic workaround patterns for Broadcom */ static const struct { u16 reg; u16 val; } A1hack[] = { { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, }, C0hack[] = { { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 }, { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 }, }; /* read Id from external PHY (all have the same address) */ id1 = xm_phy_read(hw, port, PHY_XMAC_ID1); /* Optimize MDIO transfer by suppressing preamble. */ r = xm_read16(hw, port, XM_MMU_CMD); r |= XM_MMU_NO_PRE; xm_write16(hw, port, XM_MMU_CMD,r); switch (id1) { case PHY_BCOM_ID1_C0: /* * Workaround BCOM Errata for the C0 type. * Write magic patterns to reserved registers. */ for (i = 0; i < ARRAY_SIZE(C0hack); i++) xm_phy_write(hw, port, C0hack[i].reg, C0hack[i].val); break; case PHY_BCOM_ID1_A1: /* * Workaround BCOM Errata for the A1 type. * Write magic patterns to reserved registers. */ for (i = 0; i < ARRAY_SIZE(A1hack); i++) xm_phy_write(hw, port, A1hack[i].reg, A1hack[i].val); break; } /* * Workaround BCOM Errata (#10523) for all BCom PHYs. * Disable Power Management after reset. */ r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL); r |= PHY_B_AC_DIS_PM; xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r); /* Dummy read */ xm_read16(hw, port, XM_ISRC); ext = PHY_B_PEC_EN_LTR; /* enable tx led */ ctl = PHY_CT_SP1000; /* always 1000mbit */ if (skge->autoneg == AUTONEG_ENABLE) { /* * Workaround BCOM Errata #1 for the C5 type. * 1000Base-T Link Acquisition Failure in Slave Mode * Set Repeater/DTE bit 10 of the 1000Base-T Control Register */ u16 adv = PHY_B_1000C_RD; if (skge->advertising & ADVERTISED_1000baseT_Half) adv |= PHY_B_1000C_AHD; if (skge->advertising & ADVERTISED_1000baseT_Full) adv |= PHY_B_1000C_AFD; xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv); ctl |= PHY_CT_ANE | PHY_CT_RE_CFG; } else { if (skge->duplex == DUPLEX_FULL) ctl |= PHY_CT_DUP_MD; /* Force to slave */ xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE); } /* Set autonegotiation pause parameters */ xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, phy_pause_map[skge->flow_control] | PHY_AN_CSMA); /* Handle Jumbo frames */ if (hw->dev[port]->mtu > ETH_DATA_LEN) { xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK); ext |= PHY_B_PEC_HIGH_LA; } xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext); xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl); /* Use link status change interrupt */ xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK); } static void xm_phy_init(struct skge_port *skge) { struct skge_hw *hw = skge->hw; int port = skge->port; u16 ctrl = 0; if (skge->autoneg == AUTONEG_ENABLE) { if (skge->advertising & ADVERTISED_1000baseT_Half) ctrl |= PHY_X_AN_HD; if (skge->advertising & ADVERTISED_1000baseT_Full) ctrl |= PHY_X_AN_FD; ctrl |= fiber_pause_map[skge->flow_control]; xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl); /* Restart Auto-negotiation */ ctrl = PHY_CT_ANE | PHY_CT_RE_CFG; } else { /* Set DuplexMode in Config register */ if (skge->duplex == DUPLEX_FULL) ctrl |= PHY_CT_DUP_MD; /* * Do NOT enable Auto-negotiation here. This would hold * the link down because no IDLEs are transmitted */ } xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl); /* Poll PHY for status changes */ mod_timer(&skge->link_timer, jiffies + LINK_HZ); } static int xm_check_link(struct net_device *dev) { struct skge_port *skge = netdev_priv(dev); struct skge_hw *hw = skge->hw; int port = skge->port; u16 status; /* read twice because of latch */ xm_phy_read(hw, port, PHY_XMAC_STAT); status = xm_phy_read(hw, port, PHY_XMAC_STAT); if ((status & PHY_ST_LSYNC) == 0) { xm_link_down(hw, port); return 0; } if (skge->autoneg == AUTONEG_ENABLE) { u16 lpa, res; if (!(status & PHY_ST_AN_OVER)) return 0; lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP); if (lpa & PHY_B_AN_RF) { printk(KERN_NOTICE PFX "%s: remote fault\n", dev->name); return 0; } res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI); /* Check Duplex mismatch */ switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) { case PHY_X_RS_FD: skge->duplex = DUPLEX_FULL; break; case PHY_X_RS_HD: skge->duplex = DUPLEX_HALF; break; default: printk(KERN_NOTICE PFX "%s: duplex mismatch\n", dev->name); return 0; } /* We are using IEEE 802.3z/D5.0 Table 37-4 */ if ((skge->flow_control == FLOW_MODE_SYMMETRIC || skge->flow_control == FLOW_MODE_SYM_OR_REM) && (lpa & PHY_X_P_SYM_MD)) skge->flow_status = FLOW_STAT_SYMMETRIC; else if (skge->flow_control == FLOW_MODE_SYM_OR_REM && (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD) /* Enable PAUSE receive, disable PAUSE transmit */ skge->flow_status = FLOW_STAT_REM_SEND; else if (skge->flow_control == FLOW_MODE_LOC_SEND && (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD) /* Disable PAUSE receive, enable PAUSE transmit */ skge->flow_status = FLOW_STAT_LOC_SEND; else skge->flow_status = FLOW_STAT_NONE; skge->speed = SPEED_1000; } if (!netif_carrier_ok(dev)) genesis_link_up(skge); return 1; } /* Poll to check for link coming up. * * Since internal PHY is wired to a level triggered pin, can't * get an interrupt when carrier is detected, need to poll for * link coming up. */ static void xm_link_timer(unsigned long arg) { struct skge_port *skge = (struct skge_port *) arg; struct net_device *dev = skge->netdev; struct skge_hw *hw = skge->hw; int port = skge->port; int i; unsigned long flags; if (!netif_running(dev)) return; spin_lock_irqsave(&hw->phy_lock, flags); /* * Verify that the link by checking GPIO register three times. * This pin has the signal from the link_sync pin connected to it. */ for (i = 0; i < 3; i++) { if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS) goto link_down; } /* Re-enable interrupt to detect link down */ if (xm_check_link(dev)) { u16 msk = xm_read16(hw, port, XM_IMSK); msk &= ~XM_IS_INP_ASS; xm_write16(hw, port, XM_IMSK, msk); xm_read16(hw, port, XM_ISRC); } else { link_down: mod_timer(&skge->link_timer, round_jiffies(jiffies + LINK_HZ)); } spin_unlock_irqrestore(&hw->phy_lock, flags); } static void genesis_mac_init(struct skge_hw *hw, int port) { struct net_device *dev = hw->dev[port]; struct skge_port *skge = netdev_priv(dev); int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN; int i; u32 r; const u8 zero[6] = { 0 }; for (i = 0; i < 10; i++) { skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST); if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST) goto reset_ok; udelay(1); } printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name); reset_ok: /* Unreset the XMAC. */ skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST); /* * Perform additional initialization for external PHYs, * namely for the 1000baseTX cards that use the XMAC's * GMII mode. */ if (hw->phy_type != SK_PHY_XMAC) { /* Take external Phy out of reset */ r = skge_read32(hw, B2_GP_IO); if (port == 0) r |= GP_DIR_0|GP_IO_0; else r |= GP_DIR_2|GP_IO_2; skge_write32(hw, B2_GP_IO, r); /* Enable GMII interface */ xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD); } switch(hw->phy_type) { case SK_PHY_XMAC: xm_phy_init(skge); break; case SK_PHY_BCOM: bcom_phy_init(skge); bcom_check_link(hw, port); } /* Set Station Address */ xm_outaddr(hw, port, XM_SA, dev->dev_addr); /* We don't use match addresses so clear */ for (i = 1; i < 16; i++) xm_outaddr(hw, port, XM_EXM(i), zero); /* Clear MIB counters */ xm_write16(hw, port, XM_STAT_CMD, XM_SC_CLR_RXC | XM_SC_CLR_TXC); /* Clear two times according to Errata #3 */ xm_write16(hw, port, XM_STAT_CMD, XM_SC_CLR_RXC | XM_SC_CLR_TXC); /* configure Rx High Water Mark (XM_RX_HI_WM) */ xm_write16(hw, port, XM_RX_HI_WM, 1450); /* We don't need the FCS appended to the packet. */ r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS; if (jumbo) r |= XM_RX_BIG_PK_OK; if (skge->duplex == DUPLEX_HALF) { /* * If in manual half duplex mode the other side might be in * full duplex mode, so ignore if a carrier extension is not seen * on frames received */ r |= XM_RX_DIS_CEXT; } xm_write16(hw, port, XM_RX_CMD, r); /* We want short frames padded to 60 bytes. */ xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD); /* Increase threshold for jumbo frames on dual port */ if (hw->ports > 1 && jumbo) xm_write16(hw, port, XM_TX_THR, 1020); else xm_write16(hw, port, XM_TX_THR, 512); /* * Enable the reception of all error frames. This is is * a necessary evil due to the design of the XMAC. The * XMAC's receive FIFO is only 8K in size, however jumbo * frames can be up to 9000 bytes in length. When bad * frame filtering is enabled, the XMAC's RX FIFO operates * in 'store and forward' mode. For this to work, the * entire frame has to fit into the FIFO, but that means * that jumbo frames