// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018, Intel Corporation. */ #include "ice.h" #include "ice_base.h" #include "ice_lib.h" #include "ice_fltr.h" #include "ice_flow.h" #include "ice_virtchnl_allowlist.h" #define FIELD_SELECTOR(proto_hdr_field) \ BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) struct ice_vc_hdr_match_type { u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ }; static const struct ice_vc_hdr_match_type ice_vc_hdr_list_os[] = { {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV_OTHER}, {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_IPV_OTHER}, {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, }; static const struct ice_vc_hdr_match_type ice_vc_hdr_list_comms[] = { {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV_OTHER}, {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_IPV_OTHER}, {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, ICE_FLOW_SEG_HDR_GTPU_DWN}, {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, ICE_FLOW_SEG_HDR_GTPU_UP}, {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, }; struct ice_vc_hash_field_match_type { u32 vc_hdr; /* virtchnl headers * (VIRTCHNL_PROTO_HDR_XXX) */ u32 vc_hash_field; /* virtchnl hash fields selector * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) */ u64 ice_hash_field; /* ice hash fields * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) */ }; static const struct ice_vc_hash_field_match_type ice_vc_hash_field_list_os[] = { {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), ICE_FLOW_HASH_IPV4}, {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), ICE_FLOW_HASH_IPV6}, {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, {VIRTCHNL_PROTO_HDR_TCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, {VIRTCHNL_PROTO_HDR_TCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, {VIRTCHNL_PROTO_HDR_TCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), ICE_FLOW_HASH_TCP_PORT}, {VIRTCHNL_PROTO_HDR_UDP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, {VIRTCHNL_PROTO_HDR_UDP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, {VIRTCHNL_PROTO_HDR_UDP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), ICE_FLOW_HASH_UDP_PORT}, {VIRTCHNL_PROTO_HDR_SCTP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, {VIRTCHNL_PROTO_HDR_SCTP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, {VIRTCHNL_PROTO_HDR_SCTP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), ICE_FLOW_HASH_SCTP_PORT}, }; static const struct ice_vc_hash_field_match_type ice_vc_hash_field_list_comms[] = { {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), ICE_FLOW_HASH_ETH}, {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, {VIRTCHNL_PROTO_HDR_S_VLAN, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, {VIRTCHNL_PROTO_HDR_C_VLAN, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), ICE_FLOW_HASH_IPV4}, {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), ICE_FLOW_HASH_IPV6}, {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, {VIRTCHNL_PROTO_HDR_TCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, {VIRTCHNL_PROTO_HDR_TCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, {VIRTCHNL_PROTO_HDR_TCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), ICE_FLOW_HASH_TCP_PORT}, {VIRTCHNL_PROTO_HDR_UDP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, {VIRTCHNL_PROTO_HDR_UDP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, {VIRTCHNL_PROTO_HDR_UDP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), ICE_FLOW_HASH_UDP_PORT}, {VIRTCHNL_PROTO_HDR_SCTP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, {VIRTCHNL_PROTO_HDR_SCTP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, {VIRTCHNL_PROTO_HDR_SCTP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), ICE_FLOW_HASH_SCTP_PORT}, {VIRTCHNL_PROTO_HDR_PPPOE, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, {VIRTCHNL_PROTO_HDR_GTPU_IP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, {VIRTCHNL_PROTO_HDR_L2TPV3, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, }; /** * ice_get_vf_vsi - get VF's VSI based on the stored index * @vf: VF used to get VSI */ struct ice_vsi *ice_get_vf_vsi(struct ice_vf *vf) { return vf->pf->vsi[vf->lan_vsi_idx]; } /** * ice_validate_vf_id - helper to check if VF ID is valid * @pf: pointer to the PF structure * @vf_id: the ID of the VF to check */ static int ice_validate_vf_id(struct ice_pf *pf, u16 vf_id) { /* vf_id range is only valid for 0-255, and should always be unsigned */ if (vf_id >= pf->num_alloc_vfs) { dev_err(ice_pf_to_dev(pf), "Invalid VF ID: %u\n", vf_id); return -EINVAL; } return 0; } /** * ice_check_vf_init - helper to check if VF init complete * @pf: pointer to the PF structure * @vf: the pointer to the VF to check */ static int ice_check_vf_init(struct ice_pf *pf, struct ice_vf *vf) { if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { dev_err(ice_pf_to_dev(pf), "VF ID: %u in reset. Try again.\n", vf->vf_id); return -EBUSY; } return 0; } /** * ice_err_to_virt_err - translate errors for VF return code * @ice_err: error return code */ static enum virtchnl_status_code ice_err_to_virt_err(enum ice_status ice_err) { switch (ice_err) { case ICE_SUCCESS: return VIRTCHNL_STATUS_SUCCESS; case ICE_ERR_BAD_PTR: case ICE_ERR_INVAL_SIZE: case ICE_ERR_DEVICE_NOT_SUPPORTED: case ICE_ERR_PARAM: case ICE_ERR_CFG: return VIRTCHNL_STATUS_ERR_PARAM; case ICE_ERR_NO_MEMORY: return VIRTCHNL_STATUS_ERR_NO_MEMORY; case ICE_ERR_NOT_READY: case ICE_ERR_RESET_FAILED: case ICE_ERR_FW_API_VER: case ICE_ERR_AQ_ERROR: case ICE_ERR_AQ_TIMEOUT: case ICE_ERR_AQ_FULL: case ICE_ERR_AQ_NO_WORK: case ICE_ERR_AQ_EMPTY: return VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; default: return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; } } /** * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF * @pf: pointer to the PF structure * @v_opcode: operation code * @v_retval: return value * @msg: pointer to the msg buffer * @msglen: msg length */ static void ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) { struct ice_hw *hw = &pf->hw; unsigned int i; ice_for_each_vf(pf, i) { struct ice_vf *vf = &pf->vf[i]; /* Not all vfs are enabled so skip the ones that are not */ if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) continue; /* Ignore return value on purpose - a given VF may fail, but * we need to keep going and send to all of them */ ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, msglen, NULL); } } /** * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event * @vf: pointer to the VF structure * @pfe: pointer to the virtchnl_pf_event to set link speed/status for * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* * @link_up: whether or not to set the link up/down */ static void ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, int ice_link_speed, bool link_up) { if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { pfe->event_data.link_event_adv.link_status = link_up; /* Speed in Mbps */ pfe->event_data.link_event_adv.link_speed = ice_conv_link_speed_to_virtchnl(true, ice_link_speed); } else { pfe->event_data.link_event.link_status = link_up; /* Legacy method for virtchnl link speeds */ pfe->event_data.link_event.link_speed = (enum virtchnl_link_speed) ice_conv_link_speed_to_virtchnl(false, ice_link_speed); } } /** * ice_vf_has_no_qs_ena - check if the VF has any Rx or Tx queues enabled * @vf: the VF to check * * Returns true if the VF has no Rx and no Tx queues enabled and returns false * otherwise */ static bool ice_vf_has_no_qs_ena(struct ice_vf *vf) { return (!bitmap_weight(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF) && !bitmap_weight(vf->txq_ena, ICE_MAX_RSS_QS_PER_VF)); } /** * ice_is_vf_link_up - check if the VF's link is up * @vf: VF to check if link is up */ static bool ice_is_vf_link_up(struct ice_vf *vf) { struct ice_pf *pf = vf->pf; if (ice_check_vf_init(pf, vf)) return false; if (ice_vf_has_no_qs_ena(vf)) return false; else if (vf->link_forced) return vf->link_up; else return pf->hw.port_info->phy.link_info.link_info & ICE_AQ_LINK_UP; } /** * ice_vc_notify_vf_link_state - Inform a VF of link status * @vf: pointer to the VF structure * * send a link status message to a single VF */ static void ice_vc_notify_vf_link_state(struct ice_vf *vf) { struct virtchnl_pf_event pfe = { 0 }; struct ice_hw *hw = &vf->pf->hw; pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; pfe.severity = PF_EVENT_SEVERITY_INFO; if (ice_is_vf_link_up(vf)) ice_set_pfe_link(vf, &pfe, hw->port_info->phy.link_info.link_speed, true); else ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, sizeof(pfe), NULL); } /** * ice_vf_invalidate_vsi - invalidate vsi_idx/vsi_num to remove VSI access * @vf: VF to remove access to VSI for */ static void ice_vf_invalidate_vsi(struct ice_vf *vf) { vf->lan_vsi_idx = ICE_NO_VSI; vf->lan_vsi_num = ICE_NO_VSI; } /** * ice_vf_vsi_release - invalidate the VF's VSI after freeing it * @vf: invalidate this VF's VSI after freeing it */ static void ice_vf_vsi_release(struct ice_vf *vf) { ice_vsi_release(ice_get_vf_vsi(vf)); ice_vf_invalidate_vsi(vf); } /** * ice_vf_ctrl_invalidate_vsi - invalidate ctrl_vsi_idx to remove VSI access * @vf: VF that control VSI is being invalidated on */ static void ice_vf_ctrl_invalidate_vsi(struct ice_vf *vf) { vf->ctrl_vsi_idx = ICE_NO_VSI; } /** * ice_vf_ctrl_vsi_release - invalidate the VF's control VSI after freeing it * @vf: VF that control VSI is being released on */ static void ice_vf_ctrl_vsi_release(struct ice_vf *vf) { ice_vsi_release(vf->pf->vsi[vf->ctrl_vsi_idx]); ice_vf_ctrl_invalidate_vsi(vf); } /** * ice_free_vf_res - Free a VF's resources * @vf: pointer to the VF info */ static void ice_free_vf_res(struct ice_vf *vf) { struct ice_pf *pf = vf->pf; int i, last_vector_idx; /* First, disable VF's configuration API to prevent OS from * accessing the VF's VSI after it's freed or invalidated. */ clear_bit(ICE_VF_STATE_INIT, vf->vf_states); ice_vf_fdir_exit(vf); /* free VF control VSI */ if (vf->ctrl_vsi_idx != ICE_NO_VSI) ice_vf_ctrl_vsi_release(vf); /* free VSI and disconnect it from the parent uplink */ if (vf->lan_vsi_idx != ICE_NO_VSI) { ice_vf_vsi_release(vf); vf->num_mac = 0; } last_vector_idx = vf->first_vector_idx + pf->num_msix_per_vf - 1; /* clear VF MDD event information */ memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events)); memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events)); /* Disable interrupts so that VF starts in a known state */ for (i = vf->first_vector_idx; i <= last_vector_idx; i++) { wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M); ice_flush(&pf->hw); } /* reset some of the state variables keeping track of the resources */ clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); } /** * ice_dis_vf_mappings * @vf: pointer to the VF structure */ static void ice_dis_vf_mappings(struct ice_vf *vf) { struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; struct device *dev; int first, last, v; struct ice_hw *hw; hw = &pf->hw; vsi = ice_get_vf_vsi(vf); dev = ice_pf_to_dev(pf); wr32(hw, VPINT_ALLOC(vf->vf_id), 0); wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0); first = vf->first_vector_idx; last = first + pf->num_msix_per_vf - 1; for (v = first; v <= last; v++) { u32 reg; reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) & GLINT_VECT2FUNC_IS_PF_M) | ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) & GLINT_VECT2FUNC_PF_NUM_M)); wr32(hw, GLINT_VECT2FUNC(v), reg); } if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0); else dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0); else dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); } /** * ice_sriov_free_msix_res - Reset/free any used MSIX resources * @pf: pointer to the PF structure * * Since no MSIX entries are taken from the pf->irq_tracker then just clear * the pf->sriov_base_vector. * * Returns 0 on success, and -EINVAL on error. */ static int ice_sriov_free_msix_res(struct ice_pf *pf) { struct ice_res_tracker *res; if (!pf) return -EINVAL; res = pf->irq_tracker; if (!res) return -EINVAL; /* give back irq_tracker resources used */ WARN_ON(pf->sriov_base_vector < res->num_entries); pf->sriov_base_vector = 0; return 0; } /** * ice_set_vf_state_qs_dis - Set VF queues state to disabled * @vf: pointer to the VF structure */ void ice_set_vf_state_qs_dis(struct ice_vf *vf) { /* Clear Rx/Tx enabled queues flag */ bitmap_zero(vf->txq_ena, ICE_MAX_RSS_QS_PER_VF); bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); } /** * ice_dis_vf_qs - Disable the VF queues * @vf: pointer to the VF structure */ static void ice_dis_vf_qs(struct ice_vf *vf) { struct ice_vsi *vsi = ice_get_vf_vsi(vf); ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, vf->vf_id); ice_vsi_stop_all_rx_rings(vsi); ice_set_vf_state_qs_dis(vf); } /** * ice_free_vfs - Free all VFs * @pf: pointer to the PF structure */ void ice_free_vfs(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); struct ice_hw *hw = &pf->hw; unsigned int tmp, i; set_bit(ICE_VF_DEINIT_IN_PROGRESS, pf->state); if (!pf->vf) return; while (test_and_set_bit(ICE_VF_DIS, pf->state)) usleep_range(1000, 2000); /* Disable IOV before freeing resources. This lets any VF drivers * running in the host get themselves cleaned up before we yank * the carpet out from underneath their feet. */ if (!pci_vfs_assigned(pf->pdev)) pci_disable_sriov(pf->pdev); else dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n"); /* Avoid wait time by stopping all VFs at the same time */ ice_for_each_vf(pf, i) ice_dis_vf_qs(&pf->vf[i]); tmp = pf->num_alloc_vfs; pf->num_qps_per_vf = 0; pf->num_alloc_vfs = 0; for (i = 0; i < tmp; i++) { if (test_bit(ICE_VF_STATE_INIT, pf->vf[i].vf_states)) { /* disable VF qp mappings and set VF disable state */ ice_dis_vf_mappings(&pf->vf[i]); set_bit(ICE_VF_STATE_DIS, pf->vf[i].vf_states); ice_free_vf_res(&pf->vf[i]); } } if (ice_sriov_free_msix_res(pf)) dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n"); devm_kfree(dev, pf->vf); pf->vf = NULL; /* This check is for when the driver is unloaded while VFs are * assigned. Setting the number of VFs to 0 through sysfs is caught * before this function ever gets called. */ if (!pci_vfs_assigned(pf->pdev)) { unsigned int vf_id; /* Acknowledge VFLR for all VFs. Without this, VFs will fail to * work correctly when SR-IOV gets re-enabled. */ for (vf_id = 0; vf_id < tmp; vf_id++) { u32 reg_idx, bit_idx; reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32; bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32; wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); } } /* clear malicious info if the VFs are getting released */ for (i = 0; i < tmp; i++) if (ice_mbx_clear_malvf(&hw->mbx_snapshot, pf->malvfs, ICE_MAX_VF_COUNT, i)) dev_dbg(dev, "failed to clear malicious VF state for VF %u\n", i); clear_bit(ICE_VF_DIS, pf->state); clear_bit(ICE_VF_DEINIT_IN_PROGRESS, pf->state); clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags); } /** * ice_trigger_vf_reset - Reset a VF on HW * @vf: pointer to the VF structure * @is_vflr: true if VFLR was issued, false if not * @is_pfr: true if the reset was triggered due to a previous PFR * * Trigger hardware to start a reset for a particular VF. Expects the caller * to wait the proper amount of time to allow hardware to reset the VF before * it cleans up and restores VF functionality. */ static void ice_trigger_vf_reset(struct ice_vf *vf, bool is_vflr, bool is_pfr) { struct ice_pf *pf = vf->pf; u32 reg, reg_idx, bit_idx; unsigned int vf_abs_id, i; struct device *dev; struct ice_hw *hw; dev = ice_pf_to_dev(pf); hw = &pf->hw; vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id; /* Inform VF that it is no longer active, as a warning */ clear_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); /* Disable VF's configuration API during reset. The flag is re-enabled * when it's safe again to access VF's VSI. */ clear_bit(ICE_VF_STATE_INIT, vf->vf_states); /* VF_MBX_ARQLEN and VF_MBX_ATQLEN are cleared by PFR, so the driver * needs to clear them in the case of VFR/VFLR. If this is done for * PFR, it can mess up VF resets because the VF driver may already * have started cleanup by the time we get here. */ if (!is_pfr) { wr32(hw, VF_MBX_ARQLEN(vf->vf_id), 0); wr32(hw, VF_MBX_ATQLEN(vf->vf_id), 0); } /* In the case of a VFLR, the HW has already reset the VF and we * just need to clean up, so don't hit the VFRTRIG register. */ if (!is_vflr) { /* reset VF using VPGEN_VFRTRIG reg */ reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); reg |= VPGEN_VFRTRIG_VFSWR_M; wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); } /* clear the VFLR bit in GLGEN_VFLRSTAT */ reg_idx = (vf_abs_id) / 32; bit_idx = (vf_abs_id) % 32; wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); ice_flush(hw); wr32(hw, PF_PCI_CIAA, VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S)); for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) { reg = rd32(hw, PF_PCI_CIAD); /* no transactions pending so stop polling */ if ((reg & VF_TRANS_PENDING_M) == 0) break; dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id); udelay(ICE_PCI_CIAD_WAIT_DELAY_US); } } /** * ice_vsi_manage_pvid - Enable or disable port VLAN for VSI * @vsi: the VSI to update * @pvid_info: VLAN ID and QoS used to set the PVID VSI context field * @enable: true for enable PVID false for disable */ static int ice_vsi_manage_pvid(struct ice_vsi *vsi, u16 pvid_info, bool enable) { struct ice_hw *hw = &vsi->back->hw; struct ice_aqc_vsi_props *info; struct ice_vsi_ctx *ctxt; enum ice_status status; int ret = 0; ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); if (!ctxt) return -ENOMEM; ctxt->info = vsi->info; info = &ctxt->info; if (enable) { info->vlan_flags = ICE_AQ_VSI_VLAN_MODE_UNTAGGED | ICE_AQ_VSI_PVLAN_INSERT_PVID | ICE_AQ_VSI_VLAN_EMOD_STR; info->sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; } else { info->vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING | ICE_AQ_VSI_VLAN_MODE_ALL; info->sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; } info->pvid = cpu_to_le16(pvid_info); info->valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | ICE_AQ_VSI_PROP_SW_VALID); status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); if (status) { dev_info(ice_hw_to_dev(hw), "update VSI for port VLAN failed, err %s aq_err %s\n", ice_stat_str(status), ice_aq_str(hw->adminq.sq_last_status)); ret = -EIO; goto out; } vsi->info.vlan_flags = info->vlan_flags; vsi->info.sw_flags2 = info->sw_flags2; vsi->info.pvid = info->pvid; out: kfree(ctxt); return ret; } /** * ice_vf_get_port_info - Get the VF's port info structure * @vf: VF used to get the port info structure for */ static struct ice_port_info *ice_vf_get_port_info(struct ice_vf *vf) { return vf->pf->hw.port_info; } /** * ice_vf_vsi_setup - Set up a VF VSI * @vf: VF to setup VSI for * * Returns pointer to the successfully allocated VSI struct on success, * otherwise returns NULL on failure. */ static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf) { struct ice_port_info *pi = ice_vf_get_port_info(vf); struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; vsi = ice_vsi_setup(pf, pi, ICE_VSI_VF, vf->vf_id); if (!vsi) { dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n"); ice_vf_invalidate_vsi(vf); return NULL; } vf->lan_vsi_idx = vsi->idx; vf->lan_vsi_num = vsi->vsi_num; return vsi; } /** * ice_vf_ctrl_vsi_setup - Set up a VF control VSI * @vf: VF to setup control VSI for * * Returns pointer to the successfully allocated VSI struct on success, * otherwise returns NULL on failure. */ struct ice_vsi *ice_vf_ctrl_vsi_setup(struct ice_vf *vf) { struct ice_port_info *pi = ice_vf_get_port_info(vf); struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; vsi = ice_vsi_setup(pf, pi, ICE_VSI_CTRL, vf->vf_id); if (!vsi) { dev_err(ice_pf_to_dev(pf), "Failed to create VF control VSI\n"); ice_vf_ctrl_invalidate_vsi(vf); } return vsi; } /** * ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space * @pf: pointer to PF structure * @vf: pointer to VF that the first MSIX vector index is being calculated for * * This returns the first MSIX vector index in PF space that is used by this VF. * This index is used when accessing PF relative registers such as * GLINT_VECT2FUNC and GLINT_DYN_CTL. * This will always be the OICR index in the AVF driver so any functionality * using vf->first_vector_idx for queue configuration will have to increment by * 1 to avoid meddling with the OICR index. */ static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf) { return pf->sriov_base_vector + vf->vf_id * pf->num_msix_per_vf; } /** * ice_vf_rebuild_host_vlan_cfg - add VLAN 0 filter or rebuild the Port VLAN * @vf: VF to add MAC filters for * * Called after a VF VSI has been re-added/rebuilt during reset. The PF driver * always re-adds either a VLAN 0 or port VLAN based filter after reset. */ static int ice_vf_rebuild_host_vlan_cfg(struct ice_vf *vf) { struct device *dev = ice_pf_to_dev(vf->pf); struct ice_vsi *vsi = ice_get_vf_vsi(vf); u16 vlan_id = 0; int err; if (vf->port_vlan_info) { err = ice_vsi_manage_pvid(vsi, vf->port_vlan_info, true); if (err) { dev_err(dev, "failed to configure port VLAN via VSI parameters for VF %u, error %d\n", vf->vf_id, err); return err; } vlan_id = vf->port_vlan_info & VLAN_VID_MASK; } /* vlan_id will either be 0 or the port VLAN number */ err = ice_vsi_add_vlan(vsi, vlan_id, ICE_FWD_TO_VSI); if (err) { dev_err(dev, "failed to add %s VLAN %u filter for VF %u, error %d\n", vf->port_vlan_info ? "port" : "", vlan_id, vf->vf_id, err); return err; } return 0; } /** * ice_vf_rebuild_host_mac_cfg - add broadcast and the VF's perm_addr/LAA * @vf: VF to add MAC filters for * * Called after a VF VSI has been re-added/rebuilt during reset. The PF driver * always re-adds a broadcast filter and the VF's perm_addr/LAA after reset. */ static int ice_vf_rebuild_host_mac_cfg(struct ice_vf *vf) { struct device *dev = ice_pf_to_dev(vf->pf); struct ice_vsi *vsi = ice_get_vf_vsi(vf); enum ice_status status; u8 broadcast[ETH_ALEN]; eth_broadcast_addr(broadcast); status = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI); if (status) { dev_err(dev, "failed to add broadcast MAC filter for VF %u, error %s\n", vf->vf_id, ice_stat_str(status)); return ice_status_to_errno(status); } vf->num_mac++; if (is_valid_ether_addr(vf->hw_lan_addr.addr)) { status = ice_fltr_add_mac(vsi, vf->hw_lan_addr.addr, ICE_FWD_TO_VSI); if (status) { dev_err(dev, "failed to add default unicast MAC filter %pM for VF %u, error %s\n", &vf->hw_lan_addr.addr[0], vf->vf_id, ice_stat_str(status)); return ice_status_to_errno(status); } vf->num_mac++; ether_addr_copy(vf->dev_lan_addr.addr, vf->hw_lan_addr.addr); } return 0; } /** * ice_vf_set_host_trust_cfg - set trust setting based on pre-reset value * @vf: VF to configure trust setting for */ static void ice_vf_set_host_trust_cfg(struct ice_vf *vf) { if (vf->trusted) set_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps); else clear_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps); } /** * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware * @vf: VF to enable MSIX mappings for * * Some of the registers need to be indexed/configured using hardware global * device values and other registers need 0-based values, which represent PF * based values. */ static void ice_ena_vf_msix_mappings(struct ice_vf *vf) { int device_based_first_msix, device_based_last_msix; int pf_based_first_msix, pf_based_last_msix, v; struct ice_pf *pf = vf->pf; int device_based_vf_id; struct ice_hw *hw; u32 reg; hw = &pf->hw; pf_based_first_msix = vf->first_vector_idx; pf_based_last_msix = (pf_based_first_msix + pf->num_msix_per_vf) - 1; device_based_first_msix = pf_based_first_msix + pf->hw.func_caps.common_cap.msix_vector_first_id; device_based_last_msix = (device_based_first_msix + pf->num_msix_per_vf) - 1; device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id; reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) & VPINT_ALLOC_FIRST_M) | ((device_based_last_msix << VPINT_ALLOC_LAST_S) & VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M); wr32(hw, VPINT_ALLOC(vf->vf_id), reg); reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S) & VPINT_ALLOC_PCI_FIRST_M) | ((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) & VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M); wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg); /* map the interrupts to its functions */ for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) { reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) & GLINT_VECT2FUNC_VF_NUM_M) | ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) & GLINT_VECT2FUNC_PF_NUM_M)); wr32(hw, GLINT_VECT2FUNC(v), reg); } /* Map mailbox interrupt to VF MSI-X vector 0 */ wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M); } /** * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF * @vf: VF to enable the mappings for * @max_txq: max Tx queues allowed on the VF's VSI * @max_rxq: max Rx queues allowed on the VF's VSI */ static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq) { struct device *dev = ice_pf_to_dev(vf->pf); struct ice_vsi *vsi = ice_get_vf_vsi(vf); struct ice_hw *hw = &vf->pf->hw; u32 reg; /* set regardless of mapping mode */ wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M); /* VF Tx queues allocation */ if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) { /* set the VF PF Tx queue range * VFNUMQ value should be set to (number of queues - 1). A value * of 0 means 1 queue and a value of 255 means 256 queues */ reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) & VPLAN_TX_QBASE_VFFIRSTQ_M) | (((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) & VPLAN_TX_QBASE_VFNUMQ_M)); wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg); } else { dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); } /* set regardless of mapping mode */ wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M); /* VF Rx queues allocation */ if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) { /* set the VF PF Rx queue range * VFNUMQ value should be set to (number of queues - 1). A value * of 0 means 1 queue and a value of 255 means 256 queues */ reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) & VPLAN_RX_QBASE_VFFIRSTQ_M) | (((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) & VPLAN_RX_QBASE_VFNUMQ_M)); wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg); } else { dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); } } /** * ice_ena_vf_mappings - enable VF MSIX and queue mapping * @vf: pointer to the VF structure */ static void ice_ena_vf_mappings(struct ice_vf *vf) { struct ice_vsi *vsi = ice_get_vf_vsi(vf); ice_ena_vf_msix_mappings(vf); ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq); } /** * ice_determine_res * @pf: pointer to the PF structure * @avail_res: available resources in the PF structure * @max_res: maximum resources that can be given per VF * @min_res: minimum resources that can be given per VF * * Returns non-zero value if resources (queues/vectors) are available or * returns zero if PF cannot accommodate for all num_alloc_vfs. */ static int ice_determine_res(struct ice_pf *pf, u16 avail_res, u16 max_res, u16 min_res) { bool checked_min_res = false; int res; /* start by checking if PF can assign max number of resources for * all num_alloc_vfs. * if yes, return number per VF * If no, divide by 2 and roundup, check again * repeat the loop till we reach a point where even minimum resources * are not available, in that case return 0 */ res = max_res; while ((res >= min_res) && !checked_min_res) { int num_all_res; num_all_res = pf->num_alloc_vfs * res; if (num_all_res <= avail_res) return res; if (res == min_res) checked_min_res = true; res = DIV_ROUND_UP(res, 2); } return 0; } /** * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space * @vf: VF to calculate the register index for * @q_vector: a q_vector associated to the VF */ int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector) { struct ice_pf *pf; if (!vf || !q_vector) return -EINVAL; pf = vf->pf; /* always add one to account for the OICR being the first MSIX */ return pf->sriov_base_vector + pf->num_msix_per_vf * vf->vf_id + q_vector->v_idx + 1; } /** * ice_get_max_valid_res_idx - Get the max valid resource index * @res: pointer to the resource to find the max valid index for * * Start from the end of the ice_res_tracker and return right when we find the * first res->list entry with the ICE_RES_VALID_BIT set. This function is only * valid for SR-IOV because it is the only consumer that manipulates the * res->end and this is always called when res->end is set to res->num_entries. */ static int ice_get_max_valid_res_idx(struct ice_res_tracker *res) { int i; if (!res) return -EINVAL; for (i = res->num_entries - 1; i >= 0; i--) if (res->list[i] & ICE_RES_VALID_BIT) return i; return 0; } /** * ice_sriov_set_msix_res - Set any used MSIX resources * @pf: pointer to PF structure * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs * * This function allows SR-IOV resources to be taken from the end of the PF's * allowed HW MSIX vectors so that the irq_tracker will not be affected. We * just set the pf->sriov_base_vector and return success. * * If there are not enough resources available, return an error. This should * always be caught by ice_set_per_vf_res(). * * Return 0 on success, and -EINVAL when there are not enough MSIX vectors * in the PF's space available for SR-IOV. */ static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed) { u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; int vectors_used = pf->irq_tracker->num_entries; int sriov_base_vector; sriov_base_vector = total_vectors - num_msix_needed; /* make sure we only grab irq_tracker entries from the list end and * that we have enough available MSIX vectors */ if (sriov_base_vector < vectors_used) return -EINVAL; pf->sriov_base_vector = sriov_base_vector; return 0; } /** * ice_set_per_vf_res - check if vectors and queues are available * @pf: pointer to the PF structure * * First, determine HW interrupts from common pool. If we allocate fewer VFs, we * get more vectors and can enable more queues per VF. Note that this does not * grab any vectors from the SW pool already allocated. Also note, that all * vector counts include one for each VF's miscellaneous interrupt vector * (i.e. OICR). * * Minimum VFs - 2 vectors, 1 queue pair * Small VFs - 5 vectors, 4 queue pairs * Medium VFs - 17 vectors, 16 queue pairs * * Second, determine number of queue pairs per VF by starting with a pre-defined * maximum each VF supports. If this is not possible, then we adjust based on * queue pairs available on the device. * * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used * by each VF during VF initialization and reset. */ static int ice_set_per_vf_res(struct ice_pf *pf) { int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker); int msix_avail_per_vf, msix_avail_for_sriov; struct device *dev = ice_pf_to_dev(pf); u16 num_msix_per_vf, num_txq, num_rxq; if (!pf->num_alloc_vfs || max_valid_res_idx < 0) return -EINVAL; /* determine MSI-X resources per VF */ msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors - pf->irq_tracker->num_entries; msix_avail_per_vf = msix_avail_for_sriov / pf->num_alloc_vfs; if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) { num_msix_per_vf = ICE_NUM_VF_MSIX_MED; } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) { num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL; } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) { num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN; } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) { num_msix_per_vf = ICE_MIN_INTR_PER_VF; } else { dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n", msix_avail_for_sriov, ICE_MIN_INTR_PER_VF, pf->num_alloc_vfs); return -EIO; } /* determine queue resources per VF */ num_txq = ice_determine_res(pf, ice_get_avail_txq_count(pf), min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, ICE_MAX_RSS_QS_PER_VF), ICE_MIN_QS_PER_VF); num_rxq = ice_determine_res(pf, ice_get_avail_rxq_count(pf), min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, ICE_MAX_RSS_QS_PER_VF), ICE_MIN_QS_PER_VF); if (!num_txq || !num_rxq) { dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n", ICE_MIN_QS_PER_VF, pf->num_alloc_vfs); return -EIO; } if (ice_sriov_set_msix_res(pf, num_msix_per_vf * pf->num_alloc_vfs)) { dev_err(dev, "Unable to set MSI-X resources for %d VFs\n", pf->num_alloc_vfs); return -EINVAL; } /* only allow equal Tx/Rx queue count (i.e. queue pairs) */ pf->num_qps_per_vf = min_t(int, num_txq, num_rxq); pf->num_msix_per_vf = num_msix_per_vf; dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n", pf->num_alloc_vfs, pf->num_msix_per_vf, pf->num_qps_per_vf); return 0; } /** * ice_clear_vf_reset_trigger - enable VF to access hardware * @vf: VF to enabled hardware access for */ static void ice_clear_vf_reset_trigger(struct ice_vf *vf) { struct ice_hw *hw = &vf->pf->hw; u32 reg; reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); reg &= ~VPGEN_VFRTRIG_VFSWR_M; wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); ice_flush(hw); } /** * ice_vf_set_vsi_promisc - set given VF VSI to given promiscuous mode(s) * @vf: pointer to the VF info * @vsi: the VSI being configured * @promisc_m: mask of promiscuous config bits * @rm_promisc: promisc flag request from the VF to remove or add filter * * This function configures VF VSI promiscuous mode, based on the VF requests, * for Unicast, Multicast and VLAN */ static enum ice_status ice_vf_set_vsi_promisc(struct ice_vf *vf, struct ice_vsi *vsi, u8 promisc_m, bool rm_promisc) { struct ice_pf *pf = vf->pf; enum ice_status status = 0; struct ice_hw *hw; hw = &pf->hw; if (vsi->num_vlan) { status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, rm_promisc); } else if (vf->port_vlan_info) { if (rm_promisc) status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, vf->port_vlan_info); else status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, vf->port_vlan_info); } else { if (rm_promisc) status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 0); else status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 0); } return status; } static void ice_vf_clear_counters(struct ice_vf *vf) { struct ice_vsi *vsi = ice_get_vf_vsi(vf); vf->num_mac = 0; vsi->num_vlan = 0; memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events)); memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events)); } /** * ice_vf_pre_vsi_rebuild - tasks to be done prior to VSI rebuild * @vf: VF to perform pre VSI rebuild tasks * * These tasks are items that don't need to be amortized since they are most * likely called in a for loop with all VF(s) in the reset_all_vfs() case. */ static void ice_vf_pre_vsi_rebuild(struct ice_vf *vf) { ice_vf_clear_counters(vf); ice_clear_vf_reset_trigger(vf); } /** * ice_vf_rebuild_aggregator_node_cfg - rebuild aggregator node config * @vsi: Pointer to VSI * * This function moves VSI into corresponding scheduler aggregator node * based on cached value of "aggregator node info" per VSI */ static void ice_vf_rebuild_aggregator_node_cfg(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; enum ice_status status; struct device *dev; if (!vsi->agg_node) return; dev = ice_pf_to_dev(pf); if (vsi->agg_node->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { dev_dbg(dev, "agg_id %u already has reached max_num_vsis %u\n", vsi->agg_node->agg_id, vsi->agg_node->num_vsis); return; } status = ice_move_vsi_to_agg(pf->hw.port_info, vsi->agg_node->agg_id, vsi->idx, vsi->tc_cfg.ena_tc); if (status) dev_dbg(dev, "unable to move VSI idx %u into aggregator %u node", vsi->idx, vsi->agg_node->agg_id); else vsi->agg_node->num_vsis++; } /** * ice_vf_rebuild_host_cfg - host admin configuration is persistent across reset * @vf: VF to rebuild host configuration on */ static void ice_vf_rebuild_host_cfg(struct ice_vf *vf) { struct device *dev = ice_pf_to_dev(vf->pf); struct ice_vsi *vsi = ice_get_vf_vsi(vf); ice_vf_set_host_trust_cfg(vf); if (ice_vf_rebuild_host_mac_cfg(vf)) dev_err(dev, "failed to rebuild default MAC configuration for VF %d\n", vf->vf_id); if (ice_vf_rebuild_host_vlan_cfg(vf)) dev_err(dev, "failed to rebuild VLAN configuration for VF %u\n", vf->vf_id); /* rebuild aggregator node config for main VF VSI */ ice_vf_rebuild_aggregator_node_cfg(vsi); } /** * ice_vf_rebuild_vsi_with_release - release and setup the VF's VSI * @vf: VF to release and setup the VSI for * * This is only called when a single VF is being reset (i.e. VFR, VFLR, host VF * configuration change, etc.). */ static int ice_vf_rebuild_vsi_with_release(struct ice_vf *vf) { ice_vf_vsi_release(vf); if (!ice_vf_vsi_setup(vf)) return -ENOMEM; return 0; } /** * ice_vf_rebuild_vsi - rebuild the VF's VSI * @vf: VF to rebuild the VSI for * * This is only called when all VF(s) are being reset (i.e. PCIe Reset on the * host, PFR, CORER, etc.). */ static int ice_vf_rebuild_vsi(struct ice_vf *vf) { struct ice_vsi *vsi = ice_get_vf_vsi(vf); struct ice_pf *pf = vf->pf; if (ice_vsi_rebuild(vsi, true)) { dev_err(ice_pf_to_dev(pf), "failed to rebuild VF %d VSI\n", vf->vf_id); return -EIO; } /* vsi->idx will remain the same in this case so don't update * vf->lan_vsi_idx */ vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); vf->lan_vsi_num = vsi->vsi_num; return 0; } /** * ice_vf_set_initialized - VF is ready for VIRTCHNL communication * @vf: VF to set in initialized state * * After this function the VF will be ready to receive/handle the * VIRTCHNL_OP_GET_VF_RESOURCES message */ static void ice_vf_set_initialized(struct ice_vf *vf) { ice_set_vf_state_qs_dis(vf); clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); clear_bit(ICE_VF_STATE_DIS, vf->vf_states); set_bit(ICE_VF_STATE_INIT, vf->vf_states); } /** * ice_vf_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt * @vf: VF to perform tasks on */ static void ice_vf_post_vsi_rebuild(struct ice_vf *vf) { struct ice_pf *pf = vf->pf; struct ice_hw *hw; hw = &pf->hw; ice_vf_rebuild_host_cfg(vf); ice_vf_set_initialized(vf); ice_ena_vf_mappings(vf); wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); } /** * ice_reset_all_vfs - reset all allocated VFs in one go * @pf: pointer to the PF structure * @is_vflr: true if VFLR was issued, false if not * * First, tell the hardware to reset each VF, then do all the waiting in one * chunk, and finally finish restoring each VF after the wait. This is useful * during PF routines which need to reset all VFs, as otherwise it must perform * these resets in a serialized fashion. * * Returns true if any VFs were reset, and false otherwise. */ bool ice_reset_all_vfs(struct ice_pf *pf, bool is_vflr) { struct device *dev = ice_pf_to_dev(pf); struct ice_hw *hw = &pf->hw; struct ice_vf *vf; int v, i; /* If we don't have any VFs, then there is nothing to reset */ if (!pf->num_alloc_vfs) return false; /* clear all malicious info if the VFs are getting reset */ ice_for_each_vf(pf, i) if (ice_mbx_clear_malvf(&hw->mbx_snapshot, pf->malvfs, ICE_MAX_VF_COUNT, i)) dev_dbg(dev, "failed to clear malicious VF state for VF %u\n", i); /* If VFs have been disabled, there is no need to reset */ if (test_and_set_bit(ICE_VF_DIS, pf->state)) return false; /* Begin reset on all VFs at once */ ice_for_each_vf(pf, v) ice_trigger_vf_reset(&pf->vf[v], is_vflr, true); /* HW requires some time to make sure it can flush the FIFO for a VF * when it resets it. Poll the VPGEN_VFRSTAT register for each VF in * sequence to make sure that it has completed. We'll keep track of * the VFs using a simple iterator that increments once that VF has * finished resetting. */ for (i = 0, v = 0; i < 10 && v < pf->num_alloc_vfs; i++) { /* Check each VF in sequence */ while (v < pf->num_alloc_vfs) { u32 reg; vf = &pf->vf[v]; reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id)); if (!(reg & VPGEN_VFRSTAT_VFRD_M)) { /* only delay if the check failed */ usleep_range(10, 20); break; } /* If the current VF has finished resetting, move on * to the next VF in sequence. */ v++; } } /* Display a warning if at least one VF didn't manage to reset in * time, but continue on with the operation. */ if (v < pf->num_alloc_vfs) dev_warn(dev, "VF reset check timeout\n"); /* free VF resources to begin resetting the VSI state */ ice_for_each_vf(pf, v) { vf = &pf->vf[v]; vf->driver_caps = 0; ice_vc_set_default_allowlist(vf); ice_vf_fdir_exit(vf); ice_vf_fdir_init(vf); /* clean VF control VSI when resetting VFs since it should be * setup only when VF creates its first FDIR rule. */ if (vf->ctrl_vsi_idx != ICE_NO_VSI) ice_vf_ctrl_invalidate_vsi(vf); ice_vf_pre_vsi_rebuild(vf); ice_vf_rebuild_vsi(vf); ice_vf_post_vsi_rebuild(vf); } ice_flush(hw); clear_bit(ICE_VF_DIS, pf->state); return true; } /** * ice_is_vf_disabled * @vf: pointer to the VF info * * Returns true if the PF or VF is disabled, false otherwise. */ static bool ice_is_vf_disabled(struct ice_vf *vf) { struct ice_pf *pf = vf->pf; /* If the PF has been disabled, there is no need resetting VF until * PF is active again. Similarly, if the VF has been disabled, this * means something else is resetting the VF, so we shouldn't continue. * Otherwise, set disable VF state bit for actual reset, and continue. */ return (test_bit(ICE_VF_DIS, pf->state) || test_bit(ICE_VF_STATE_DIS, vf->vf_states)); } /** * ice_reset_vf - Reset a particular VF * @vf: pointer to the VF structure * @is_vflr: true if VFLR was issued, false if not * * Returns true if the VF is currently in reset, resets successfully, or resets * are disabled and false otherwise. */ bool ice_reset_vf(struct ice_vf *vf, bool is_vflr) { struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; struct device *dev; struct ice_hw *hw; bool rsd = false; u8 promisc_m; u32 reg; int i; dev = ice_pf_to_dev(pf); if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { dev_dbg(dev, "Trying to reset VF %d, but all VF resets are disabled\n", vf->vf_id); return true; } if (ice_is_vf_disabled(vf)) { dev_dbg(dev, "VF is already disabled, there is no need for resetting it, telling VM, all is fine %d\n", vf->vf_id); return true; } /* Set VF disable bit state here, before triggering reset */ set_bit(ICE_VF_STATE_DIS, vf->vf_states); ice_trigger_vf_reset(vf, is_vflr, false); vsi = ice_get_vf_vsi(vf); ice_dis_vf_qs(vf); /* Call Disable LAN Tx queue AQ whether or not queues are * enabled. This is needed for successful completion of VFR. */ ice_dis_vsi_txq(vsi->port_info, vsi->idx, 0, 0, NULL, NULL, NULL, ICE_VF_RESET, vf->vf_id, NULL); hw = &pf->hw; /* poll VPGEN_VFRSTAT reg to make sure * that reset is complete */ for (i = 0; i < 10; i++) { /* VF reset requires driver to first reset the VF and then * poll the status register to make sure that the reset * completed successfully. */ reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id)); if (reg & VPGEN_VFRSTAT_VFRD_M) { rsd = true; break; } /* only sleep if the reset is not done */ usleep_range(10, 