/* * This file is part of the Chelsio T4 Ethernet driver for Linux. * * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_NET_RX_BUSY_POLL #include #endif /* CONFIG_NET_RX_BUSY_POLL */ #include "cxgb4.h" #include "t4_regs.h" #include "t4_values.h" #include "t4_msg.h" #include "t4fw_api.h" /* * Rx buffer size. We use largish buffers if possible but settle for single * pages under memory shortage. */ #if PAGE_SHIFT >= 16 # define FL_PG_ORDER 0 #else # define FL_PG_ORDER (16 - PAGE_SHIFT) #endif /* RX_PULL_LEN should be <= RX_COPY_THRES */ #define RX_COPY_THRES 256 #define RX_PULL_LEN 128 /* * Main body length for sk_buffs used for Rx Ethernet packets with fragments. * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. */ #define RX_PKT_SKB_LEN 512 /* * Max number of Tx descriptors we clean up at a time. Should be modest as * freeing skbs isn't cheap and it happens while holding locks. We just need * to free packets faster than they arrive, we eventually catch up and keep * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. */ #define MAX_TX_RECLAIM 16 /* * Max number of Rx buffers we replenish at a time. Again keep this modest, * allocating buffers isn't cheap either. */ #define MAX_RX_REFILL 16U /* * Period of the Rx queue check timer. This timer is infrequent as it has * something to do only when the system experiences severe memory shortage. */ #define RX_QCHECK_PERIOD (HZ / 2) /* * Period of the Tx queue check timer. */ #define TX_QCHECK_PERIOD (HZ / 2) /* SGE Hung Ingress DMA Threshold Warning time (in Hz) and Warning Repeat Rate * (in RX_QCHECK_PERIOD multiples). If we find one of the SGE Ingress DMA * State Machines in the same state for this amount of time (in HZ) then we'll * issue a warning about a potential hang. We'll repeat the warning as the * SGE Ingress DMA Channel appears to be hung every N RX_QCHECK_PERIODs till * the situation clears. If the situation clears, we'll note that as well. */ #define SGE_IDMA_WARN_THRESH (1 * HZ) #define SGE_IDMA_WARN_REPEAT (20 * RX_QCHECK_PERIOD) /* * Max number of Tx descriptors to be reclaimed by the Tx timer. */ #define MAX_TIMER_TX_RECLAIM 100 /* * Timer index used when backing off due to memory shortage. */ #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) /* * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will * attempt to refill it. */ #define FL_STARVE_THRES 4 /* * Suspend an Ethernet Tx queue with fewer available descriptors than this. * This is the same as calc_tx_descs() for a TSO packet with * nr_frags == MAX_SKB_FRAGS. */ #define ETHTXQ_STOP_THRES \ (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8)) /* * Suspension threshold for non-Ethernet Tx queues. We require enough room * for a full sized WR. */ #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) /* * Max Tx descriptor space we allow for an Ethernet packet to be inlined * into a WR. */ #define MAX_IMM_TX_PKT_LEN 128 /* * Max size of a WR sent through a control Tx queue. */ #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN struct tx_sw_desc { /* SW state per Tx descriptor */ struct sk_buff *skb; struct ulptx_sgl *sgl; }; struct rx_sw_desc { /* SW state per Rx descriptor */ struct page *page; dma_addr_t dma_addr; }; /* * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs. * We could easily support more but there doesn't seem to be much need for * that ... */ #define FL_MTU_SMALL 1500 #define FL_MTU_LARGE 9000 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, unsigned int mtu) { struct sge *s = &adapter->sge; return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align); } #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) /* * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses * these to specify the buffer size as an index into the SGE Free List Buffer * Size register array. We also use bit 4, when the buffer has been unmapped * for DMA, but this is of course never sent to the hardware and is only used * to prevent double unmappings. All of the above requires that the Free List * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal * Free List Buffer alignment is 32 bytes, this works out for us ... */ enum { RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ /* * XXX We shouldn't depend on being able to use these indices. * XXX Especially when some other Master PF has initialized the * XXX adapter or we use the Firmware Configuration File. We * XXX should really search through the Host Buffer Size register * XXX array for the appropriately sized buffer indices. */ RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */ RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ }; static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5}; #define MIN_NAPI_WORK 1 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) { return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS; } static inline bool is_buf_mapped(const struct rx_sw_desc *d) { return !(d->dma_addr & RX_UNMAPPED_BUF); } /** * txq_avail - return the number of available slots in a Tx queue * @q: the Tx queue * * Returns the number of descriptors in a Tx queue available to write new * packets. */ static inline unsigned int txq_avail(const struct sge_txq *q) { return q->size - 1 - q->in_use; } /** * fl_cap - return the capacity of a free-buffer list * @fl: the FL * * Returns the capacity of a free-buffer list. The capacity is less than * the size because one descriptor needs to be left unpopulated, otherwise * HW will think the FL is empty. */ static inline unsigned int fl_cap(const struct sge_fl *fl) { return fl->size - 8; /* 1 descriptor = 8 buffers */ } static inline bool fl_starving(const struct sge_fl *fl) { return fl->avail - fl->pend_cred <= FL_STARVE_THRES; } static int map_skb(struct device *dev, const struct sk_buff *skb, dma_addr_t *addr) { const skb_frag_t *fp, *end; const struct skb_shared_info *si; *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); if (dma_mapping_error(dev, *addr)) goto out_err; si = skb_shinfo(skb); end = &si->frags[si->nr_frags]; for (fp = si->frags; fp < end; fp++) { *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), DMA_TO_DEVICE); if (dma_mapping_error(dev, *addr)) goto unwind; } return 0; unwind: while (fp-- > si->frags) dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); out_err: return -ENOMEM; } #ifdef CONFIG_NEED_DMA_MAP_STATE static void unmap_skb(struct device *dev, const struct sk_buff *skb, const dma_addr_t *addr) { const skb_frag_t *fp, *end; const struct skb_shared_info *si; dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); si = skb_shinfo(skb); end = &si->frags[si->nr_frags]; for (fp = si->frags; fp < end; fp++) dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); } /** * deferred_unmap_destructor - unmap a packet when it is freed * @skb: the packet * * This is the packet destructor used for Tx packets that need to remain * mapped until they are freed rather than until their Tx descriptors are * freed. */ static void deferred_unmap_destructor(struct sk_buff *skb) { unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); } #endif static void unmap_sgl(struct device *dev, const struct sk_buff *skb, const struct ulptx_sgl *sgl, const struct sge_txq *q) { const struct ulptx_sge_pair *p; unsigned int nfrags = skb_shinfo(skb)->nr_frags; if (likely(skb_headlen(skb))) dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), DMA_TO_DEVICE); else { dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), DMA_TO_DEVICE); nfrags--; } /* * the complexity below is because of the possibility of a wrap-around * in the middle of an SGL */ for (p = sgl->sge; nfrags >= 2; nfrags -= 2) { if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) { unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]), ntohl(p->len[0]), DMA_TO_DEVICE); dma_unmap_page(dev, be64_to_cpu(p->addr[1]), ntohl(p->len[1]), DMA_TO_DEVICE); p++; } else if ((u8 *)p == (u8 *)q->stat) { p = (const struct ulptx_sge_pair *)q->desc; goto unmap; } else if ((u8 *)p + 8 == (u8 *)q->stat) { const __be64 *addr = (const __be64 *)q->desc; dma_unmap_page(dev, be64_to_cpu(addr[0]), ntohl(p->len[0]), DMA_TO_DEVICE); dma_unmap_page(dev, be64_to_cpu(addr[1]), ntohl(p->len[1]), DMA_TO_DEVICE); p = (const struct ulptx_sge_pair *)&addr[2]; } else { const __be64 *addr = (const __be64 *)q->desc; dma_unmap_page(dev, be64_to_cpu(p->addr[0]), ntohl(p->len[0]), DMA_TO_DEVICE); dma_unmap_page(dev, be64_to_cpu(addr[0]), ntohl(p->len[1]), DMA_TO_DEVICE); p = (const struct ulptx_sge_pair *)&addr[1]; } } if (nfrags) { __be64 addr; if ((u8 *)p == (u8 *)q->stat) p = (const struct ulptx_sge_pair *)q->desc; addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] : *(const __be64 *)q->desc; dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]), DMA_TO_DEVICE); } } /** * free_tx_desc - reclaims Tx descriptors and their buffers * @adapter: the adapter * @q: the Tx queue to reclaim descriptors from * @n: the number of descriptors to reclaim * @unmap: whether the buffers should be unmapped for DMA * * Reclaims Tx descriptors from an SGE Tx queue and frees the associated * Tx buffers. Called with the Tx queue lock held. */ static void free_tx_desc(struct adapter *adap, struct sge_txq *q, unsigned int n, bool unmap) { struct tx_sw_desc *d; unsigned int cidx = q->cidx; struct device *dev = adap->pdev_dev; d = &q->sdesc[cidx]; while (n--) { if (d->skb) { /* an SGL is present */ if (unmap) unmap_sgl(dev, d->skb, d->sgl, q); dev_consume_skb_any(d->skb); d->skb = NULL; } ++d; if (++cidx == q->size) { cidx = 0; d = q->sdesc; } } q->cidx = cidx; } /* * Return the number of reclaimable descriptors in a Tx queue. */ static inline int reclaimable(const struct sge_txq *q) { int hw_cidx = ntohs(q->stat->cidx); hw_cidx -= q->cidx; return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; } /** * reclaim_completed_tx - reclaims completed Tx descriptors * @adap: the adapter * @q: the Tx queue to reclaim completed descriptors from * @unmap: whether the buffers should be unmapped for DMA * * Reclaims Tx descriptors that the SGE has indicated it has processed, * and frees the associated buffers if possible. Called with the Tx * queue locked. */ static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, bool unmap) { int avail = reclaimable(q); if (avail) { /* * Limit the amount of clean up work we do at a time to keep * the Tx lock hold time O(1). */ if (avail > MAX_TX_RECLAIM) avail = MAX_TX_RECLAIM; free_tx_desc(adap, q, avail, unmap); q->in_use -= avail; } } static inline int get_buf_size(struct adapter *adapter, const struct rx_sw_desc *d) { struct sge *s = &adapter->sge; unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; int buf_size; switch (rx_buf_size_idx) { case RX_SMALL_PG_BUF: buf_size = PAGE_SIZE; break; case RX_LARGE_PG_BUF: buf_size = PAGE_SIZE << s->fl_pg_order; break; case RX_SMALL_MTU_BUF: buf_size = FL_MTU_SMALL_BUFSIZE(adapter); break; case RX_LARGE_MTU_BUF: buf_size = FL_MTU_LARGE_BUFSIZE(adapter); break; default: BUG_ON(1); } return buf_size; } /** * free_rx_bufs - free the Rx buffers on an SGE free list * @adap: the adapter * @q: the SGE free list to free buffers from * @n: how many buffers to free * * Release the next @n buffers on an SGE free-buffer Rx queue. The * buffers must be made inaccessible to HW before calling this function. */ static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) { while (n--) { struct rx_sw_desc *d = &q->sdesc[q->cidx]; if (is_buf_mapped(d)) dma_unmap_page(adap->pdev_dev, get_buf_addr(d), get_buf_size(adap, d), PCI_DMA_FROMDEVICE); put_page(d->page); d->page = NULL; if (++q->cidx == q->size) q->cidx = 0; q->avail--; } } /** * unmap_rx_buf - unmap the current Rx buffer on an SGE free list * @adap: the adapter * @q: the SGE free list * * Unmap the current buffer on an SGE free-buffer Rx queue. The * buffer must be made inaccessible to HW before calling this function. * * This is similar to @free_rx_bufs above but does not free the buffer. * Do note that the FL still loses any further access to the buffer. */ static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) { struct rx_sw_desc *d = &q->sdesc[q->cidx]; if (is_buf_mapped(d)) dma_unmap_page(adap->pdev_dev, get_buf_addr(d), get_buf_size(adap, d), PCI_DMA_FROMDEVICE); d->page = NULL; if (++q->cidx == q->size) q->cidx = 0; q->avail--; } static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) { u32 val; if (q->pend_cred >= 8) { if (is_t4(adap->params.chip)) val = PIDX_V(q->pend_cred / 8); else val = PIDX_T5_V(q->pend_cred / 8) | DBTYPE_F; val |= DBPRIO_F; wmb(); /* If we don't have access to the new User Doorbell (T5+), use * the old doorbell mechanism; otherwise use