larger than 8192 bytes will be * truncated. Disabling all bad frame filtering causes * the RX FIFO to operate in streaming mode, in which * case the XMAC will start transferring frames out of the * RX FIFO as soon as the FIFO threshold is reached. */ xm_write32(hw, port, XM_MODE, XM_DEF_MODE); /* * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK) * - Enable all bits excepting 'Octets Rx OK Low CntOv' * and 'Octets Rx OK Hi Cnt Ov'. */ xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK); /* * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK) * - Enable all bits excepting 'Octets Tx OK Low CntOv' * and 'Octets Tx OK Hi Cnt Ov'. */ xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK); /* Configure MAC arbiter */ skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); /* configure timeout values */ skge_write8(hw, B3_MA_TOINI_RX1, 72); skge_write8(hw, B3_MA_TOINI_RX2, 72); skge_write8(hw, B3_MA_TOINI_TX1, 72); skge_write8(hw, B3_MA_TOINI_TX2, 72); skge_write8(hw, B3_MA_RCINI_RX1, 0); skge_write8(hw, B3_MA_RCINI_RX2, 0); skge_write8(hw, B3_MA_RCINI_TX1, 0); skge_write8(hw, B3_MA_RCINI_TX2, 0); /* Configure Rx MAC FIFO */ skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR); skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT); skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD); /* Configure Tx MAC FIFO */ skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR); skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF); skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD); if (jumbo) { /* Enable frame flushing if jumbo frames used */ skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH); } else { /* enable timeout timers if normal frames */ skge_write16(hw, B3_PA_CTRL, (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2); } } static void genesis_stop(struct skge_port *skge) { struct skge_hw *hw = skge->hw; int port = skge->port; unsigned retries = 1000; u16 cmd; /* Disable Tx and Rx */ cmd = xm_read16(hw, port, XM_MMU_CMD); cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX); xm_write16(hw, port, XM_MMU_CMD, cmd); genesis_reset(hw, port); /* Clear Tx packet arbiter timeout IRQ */ skge_write16(hw, B3_PA_CTRL, port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2); /* Reset the MAC */ skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST); do { skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST); if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)) break; } while (--retries > 0); /* For external PHYs there must be special handling */ if (hw->phy_type != SK_PHY_XMAC) { u32 reg = skge_read32(hw, B2_GP_IO); if (port == 0) { reg |= GP_DIR_0; reg &= ~GP_IO_0; } else { reg |= GP_DIR_2; reg &= ~GP_IO_2; } skge_write32(hw, B2_GP_IO, reg); skge_read32(hw, B2_GP_IO); } xm_write16(hw, port, XM_MMU_CMD, xm_read16(hw, port, XM_MMU_CMD) & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX)); xm_read16(hw, port, XM_MMU_CMD); } static void genesis_get_stats(struct skge_port *skge, u64 *data) { struct skge_hw *hw = skge->hw; int port = skge->port; int i; unsigned long timeout = jiffies + HZ; xm_write16(hw, port, XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC); /* wait for update to complete */ while (xm_read16(hw, port, XM_STAT_CMD) & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) { if (time_after(jiffies, timeout)) break; udelay(10); } /* special case for 64 bit octet counter */ data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32 | xm_read32(hw, port, XM_TXO_OK_LO); data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32 | xm_read32(hw, port, XM_RXO_OK_LO); for (i = 2; i < ARRAY_SIZE(skge_stats); i++) data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset); } static void genesis_mac_intr(struct skge_hw *hw, int port) { struct net_device *dev = hw->dev[port]; struct skge_port *skge = netdev_priv(dev); u16 status = xm_read16(hw, port, XM_ISRC); if (netif_msg_intr(skge)) printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n", dev->name, status); if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) { xm_link_down(hw, port); mod_timer(&skge->link_timer, jiffies + 1); } if (status & XM_IS_TXF_UR) { xm_write32(hw, port, XM_MODE, XM_MD_FTF); ++dev->stats.tx_fifo_errors; } } static void genesis_link_up(struct skge_port *skge) { struct skge_hw *hw = skge->hw; int port = skge->port; u16 cmd, msk; u32 mode; cmd = xm_read16(hw, port, XM_MMU_CMD); /* * enabling pause frame reception is required for 1000BT * because the XMAC is not reset if the link is going down */ if (skge->flow_status == FLOW_STAT_NONE || skge->flow_status == FLOW_STAT_LOC_SEND) /* Disable Pause Frame Reception */ cmd |= XM_MMU_IGN_PF; else /* Enable Pause Frame Reception */ cmd &= ~XM_MMU_IGN_PF; xm_write16(hw, port, XM_MMU_CMD, cmd); mode = xm_read32(hw, port, XM_MODE); if (skge->flow_status== FLOW_STAT_SYMMETRIC || skge->flow_status == FLOW_STAT_LOC_SEND) { /* * Configure Pause Frame Generation * Use internal and external Pause Frame Generation. * Sending pause frames is edge triggered. * Send a Pause frame with the maximum pause time if * internal oder external FIFO full condition occurs. * Send a zero pause time frame to re-start transmission. */ /* XM_PAUSE_DA = '010000C28001' (default) */ /* XM_MAC_PTIME = 0xffff (maximum) */ /* remember this value is defined in big endian (!) */ xm_write16(hw, port, XM_MAC_PTIME, 0xffff); mode |= XM_PAUSE_MODE; skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE); } else { /* * disable pause frame generation is required for 1000BT * because the XMAC is not reset if the link is going down */ /* Disable Pause Mode in Mode Register */ mode &= ~XM_PAUSE_MODE; skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE); } xm_write32(hw, port, XM_MODE, mode); /* Turn on detection of Tx underrun */ msk = xm_read16(hw, port, XM_IMSK); msk &= ~XM_IS_TXF_UR; xm_write16(hw, port, XM_IMSK, msk); xm_read16(hw, port, XM_ISRC); /* get MMU Command Reg. */ cmd = xm_read16(hw, port, XM_MMU_CMD); if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL) cmd |= XM_MMU_GMII_FD; /* * Workaround BCOM Errata (#10523) for all BCom Phys * Enable Power Management after link up */ if (hw->phy_type == SK_PHY_BCOM) { xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL) & ~PHY_B_AC_DIS_PM); xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK); } /* enable Rx/Tx */ xm_write16(hw, port, XM_MMU_CMD, cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX); skge_link_up(skge); } static inline void bcom_phy_intr(struct skge_port *skge) { struct skge_hw *hw = skge->hw; int port = skge->port; u16 isrc; isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT); if (netif_msg_intr(skge)) printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n", skge->netdev->name, isrc); if (isrc & PHY_B_IS_PSE) printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n", hw->dev[port]->name); /* Workaround BCom Errata: * enable and disable loopback mode if "NO HCD" occurs. */ if (isrc & PHY_B_IS_NO_HDCL) { u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL); xm_phy_write(hw, port, PHY_BCOM_CTRL, ctrl | PHY_CT_LOOP); xm_phy_write(hw, port, PHY_BCOM_CTRL, ctrl & ~PHY_CT_LOOP); } if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) bcom_check_link(hw, port); } static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) { int i; gma_write16(hw, port, GM_SMI_DATA, val); gma_write16(hw, port, GM_SMI_CTRL, GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg)); for (i = 0; i < PHY_RETRIES; i++) { udelay(1); if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY)) return 0; } printk(KERN_WARNING PFX "%s: phy write timeout\n", hw->dev[port]->name); return -EIO; } static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val) { int i; gma_write16(hw, port, GM_SMI_CTRL, GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD); for (i = 0; i < PHY_RETRIES; i++) { udelay(1); if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) goto ready; } return -ETIMEDOUT; ready: *val = gma_read16(hw, port, GM_SMI_DATA); return 0; } static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg) { u16 v = 0; if (__gm_phy_read(hw, port, reg, &v)) printk(KERN_WARNING PFX "%s: phy read timeout\n", hw->dev[port]->name); return v; } /* Marvell Phy Initialization */ static void yukon_init(struct skge_hw *hw, int port) { struct skge_port *skge = netdev_priv(hw->dev[port]); u16 ctrl, ct1000, adv; if (skge->autoneg == AUTONEG_ENABLE) { u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL); ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK | PHY_M_EC_MAC_S_MSK); ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ); ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1); gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl); } ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); if (skge->autoneg == AUTONEG_DISABLE) ctrl &= ~PHY_CT_ANE; ctrl |= PHY_CT_RESET; gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); ctrl = 0; ct1000 = 0; adv = PHY_AN_CSMA; if (skge->autoneg == AUTONEG_ENABLE) { if (hw->copper) { if (skge->advertising & ADVERTISED_1000baseT_Full) ct1000 |= PHY_M_1000C_AFD; if (skge->advertising & ADVERTISED_1000baseT_Half) ct1000 |= PHY_M_1000C_AHD; if (skge->advertising & ADVERTISED_100baseT_Full) adv |= PHY_M_AN_100_FD; if (skge->advertising & ADVERTISED_100baseT_Half) adv |= PHY_M_AN_100_HD; if (skge->advertising & ADVERTISED_10baseT_Full) adv |= PHY_M_AN_10_FD; if (skge->advertising & ADVERTISED_10baseT_Half) adv |= PHY_M_AN_10_HD; /* Set Flow-control capabilities */ adv |= phy_pause_map[skge->flow_control]; } else { if (skge->advertising & ADVERTISED_1000baseT_Full) adv |= PHY_M_AN_1000X_AFD; if (skge->advertising & ADVERTISED_1000baseT_Half) adv |= PHY_M_AN_1000X_AHD; adv |= fiber_pause_map[skge->flow_control]; } /* Restart Auto-negotiation */ ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG; } else { /* forced speed/duplex settings */ ct1000 = PHY_M_1000C_MSE; if (skge->duplex == DUPLEX_FULL) ctrl |= PHY_CT_DUP_MD; switch (skge->speed) { case SPEED_1000: ctrl |= PHY_CT_SP1000; break; case SPEED_100: ctrl |= PHY_CT_SP100; break; } ctrl |= PHY_CT_RESET; } gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000); gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv); gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); /* Enable phy interrupt on autonegotiation complete (or link up) */ if (skge->autoneg == AUTONEG_ENABLE) gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK); else gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK); } static void yukon_reset(struct skge_hw *hw, int port) { gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */ gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */ gma_write16(hw, port, GM_MC_ADDR_H2, 0); gma_write16(hw, port, GM_MC_ADDR_H3, 0); gma_write16(hw, port, GM_MC_ADDR_H4, 0); gma_write16(hw, port, GM_RX_CTRL, gma_read16(hw, port, GM_RX_CTRL) | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); } /* Apparently, early versions of Yukon-Lite had wrong chip_id? */ static int is_yukon_lite_a0(struct skge_hw *hw) { u32 reg; int ret; if (hw->chip_id != CHIP_ID_YUKON) return 0; reg = skge_read32(hw, B2_FAR); skge_write8(hw, B2_FAR + 3, 0xff); ret = (skge_read8(hw, B2_FAR + 3) != 0); skge_write32(hw, B2_FAR, reg); return ret; } static void yukon_mac_init(struct skge_hw *hw, int port) { struct skge_port *skge = netdev_priv(hw->dev[port]); int i; u32 reg; const u8 *addr = hw->dev[port]->dev_addr; /* WA code for COMA mode -- set PHY reset */ if (hw->chip_id == CHIP_ID_YUKON_LITE && hw->chip_rev >= CHIP_REV_YU_LITE_A3) { reg = skge_read32(hw, B2_GP_IO); reg |= GP_DIR_9 | GP_IO_9; skge_write32(hw, B2_GP_IO, reg); } /* hard reset */ skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); /* WA code for COMA mode -- clear PHY reset */ if (hw->chip_id == CHIP_ID_YUKON_LITE && hw->chip_rev >= CHIP_REV_YU_LITE_A3) { reg = skge_read32(hw, B2_GP_IO); reg |= GP_DIR_9; reg &= ~GP_IO_9; skge_write32(hw, B2_GP_IO, reg); } /* Set hardware config mode */ reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP | GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE; reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB; /* Clear GMC reset */ skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET); skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR); skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR); if (skge->autoneg == AUTONEG_DISABLE) { reg = GM_GPCR_AU_ALL_DIS; gma_write16(hw, port, GM_GP_CTRL, gma_read16(hw, port, GM_GP_CTRL) | reg); switch (skge->speed) { case SPEED_1000: reg &= ~GM_GPCR_SPEED_100; reg |= GM_GPCR_SPEED_1000; break; case SPEED_100: reg &= ~GM_GPCR_SPEED_1000; reg |= GM_GPCR_SPEED_100; break; case SPEED_10: reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100); break; } if (skge->duplex == DUPLEX_FULL) reg |= GM_GPCR_DUP_FULL; } else reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL; switch (skge->flow_control) { case FLOW_MODE_NONE: skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; break; case FLOW_MODE_LOC_SEND: /* disable Rx flow-control */ reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; break; case FLOW_MODE_SYMMETRIC: case FLOW_MODE_SYM_OR_REM: /* enable Tx & Rx flow-control */ break; } gma_write16(hw, port, GM_GP_CTRL, reg); skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC)); yukon_init(hw, port); /* MIB clear */ reg = gma_read16(hw, port, GM_PHY_ADDR); gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR); for (i = 0; i < GM_MIB_CNT_SIZE; i++) gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i); gma_write16(hw, port, GM_PHY_ADDR, reg); /* transmit control */ gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF)); /* receive control reg: unicast + multicast + no FCS */ gma_write16(hw, port, GM_RX_CTRL, GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA); /* transmit flow control */ gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff); /* transmit parameter */ gma_write16(hw, port, GM_TX_PARAM, TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) | TX_IPG_JAM_DATA(TX_IPG_JAM_DEF)); /* configure the Serial Mode Register */ reg = DATA_BLIND_VAL(DATA_BLIND_DEF) | GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF); if (hw->dev[port]->mtu > ETH_DATA_LEN) reg |= GM_SMOD_JUMBO_ENA; gma_write16(hw, port, GM_SERIAL_MODE, reg); /* physical address: used for pause frames */ gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr); /* virtual address for data */ gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr); /* enable interrupt mask for counter overflows */ gma_write16(hw, port, GM_TX_IRQ_MSK, 0); gma_write16(hw, port, GM_RX_IRQ_MSK, 0); gma_write16(hw, port, GM_TR_IRQ_MSK, 0); /* Initialize Mac Fifo */ /* Configure Rx MAC FIFO */ skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK); reg = GMF_OPER_ON | GMF_RX_F_FL_ON; /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */ if (is_yukon_lite_a0(hw)) reg &= ~GMF_RX_F_FL_ON; skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR); skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg); /* * because Pause Packet Truncation in GMAC is not working * we have to increase the Flush Threshold to 64 bytes * in order to flush pause packets in Rx FIFO on Yukon-1 */ skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1); /* Configure Tx MAC FIFO */ skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR); skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON); } /* Go into power down mode */ static void yukon_suspend(struct skge_hw *hw, int port) { u16 ctrl; ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); ctrl |= PHY_M_PC_POL_R_DIS; gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl); ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); ctrl |= PHY_CT_RESET; gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); /* switch IEEE compatible power down mode on */ ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); ctrl |= PHY_CT_PDOWN; gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); } static void yukon_stop(struct skge_port *skge) { struct skge_hw *hw = skge->hw; int port = skge->port; skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); yukon_reset(hw, port); gma_write16(hw, port, GM_GP_CTRL, gma_read16(hw, port, GM_GP_CTRL) & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA)); gma_read16(hw, port, GM_GP_CTRL); yukon_suspend(hw, port); /* set GPHY Control reset */ skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); } static void yukon_get_stats(struct skge_port *skge, u64 *data) { struct skge_hw *hw = skge->hw; int port = skge->port; int i; data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32 | gma_read32(hw, port, GM_TXO_OK_LO); data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32 | gma_read32(hw, port, GM_RXO_OK_LO); for (i = 2; i < ARRAY_SIZE(skge_stats); i++) data[i] = gma_read32(hw, port, skge_stats[i].gma_offset); } static void yukon_mac_intr(struct skge_hw *hw, int port) { struct net_device *dev = hw->dev[port]; struct skge_port *skge = netdev_priv(dev); u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC)); if (netif_msg_intr(skge)) printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n", dev->name, status); if (status & GM_IS_RX_FF_OR) { ++dev->stats.rx_fifo_errors; skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO); } if (status & GM_IS_TX_FF_UR) { ++dev->stats.tx_fifo_errors; skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU); } } static