20); } vf->driver_caps = 0; ice_vc_set_default_allowlist(vf); /* Display a warning if VF didn't manage to reset in time, but need to * continue on with the operation. */ if (!rsd) dev_warn(dev, "VF reset check timeout on VF %d\n", vf->vf_id); /* disable promiscuous modes in case they were enabled * ignore any error if disabling process failed */ if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) { if (vf->port_vlan_info || vsi->num_vlan) promisc_m = ICE_UCAST_VLAN_PROMISC_BITS; else promisc_m = ICE_UCAST_PROMISC_BITS; if (ice_vf_set_vsi_promisc(vf, vsi, promisc_m, true)) dev_err(dev, "disabling promiscuous mode failed\n"); } ice_vf_fdir_exit(vf); ice_vf_fdir_init(vf); /* clean VF control VSI when resetting VF since it should be setup * only when VF creates its first FDIR rule. */ if (vf->ctrl_vsi_idx != ICE_NO_VSI) ice_vf_ctrl_vsi_release(vf); ice_vf_pre_vsi_rebuild(vf); if (ice_vf_rebuild_vsi_with_release(vf)) { dev_err(dev, "Failed to release and setup the VF%u's VSI\n", vf->vf_id); return false; } ice_vf_post_vsi_rebuild(vf); /* if the VF has been reset allow it to come up again */ if (ice_mbx_clear_malvf(&hw->mbx_snapshot, pf->malvfs, ICE_MAX_VF_COUNT, vf->vf_id)) dev_dbg(dev, "failed to clear malicious VF state for VF %u\n", i); return true; } /** * ice_vc_notify_link_state - Inform all VFs on a PF of link status * @pf: pointer to the PF structure */ void ice_vc_notify_link_state(struct ice_pf *pf) { int i; ice_for_each_vf(pf, i) ice_vc_notify_vf_link_state(&pf->vf[i]); } /** * ice_vc_notify_reset - Send pending reset message to all VFs * @pf: pointer to the PF structure * * indicate a pending reset to all VFs on a given PF */ void ice_vc_notify_reset(struct ice_pf *pf) { struct virtchnl_pf_event pfe; if (!pf->num_alloc_vfs) return; pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); } /** * ice_vc_notify_vf_reset - Notify VF of a reset event * @vf: pointer to the VF structure */ static void ice_vc_notify_vf_reset(struct ice_vf *vf) { struct virtchnl_pf_event pfe; struct ice_pf *pf; if (!vf) return; pf = vf->pf; if (ice_validate_vf_id(pf, vf->vf_id)) return; /* Bail out if VF is in disabled state, neither initialized, nor active * state - otherwise proceed with notifications */ if ((!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) || test_bit(ICE_VF_STATE_DIS, vf->vf_states)) return; pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, sizeof(pfe), NULL); } /** * ice_init_vf_vsi_res - initialize/setup VF VSI resources * @vf: VF to initialize/setup the VSI for * * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the * VF VSI's broadcast filter and is only used during initial VF creation. */ static int ice_init_vf_vsi_res(struct ice_vf *vf) { struct ice_pf *pf = vf->pf; u8 broadcast[ETH_ALEN]; enum ice_status status; struct ice_vsi *vsi; struct device *dev; int err; vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf); dev = ice_pf_to_dev(pf); vsi = ice_vf_vsi_setup(vf); if (!vsi) return -ENOMEM; err = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI); if (err) { dev_warn(dev, "Failed to add VLAN 0 filter for VF %d\n", vf->vf_id); goto release_vsi; } eth_broadcast_addr(broadcast); status = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI); if (status) { dev_err(dev, "Failed to add broadcast MAC filter for VF %d, status %s\n", vf->vf_id, ice_stat_str(status)); err = ice_status_to_errno(status); goto release_vsi; } vf->num_mac = 1; return 0; release_vsi: ice_vf_vsi_release(vf); return err; } /** * ice_start_vfs - start VFs so they are ready to be used by SR-IOV * @pf: PF the VFs are associated with */ static int ice_start_vfs(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; int retval, i; ice_for_each_vf(pf, i) { struct ice_vf *vf = &pf->vf[i]; ice_clear_vf_reset_trigger(vf); retval = ice_init_vf_vsi_res(vf); if (retval) { dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n", vf->vf_id, retval); goto teardown; } set_bit(ICE_VF_STATE_INIT, vf->vf_states); ice_ena_vf_mappings(vf); wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); } ice_flush(hw); return 0; teardown: for (i = i - 1; i >= 0; i--) { struct ice_vf *vf = &pf->vf[i]; ice_dis_vf_mappings(vf); ice_vf_vsi_release(vf); } return retval; } /** * ice_set_dflt_settings_vfs - set VF defaults during initialization/creation * @pf: PF holding reference to all VFs for default configuration */ static void ice_set_dflt_settings_vfs(struct ice_pf *pf) { int i; ice_for_each_vf(pf, i) { struct ice_vf *vf = &pf->vf[i]; vf->pf = pf; vf->vf_id = i; vf->vf_sw_id = pf->first_sw; /* assign default capabilities */ set_bit(ICE_VIRTCHNL_VF_CAP_L2, &vf->vf_caps); vf->spoofchk = true; vf->num_vf_qs = pf->num_qps_per_vf; ice_vc_set_default_allowlist(vf); /* ctrl_vsi_idx will be set to a valid value only when VF * creates its first fdir rule. */ ice_vf_ctrl_invalidate_vsi(vf); ice_vf_fdir_init(vf); } } /** * ice_alloc_vfs - allocate num_vfs in the PF structure * @pf: PF to store the allocated VFs in * @num_vfs: number of VFs to allocate */ static int ice_alloc_vfs(struct ice_pf *pf, int num_vfs) { struct ice_vf *vfs; vfs = devm_kcalloc(ice_pf_to_dev(pf), num_vfs, sizeof(*vfs), GFP_KERNEL); if (!vfs) return -ENOMEM; pf->vf = vfs; pf->num_alloc_vfs = num_vfs; return 0; } /** * ice_ena_vfs - enable VFs so they are ready to be used * @pf: pointer to the PF structure * @num_vfs: number of VFs to enable */ static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs) { struct device *dev = ice_pf_to_dev(pf); struct ice_hw *hw = &pf->hw; int ret; /* Disable global interrupt 0 so we don't try to handle the VFLR. */ wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); set_bit(ICE_OICR_INTR_DIS, pf->state); ice_flush(hw); ret = pci_enable_sriov(pf->pdev, num_vfs); if (ret) { pf->num_alloc_vfs = 0; goto err_unroll_intr; } ret = ice_alloc_vfs(pf, num_vfs); if (ret) goto err_pci_disable_sriov; if (ice_set_per_vf_res(pf)) { dev_err(dev, "Not enough resources for %d VFs, try with fewer number of VFs\n", num_vfs); ret = -ENOSPC; goto err_unroll_sriov; } ice_set_dflt_settings_vfs(pf); if (ice_start_vfs(pf)) { dev_err(dev, "Failed to start VF(s)\n"); ret = -EAGAIN; goto err_unroll_sriov; } clear_bit(ICE_VF_DIS, pf->state); return 0; err_unroll_sriov: devm_kfree(dev, pf->vf); pf->vf = NULL; pf->num_alloc_vfs = 0; err_pci_disable_sriov: pci_disable_sriov(pf->pdev); err_unroll_intr: /* rearm interrupts here */ ice_irq_dynamic_ena(hw, NULL, NULL); clear_bit(ICE_OICR_INTR_DIS, pf->state); return ret; } /** * ice_pci_sriov_ena - Enable or change number of VFs * @pf: pointer to the PF structure * @num_vfs: number of VFs to allocate * * Returns 0 on success and negative on failure */ static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs) { int pre_existing_vfs = pci_num_vf(pf->pdev); struct device *dev = ice_pf_to_dev(pf); int err; if (pre_existing_vfs && pre_existing_vfs != num_vfs) ice_free_vfs(pf); else if (pre_existing_vfs && pre_existing_vfs == num_vfs) return 0; if (num_vfs > pf->num_vfs_supported) { dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n", num_vfs, pf->num_vfs_supported); return -EOPNOTSUPP; } dev_info(dev, "Enabling %d VFs\n", num_vfs); err = ice_ena_vfs(pf, num_vfs); if (err) { dev_err(dev, "Failed to enable SR-IOV: %d\n", err); return err; } set_bit(ICE_FLAG_SRIOV_ENA, pf->flags); return 0; } /** * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks * @pf: PF to enabled SR-IOV on */ static int ice_check_sriov_allowed(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) { dev_err(dev, "This device is not capable of SR-IOV\n"); return -EOPNOTSUPP; } if (ice_is_safe_mode(pf)) { dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n"); return -EOPNOTSUPP; } if (!ice_pf_state_is_nominal(pf)) { dev_err(dev, "Cannot enable SR-IOV, device not ready\n"); return -EBUSY; } return 0; } /** * ice_sriov_configure - Enable or change number of VFs via sysfs * @pdev: pointer to a pci_dev structure * @num_vfs: number of VFs to allocate or 0 to free VFs * * This function is called when the user updates the number of VFs in sysfs. On * success return whatever num_vfs was set to by the caller. Return negative on * failure. */ int ice_sriov_configure(struct pci_dev *pdev, int num_vfs) { struct ice_pf *pf = pci_get_drvdata(pdev); struct device *dev = ice_pf_to_dev(pf); enum ice_status status; int err; err = ice_check_sriov_allowed(pf); if (err) return err; if (!num_vfs) { if (!pci_vfs_assigned(pdev)) { ice_mbx_deinit_snapshot(&pf->hw); ice_free_vfs(pf); if (pf->lag) ice_enable_lag(pf->lag); return 0; } dev_err(dev, "can't free VFs because some are assigned to VMs.\n"); return -EBUSY; } status = ice_mbx_init_snapshot(&pf->hw, num_vfs); if (status) return ice_status_to_errno(status); err = ice_pci_sriov_ena(pf, num_vfs); if (err) { ice_mbx_deinit_snapshot(&pf->hw); return err; } if (pf->lag) ice_disable_lag(pf->lag); return num_vfs; } /** * ice_process_vflr_event - Free VF resources via IRQ calls * @pf: pointer to the PF structure * * called from the VFLR IRQ handler to * free up VF resources and state variables */ void ice_process_vflr_event(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; unsigned int vf_id; u32 reg; if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) || !pf->num_alloc_vfs) return; ice_for_each_vf(pf, vf_id) { struct ice_vf *vf = &pf->vf[vf_id]; u32 reg_idx, bit_idx; reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32; bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32; /* read GLGEN_VFLRSTAT register to find out the flr VFs */ reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx)); if (reg & BIT(bit_idx)) /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */ ice_reset_vf(vf, true); } } /** * ice_vc_reset_vf - Perform software reset on the VF after informing the AVF * @vf: pointer to the VF info */ static void ice_vc_reset_vf(struct ice_vf *vf) { ice_vc_notify_vf_reset(vf); ice_reset_vf(vf, false); } /** * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in * @pf: PF used to index all VFs * @pfq: queue index relative to the PF's function space * * If no VF is found who owns the pfq then return NULL, otherwise return a * pointer to the VF who owns the pfq */ static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq) { unsigned int vf_id; ice_for_each_vf(pf, vf_id) { struct ice_vf *vf = &pf->vf[vf_id]; struct ice_vsi *vsi; u16 rxq_idx; vsi = ice_get_vf_vsi(vf); ice_for_each_rxq(vsi, rxq_idx) if (vsi->rxq_map[rxq_idx] == pfq) return vf; } return NULL; } /** * ice_globalq_to_pfq - convert from global queue index to PF space queue index * @pf: PF used for conversion * @globalq: global queue index used to convert to PF space queue index */ static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq) { return globalq - pf->hw.func_caps.common_cap.rxq_first_id; } /** * ice_vf_lan_overflow_event - handle LAN overflow event for a VF * @pf: PF that the LAN overflow event happened on * @event: structure holding the event information for the LAN overflow event * * Determine if the LAN overflow event was caused by a VF queue. If it was not * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a * reset on the offending VF. */ void ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event) { u32 gldcb_rtctq, queue; struct ice_vf *vf; gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq); dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq); /* event returns device global Rx queue number */ queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >> GLDCB_RTCTQ_RXQNUM_S; vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue)); if (!vf) return; ice_vc_reset_vf(vf); } /** * ice_vc_send_msg_to_vf - Send message to VF * @vf: pointer to the VF info * @v_opcode: virtual channel opcode * @v_retval: virtual channel return value * @msg: pointer to the msg buffer * @msglen: msg length * * send msg to VF */ int ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) { enum ice_status aq_ret; struct device *dev; struct ice_pf *pf; if (!vf) return -EINVAL; pf = vf->pf; if (ice_validate_vf_id(pf, vf->vf_id)) return -EINVAL; dev = ice_pf_to_dev(pf); /* single place to detect unsuccessful return values */ if (v_retval) { vf->num_inval_msgs++; dev_info(dev, "VF %d failed opcode %d, retval: %d\n", vf->vf_id, v_opcode, v_retval); if (vf->num_inval_msgs > ICE_DFLT_NUM_INVAL_MSGS_ALLOWED) { dev_err(dev, "Number of invalid messages exceeded for VF %d\n", vf->vf_id); dev_err(dev, "Use PF Control I/F to enable the VF\n"); set_bit(ICE_VF_STATE_DIS, vf->vf_states); return -EIO; } } else { vf->num_valid_msgs++; /* reset the invalid counter, if a valid message is received. */ vf->num_inval_msgs = 0; } aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, msg, msglen, NULL); if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { dev_info(dev, "Unable to send the message to VF %d ret %s aq_err %s\n", vf->vf_id, ice_stat_str(aq_ret), ice_aq_str(pf->hw.mailboxq.sq_last_status)); return -EIO; } return 0; } /** * ice_vc_get_ver_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to request the API version used by the PF */ static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) { struct virtchnl_version_info info = { VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR }; vf->vf_ver = *(struct virtchnl_version_info *)msg; /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ if (VF_IS_V10(&vf->vf_ver)) info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, sizeof(struct virtchnl_version_info)); } /** * ice_vc_get_max_frame_size - get max frame size allowed for VF * @vf: VF used to determine max frame size * * Max frame size is determined based on the current port's max frame size and * whether a port VLAN is configured on this VF. The VF is not aware whether * it's in a port VLAN so the PF needs to account for this in max frame size * checks and sending the max frame size to the VF. */ static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) { struct ice_port_info *pi = ice_vf_get_port_info(vf); u16 max_frame_size; max_frame_size = pi->phy.link_info.max_frame_size; if (vf->port_vlan_info) max_frame_size -= VLAN_HLEN; return max_frame_size; } /** * ice_vc_get_vf_res_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to request its resources */ static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_vf_resource *vfres = NULL; struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; int