the new BAR2 * mechanism. */ if (unlikely(q->bar2_addr == NULL)) { t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), val | QID_V(q->cntxt_id)); } else { writel(val | QID_V(q->bar2_qid), q->bar2_addr + SGE_UDB_KDOORBELL); /* This Write memory Barrier will force the write to * the User Doorbell area to be flushed. */ wmb(); } q->pend_cred &= 7; } } static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, dma_addr_t mapping) { sd->page = pg; sd->dma_addr = mapping; /* includes size low bits */ } /** * refill_fl - refill an SGE Rx buffer ring * @adap: the adapter * @q: the ring to refill * @n: the number of new buffers to allocate * @gfp: the gfp flags for the allocations * * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, * allocated with the supplied gfp flags. The caller must assure that * @n does not exceed the queue's capacity. If afterwards the queue is * found critically low mark it as starving in the bitmap of starving FLs. * * Returns the number of buffers allocated. */ static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp) { struct sge *s = &adap->sge; struct page *pg; dma_addr_t mapping; unsigned int cred = q->avail; __be64 *d = &q->desc[q->pidx]; struct rx_sw_desc *sd = &q->sdesc[q->pidx]; gfp |= __GFP_NOWARN; if (s->fl_pg_order == 0) goto alloc_small_pages; /* * Prefer large buffers */ while (n) { pg = __dev_alloc_pages(gfp, s->fl_pg_order); if (unlikely(!pg)) { q->large_alloc_failed++; break; /* fall back to single pages */ } mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE << s->fl_pg_order, PCI_DMA_FROMDEVICE); if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { __free_pages(pg, s->fl_pg_order); goto out; /* do not try small pages for this error */ } mapping |= RX_LARGE_PG_BUF; *d++ = cpu_to_be64(mapping); set_rx_sw_desc(sd, pg, mapping); sd++; q->avail++; if (++q->pidx == q->size) { q->pidx = 0; sd = q->sdesc; d = q->desc; } n--; } alloc_small_pages: while (n--) { pg = __dev_alloc_page(gfp); if (unlikely(!pg)) { q->alloc_failed++; break; } mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, PCI_DMA_FROMDEVICE); if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { put_page(pg); goto out; } *d++ = cpu_to_be64(mapping); set_rx_sw_desc(sd, pg, mapping); sd++; q->avail++; if (++q->pidx == q->size) { q->pidx = 0; sd = q->sdesc; d = q->desc; } } out: cred = q->avail - cred; q->pend_cred += cred; ring_fl_db(adap, q); if (unlikely(fl_starving(q))) { smp_wmb(); set_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.starving_fl); } return cred; } static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) { refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), GFP_ATOMIC); } /** * alloc_ring - allocate resources for an SGE descriptor ring * @dev: the PCI device's core device * @nelem: the number of descriptors * @elem_size: the size of each descriptor * @sw_size: the size of the SW state associated with each ring element * @phys: the physical address of the allocated ring * @metadata: address of the array holding the SW state for the ring * @stat_size: extra space in HW ring for status information * @node: preferred node for memory allocations * * Allocates resources for an SGE descriptor ring, such as Tx queues, * free buffer lists, or response queues. Each SGE ring requires * space for its HW descriptors plus, optionally, space for the SW state * associated with each HW entry (the metadata). The function returns * three values: the virtual address for the HW ring (the return value * of the function), the bus address of the HW ring, and the address * of the SW ring. */ static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, size_t sw_size, dma_addr_t *phys, void *metadata, size_t stat_size, int node) { size_t len = nelem * elem_size + stat_size; void *s = NULL; void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); if (!p) return NULL; if (sw_size) { s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node); if (!s) { dma_free_coherent(dev, len, p, *phys); return NULL; } } if (metadata) *(void **)metadata = s; memset(p, 0, len); return p; } /** * sgl_len - calculates the size of an SGL of the given capacity * @n: the number of SGL entries * * Calculates the number of flits