u16 yukon_speed(const struct skge_hw *hw, u16 aux) { switch (aux & PHY_M_PS_SPEED_MSK) { case PHY_M_PS_SPEED_1000: return SPEED_1000; case PHY_M_PS_SPEED_100: return SPEED_100; default: return SPEED_10; } } static void yukon_link_up(struct skge_port *skge) { struct skge_hw *hw = skge->hw; int port = skge->port; u16 reg; /* Enable Transmit FIFO Underrun */ skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK); reg = gma_read16(hw, port, GM_GP_CTRL); if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE) reg |= GM_GPCR_DUP_FULL; /* enable Rx/Tx */ reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA; gma_write16(hw, port, GM_GP_CTRL, reg); gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK); skge_link_up(skge); } static void yukon_link_down(struct skge_port *skge) { struct skge_hw *hw = skge->hw; int port = skge->port; u16 ctrl; ctrl = gma_read16(hw, port, GM_GP_CTRL); ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); gma_write16(hw, port, GM_GP_CTRL, ctrl); if (skge->flow_status == FLOW_STAT_REM_SEND) { ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV); ctrl |= PHY_M_AN_ASP; /* restore Asymmetric Pause bit */ gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl); } skge_link_down(skge); yukon_init(hw, port); } static void yukon_phy_intr(struct skge_port *skge) { struct skge_hw *hw = skge->hw; int port = skge->port; const char *reason = NULL; u16 istatus, phystat; istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT); phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT); if (netif_msg_intr(skge)) printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n", skge->netdev->name, istatus, phystat); if (istatus & PHY_M_IS_AN_COMPL) { if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP) & PHY_M_AN_RF) { reason = "remote fault"; goto failed; } if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) { reason = "master/slave fault"; goto failed; } if (!(phystat & PHY_M_PS_SPDUP_RES)) { reason = "speed/duplex"; goto failed; } skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF; skge->speed = yukon_speed(hw, phystat); /* We are using IEEE 802.3z/D5.0 Table 37-4 */ switch (phystat & PHY_M_PS_PAUSE_MSK) { case PHY_M_PS_PAUSE_MSK: skge->flow_status = FLOW_STAT_SYMMETRIC; break; case PHY_M_PS_RX_P_EN: skge->flow_status = FLOW_STAT_REM_SEND; break; case PHY_M_PS_TX_P_EN: skge->flow_status = FLOW_STAT_LOC_SEND; break; default: skge->flow_status = FLOW_STAT_NONE; } if (skge->flow_status == FLOW_STAT_NONE || (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF)) skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); else skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON); yukon_link_up(skge); return; } if (istatus & PHY_M_IS_LSP_CHANGE) skge->speed = yukon_speed(hw, phystat); if (istatus & PHY_M_IS_DUP_CHANGE) skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF; if (istatus & PHY_M_IS_LST_CHANGE) { if (phystat & PHY_M_PS_LINK_UP) yukon_link_up(skge); else yukon_link_down(skge); } return; failed: printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n", skge->netdev->name, reason); /* XXX restart autonegotiation? */ } static void skge_phy_reset(struct skge_port *skge) { struct skge_hw *hw = skge->hw; int port = skge->port; struct net_device *dev = hw->dev[port]; netif_stop_queue(skge->netdev); netif_carrier_off(skge->netdev); spin_lock_bh(&hw->phy_lock); if (hw->chip_id == CHIP_ID_GENESIS) { genesis_reset(hw, port); genesis_mac_init(hw, port); } else { yukon_reset(hw, port); yukon_init(hw, port); } spin_unlock_bh(&hw->phy_lock); skge_set_multicast(dev); } /* Basic MII support */ static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct mii_ioctl_data *data = if_mii(ifr); struct skge_port *skge = netdev_priv(dev); struct skge_hw *hw = skge->hw; int err = -EOPNOTSUPP; if (!netif_running(dev)) return -ENODEV; /* Phy still in reset */ switch(cmd) { case SIOCGMIIPHY: data->phy_id = hw->phy_addr; /* fallthru */ case SIOCGMIIREG: { u16 val = 0; spin_lock_bh(&hw->phy_lock); if (hw->chip_id == CHIP_ID_GENESIS) err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val); else err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val); spin_unlock_bh(&hw->phy_lock); data->val_out = val; break; } case SIOCSMIIREG: spin_lock_bh(&hw->phy_lock); if (hw->chip_id == CHIP_ID_GENESIS) err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f, data->val_in); else err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f, data->val_in); spin_unlock_bh(&hw->phy_lock); break; } return err; } static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len) { u32 end; start /= 8; len /= 8; end = start + len - 1; skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR); skge_write32(hw, RB_ADDR(q, RB_START), start); skge_write32(hw, RB_ADDR(q, RB_WP), start); skge_write32(hw, RB_ADDR(q, RB_RP), start); skge_write32(hw, RB_ADDR(q, RB_END), end); if (q == Q_R1 || q == Q_R2) { /* Set thresholds on receive queue's */ skge_write32(hw, RB_ADDR(q, RB_RX_UTPP), start + (2*len)/3); skge_write32(hw, RB_ADDR(q, RB_RX_LTPP), start + (len/3)); } else { /* Enable store & forward on Tx queue's because * Tx FIFO is only 4K on Genesis and 1K on Yukon */ skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD); } skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD); } /* Setup Bus Memory Interface */ static void skge_qset(struct skge_port *skge, u16 q, const struct skge_element *e) { struct skge_hw *hw = skge->hw; u32 watermark = 0x600; u64 base = skge->dma + (e->desc - skge->mem); /* optimization to reduce window on 32bit/33mhz */ if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0) watermark /= 2; skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET); skge_write32(hw, Q_ADDR(q, Q_F), watermark); skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32)); skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base); } static int skge_up(struct net_device *dev) { struct skge_port *skge = netdev_priv(dev); struct skge_hw *hw = skge->hw; int port = skge->port; u32 chunk, ram_addr; size_t rx_size, tx_size; int err; if (!is_valid_ether_addr(dev->dev_addr)) return -EINVAL; if (netif_msg_ifup(skge)) printk(KERN_INFO PFX "%s: enabling interface\n", dev->name); if (dev->mtu > RX_BUF_SIZE) skge->rx_buf_size = dev->mtu + ETH_HLEN; else skge->rx_buf_size = RX_BUF_SIZE; rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc); tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc); skge->mem_size = tx_size + rx_size; skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma); if (!skge->mem) return -ENOMEM; BUG_ON(skge->dma & 7); if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) { dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n"); err = -EINVAL; goto free_pci_mem; } memset(skge->mem, 0, skge->mem_size); err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma); if (err) goto free_pci_mem; err = skge_rx_fill(dev); if (err) goto free_rx_ring; err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size, skge->dma + rx_size); if (err) goto free_rx_ring; /* Initialize MAC */ spin_lock_bh(&hw->phy_lock); if (hw->chip_id == CHIP_ID_GENESIS) genesis_mac_init(hw, port); else yukon_mac_init(hw, port); spin_unlock_bh(&hw->phy_lock); /* Configure RAMbuffers - equally between ports and tx/rx */ chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2); ram_addr = hw->ram_offset + 2 * chunk * port; skge_ramset(hw, rxqaddr[port], ram_addr, chunk); skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean); BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean); skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk); skge_qset(skge, txqaddr[port], skge->tx_ring.to_use); /* Start receiver BMU */ wmb(); skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F); skge_led(skge, LED_MODE_ON); spin_lock_irq(&hw->hw_lock); hw->intr_mask |= portmask[port]; skge_write32(hw, B0_IMSK, hw->intr_mask); spin_unlock_irq(&hw->hw_lock); napi_enable(&skge->napi); return 0; free_rx_ring: skge_rx_clean(skge); kfree(skge->rx_ring.start); free_pci_mem: pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); skge->mem = NULL; return err; } /* stop receiver */ static void skge_rx_stop(struct skge_hw *hw, int port) { skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP); skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL), RB_RST_SET|RB_DIS_OP_MD); skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET); } static int skge_down(struct net_device *dev) { struct skge_port *skge = netdev_priv(dev); struct skge_hw *hw = skge->hw; int port = skge->port; if (skge->mem == NULL) return 0; if (netif_msg_ifdown(skge)) printk(KERN_INFO PFX "%s: disabling