len = 0; int ret; if (ice_check_vf_init(pf, vf)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto err; } len = sizeof(struct virtchnl_vf_resource); vfres = kzalloc(len, GFP_KERNEL); if (!vfres) { v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; len = 0; goto err; } if (VF_IS_V11(&vf->vf_ver)) vf->driver_caps = *(u32 *)msg; else vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | VIRTCHNL_VF_OFFLOAD_RSS_REG | VIRTCHNL_VF_OFFLOAD_VLAN; vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto err; } if (!vsi->info.pvid) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) { vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; } else { if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ; else vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG; } if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; vfres->num_vsis = 1; /* Tx and Rx queue are equal for VF */ vfres->num_queue_pairs = vsi->num_txq; vfres->max_vectors = pf->num_msix_per_vf; vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE; vfres->max_mtu = ice_vc_get_max_frame_size(vf); vfres->vsi_res[0].vsi_id = vf->lan_vsi_num; vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; ether_addr_copy(vfres->vsi_res[0].default_mac_addr, vf->hw_lan_addr.addr); /* match guest capabilities */ vf->driver_caps = vfres->vf_cap_flags; ice_vc_set_caps_allowlist(vf); ice_vc_set_working_allowlist(vf); set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); err: /* send the response back to the VF */ ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, (u8 *)vfres, len); kfree(vfres); return ret; } /** * ice_vc_reset_vf_msg * @vf: pointer to the VF info * * called from the VF to reset itself, * unlike other virtchnl messages, PF driver * doesn't send the response back to the VF */ static void ice_vc_reset_vf_msg(struct ice_vf *vf) { if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) ice_reset_vf(vf, false); } /** * ice_find_vsi_from_id * @pf: the PF structure to search for the VSI * @id: ID of the VSI it is searching for * * searches for the VSI with the given ID */ static struct ice_vsi *ice_find_vsi_from_id(struct ice_pf *pf, u16 id) { int i; ice_for_each_vsi(pf, i) if (pf->vsi[i] && pf->vsi[i]->vsi_num == id) return pf->vsi[i]; return NULL; } /** * ice_vc_isvalid_vsi_id * @vf: pointer to the VF info * @vsi_id: VF relative VSI ID * * check for the valid VSI ID */ bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) { struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; vsi = ice_find_vsi_from_id(pf, vsi_id); return (vsi && (vsi->vf_id == vf->vf_id)); } /** * ice_vc_isvalid_q_id * @vf: pointer to the VF info * @vsi_id: VSI ID * @qid: VSI relative queue ID * * check for the valid queue ID */ static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid) { struct ice_vsi *vsi = ice_find_vsi_from_id(vf->pf, vsi_id); /* allocated Tx and Rx queues should be always equal for VF VSI */ return (vsi && (qid < vsi->alloc_txq)); } /** * ice_vc_isvalid_ring_len * @ring_len: length of ring * * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE * or zero */ static bool ice_vc_isvalid_ring_len(u16 ring_len) { return ring_len == 0 || (ring_len >= ICE_MIN_NUM_DESC && ring_len <= ICE_MAX_NUM_DESC && !(ring_len % ICE_REQ_DESC_MULTIPLE)); } /** * ice_vc_parse_rss_cfg - parses hash fields and headers from * a specific virtchnl RSS cfg * @hw: pointer to the hardware * @rss_cfg: pointer to the virtchnl RSS cfg * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*) * to configure * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure * * Return true if all the protocol header and hash fields in the RSS cfg could * be parsed, else return false * * This function parses the virtchnl RSS cfg to be the intended * hash fields and the intended header for RSS configuration */ static bool ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg, u32 *addl_hdrs, u64 *hash_flds) { const struct ice_vc_hash_field_match_type *hf_list; const struct ice_vc_hdr_match_type *hdr_list; int i, hf_list_len, hdr_list_len; if (!strncmp(hw->active_pkg_name, "ICE COMMS Package", sizeof(hw->active_pkg_name))) { hf_list = ice_vc_hash_field_list_comms; hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list_comms); hdr_list = ice_vc_hdr_list_comms; hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list_comms); } else { hf_list = ice_vc_hash_field_list_os; hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list_os); hdr_list = ice_vc_hdr_list_os; hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list_os); } for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { struct virtchnl_proto_hdr *proto_hdr = &rss_cfg->proto_hdrs.proto_hdr[i]; bool hdr_found = false; int j; /* Find matched ice headers according to virtchnl headers. */ for (j = 0; j < hdr_list_len; j++) { struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; if (proto_hdr->type == hdr_map.vc_hdr) { *addl_hdrs |= hdr_map.ice_hdr; hdr_found = true; } } if (!hdr_found) return false; /* Find matched ice hash fields according to * virtchnl hash fields. */ for (j = 0; j < hf_list_len; j++) { struct ice_vc_hash_field_match_type hf_map = hf_list[j]; if (proto_hdr->type == hf_map.vc_hdr && proto_hdr->field_selector == hf_map.vc_hash_field) { *hash_flds |= hf_map.ice_hash_field; break; } } } return true; } /** * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced * RSS offloads * @caps: VF driver negotiated capabilities * * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, * else return false */ static bool ice_vf_adv_rss_offload_ena(u32 caps) { return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); } /** * ice_vc_handle_rss_cfg * @vf: pointer to the VF info * @msg: pointer to the message buffer * @add: add a RSS config if true, otherwise delete a RSS config * * This function adds/deletes a RSS config */ static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) { u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct device *dev = ice_pf_to_dev(vf->pf); struct ice_hw *hw = &vf->pf->hw; struct ice_vsi *vsi; if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", vf->vf_id); v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; goto error_param; } if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", vf->vf_id); v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", vf->vf_id); v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { struct ice_vsi_ctx *ctx; enum ice_status status; u8 lut_type, hash_type; lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR : ICE_AQ_VSI_Q_OPT_RSS_TPLZ; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) { v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; goto error_param; } ctx->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | (hash_type & ICE_AQ_VSI_Q_OPT_RSS_HASH_M); /* Preserve existing queueing option setting */ ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); ctx->info.q_opt_tc = vsi->info.q_opt_tc; ctx->info.q_opt_flags = vsi->info.q_opt_rss; ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); status = ice_update_vsi(hw, vsi->idx, ctx, NULL); if (status) { dev_err(dev, "update VSI for RSS failed, err %s aq_err %s\n", ice_stat_str(status), ice_aq_str(hw->adminq.sq_last_status)); v_ret = VIRTCHNL_STATUS_ERR_PARAM; } else { vsi->info.q_opt_rss = ctx->info.q_opt_rss; } kfree(ctx); } else { u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE; u64 hash_flds = ICE_HASH_INVALID; if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs, &hash_flds)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (add) { if (ice_add_rss_cfg(hw, vsi->idx, hash_flds, addl_hdrs)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", vsi->vsi_num, v_ret); } } else { enum ice_status status; status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds, addl_hdrs); /* We just ignore ICE_ERR_DOES_NOT_EXIST, because * if two configurations share the same profile remove * one of them actually removes both, since the * profile is deleted. */ if (status && status != ICE_ERR_DOES_NOT_EXIST) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%s\n", vf->vf_id, ice_stat_str(status)); } } } error_param: return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); } /** * ice_vc_config_rss_key * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * Configure the VF's RSS key */ static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_rss_key *vrk = (struct virtchnl_rss_key *)msg; struct ice_vsi *vsi; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (ice_set_rss_key(vsi, vrk->key)) v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; error_param: return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, NULL, 0); } /** * ice_vc_config_rss_lut * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * Configure the VF's RSS LUT */ static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) { struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct ice_vsi *vsi; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (ice_set_rss_lut(vsi, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE)) v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; error_param: return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, NULL, 0); } /** * ice_wait_on_vf_reset - poll to make sure a given VF is ready after reset * @vf: The VF being resseting * * The max poll time is about ~800ms, which is about the maximum time it takes * for a VF to be reset and/or a VF driver to be removed. */ static void ice_wait_on_vf_reset(struct ice_vf *vf) { int i; for (i = 0; i < ICE_MAX_VF_RESET_TRIES; i++) { if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) break; msleep(ICE_MAX_VF_RESET_SLEEP_MS); } } /** * ice_check_vf_ready_for_cfg - check if VF is ready to be configured/queried * @vf: VF to check if it's ready to be configured/queried * * The purpose of this function is to make sure the VF is not in reset, not * disabled, and initialized so it can be configured and/or queried by a host * administrator. */ static int ice_check_vf_ready_for_cfg(struct ice_vf *vf) { struct ice_pf *pf; ice_wait_on_vf_reset(vf); if (ice_is_vf_disabled(vf)) return -EINVAL; pf = vf->pf; if (ice_check_vf_init(pf, vf)) return -EBUSY; return 0; } /** * ice_set_vf_spoofchk * @netdev: network interface device structure * @vf_id: VF identifier * @ena: flag to enable or disable feature * * Enable or disable VF spoof checking */ int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_pf *pf = np->vsi->back; struct ice_vsi_ctx *ctx; struct ice_vsi *vf_vsi; enum ice_status status; struct device *dev; struct ice_vf *vf; int ret; dev = ice_pf_to_dev(pf); if (ice_validate_vf_id(pf, vf_id)) return -EINVAL; vf = &pf->vf[vf_id]; ret = ice_check_vf_ready_for_cfg(vf); if (ret) return ret; vf_vsi = ice_get_vf_vsi(vf); if (!vf_vsi) { netdev_err(netdev, "VSI %d for VF %d is null\n", vf->lan_vsi_idx, vf->vf_id); return -EINVAL; } if (vf_vsi->type != ICE_VSI_VF) { netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n", vf_vsi->type, vf_vsi->vsi_num, vf->vf_id); return -ENODEV; } if (ena == vf->spoofchk) { dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF"); return 0; } ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->info.sec_flags = vf_vsi->info.sec_flags; ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); if (ena) { ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); } else { ctx->info.sec_flags &= ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); } status = ice_update_vsi(&pf->hw, vf_vsi->idx, ctx, NULL); if (status) { dev_err(dev, "Failed to %sable spoofchk on VF %d VSI %d\n error %s\n", ena ? "en" : "dis", vf->vf_id, vf_vsi->vsi_num, ice_stat_str(status)); ret = -EIO; goto out; } /* only update spoofchk state and VSI context on success */ vf_vsi->info.sec_flags = ctx->info.sec_flags; vf->spoofchk = ena; out: kfree(ctx); return ret; } /** * ice_is_any_vf_in_promisc - check if any VF(s) are in promiscuous mode * @pf: PF structure for accessing VF(s) * * Return false if no VF(s) are in unicast and/or multicast promiscuous mode, * else return true */ bool ice_is_any_vf_in_promisc(struct ice_pf *pf) { int vf_idx; ice_for_each_vf(pf, vf_idx) { struct ice_vf *vf = &pf->vf[vf_idx]; /* found a VF that has promiscuous mode configured */ if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) return true; } return false; } /** * ice_vc_cfg_promiscuous_mode_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to configure VF VSIs promiscuous mode */ static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; enum ice_status mcast_status = 0, ucast_status = 0; bool rm_promisc, alluni = false, allmulti = false; struct virtchnl_promisc_info *info = (struct virtchnl_promisc_info *)msg; struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; struct device *dev; int ret = 0; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } dev = ice_pf_to_dev(pf); if (!test_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps)) { dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", vf->vf_id); /* Leave v_ret alone, lie to the VF on purpose. */ goto error_param; } if (info->flags & FLAG_VF_UNICAST_PROMISC) alluni = true; if (info->flags & FLAG_VF_MULTICAST_PROMISC) allmulti = true; rm_promisc = !allmulti && !alluni; if (vsi->num_vlan || vf->port_vlan_info) { struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); struct net_device *pf_netdev; if (!pf_vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } pf_netdev = pf_vsi->netdev; ret = ice_set_vf_spoofchk(pf_netdev, vf->vf_id, rm_promisc); if (ret) { dev_err(dev, "Failed to update spoofchk to %s for VF %d VSI %d when setting promiscuous mode\n", rm_promisc ? "ON" : "OFF", vf->vf_id, vsi->vsi_num); v_ret = VIRTCHNL_STATUS_ERR_PARAM; } ret = ice_cfg_vlan_pruning(vsi, true, !rm_promisc); if (ret) { dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } } if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { bool set_dflt_vsi = alluni || allmulti; if (set_dflt_vsi && !ice_is_dflt_vsi_in_use(pf->first_sw)) /* only attempt to set the default forwarding VSI if * it's not currently set */ ret = ice_set_dflt_vsi(pf->first_sw, vsi); else if (!set_dflt_vsi && ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) /* only attempt to free the default forwarding VSI if we * are the owner */ ret = ice_clear_dflt_vsi(pf->first_sw); if (ret) { dev_err(dev, "%sable VF %d as the default VSI failed, error %d\n", set_dflt_vsi ? "en" : "dis", vf->vf_id, ret); v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; goto error_param; } } else { u8 mcast_m, ucast_m; if (vf->port_vlan_info || vsi->num_vlan > 1) { mcast_m = ICE_MCAST_VLAN_PROMISC_BITS; ucast_m = ICE_UCAST_VLAN_PROMISC_BITS; } else { mcast_m = ICE_MCAST_PROMISC_BITS; ucast_m = ICE_UCAST_PROMISC_BITS; } ucast_status = ice_vf_set_vsi_promisc(vf, vsi, ucast_m, !alluni); if (ucast_status) { dev_err(dev, "%sable Tx/Rx filter promiscuous mode on VF-%d failed\n", alluni ? "en" : "dis", vf->vf_id); v_ret = ice_err_to_virt_err(ucast_status); } mcast_status = ice_vf_set_vsi_promisc(vf, vsi, mcast_m, !allmulti); if (mcast_status) { dev_err(dev, "%sable Tx/Rx filter promiscuous mode on VF-%d failed\n", allmulti ? "en" : "dis", vf->vf_id); v_ret = ice_err_to_virt_err(mcast_status); } } if (!mcast_status) { if (allmulti && !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", vf->vf_id); else if (!allmulti && test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", vf->vf_id); } if (!ucast_status) { if (alluni && !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", vf->vf_id); else if (!alluni && test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", vf->vf_id); } error_param: return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, v_ret, NULL, 0); } /** * ice_vc_get_stats_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to get VSI stats */ static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_queue_select *vqs = (struct virtchnl_queue_select *)msg; struct ice_eth_stats stats = { 0 }; struct ice_vsi *vsi; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } ice_update_eth_stats(vsi); stats = vsi->eth_stats; error_param: /* send the response to the VF */ return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, (u8 *)&stats, sizeof(stats)); } /** * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL * @vqs: virtchnl_queue_select structure containing bitmaps to validate * * Return true on successful validation, else false */ static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) { if ((!vqs->rx_queues && !vqs->tx_queues) || vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) return false; return true; } /** * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL * @vsi: VSI of the VF to configure * @q_idx: VF queue index used to determine the queue in the PF's space */ static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) { struct ice_hw *hw = &vsi->back->hw; u32 pfq = vsi->txq_map[q_idx]; u32 reg; reg = rd32(hw, QINT_TQCTL(pfq)); /* MSI-X index 0 in the VF's space is always for the OICR, which means * this is most likely a poll mode VF driver, so don't enable an * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP */ if (!(reg & QINT_TQCTL_MSIX_INDX_M)) return; wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); } /** * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL * @vsi: VSI of the VF to configure * @q_idx: VF queue index used to determine the queue in the PF's space */ static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) { struct ice_hw *hw = &vsi->back->hw; u32 pfq = vsi->rxq_map[q_idx]; u32 reg; reg = rd32(hw, QINT_RQCTL(pfq)); /* MSI-X index 0 in the VF's space is always for the OICR, which means * this is most likely a poll mode VF driver, so don't enable an * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP */ if (!(reg & QINT_RQCTL_MSIX_INDX_M)) return; wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); } /** * ice_vc_ena_qs_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to enable all or specific queue(s) */ static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_queue_select *vqs = (struct virtchnl_queue_select *)msg; struct ice_vsi *vsi; unsigned long q_map; u16 vf_q_id; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_validate_vqs_bitmaps(vqs)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* Enable only Rx rings, Tx rings were enabled by the FW when the * Tx queue group list was configured and the context bits were * programmed using ice_vsi_cfg_txqs */ q_map = vqs->rx_queues; for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* Skip queue if enabled */ if (test_bit(vf_q_id, vf->rxq_ena)) continue; if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", vf_q_id, vsi->vsi_num); v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } ice_vf_ena_rxq_interrupt(vsi, vf_q_id); set_bit(vf_q_id, vf->rxq_ena); } q_map = vqs->tx_queues; for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* Skip queue if enabled */ if (test_bit(vf_q_id, vf->txq_ena)) continue; ice_vf_ena_txq_interrupt(vsi, vf_q_id); set_bit(vf_q_id, vf->txq_ena); } /* Set flag to indicate that queues are enabled */ if (v_ret == VIRTCHNL_STATUS_SUCCESS) set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); error_param: /* send the response to the VF */ return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, NULL, 0); } /** * ice_vc_dis_qs_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to disable all or specific * queue(s) */ static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_queue_select *vqs = (struct virtchnl_queue_select *)msg; struct ice_vsi *vsi; unsigned long q_map; u16 vf_q_id; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_validate_vqs_bitmaps(vqs)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (vqs->tx_queues) { q_map = vqs->tx_queues; for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { struct ice_ring *ring = vsi->tx_rings[vf_q_id]; struct ice_txq_meta txq_meta = { 0 }; if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* Skip queue if not enabled */ if (!test_bit(vf_q_id, vf->txq_ena)) continue; ice_fill_txq_meta(vsi, ring, &txq_meta); if (ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta)) { dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", vf_q_id, vsi->vsi_num); v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* Clear enabled queues flag */ clear_bit(vf_q_id, vf->txq_ena); } } q_map = vqs->rx_queues; /* speed up Rx queue disable by batching them if possible */ if (q_map && bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { if (ice_vsi_stop_all_rx_rings(vsi)) { dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", vsi->vsi_num); v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); } else if (q_map) { for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* Skip queue if not enabled */ if (!test_bit(vf_q_id, vf->rxq_ena)) continue; if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, true)) { dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", vf_q_id, vsi->vsi_num); v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* Clear enabled queues flag */ clear_bit(vf_q_id, vf->rxq_ena); } } /* Clear enabled queues flag */ if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); error_param: /* send the response to the VF */ return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, NULL, 0); } /** * ice_cfg_interrupt * @vf: pointer to the VF info * @vsi: the VSI being configured * @vector_id: vector ID * @map: vector map for mapping vectors to queues * @q_vector: structure for interrupt vector * configure the IRQ to queue map */ static int ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id, struct virtchnl_vector_map *map, struct ice_q_vector *q_vector) { u16 vsi_q_id, vsi_q_id_idx; unsigned long qmap; q_vector->num_ring_rx = 0; q_vector->num_ring_tx = 0; qmap = map->rxq_map; for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { vsi_q_id = vsi_q_id_idx; if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) return VIRTCHNL_STATUS_ERR_PARAM; q_vector->num_ring_rx++; q_vector->rx.itr_idx = map->rxitr_idx; vsi->rx_rings[vsi_q_id]->q_vector = q_vector; ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id, q_vector->rx.itr_idx); } qmap = map->txq_map; for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { vsi_q_id = vsi_q_id_idx; if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) return VIRTCHNL_STATUS_ERR_PARAM; q_vector->num_ring_tx++; q_vector->tx.itr_idx = map->txitr_idx; vsi->tx_rings[vsi_q_id]->q_vector = q_vector; ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id, q_vector->tx.itr_idx); } return VIRTCHNL_STATUS_SUCCESS; } /** * ice_vc_cfg_irq_map_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to configure the IRQ to queue map */ static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; u16 num_q_vectors_mapped, vsi_id, vector_id; struct virtchnl_irq_map_info *irqmap_info; struct virtchnl_vector_map *map; struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; int i; irqmap_info = (struct virtchnl_irq_map_info *)msg; num_q_vectors_mapped = irqmap_info->num_vectors; /* Check to make sure number of VF vectors mapped is not greater than * number of VF vectors originally allocated, and check that * there is actually at least a single VF queue vector mapped */ if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || pf->num_msix_per_vf < num_q_vectors_mapped || !num_q_vectors_mapped) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } for (i = 0; i < num_q_vectors_mapped; i++) { struct ice_q_vector *q_vector; map = &irqmap_info->vecmap[i]; vector_id = map->vector_id; vsi_id = map->vsi_id; /* vector_id is always 0-based for each VF, and can never be * larger than or equal to the max allowed interrupts per VF */ if (!(vector_id < pf->num_msix_per_vf) || !ice_vc_isvalid_vsi_id(vf, vsi_id) || (!vector_id && (map->rxq_map || map->txq_map))) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* No need to map VF miscellaneous or rogue vector */ if (!vector_id) continue; /* Subtract non queue vector from vector_id passed by VF * to get actual number of VSI queue vector array index */ q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; if (!q_vector) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* lookout for the invalid queue index */ v_ret = (enum virtchnl_status_code) ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector); if (v_ret) goto error_param; } error_param: /* send the response to the VF */ return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, NULL, 0); } /** * ice_vc_cfg_qs_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to configure the Rx/Tx queues */ static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_vsi_queue_config_info *qci = (struct virtchnl_vsi_queue_config_info *)msg; struct virtchnl_queue_pair_info *qpi; struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; int i, q_idx; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } for (i = 0; i < qci->num_queue_pairs; i++) { qpi = &qci->qpair[i]; if (qpi->txq.vsi_id != qci->vsi_id || qpi->rxq.vsi_id != qci->vsi_id || qpi->rxq.queue_id != qpi->txq.queue_id || qpi->txq.headwb_enabled || !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } q_idx = qpi->rxq.queue_id; /* make sure selected "q_idx" is in valid range of queues * for selected "vsi" */ if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* copy Tx queue info from VF into VSI */ if (qpi->txq.ring_len > 0) { vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr; vsi->tx_rings[i]->count = qpi->txq.ring_len; if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } } /* copy Rx queue info from VF into VSI */ if (qpi->rxq.ring_len > 0) { u16 max_frame_size = ice_vc_get_max_frame_size(vf); vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr; vsi->rx_rings[i]->count = qpi->rxq.ring_len; if (qpi->rxq.databuffer_size != 0 && (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || qpi->rxq.databuffer_size < 1024)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi->rx_buf_len = qpi->rxq.databuffer_size; vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len; if (qpi->rxq.max_pkt_size > max_frame_size || qpi->rxq.max_pkt_size < 64) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi->max_frame = qpi->rxq.max_pkt_size; /* add space for the port VLAN since the VF driver is not * expected to account for it in the MTU calculation */ if (vf->port_vlan_info) vsi->max_frame += VLAN_HLEN; if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } } } error_param: /* send the response to the VF */ return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, v_ret, NULL, 0); } /** * ice_is_vf_trusted * @vf: pointer to the VF info */ static bool ice_is_vf_trusted(struct ice_vf *vf) { return test_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps); } /** * ice_can_vf_change_mac * @vf: pointer to the VF info * * Return true if the VF is allowed to change its MAC filters, false otherwise */ static bool ice_can_vf_change_mac(struct ice_vf *vf) { /* If the VF MAC address has been set administratively (via the * ndo_set_vf_mac command), then deny permission to the VF to * add/delete unicast MAC addresses, unless the VF is trusted */ if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) return false; return true; } /** * ice_vc_ether_addr_type - get type of virtchnl_ether_addr * @vc_ether_addr: used to extract the type */ static u8 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) { return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); } /** * ice_is_vc_addr_legacy - check if the MAC address is from an older VF * @vc_ether_addr: VIRTCHNL structure that contains MAC and type */ static bool ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) { u8 type = ice_vc_ether_addr_type(vc_ether_addr); return (type == VIRTCHNL_ETHER_ADDR_LEGACY); } /** * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC * @vc_ether_addr: VIRTCHNL structure that contains MAC and type * * This function should only be called when the MAC address in * virtchnl_ether_addr is a valid unicast MAC */ static bool ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) { u8 type = ice_vc_ether_addr_type(vc_ether_addr); return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); } /** * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed * @vf: VF to update * @vc_ether_addr: structure from VIRTCHNL with MAC to add */ static void ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) { u8 *mac_addr = vc_ether_addr->addr; if (!is_valid_ether_addr(mac_addr)) return; /* only allow legacy VF drivers to set the device and hardware MAC if it * is zero and allow new VF drivers to set the hardware MAC if the type * was correctly specified over VIRTCHNL */ if ((ice_is_vc_addr_legacy(vc_ether_addr) && is_zero_ether_addr(vf->hw_lan_addr.addr)) || ice_is_vc_addr_primary(vc_ether_addr)) { ether_addr_copy(vf->dev_lan_addr.addr, mac_addr); ether_addr_copy(vf->hw_lan_addr.addr, mac_addr); } /* hardware and device MACs are already set, but its possible that the * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it * away for the legacy VF driver case as it will be updated in the * delete flow for this case */ if (ice_is_vc_addr_legacy(vc_ether_addr)) { ether_addr_copy(vf->legacy_last_added_umac.addr, mac_addr); vf->legacy_last_added_umac.time_modified = jiffies; } } /** * ice_vc_add_mac_addr - attempt to add the MAC address passed in * @vf: pointer to the VF info * @vsi: pointer to the VF's VSI * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC */ static int ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, struct virtchnl_ether_addr *vc_ether_addr) { struct device *dev = ice_pf_to_dev(vf->pf); u8 *mac_addr = vc_ether_addr->addr; enum ice_status status; int ret = 0; /* device MAC already added */ if (ether_addr_equal(mac_addr, vf->dev_lan_addr.addr)) return 0; if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); return -EPERM; } status = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); if (status == ICE_ERR_ALREADY_EXISTS) { dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, vf->vf_id); /* don't return since we might need to update * the primary MAC in ice_vfhw_mac_add() below */ ret = -EEXIST; } else if (status) { dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %s\n", mac_addr, vf->vf_id, ice_stat_str(status)); return -EIO; } else { vf->num_mac++; } ice_vfhw_mac_add(vf, vc_ether_addr); return ret; } /** * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired * @last_added_umac: structure used to check expiration */ static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) { #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) return time_is_before_jiffies(last_added_umac->time_modified + ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); } /** * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed * @vf: VF to update * @vc_ether_addr: structure from VIRTCHNL with MAC to delete */ static void ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) { u8 *mac_addr = vc_ether_addr->addr; if (!is_valid_ether_addr(mac_addr) || !ether_addr_equal(vf->dev_lan_addr.addr, mac_addr)) return; /* allow the device MAC to be repopulated in the add flow and don't * clear the hardware MAC (i.e. hw_lan_addr.addr) here as that is meant * to be persistent on VM reboot and across driver unload/load, which * won't work if we clear the hardware MAC here */ eth_zero_addr(vf->dev_lan_addr.addr); /* only update cached hardware MAC for legacy VF drivers on delete * because we cannot guarantee order/type of MAC from the VF driver */ if (ice_is_vc_addr_legacy(vc_ether_addr) && !ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) { ether_addr_copy(vf->dev_lan_addr.addr, vf->legacy_last_added_umac.addr); ether_addr_copy(vf->hw_lan_addr.addr, vf->legacy_last_added_umac.addr); } } /** * ice_vc_del_mac_addr - attempt to delete the MAC address passed in * @vf: pointer to the VF info * @vsi: pointer to the VF's VSI * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC */ static int ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, struct virtchnl_ether_addr *vc_ether_addr) { struct device *dev = ice_pf_to_dev(vf->pf); u8 *mac_addr = vc_ether_addr->addr; enum ice_status status; if (!ice_can_vf_change_mac(vf) && ether_addr_equal(vf->dev_lan_addr.addr, mac_addr)) return 0; status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); if (status == ICE_ERR_DOES_NOT_EXIST) { dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, vf->vf_id); return -ENOENT; } else if (status) { dev_err(dev, "Failed to delete MAC %pM for VF %d, error %s\n", mac_addr, vf->vf_id, ice_stat_str(status)); return -EIO; } ice_vfhw_mac_del(vf, vc_ether_addr); vf->num_mac--; return 0; } /** * ice_vc_handle_mac_addr_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * @set: true if MAC filters are being set, false otherwise * * add guest MAC address filter */ static int ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) { int (*ice_vc_cfg_mac) (struct ice_vf *vf, struct ice_vsi *vsi, struct virtchnl_ether_addr *virtchnl_ether_addr); enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_ether_addr_list *al = (struct virtchnl_ether_addr_list *)msg; struct ice_pf *pf = vf->pf; enum virtchnl_ops vc_op; struct ice_vsi *vsi; int i; if (set) { vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; ice_vc_cfg_mac = ice_vc_add_mac_addr; } else { vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; ice_vc_cfg_mac = ice_vc_del_mac_addr; } if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto handle_mac_exit; } /* If this VF is not privileged, then we can't add more than a * limited number of addresses. Check to make sure that the * additions do not push us over the limit. */ if (set && !ice_is_vf_trusted(vf) && (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", vf->vf_id); v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto handle_mac_exit; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto handle_mac_exit; } for (i = 0; i < al->num_elements; i++) { u8 *mac_addr = al->list[i].addr; int result; if (is_broadcast_ether_addr(mac_addr) || is_zero_ether_addr(mac_addr)) continue; result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); if (result == -EEXIST || result == -ENOENT) { continue; } else if (result) { v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; goto handle_mac_exit; } } handle_mac_exit: /* send the response to the VF */ return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); } /** * ice_vc_add_mac_addr_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * add guest MAC address filter */ static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) { return ice_vc_handle_mac_addr_msg(vf, msg, true); } /** * ice_vc_del_mac_addr_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * remove guest MAC address filter */ static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) { return ice_vc_handle_mac_addr_msg(vf, msg, false); } /** * ice_vc_request_qs_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * VFs get a default number of queues but can use this message to request a * different number. If the request is successful, PF will reset the VF and * return 0. If unsuccessful, PF will send message informing VF of number of * available queue pairs via virtchnl message response to VF. */ static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_vf_res_request *vfres = (struct virtchnl_vf_res_request *)msg; u16 req_queues = vfres->num_queue_pairs; struct ice_pf *pf = vf->pf; u16 max_allowed_vf_queues; u16 tx_rx_queue_left; struct device *dev; u16 cur_queues; dev = ice_pf_to_dev(pf); if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } cur_queues = vf->num_vf_qs; tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), ice_get_avail_rxq_count(pf)); max_allowed_vf_queues = tx_rx_queue_left + cur_queues; if (!req_queues) { dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", vf->vf_id); } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { dev_err(dev, "VF %d tried to request more than %d queues.\n", vf->vf_id, ICE_MAX_RSS_QS_PER_VF); vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; } else if (req_queues > cur_queues && req_queues - cur_queues > tx_rx_queue_left) { dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, ICE_MAX_RSS_QS_PER_VF); } else { /* request is successful, then reset VF */ vf->num_req_qs = req_queues; ice_vc_reset_vf(vf); dev_info(dev, "VF %d granted request of %u queues.\n", vf->vf_id, req_queues); return 0; } error_param: /* send the response to the VF */ return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, v_ret, (u8 *)vfres, sizeof(*vfres)); } /** * ice_set_vf_port_vlan * @netdev: network interface device structure * @vf_id: VF identifier * @vlan_id: VLAN ID being set * @qos: priority setting * @vlan_proto: VLAN protocol * * program VF Port VLAN ID and/or QoS */ int ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos, __be16 vlan_proto) { struct ice_pf *pf = ice_netdev_to_pf(netdev); struct device *dev; struct ice_vf *vf; u16 vlanprio; int ret; dev = ice_pf_to_dev(pf); if (ice_validate_vf_id(pf, vf_id)) return -EINVAL; if (vlan_id >= VLAN_N_VID || qos > 7) { dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n", vf_id, vlan_id, qos); return -EINVAL; } if (vlan_proto != htons(ETH_P_8021Q)) { dev_err(dev, "VF VLAN protocol is not supported\n"); return -EPROTONOSUPPORT; } vf = &pf->vf[vf_id]; ret = ice_check_vf_ready_for_cfg(vf); if (ret) return ret; vlanprio = vlan_id | (qos << VLAN_PRIO_SHIFT); if (vf->port_vlan_info == vlanprio) { /* duplicate request, so just return success */ dev_dbg(dev, "Duplicate pvid %d request\n", vlanprio); return 0; } vf->port_vlan_info = vlanprio; if (vf->port_vlan_info) dev_info(dev, "Setting VLAN %d, QoS 0x%x on VF %d\n", vlan_id, qos, vf_id); else dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id); ice_vc_reset_vf(vf); return 0; } /** * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads * @caps: VF driver negotiated capabilities * * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false */ static bool ice_vf_vlan_offload_ena(u32 caps) { return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); } /** * ice_vc_process_vlan_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * @add_v: Add VLAN if true, otherwise delete VLAN * * Process virtchnl op to add or remove programmed guest VLAN ID */ static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_vlan_filter_list *vfl = (struct virtchnl_vlan_filter_list *)msg; struct ice_pf *pf = vf->pf; bool vlan_promisc = false; struct ice_vsi *vsi; struct device *dev; struct ice_hw *hw; int status = 0; u8 promisc_m; int i; dev = ice_pf_to_dev(pf); if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } for (i = 0; i < vfl->num_elements; i++) { if (vfl->vlan_id[i] >= VLAN_N_VID) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; dev_err(dev, "invalid VF VLAN id %d\n", vfl->vlan_id[i]); goto error_param; } } hw = &pf->hw; vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (add_v && !ice_is_vf_trusted(vf) && vsi->num_vlan >= ICE_MAX_VLAN_PER_VF) { dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", vf->vf_id); /* There is no need to let VF know about being not trusted, * so we can just return success message here */ goto error_param; } if (vsi->info.pvid) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) vlan_promisc = true; if (add_v) { for (i = 0; i < vfl->num_elements; i++) { u16 vid = vfl->vlan_id[i]; if (!ice_is_vf_trusted(vf) && vsi->num_vlan >= ICE_MAX_VLAN_PER_VF) { dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", vf->vf_id); /* There is no need to let VF know about being * not trusted, so we can just return success * message here as well. */ goto error_param; } /* we add VLAN 0 by default for each VF so we can enable * Tx VLAN anti-spoof without triggering MDD events so * we don't need to add it again here */ if (!vid) continue; status = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI); if (status) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* Enable VLAN pruning when non-zero VLAN is added */ if (!vlan_promisc && vid && !ice_vsi_is_vlan_pruning_ena(vsi)) { status = ice_cfg_vlan_pruning(vsi, true, false); if (status) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", vid, status); goto error_param; } } else if (vlan_promisc) { /* Enable Ucast/Mcast VLAN promiscuous mode */ promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, vid); if (status) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", vid, status); } } } } else { /* In case of non_trusted VF, number of VLAN elements passed * to PF for removal might be greater than number of VLANs * filter programmed for that VF - So, use actual number of * VLANS added earlier with add VLAN opcode. In order to avoid * removing VLAN that doesn't exist, which result to sending * erroneous failed message back to the VF */ int num_vf_vlan; num_vf_vlan = vsi->num_vlan; for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { u16 vid = vfl->vlan_id[i]; /* we add VLAN 0 by default for each VF so we can enable * Tx VLAN anti-spoof without triggering MDD events so * we don't want a VIRTCHNL request to remove it */ if (!vid) continue; /* Make sure ice_vsi_kill_vlan is successful before * updating VLAN information */ status = ice_vsi_kill_vlan(vsi, vid); if (status) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* Disable VLAN pruning when only VLAN 0 is left */ if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi)) ice_cfg_vlan_pruning(vsi, false, false); /* Disable Unicast/Multicast VLAN promiscuous mode */ if (vlan_promisc) { promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, vid); } } } error_param: /* send the response to the VF */ if (add_v) return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, NULL, 0); else return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, NULL, 0); } /** * ice_vc_add_vlan_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * Add and program guest VLAN ID */ static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) { return ice_vc_process_vlan_msg(vf, msg, true); } /** * ice_vc_remove_vlan_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * remove programmed guest VLAN ID */ static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) { return ice_vc_process_vlan_msg(vf, msg, false); } /** * ice_vc_ena_vlan_stripping * @vf: pointer to the VF info * * Enable VLAN header stripping for a given VF */ static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct ice_vsi *vsi; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = ice_get_vf_vsi(vf); if (ice_vsi_manage_vlan_stripping(vsi, true)) v_ret = VIRTCHNL_STATUS_ERR_PARAM; error_param: return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, v_ret, NULL, 0); } /** * ice_vc_dis_vlan_stripping * @vf: pointer to the VF info * * Disable VLAN header stripping for a given VF */ static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct ice_vsi *vsi; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (ice_vsi_manage_vlan_stripping(vsi, false)) v_ret = VIRTCHNL_STATUS_ERR_PARAM; error_param: return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, v_ret, NULL, 