interface\n", dev->name); netif_tx_disable(dev); if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC) del_timer_sync(&skge->link_timer); napi_disable(&skge->napi); netif_carrier_off(dev); spin_lock_irq(&hw->hw_lock); hw->intr_mask &= ~portmask[port]; skge_write32(hw, B0_IMSK, hw->intr_mask); spin_unlock_irq(&hw->hw_lock); skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF); if (hw->chip_id == CHIP_ID_GENESIS) genesis_stop(skge); else yukon_stop(skge); /* Stop transmitter */ skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP); skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET|RB_DIS_OP_MD); /* Disable Force Sync bit and Enable Alloc bit */ skge_write8(hw, SK_REG(port, TXA_CTRL), TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); /* Stop Interval Timer and Limit Counter of Tx Arbiter */ skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L); skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L); /* Reset PCI FIFO */ skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET); skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET); /* Reset the RAM Buffer async Tx queue */ skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET); skge_rx_stop(hw, port); if (hw->chip_id == CHIP_ID_GENESIS) { skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET); skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET); } else { skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET); } skge_led(skge, LED_MODE_OFF); netif_tx_lock_bh(dev); skge_tx_clean(dev); netif_tx_unlock_bh(dev); skge_rx_clean(skge); kfree(skge->rx_ring.start); kfree(skge->tx_ring.start); pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); skge->mem = NULL; return 0; } static inline int skge_avail(const struct skge_ring *ring) { smp_mb(); return ((ring->to_clean > ring->to_use) ? 0 : ring->count) + (ring->to_clean - ring->to_use) - 1; } static netdev_tx_t skge_xmit_frame(struct sk_buff *skb, struct net_device *dev) { struct skge_port *skge = netdev_priv(dev); struct skge_hw *hw = skge->hw; struct skge_element *e; struct skge_tx_desc *td; int i; u32 control, len; u64 map; if (skb_padto(skb, ETH_ZLEN)) return NETDEV_TX_OK; if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1)) return NETDEV_TX_BUSY; e = skge->tx_ring.to_use; td = e->desc; BUG_ON(td->control & BMU_OWN); e->skb = skb; len = skb_headlen(skb); map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE); pci_unmap_addr_set(e, mapaddr, map); pci_unmap_len_set(e, maplen, len); td->dma_lo = map; td->dma_hi = map >> 32; if (skb->ip_summed == CHECKSUM_PARTIAL) { const int offset = skb_transport_offset(skb); /* This seems backwards, but it is what the sk98lin * does. Looks like hardware is wrong? */ if (ipip_hdr(skb)->protocol == IPPROTO_UDP && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON) control = BMU_TCP_CHECK; else control = BMU_UDP_CHECK; td->csum_offs = 0; td->csum_start = offset; td->csum_write = offset + skb->csum_offset; } else control = BMU_CHECK; if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */ control |= BMU_EOF| BMU_IRQ_EOF; else { struct skge_tx_desc *tf = td; control |= BMU_STFWD; for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; map = pci_map_page(hw->pdev, frag->page, frag->page_offset, frag->size, PCI_DMA_TODEVICE); e = e->next; e->skb = skb; tf = e->desc; BUG_ON(tf->control & BMU_OWN); tf->dma_lo = map; tf->dma_hi = (u64) map >> 32; pci_unmap_addr_set(e, mapaddr, map); pci_unmap_len_set(e, maplen, frag->size); tf->control = BMU_OWN | BMU_SW | control | frag->size; } tf->control |= BMU_EOF | BMU_IRQ_EOF; } /* Make sure all the descriptors written */ wmb(); td->control = BMU_OWN | BMU_SW | BMU_STF | control | len; wmb(); skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START); if (unlikely(netif_msg_tx_queued(skge))) printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n", dev->name, e - skge->tx_ring.start, skb->len); skge->tx_ring.to_use = e->next; smp_wmb(); if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) { pr_debug("%s: transmit queue full\n", dev->name); netif_stop_queue(dev); } return NETDEV_TX_OK; } /* Free resources associated with this reing element */ static void skge_tx_free(struct skge_port *skge, struct skge_element *e, u32 control) { struct pci_dev *pdev = skge->hw->pdev; /* skb header vs. fragment */ if (control & BMU_STF) pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr), pci_unmap_len(e, maplen), PCI_DMA_TODEVICE); else pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr), pci_unmap_len(e, maplen), PCI_DMA_TODEVICE); if (control & BMU_EOF) { if (unlikely(netif_msg_tx_done(skge))) printk(KERN_DEBUG PFX "%s: tx done slot %td\n", skge->netdev->name, e - skge->tx_ring.start); dev_kfree_skb(e->skb); } } /* Free all buffers in transmit ring */ static void skge_tx_clean(struct net_device *dev) { struct skge_port *skge = netdev_priv(dev); struct skge_element *e; for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) { struct skge_tx_desc *td = e->desc; skge_tx_free(skge, e, td->control); td->control = 0; } skge->tx_ring.to_clean = e; } static void skge_tx_timeout(struct net_device *dev) { struct skge_port *skge = netdev_priv(dev); if (netif_msg_timer(skge)) printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name); skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP); skge_tx_clean(dev); netif_wake_queue(dev); } static int skge_change_mtu(struct net_device *dev, int new_mtu) { int err; if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU) return -EINVAL; if (!netif_running(dev)) { dev->mtu = new_mtu; return 0; } skge_down(dev); dev->mtu = new_mtu; err = skge_up(dev); if (err) dev_close(dev); return err; } static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 }; static void genesis_add_filter(u8 filter[8], const u8 *addr) { u32 crc, bit; crc = ether_crc_le(ETH_ALEN, addr); bit = ~crc & 0x3f; filter[bit/8] |= 1 << (bit%8); } static void genesis_set_multicast(struct net_device *dev) { struct skge_port *skge = netdev_priv(dev); struct skge_hw *hw = skge->hw; int port = skge->port; int i, count = dev->mc_count; struct dev_mc_list *list = dev->mc_list; u32 mode; u8 filter[8]; mode = xm_read32(hw, port, XM_MODE); mode |= XM_MD_ENA_HASH; if (dev->flags & IFF_PROMISC) mode |= XM_MD_ENA_PROM; else mode &= ~XM_MD_ENA_PROM; if (dev->flags & IFF_ALLMULTI) memset(filter, 0xff, sizeof(filter)); else { memset(filter, 0, sizeof(filter)); if (skge->flow_status == FLOW_STAT_REM_SEND || skge->flow_status == FLOW_STAT_SYMMETRIC) genesis_add_filter(filter, pause_mc_addr); for (i = 0; list && i < count; i++, list = list->next) genesis_add_filter(filter, list->dmi_addr); } xm_write32(hw, port, XM_MODE, mode); xm_outhash(hw, port, XM_HSM, filter); } static void yukon_add_filter(u8 filter[8], const u8 *addr) { u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f; filter[bit/8] |= 1 << (bit%8); } static void yukon_set_multicast(struct net_device *dev) { struct skge_port *skge = netdev_priv(dev); struct skge_hw *hw = skge->hw; int port = skge->port; struct dev_mc_list *list = dev->mc_list; int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND || skge->flow_status == FLOW_STAT_SYMMETRIC); u16 reg; u8 filter[8]; memset(filter, 0, sizeof(filter)); reg = gma_read16(hw, port, GM_RX_CTRL); reg |= GM_RXCR_UCF_ENA; if (dev->flags & IFF_PROMISC) /* promiscuous */ reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); else if (dev->flags & IFF_ALLMULTI) /* all multicast */ memset(filter, 0xff, sizeof(filter)); else if (dev->mc_count == 0 && !rx_pause)/* no multicast */ reg &= ~GM_RXCR_MCF_ENA; else { int i; reg |= GM_RXCR_MCF_ENA; if (rx_pause) yukon_add_filter(filter, pause_mc_addr); for (i = 0; list && i < dev->mc_count; i++, list = list->next) yukon_add_filter(filter, list->dmi_addr); } gma_write16(hw, port, GM_MC_ADDR_H1, (u16)filter[0] | ((u16)filter[1] << 8)); gma_write16(hw, port, GM_MC_ADDR_H2, (u16)filter[2] | ((u16)filter[3] << 8)); gma_write16(hw, port, GM_MC_ADDR_H3, (u16)filter[4] | ((u16)filter[5] << 8)); gma_write16(hw, port, GM_MC_ADDR_H4, (u16)filter[6] | ((u16)filter[7] << 8)); gma_write16(hw, port, GM_RX_CTRL, reg); } static inline u16 phy_length(const struct skge_hw *hw, u32 status) { if (hw->chip_id == CHIP_ID_GENESIS) return status >> XMR_FS_LEN_SHIFT; else return status >> GMR_FS_LEN_SHIFT; } static inline int bad_phy_status(const struct skge_hw *hw, u32 status) { if (hw->chip_id == CHIP_ID_GENESIS) return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0; else return (status & GMR_FS_ANY_ERR) || (status & GMR_FS_RX_OK) == 0; } static void skge_set_multicast(struct net_device *dev) { struct skge_port *skge = netdev_priv(dev); struct skge_hw *hw = skge->hw; if (hw->chip_id == CHIP_ID_GENESIS) genesis_set_multicast(dev); else yukon_set_multicast(dev); } /* Get