0); } /** * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization * @vf: VF to enable/disable VLAN stripping for on initialization * * If the VIRTCHNL_VF_OFFLOAD_VLAN flag is set enable VLAN stripping, else if * the flag is cleared then we want to disable stripping. For example, the flag * will be cleared when port VLANs are configured by the administrator before * passing the VF to the guest or if the AVF driver doesn't support VLAN * offloads. */ static int ice_vf_init_vlan_stripping(struct ice_vf *vf) { struct ice_vsi *vsi = ice_get_vf_vsi(vf); if (!vsi) return -EINVAL; /* don't modify stripping if port VLAN is configured */ if (vsi->info.pvid) return 0; if (ice_vf_vlan_offload_ena(vf->driver_caps)) return ice_vsi_manage_vlan_stripping(vsi, true); else return ice_vsi_manage_vlan_stripping(vsi, false); } /** * ice_vc_process_vf_msg - Process request from VF * @pf: pointer to the PF structure * @event: pointer to the AQ event * * called from the common asq/arq handler to * process request from VF */ void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event) { u32 v_opcode = le32_to_cpu(event->desc.cookie_high); s16 vf_id = le16_to_cpu(event->desc.retval); u16 msglen = event->msg_len; u8 *msg = event->msg_buf; struct ice_vf *vf = NULL; struct device *dev; int err = 0; /* if de-init is underway, don't process messages from VF */ if (test_bit(ICE_VF_DEINIT_IN_PROGRESS, pf->state)) return; dev = ice_pf_to_dev(pf); if (ice_validate_vf_id(pf, vf_id)) { err = -EINVAL; goto error_handler; } vf = &pf->vf[vf_id]; /* Check if VF is disabled. */ if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { err = -EPERM; goto error_handler; } /* Perform basic checks on the msg */ err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); if (err) { if (err == VIRTCHNL_STATUS_ERR_PARAM) err = -EPERM; else err = -EINVAL; } if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 0); return; } error_handler: if (err) { ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, NULL, 0); dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", vf_id, v_opcode, msglen, err); return; } switch (v_opcode) { case VIRTCHNL_OP_VERSION: err = ice_vc_get_ver_msg(vf, msg); break; case VIRTCHNL_OP_GET_VF_RESOURCES: err = ice_vc_get_vf_res_msg(vf, msg); if (ice_vf_init_vlan_stripping(vf)) dev_err(dev, "Failed to initialize VLAN stripping for VF %d\n", vf->vf_id); ice_vc_notify_vf_link_state(vf); break; case VIRTCHNL_OP_RESET_VF: ice_vc_reset_vf_msg(vf); break; case VIRTCHNL_OP_ADD_ETH_ADDR: err = ice_vc_add_mac_addr_msg(vf, msg); break; case VIRTCHNL_OP_DEL_ETH_ADDR: err = ice_vc_del_mac_addr_msg(vf, msg); break; case VIRTCHNL_OP_CONFIG_VSI_QUEUES: err = ice_vc_cfg_qs_msg(vf, msg); break; case VIRTCHNL_OP_ENABLE_QUEUES: err = ice_vc_ena_qs_msg(vf, msg); ice_vc_notify_vf_link_state(vf); break; case VIRTCHNL_OP_DISABLE_QUEUES: err = ice_vc_dis_qs_msg(vf, msg); break; case VIRTCHNL_OP_REQUEST_QUEUES: err = ice_vc_request_qs_msg(vf, msg); break; case VIRTCHNL_OP_CONFIG_IRQ_MAP: err = ice_vc_cfg_irq_map_msg(vf, msg); break; case VIRTCHNL_OP_CONFIG_RSS_KEY: err = ice_vc_config_rss_key(vf, msg); break; case VIRTCHNL_OP_CONFIG_RSS_LUT: err = ice_vc_config_rss_lut(vf, msg); break; case VIRTCHNL_OP_GET_STATS: err = ice_vc_get_stats_msg(vf, msg); break; case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: err = ice_vc_cfg_promiscuous_mode_msg(vf, msg); break; case VIRTCHNL_OP_ADD_VLAN: err = ice_vc_add_vlan_msg(vf, msg); break; case VIRTCHNL_OP_DEL_VLAN: err = ice_vc_remove_vlan_msg(vf, msg); break; case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: err = ice_vc_ena_vlan_stripping(vf); break; case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: err = ice_vc_dis_vlan_stripping(vf); break; case VIRTCHNL_OP_ADD_FDIR_FILTER: err = ice_vc_add_fdir_fltr(vf, msg); break; case VIRTCHNL_OP_DEL_FDIR_FILTER: err = ice_vc_del_fdir_fltr(vf, msg); break; case VIRTCHNL_OP_ADD_RSS_CFG: err = ice_vc_handle_rss_cfg(vf, msg, true); break; case VIRTCHNL_OP_DEL_RSS_CFG: err = ice_vc_handle_rss_cfg(vf, msg, false); break; case VIRTCHNL_OP_UNKNOWN: default: dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, vf_id); err = ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 0); break; } if (err) { /* Helper function cares less about error return values here * as it is busy with pending work. */ dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", vf_id, v_opcode, err); } } /** * ice_get_vf_cfg * @netdev: network interface device structure * @vf_id: VF identifier * @ivi: VF configuration structure * * return VF configuration */ int ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi) { struct ice_pf *pf = ice_netdev_to_pf(netdev); struct ice_vf *vf; if (ice_validate_vf_id(pf, vf_id)) return -EINVAL; vf = &pf->vf[vf_id]; if (ice_check_vf_init(pf, vf)) return -EBUSY; ivi->vf = vf_id; ether_addr_copy(ivi->mac, vf->hw_lan_addr.addr); /* VF configuration for VLAN and applicable QoS */ ivi->vlan = vf->port_vlan_info & VLAN_VID_MASK; ivi->qos = (vf->port_vlan_info & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; ivi->trusted = vf->trusted; ivi->spoofchk = vf->spoofchk; if (!vf->link_forced) ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; else if (vf->link_up) ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; else ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; ivi->max_tx_rate = vf->tx_rate; ivi->min_tx_rate = 0; return 0; } /** * ice_unicast_mac_exists - check if the unicast MAC exists on the PF's switch * @pf: PF used to reference the switch's rules * @umac: unicast MAC to compare against existing switch rules * * Return true on the first/any match, else return false */ static bool ice_unicast_mac_exists(struct ice_pf *pf, u8 *umac) { struct ice_sw_recipe *mac_recipe_list = &pf->hw.switch_info->recp_list[ICE_SW_LKUP_MAC]; struct ice_fltr_mgmt_list_entry *list_itr; struct list_head *rule_head; struct mutex *rule_lock; /* protect MAC filter list access */ rule_head = &mac_recipe_list->filt_rules; rule_lock = &mac_recipe_list->filt_rule_lock; mutex_lock(rule_lock); list_for_each_entry(list_itr, rule_head, list_entry) { u8 *existing_mac = &list_itr->fltr_info.l_data.mac.mac_addr[0]; if (ether_addr_equal(existing_mac, umac)) { mutex_unlock(rule_lock); return true; } } mutex_unlock(rule_lock); return false; } /** * ice_set_vf_mac * @netdev: network interface device structure * @vf_id: VF identifier * @mac: MAC address * * program VF MAC address */ int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) { struct ice_pf *pf = ice_netdev_to_pf(netdev); struct ice_vf *vf; int ret; if (ice_validate_vf_id(pf, vf_id)) return -EINVAL; if (is_multicast_ether_addr(mac)) { netdev_err(netdev, "%pM not a valid unicast address\n", mac); return -EINVAL; } vf = &pf->vf[vf_id]; /* nothing left to do, unicast MAC already set */ if (ether_addr_equal(vf->dev_lan_addr.addr, mac) && ether_addr_equal(vf->hw_lan_addr.addr, mac)) return 0; ret = ice_check_vf_ready_for_cfg(vf); if (ret) return ret; if (ice_unicast_mac_exists(pf, mac)) { netdev_err(netdev, "Unicast MAC %pM already exists on this PF. Preventing setting VF %u unicast MAC address to %pM\n", mac, vf_id, mac); return -EINVAL; } /* VF is notified of its new MAC via the PF's response to the * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset */ ether_addr_copy(vf->dev_lan_addr.addr, mac); ether_addr_copy(vf->hw_lan_addr.addr, mac); if (is_zero_ether_addr(mac)) { /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */ vf->pf_set_mac = false; netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n", vf->vf_id); } else { /* PF will add MAC rule for the VF */ vf->pf_set_mac = true; netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n", mac, vf_id); } ice_vc_reset_vf(vf); return 0; } /** * ice_set_vf_trust * @netdev: network interface device structure * @vf_id: VF identifier * @trusted: Boolean value to enable/disable trusted VF * * Enable or disable a given VF as trusted */ int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted) { struct ice_pf *pf = ice_netdev_to_pf(netdev); struct ice_vf *vf; int ret; if (ice_validate_vf_id(pf, vf_id)) return -EINVAL; vf = &pf->vf[vf_id]; ret = ice_check_vf_ready_for_cfg(vf); if (ret) return ret; /* Check if already trusted */ if (trusted == vf->trusted) return 0; vf->trusted = trusted; ice_vc_reset_vf(vf); dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n", vf_id, trusted ? "" : "un"); return 0; } /** * ice_set_vf_link_state * @netdev: network interface device structure * @vf_id: VF identifier * @link_state: required link state * * Set VF's link state, irrespective of physical link state status */ int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state) { struct ice_pf *pf = ice_netdev_to_pf(netdev); struct ice_vf *vf; int ret; if (ice_validate_vf_id(pf, vf_id)) return -EINVAL; vf = &pf->vf[vf_id]; ret = ice_check_vf_ready_for_cfg(vf); if (ret) return ret; switch (link_state) { case IFLA_VF_LINK_STATE_AUTO: vf->link_forced = false; break; case IFLA_VF_LINK_STATE_ENABLE: vf->link_forced = true; vf->link_up = true; break; case IFLA_VF_LINK_STATE_DISABLE: vf->link_forced = true; vf->link_up = false; break; default: return -EINVAL; } ice_vc_notify_vf_link_state(vf); return 0; } /** * ice_get_vf_stats - populate some stats for the VF * @netdev: the netdev of the PF * @vf_id: the host OS identifier (0-255) * @vf_stats: pointer to the OS memory to be initialized */ int ice_get_vf_stats(struct net_device *netdev, int vf_id, struct ifla_vf_stats *vf_stats) { struct ice_pf *pf = ice_netdev_to_pf(netdev); struct ice_eth_stats *stats; struct ice_vsi *vsi; struct ice_vf *vf; int ret; if (ice_validate_vf_id(pf, vf_id)) return -EINVAL; vf = &pf->vf[vf_id]; ret = ice_check_vf_ready_for_cfg(vf); if (ret) return ret; vsi = ice_get_vf_vsi(vf); if (!vsi) return -EINVAL; ice_update_eth_stats(vsi); stats = &vsi->eth_stats; memset(vf_stats, 0, sizeof(*vf_stats)); vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast + stats->rx_multicast; vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast + stats->tx_multicast; vf_stats->rx_bytes = stats->rx_bytes; vf_stats->tx_bytes = stats->tx_bytes; vf_stats->broadcast = stats->rx_broadcast; vf_stats->multicast = stats->rx_multicast; vf_stats->rx_dropped = stats->rx_discards; vf_stats->tx_dropped = stats->tx_discards; return 0; } /** * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event * @vf: pointer to the VF structure */ void ice_print_vf_rx_mdd_event(struct ice_vf *vf) { struct ice_pf *pf = vf->pf; struct device *dev; dev = ice_pf_to_dev(pf); dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n", vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id, vf->dev_lan_addr.addr, test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags) ? "on" : "off"); } /** * ice_print_vfs_mdd_events - print VFs malicious driver detect event * @pf: pointer to the PF structure * * Called from ice_handle_mdd_event to rate limit and print VFs MDD events. */ void ice_print_vfs_mdd_events(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); struct ice_hw *hw = &pf->hw; int i; /* check that there are pending MDD events to print */ if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state)) return; /* VF MDD event logs are rate limited to one second intervals */ if (time_is_after_jiffies(pf->last_printed_mdd_jiffies + HZ * 1)) return; pf->last_printed_mdd_jiffies = jiffies; ice_for_each_vf(pf, i) { struct ice_vf *vf = &pf->vf[i]; /* only print Rx MDD event message if there are new events */ if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) { vf->mdd_rx_events.last_printed = vf->mdd_rx_events.count; ice_print_vf_rx_mdd_event(vf); } /* only print Tx MDD event message if there are new events */ if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) { vf->mdd_tx_events.last_printed = vf->mdd_tx_events.count; dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n", vf->mdd_tx_events.count, hw->pf_id, i, vf->dev_lan_addr.addr); } } } /** * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR * @pdev: pointer to a pci_dev structure * * Called when recovering from a PF FLR to restore interrupt capability to * the VFs. */ void ice_restore_all_vfs_msi_state(struct pci_dev *pdev) { u16 vf_id; int pos; if (!pci_num_vf(pdev)) return; pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); if (pos) { struct pci_dev *vfdev; pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_id); vfdev = pci_get_device(pdev->vendor, vf_id, NULL); while (vfdev) { if (vfdev->is_virtfn && vfdev->physfn == pdev) pci_restore_msi_state(vfdev); vfdev = pci_get_device(pdev->vendor, vf_id, vfdev); } } } /** * ice_is_malicious_vf - helper function to detect a malicious VF * @pf: ptr to struct ice_pf * @event: pointer to the AQ event * @num_msg_proc: the number of messages processed so far * @num_msg_pending: the number of messages peinding in admin queue */ bool ice_is_malicious_vf(struct ice_pf *pf, struct ice_rq_event_info *event, u16 num_msg_proc, u16 num_msg_pending) { s16 vf_id = le16_to_cpu(event->desc.retval); struct device *dev = ice_pf_to_dev(pf); struct ice_mbx_data mbxdata; enum ice_status status; bool malvf = false; struct ice_vf *vf; if (ice_validate_vf_id(pf, vf_id)) return false; vf = &pf->vf[vf_id]; /* Check if VF is disabled. */ if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) return false; mbxdata.num_msg_proc = num_msg_proc; mbxdata.num_pending_arq = num_msg_pending; mbxdata.max_num_msgs_mbx = pf->hw.mailboxq.num_rq_entries; #define ICE_MBX_OVERFLOW_WATERMARK 64 mbxdata.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; /* check to see if we have a malicious VF */ status = ice_mbx_vf_state_handler(&pf->hw, &mbxdata, vf_id, &malvf); if (status) return false; if (malvf) { bool report_vf = false; /* if the VF is malicious and we haven't let the user * know about it, then let them know now */ status = ice_mbx_report_malvf(&pf->hw, pf->malvfs, ICE_MAX_VF_COUNT, vf_id, &report_vf); if (status) dev_dbg(dev, "Error reporting malicious VF\n"); if (report_vf) { struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); if (pf_vsi) dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n", &vf->dev_lan_addr.addr[0], pf_vsi->netdev->dev_addr); } return true; } /* if there was an error in detection or the VF is not malicious then * return false */ return false; }