receive buffer from descriptor. * Handles copy of small buffers and reallocation failures */ static struct sk_buff *skge_rx_get(struct net_device *dev, struct skge_element *e, u32 control, u32 status, u16 csum) { struct skge_port *skge = netdev_priv(dev); struct sk_buff *skb; u16 len = control & BMU_BBC; if (unlikely(netif_msg_rx_status(skge))) printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n", dev->name, e - skge->rx_ring.start, status, len); if (len > skge->rx_buf_size) goto error; if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)) goto error; if (bad_phy_status(skge->hw, status)) goto error; if (phy_length(skge->hw, status) != len) goto error; if (len < RX_COPY_THRESHOLD) { skb = netdev_alloc_skb_ip_align(dev, len); if (!skb) goto resubmit; pci_dma_sync_single_for_cpu(skge->hw->pdev, pci_unmap_addr(e, mapaddr), len, PCI_DMA_FROMDEVICE); skb_copy_from_linear_data(e->skb, skb->data, len); pci_dma_sync_single_for_device(skge->hw->pdev, pci_unmap_addr(e, mapaddr), len, PCI_DMA_FROMDEVICE); skge_rx_reuse(e, skge->rx_buf_size); } else { struct sk_buff *nskb; nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size); if (!nskb) goto resubmit; pci_unmap_single(skge->hw->pdev, pci_unmap_addr(e, mapaddr), pci_unmap_len(e, maplen), PCI_DMA_FROMDEVICE); skb = e->skb; prefetch(skb->data); skge_rx_setup(skge, e, nskb, skge->rx_buf_size); } skb_put(skb, len); if (skge->rx_csum) { skb->csum = csum; skb->ip_summed = CHECKSUM_COMPLETE; } skb->protocol = eth_type_trans(skb, dev); return skb; error: if (netif_msg_rx_err(skge)) printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n", dev->name, e - skge->rx_ring.start, control, status); if (skge->hw->chip_id == CHIP_ID_GENESIS) { if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR)) dev->stats.rx_length_errors++; if (status & XMR_FS_FRA_ERR) dev->stats.rx_frame_errors++; if (status & XMR_FS_FCS_ERR) dev->stats.rx_crc_errors++; } else { if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE)) dev->stats.rx_length_errors++; if (status & GMR_FS_FRAGMENT) dev->stats.rx_frame_errors++; if (status & GMR_FS_CRC_ERR) dev->stats.rx_crc_errors++; } resubmit: skge_rx_reuse(e, skge->rx_buf_size); return NULL; } /* Free all buffers in Tx ring which are no longer owned by device */ static void skge_tx_done(struct net_device *dev) { struct skge_port *skge = netdev_priv(dev); struct skge_ring *ring = &skge->tx_ring; struct skge_element *e; skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F); for (e = ring->to_clean; e != ring->to_use; e = e->next) { u32 control = ((const struct skge_tx_desc *) e->desc)->control; if (control & BMU_OWN) break; skge_tx_free(skge, e, control); } skge->tx_ring.to_clean = e; /* Can run lockless until we need to synchronize to restart queue. */ smp_mb(); if (unlikely(netif_queue_stopped(dev) && skge_avail(&skge->tx_ring) > TX_LOW_WATER)) { netif_tx_lock(dev); if (unlikely(netif_queue_stopped(dev) && skge_avail(&skge->tx_ring) > TX_LOW_WATER)) { netif_wake_queue(dev); } netif_tx_unlock(dev); } } static int skge_poll(struct napi_struct *napi, int to_do) { struct skge_port *skge = container_of(napi, struct skge_port, napi); struct net_device *dev = skge->netdev; struct skge_hw *hw = skge->hw; struct skge_ring *ring = &skge->rx_ring; struct skge_element *e; int work_done = 0; skge_tx_done(dev); skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F); for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) { struct skge_rx_desc *rd = e->desc; struct sk_buff *skb; u32 control; rmb(); control = rd->control; if (control & BMU_OWN) break; skb = skge_rx_get(dev, e, control, rd->status, rd->csum2); if (likely(skb)) { netif_receive_skb(skb); ++work_done; } } ring->to_clean = e; /* restart receiver */ wmb(); skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START); if (work_done < to_do) { unsigned long flags; spin_lock_irqsave(&hw->hw_lock, flags); __napi_complete(napi); hw->intr_mask |= napimask[skge->port]; skge_write32(hw, B0_IMSK, hw->intr_mask); skge_read32(hw, B0_IMSK); spin_unlock_irqrestore(&hw->hw_lock, flags); } return work_done; } /* Parity errors seem to happen when Genesis is connected to a switch * with no other ports present. Heartbeat error?? */ static void skge_mac_parity(struct skge_hw *hw, int port) { struct net_device *dev = hw->dev[port]; ++dev->stats.tx_heartbeat_errors; if (hw->chip_id == CHIP_ID_GENESIS) skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_PERR); else /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */ skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0) ? GMF_CLI_TX_FC : GMF_CLI_TX_PE); } static void skge_mac_intr(struct skge_hw *hw, int port) { if (hw->chip_id == CHIP_ID_GENESIS) genesis_mac_intr(hw, port); else yukon_mac_intr(hw, port); } /* Handle device specific framing and timeout interrupts */ static void skge_error_irq(struct skge_hw *hw) { struct pci_dev *pdev = hw->pdev; u32 hwstatus = skge_read32(hw, B0_HWE_ISRC); if (hw->chip_id == CHIP_ID_GENESIS) { /* clear xmac errors */ if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1)) skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT); if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2)) skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT); } else { /* Timestamp (unused) overflow */ if (hwstatus & IS_IRQ_TIST_OV) skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); } if (hwstatus & IS_RAM_RD_PAR) { dev_err(&pdev->dev, "Ram read data parity error\n"); skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR); } if (hwstatus & IS_RAM_WR_PAR) { dev_err(&pdev->dev, "Ram write data parity error\n"); skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR); } if (hwstatus & IS_M1_PAR_ERR) skge_mac_parity(hw, 0); if (hwstatus & IS_M2_PAR_ERR) skge_mac_parity(hw, 1); if (hwstatus & IS_R1_PAR_ERR) { dev_err(&pdev->dev, "%s: receive queue parity error\n", hw->dev[0]->name); skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P); } if (hwstatus & IS_R2_PAR_ERR) { dev_err(&pdev->dev, "%s: receive queue parity error\n", hw->dev[1]->name); skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P); } if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) { u16 pci_status, pci_cmd; pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); pci_read_config_word(pdev, PCI_STATUS, &pci_status); dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n", pci_cmd, pci_status); /* Write the error bits back to clear them. */ pci_status &= PCI_STATUS_ERROR_BITS; skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); pci_write_config_word(pdev, PCI_COMMAND, pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY); pci_write_config_word(pdev, PCI_STATUS, pci_status); skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); /* if error still set then just ignore it */ hwstatus = skge_read32(hw, B0_HWE_ISRC); if (hwstatus & IS_IRQ_STAT) { dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n"); hw->intr_mask &= ~IS_HW_ERR; } } } /* * Interrupt from PHY are handled in tasklet (softirq) * because accessing phy registers requires spin wait which might * cause excess interrupt latency. */ static void skge_extirq(unsigned long arg) { struct skge_hw *hw = (struct skge_hw *) arg; int port; for (port = 0; port < hw->ports; port++) { struct net_device *dev = hw->dev[port]; if (netif_running(dev)) { struct skge_port *skge = netdev_priv(dev); spin_lock(&hw->phy_lock); if (hw->chip_id != CHIP_ID_GENESIS) yukon_phy_intr(skge); else if (hw->phy_type == SK_PHY_BCOM) bcom_phy_intr(skge); spin_unlock(&hw->phy_lock); } } spin_lock_irq(&hw->hw_lock); hw->intr_mask |= IS_EXT_REG; skge_write32(hw, B0_IMSK, hw->intr_mask); skge_read32(hw, B0_IMSK); spin_unlock_irq(&hw->hw_lock); } static irqreturn_t skge_intr(int irq, void *dev_id) { struct skge_hw *hw = dev_id; u32 status; int handled = 0; spin_lock(&hw->hw_lock); /* Reading this register masks IRQ */ status = skge_read32(hw, B0_SP_ISRC); if (status == 0 || status == ~0) goto out; handled = 1; status &= hw->intr_mask; if (status & IS_EXT_REG) { hw->intr_mask &= ~IS_EXT_REG; tasklet_schedule(&hw->phy_task); } if (status & (IS_XA1_F|IS_R1_F)) { struct skge_port *skge = netdev_priv(hw->dev[0]); hw->intr_mask &= ~(IS_XA1_F|IS_R1_F); napi_schedule(&skge->napi); } if (status & IS_PA_TO_TX1) skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1); if (status & IS_PA_TO_RX1) { ++hw->dev[0]->stats.rx_over_errors; skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1); } if (status & IS_MAC1) skge_mac_intr(hw, 0); if (hw->dev[1]) { struct skge_port *skge = netdev_priv(hw->dev[1]); if (status & (IS_XA2_F|IS_R2_F)) { hw->intr_mask &= ~(IS_XA2_F|IS_R2_F); napi_schedule(&skge->napi); } if (status & IS_PA_TO_RX2) { ++hw->dev[1]->stats.rx_over_errors; skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2); } if (status & IS_PA_TO_TX2) skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2); if (status & IS_MAC2) skge_mac_intr(hw, 1); } if (status & IS_HW_ERR) skge_error_irq(hw); skge_write32(hw, B0_IMSK, hw->intr_mask); skge_read32(hw, B0_IMSK); out: spin_unlock(&hw->hw_lock); return IRQ_RETVAL(handled); } #ifdef CONFIG_NET_POLL_CONTROLLER static void skge_netpoll(struct net_device *dev) { struct skge_port *skge = netdev_priv(dev); disable_irq(dev->irq); skge_intr(dev->irq, skge->hw); enable_irq(dev->irq); } #endif static int skge_set_mac_address(struct net_device *dev, void *p) { struct skge_port *skge = netdev_priv(dev); struct skge_hw *hw = skge->hw; unsigned port = skge->port; const struct sockaddr *addr = p; u16 ctrl; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); if (!netif_running(dev)) { memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN); memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN); } else { /* disable Rx */ spin_lock_bh(&hw->phy_lock); ctrl = gma_read16(hw, port, GM_GP_CTRL); gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA); memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN); memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN); if (hw->chip_id == CHIP_ID_GENESIS) xm_outaddr(hw, port, XM_SA, dev->dev_addr); else { gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr); gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr); } gma_write16(hw, port, GM_GP_CTRL, ctrl); spin_unlock_bh(&hw->phy_lock); } return 0; } static const struct { u8 id; const char *name; } skge_chips[] = { { CHIP_ID_GENESIS, "Genesis" }, { CHIP_ID_YUKON, "Yukon" }, { CHIP_ID_YUKON_LITE, "Yukon-Lite"}, { CHIP_ID_YUKON_LP, "Yukon-LP"}, }; static const char *skge_board_name(const struct skge_hw *hw) { int i; static char buf[16]; for (i = 0; i < ARRAY_SIZE(skge_chips); i++) if (skge_chips[i].id == hw->chip_id) return skge_chips[i].name; snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id); return buf; } /* * Setup the board data structure, but don't bring up * the port(s) */ static int skge_reset(struct skge_hw *hw) { u32 reg; u16 ctst, pci_status; u8 t8, mac_cfg, pmd_type; int i; ctst = skge_read16(hw, B0_CTST); /* do a SW reset */ skge_write8(hw, B0_CTST, CS_RST_SET); skge_write8(hw, B0_CTST, CS_RST_CLR); /* clear PCI errors, if any */ skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); skge_write8(hw, B2_TST_CTRL2, 0); pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status); pci_write_config_word(hw->pdev, PCI_STATUS, pci_status | PCI_STATUS_ERROR_BITS); skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); skge_write8(hw, B0_CTST, CS_MRST_CLR); /* restore CLK_RUN bits (for Yukon-Lite) */ skge_write16(hw, B0_CTST, ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA)); hw->chip_id = skge_read8(hw, B2_CHIP_ID); hw->phy_type = skge_read8(hw, B2_E_1) & 0xf; pmd_type = skge_read8(hw, B2_PMD_TYP); hw->copper = (pmd_type == 'T' || pmd_type == '1'); switch (hw->chip_id) { case CHIP_ID_GENESIS: switch (hw->phy_type) { case SK_PHY_XMAC: hw->phy_addr = PHY_ADDR_XMAC; break; case SK_PHY_BCOM: hw->phy_addr = PHY_ADDR_BCOM; break; default: dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n", hw->phy_type); return -EOPNOTSUPP; } break; case CHIP_ID_YUKON: case CHIP_ID_YUKON_LITE: case CHIP_ID_YUKON_LP: if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S') hw->copper = 1; hw->phy_addr = PHY_ADDR_MARV; break; default: dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n", hw->chip_id); return -EOPNOTSUPP; } mac_cfg = skge_read8(hw, B2_MAC_CFG); hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2; hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4; /* read the adapters RAM size */ t8 = skge_read8(hw, B2_E_0); if (hw->chip_id == CHIP_ID_GENESIS) { if (t8 == 3) { /* special case: 4 x 64k x 36, offset = 0x80000 */ hw->ram_size = 0x100000; hw->ram_offset = 0x80000; } else hw->ram_size = t8 * 512; } else if (t8 == 0) hw->ram_size = 0x20000; else hw->ram_size = t8 * 4096; hw->intr_mask = IS_HW_ERR; /* Use PHY IRQ for all but fiber based Genesis board */ if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)) hw->intr_mask |= IS_EXT_REG; if (hw->chip_id == CHIP_ID_GENESIS) genesis_init(hw); else { /* switch power to VCC (WA for VAUX problem) */ skge_write8(hw, B0_POWER_CTRL, PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON); /* avoid boards with stuck Hardware error bits */ if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) && (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) { dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n"); hw->intr_mask &= ~IS_HW_ERR; } /* Clear PHY COMA */ skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); pci_read_config_dword(hw->pdev, PCI_DEV_REG1, ®); reg &= ~PCI_PHY_COMA; pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg); skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); for (i = 0; i < hw->ports; i++) { skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET); skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR); } } /* turn off hardware timer (unused) */ skge_write8(hw, B2_TI_CTRL, TIM_STOP); skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ); skge_write8(hw, B0_LED, LED_STAT_ON); /* enable the Tx Arbiters */ for (i = 0; i < hw->ports; i++) skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB); /* Initialize ram interface */ skge_write16(hw, B3_RI_CTRL, RI_RST_CLR); skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53); skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53); skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53); skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53); skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53); skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53); skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53); skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53); skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53); skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53); skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53); skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53); skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK); /* Set interrupt moderation for Transmit only * Receive interrupts avoided by NAPI */ skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F); skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100)); skge_write32(hw, B2_IRQM_CTRL, TIM_START); skge_write32(hw, B0_IMSK, hw->intr_mask); for (i = 0; i < hw->ports; i++) { if (hw->chip_id == CHIP_ID_GENESIS) genesis_reset(hw, i); else yukon_reset(hw, i); } return 0; } #ifdef CONFIG_SKGE_DEBUG static struct dentry *skge_debug; static int skge_debug_show(struct seq_file *seq, void *v) { struct net_device *dev = seq->private; const struct skge_port *skge = netdev_priv(dev); const struct skge_hw *hw = skge->hw; const struct skge_element *e; if (!netif_running(dev)) return -ENETDOWN; seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC), skge_read32(hw, B0_IMSK)); seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring)); for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) { const struct skge_tx_desc *t = e->desc; seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n", t->control, t->dma_hi, t->dma_lo, t->status, t->csum_offs, t->csum_write, t->csum_start); } seq_printf(seq, "\nRx Ring: \n"); for (e = skge->rx_ring.to_clean; ; e = e->next) { const struct skge_rx_desc *r = e->desc; if (r->control & BMU_OWN) break; seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n", r->control, r->dma_hi, r->dma_lo, r->status, r->timestamp, r->csum1, r->csum1_start); } return 0; } static int skge_debug_open(struct inode *inode, struct file *file) { return single_open(file, skge_debug_show, inode->i_private); } static const struct file_operations skge_debug_fops = { .owner = THIS_MODULE, .open = skge_debug_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; /* * Use network device events to create/remove/rename * debugfs file entries */ static int skge_device_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct net_device *dev = ptr; struct skge_port *skge; struct dentry *d; if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug) goto done; skge = netdev_priv(dev); switch(event) { case NETDEV_CHANGENAME: if (skge->debugfs) { d = debugfs_rename(skge_debug, skge->debugfs, skge_debug, dev->name); if (d) skge->debugfs = d; else { pr_info(PFX "%s: rename failed\n", dev->name); debugfs_remove(skge->debugfs); } } break; case NETDEV_GOING_DOWN: if (skge->debugfs) { debugfs_remove(skge->debugfs); skge->debugfs = NULL; } break; case NETDEV_UP: d = debugfs_create_file(dev->name, S_IRUGO, skge_debug, dev, &skge_debug_fops); if (!d || IS_ERR(d)) pr_info(PFX "%s: debugfs create failed\n", dev->name); else skge->debugfs = d; break; } done: return NOTIFY_DONE; } static struct notifier_block skge_notifier = { .notifier_call = skge_device_event, }; static __init void skge_debug_init(void) { struct dentry *ent; ent = debugfs_create_dir("skge", NULL); if (!ent || IS_ERR(ent)) { pr_info(PFX "debugfs create directory failed\n"); return; } skge_debug = ent; register_netdevice_notifier(&skge_notifier); } static __exit void skge_debug_cleanup(void) { if (skge_debug) { unregister_netdevice_notifier(&skge_notifier); debugfs_remove(skge_debug); skge_debug = NULL; } } #else #define skge_debug_init() #define skge_debug_cleanup() #endif static const struct net_device_ops skge_netdev_ops = { .ndo_open = skge_up, .ndo_stop = skge_down, .ndo_start_xmit = skge_xmit_frame, .ndo_do_ioctl = skge_ioctl, .ndo_get_stats = skge_get_stats, .ndo_tx_timeout = skge_tx_timeout, .ndo_change_mtu = skge_change_mtu, .ndo_validate_addr = eth_validate_addr, .ndo_set_multicast_list = skge_set_multicast, .ndo_set_mac_address = skge_set_mac_address, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = skge_netpoll, #endif }; /* Initialize network device */ static struct net_device *skge_devinit(struct skge_hw *hw, int port, int highmem) { struct skge_port *skge; struct net_device *dev = alloc_etherdev(sizeof(*skge)); if (!dev) { dev_err(&hw->pdev->dev, "etherdev alloc failed\n"); return NULL; } SET_NETDEV_DEV(dev, &hw->pdev->dev); dev->netdev_ops = &skge_netdev_ops; dev->ethtool_ops = &skge_ethtool_ops; dev->watchdog_timeo = TX_WATCHDOG; dev->irq = hw->pdev->irq; if (highmem) dev->features |= NETIF_F_HIGHDMA; skge = netdev_priv(dev); netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT); skge->netdev = dev; skge->hw = hw; skge->msg_enable = netif_msg_init(debug, default_msg); skge->tx_ring.count = DEFAULT_TX_RING_SIZE; skge->rx_ring.count = DEFAULT_RX_RING_SIZE; /* Auto speed and flow control */ skge->autoneg = AUTONEG_ENABLE; skge->flow_control = FLOW_MODE_SYM_OR_REM; skge->duplex = -1; skge->speed = -1; skge->advertising = skge_supported_modes(hw); if (device_can_wakeup(&hw->pdev->dev)) { skge->wol = wol_supported(hw) & WAKE_MAGIC; device_set_wakeup_enable(&hw->pdev->dev, skge->wol); } hw->dev[port] = dev; skge->port = port; /* Only used for Genesis XMAC */ setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge); if (hw->chip_id != CHIP_ID_GENESIS) { dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG; skge->rx_csum = 1; } /* read the mac address */ memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN); memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); /* device is off until link detection */ netif_carrier_off(dev); netif_stop_queue(dev); return dev; } static void __devinit skge_show_addr(struct net_device *dev) { const struct skge_port *skge = netdev_priv(dev); if (netif_msg_probe(skge)) printk(KERN_INFO PFX "%s: addr %pM\n", dev->name, dev->dev_addr); } static int __devinit skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *dev, *dev1; struct skge_hw *hw; int err, using_dac = 0; err = pci_enable_device(pdev); if (err) { dev_err(&pdev->dev, "cannot enable PCI device\n"); goto err_out; } err = pci_request_regions(pdev, DRV_NAME); if (err) { dev_err(&pdev->dev, "cannot obtain PCI resources\n"); goto err_out_disable_pdev; } pci_set_master(pdev); if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { using_dac = 1; err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) { using_dac = 0; err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); } if (err) { dev_err(&pdev->dev, "no usable DMA configuration\n"); goto err_out_free_regions; } #ifdef __BIG_ENDIAN /* byte swap descriptors in hardware */ { u32 reg; pci_read_config_dword(pdev, PCI_DEV_REG2, ®); reg |= PCI_REV_DESC; pci_write_config_dword(pdev, PCI_DEV_REG2, reg); } #endif err = -ENOMEM; /* space for skge@pci:0000:04:00.0 */ hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:" ) + strlen(pci_name(pdev)) + 1, GFP_KERNEL); if (!hw) { dev_err(&pdev->dev, "cannot allocate hardware struct\n"); goto err_out_free_regions; } sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev)); hw->pdev = pdev; spin_lock_init(&hw->hw_lock); spin_lock_init(&hw->phy_lock); tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw); hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000); if (!hw->regs) { dev_err(&pdev->dev, "cannot map device registers\n"); goto err_out_free_hw; } err = skge_reset(hw); if (err) goto err_out_iounmap; printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n", (unsigned long long)pci_resource_start(pdev, 0), pdev->irq, skge_board_name(hw), hw->chip_rev); dev = skge_devinit(hw, 0, using_dac); if (!dev) goto err_out_led_off; /* Some motherboards are broken and has zero in ROM. */ if (!is_valid_ether_addr(dev->dev_addr)) dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n"); err = register_netdev(dev); if (err) { dev_err(&pdev->dev, "cannot register net device\n"); goto err_out_free_netdev; } err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, hw->irq_name, hw); if (err) { dev_err(&pdev->dev, "%s: cannot assign irq %d\n", dev->name, pdev->irq); goto err_out_unregister; } skge_show_addr(dev); if (hw->ports > 1) { dev1 = skge_devinit(hw, 1, using_dac); if (dev1 && register_netdev(dev1) == 0) skge_show_addr(dev1); else { /* Failure to register second port need not be fatal */ dev_warn(&pdev->dev, "register of second port failed\n"); hw->dev[1] = NULL; hw->ports = 1; if (dev1) free_netdev(dev1); } } pci_set_drvdata(pdev, hw); return 0; err_out_unregister: unregister_netdev(dev); err_out_free_netdev: free_netdev(dev); err_out_led_off: skge_write16(hw, B0_LED, LED_STAT_OFF); err_out_iounmap: iounmap(hw->regs); err_out_free_hw: kfree(hw); err_out_free_regions: pci_release_regions(pdev); err_out_disable_pdev: pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); err_out: return err; } static void __devexit skge_remove(struct pci_dev *pdev) { struct skge_hw *hw = pci_get_drvdata(pdev); struct net_device *dev0, *dev1; if (!hw) return; flush_scheduled_work(); if ((dev1 = hw->dev[1])) unregister_netdev(dev1); dev0 = hw->dev[0]; unregister_netdev(dev0); tasklet_disable(&hw->phy_task); spin_lock_irq(&hw->hw_lock); hw->intr_mask = 0; skge_write32(hw, B0_IMSK, 0); skge_read32(hw, B0_IMSK); spin_unlock_irq(&hw->hw_lock); skge_write16(hw, B0_LED, LED_STAT_OFF); skge_write8(hw, B0_CTST, CS_RST_SET); free_irq(pdev->irq, hw); pci_release_regions(pdev); pci_disable_device(pdev); if (dev1) free_netdev(dev1); free_netdev(dev0); iounmap(hw->regs); kfree(hw); pci_set_drvdata(pdev, NULL); } #ifdef CONFIG_PM static int skge_suspend(struct pci_dev *pdev, pm_message_t state) { struct skge_hw *hw = pci_get_drvdata(pdev); int i, err, wol = 0; if (!hw) return 0; err = pci_save_state(pdev); if (err) return err; for (i = 0; i < hw->ports; i++) { struct net_device *dev = hw->dev[i]; struct skge_port *skge = netdev_priv(dev); if (netif_running(dev)) skge_down(dev); if (skge->wol) skge_wol_init(skge); wol |= skge->wol; } skge_write32(hw, B0_IMSK, 0); pci_prepare_to_sleep(pdev); return 0; } static int skge_resume(struct pci_dev *pdev) { struct skge_hw *hw = pci_get_drvdata(pdev); int i, err; if (!hw) return 0; err = pci_back_from_sleep(pdev); if (err) goto out; err = pci_restore_state(pdev); if (err) goto out; err = skge_reset(hw); if (err) goto out; for (i = 0; i < hw->ports; i++) { struct net_device *dev = hw->dev[i]; if (netif_running(dev)) { err = skge_up(dev); if (err) { printk(KERN_ERR PFX "%s: could not up: %d\n", dev->name, err); dev_close(dev); goto out; } } } out: return err; } #endif static void skge_shutdown(struct pci_dev *pdev) { struct skge_hw *hw = pci_get_drvdata(pdev); int i, wol = 0; if (!hw) return; for (i = 0; i < hw->ports; i++) { struct net_device *dev = hw->dev[i]; struct skge_port *skge = netdev_priv(dev); if (skge->wol) skge_wol_init(skge); wol |= skge->wol; } if (pci_enable_wake(pdev, PCI_D3cold, wol)) pci_enable_wake(pdev, PCI_D3hot, wol); pci_disable_device(pdev); pci_set_power_state(pdev, PCI_D3hot); } static struct pci_driver skge_driver = { .name = DRV_NAME, .id_table = skge_id_table, .probe = skge_probe, .remove = __devexit_p(skge_remove), #ifdef CONFIG_PM .suspend = skge_suspend, .resume = skge_resume, #endif .shutdown = skge_shutdown, }; static int __init skge_init_module(void) { skge_debug_init(); return pci_register_driver(&skge_driver); } static void __exit skge_cleanup_module(void) { pci_unregister_driver(&skge_driver); skge_debug_cleanup(); } module_init(skge_init_module); module_exit(skge_cleanup_module);