needed for a scatter/gather list that * can hold the given number of entries. */ static inline unsigned int sgl_len(unsigned int n) { n--; return (3 * n) / 2 + (n & 1) + 2; } /** * flits_to_desc - returns the num of Tx descriptors for the given flits * @n: the number of flits * * Returns the number of Tx descriptors needed for the supplied number * of flits. */ static inline unsigned int flits_to_desc(unsigned int n) { BUG_ON(n > SGE_MAX_WR_LEN / 8); return DIV_ROUND_UP(n, 8); } /** * is_eth_imm - can an Ethernet packet be sent as immediate data? * @skb: the packet * * Returns whether an Ethernet packet is small enough to fit as * immediate data. Return value corresponds to headroom required. */ static inline int is_eth_imm(const struct sk_buff *skb) { int hdrlen = skb_shinfo(skb)->gso_size ? sizeof(struct cpl_tx_pkt_lso_core) : 0; hdrlen += sizeof(struct cpl_tx_pkt); if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) return hdrlen; return 0; } /** * calc_tx_flits - calculate the number of flits for a packet Tx WR * @skb: the packet * * Returns the number of flits needed for a Tx WR for the given Ethernet * packet, including the needed WR and CPL headers. */ static inline unsigned int calc_tx_flits(const struct sk_buff *skb) { unsigned int flits; int hdrlen = is_eth_imm(skb); if (hdrlen) return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4; if (skb_shinfo(skb)->gso_size) flits += 2; return flits; } /** * calc_tx_descs - calculate the number of Tx descriptors for a packet * @skb: the packet * * Returns the number of Tx descriptors needed for the given Ethernet * packet, including the needed WR and CPL headers. */ static inline unsigned int calc_tx_descs(const struct sk_buff *skb) { return flits_to_desc(calc_tx_flits(skb)); } /** * write_sgl - populate a scatter/gather list for a packet * @skb: the packet * @q: the Tx queue we are writing into * @sgl: starting location for writing the SGL * @end: points right after the end of the SGL * @start: start offset into skb main-body data to include in the SGL * @addr: the list of bus addresses for the SGL elements * * Generates a gather list for the buffers that make up a packet. * The caller must provide adequate space for the SGL that will be written. * The SGL includes all of the packet's page fragments and the data in its * main body except for the first @start bytes. @sgl must be 16-byte * aligned and within a Tx descriptor with available space. @end points * right after the end of the SGL but does not account for any potential * wrap around, i.e., @end > @sgl. */ static void write_sgl(const struct sk_buff *skb, struct sge_txq *q, struct ulptx_sgl *sgl, u64 *end, unsigned int start, const dma_addr_t *addr) { unsigned int i, len; struct ulptx_sge_pair *to; const struct skb_shared_info *si = skb_shinfo(skb); unsigned int nfrags = si->nr_frags; struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; len = skb_headlen(skb) - start; if (likely(len)) { sgl->len0 = htonl(len); sgl->addr0 = cpu_to_be64(addr[0] + start); nfrags++; } else { sgl->len0 = htonl(skb_frag_size(&si->frags[0])); sgl->addr0 = cpu_to_be64(addr[1]); } sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | ULPTX_NSGE_V(nfrags)); if (likely(--nfrags == 0)) return; /* * Most of the complexity below deals with the possibility we hit the * end of the queue in the middle of writing the SGL. For this case * only we create the SGL in a temporary buffer and then copy it. */ to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); to->addr[0] = cpu_to_be64(addr[i]); to->addr[1] = cpu_to_be64(addr[++i]); } if (nfrags) { to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); to->len[1] = cpu_to_be32(0); to->addr[0] = cpu_to_be64(addr[i + 1]); } if (unlikely((u8 *)end > (u8 *)q->stat)) { unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; if (likely(part0)) memcpy(sgl->sge, buf, part0); part1 = (u8 *)end - (u8 *)q->stat; memcpy(q->desc, (u8 *)buf + part0, part1); end = (void *)q->desc + part1; } if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ *end = 0; } /* This function copies 64 byte coalesced work request to * memory mapped BAR2 space. For coalesced WR SGE fetches * data from the FIFO instead of from Host. */ static void cxgb_pio_copy(u64 __iomem *dst, u64 *src) { int count = 8; while (count) { writeq(*src, dst); src++; dst++; count--; } } /** * ring_tx_db - check and potentially ring a Tx queue's doorbell * @adap: the adapter * @q: the Tx queue * @n: number of new descriptors to give to HW * * Ring the doorbel for a Tx queue. */ static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) { wmb(); /* write descriptors before telling HW */ /* If we don't have access to the new User Doorbell (T5+), use the old * doorbell mechanism; otherwise use the new BAR2 mechanism. */ if (unlikely(q->bar2_addr == NULL)) { u32 val = PIDX_V(n); unsigned long flags; /* For T4 we need to participate in the Doorbell Recovery * mechanism. */ spin_lock_irqsave(&q->db_lock, flags); if (!q->db_disabled) t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), QID_V(q->cntxt_id) | val); else q->db_pidx_inc += n; q->db_pidx = q->pidx; spin_unlock_irqrestore(&q->db_lock, flags); } else { u32 val = PIDX_T5_V(n); /* T4 and later chips share the same PIDX field offset within * the doorbell, but T5 and later shrank the field in order to * gain a bit for Doorbell Priority. The field was absurdly * large in the first place (14 bits) so we just use the T5 * and later limits and warn if a Queue ID is too large. */ WARN_ON(val & DBPRIO_F); /* If we're only writing a single TX Descriptor and we can use * Inferred QID registers, we can use the Write Combining * Gather Buffer; otherwise we use the simple doorbell. */ if (n == 1 && q->bar2_qid == 0) { int index = (q->pidx ? (q->pidx - 1) : (q->size - 1)); u64 *wr = (u64 *)&q->desc[index]; cxgb_pio_copy((u64 __iomem *) (q->bar2_addr + SGE_UDB_WCDOORBELL), wr); } else { writel(val | QID_V(q->bar2_qid), q->bar2_addr + SGE_UDB_KDOORBELL); } /* This Write Memory Barrier will force the write to the User * Doorbell area to be flushed. This is needed to prevent * writes on different CPUs for the same queue from hitting * the adapter out of order. This is required when some Work * Requests take the Write Combine Gather Buffer path (user * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some * take the traditional path where we simply increment the * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the * hardware DMA read the actual Work Request. */ wmb(); } } /** * inline_tx_skb - inline a packet's data into Tx descriptors * @skb: the packet * @q: the Tx queue where the packet will be inlined * @pos: starting position in the Tx queue where to inline the packet * * Inline a packet's contents directly into Tx descriptors, starting at * the given position within the Tx DMA ring. * Most of the complexity of this operation is dealing with wrap arounds * in the middle of the packet we want to inline. */ static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q, void *pos) { u64 *p; int left = (void *)q->stat - pos; if (likely(skb->len <= left)) { if (likely(!skb->data_len)) skb_copy_from_linear_data(skb, pos, skb->len); else skb_copy_bits(skb, 0, pos, skb->len); pos += skb->len; } else { skb_copy_bits(skb, 0, pos, left); skb_copy_bits(skb, left, q->desc, skb->len - left); pos = (void *)q->desc + (skb->len - left); } /* 0-pad to multiple of 16 */ p = PTR_ALIGN(pos, 8); if ((uintptr_t)p & 8) *p = 0; } /* * Figure out what HW csum a packet wants and return the appropriate control * bits. */ static u64 hwcsum(const struct sk_buff *skb) { int csum_type; const struct iphdr *iph = ip_hdr(skb); if (iph->version == 4) { if (iph->protocol == IPPROTO_TCP) csum_type = TX_CSUM_TCPIP; else if (iph->protocol == IPPROTO_UDP) csum_type = TX_CSUM_UDPIP; else { nocsum: /* * unknown protocol, disable HW csum * and hope a bad packet is detected */ return TXPKT_L4CSUM_DIS; } } else { /* * this doesn't work with extension headers */ const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph; if (ip6h->nexthdr == IPPROTO_TCP) csum_type = TX_CSUM_TCPIP6; else if (ip6h->nexthdr == IPPROTO_UDP) csum_type = TX_CSUM_UDPIP6; else goto nocsum; } if (likely(csum_type >= TX_CSUM_TCPIP)) return TXPKT_CSUM_TYPE(csum_type) | TXPKT_IPHDR_LEN(skb_network_header_len(skb)) | TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN); else { int start = skb_transport_offset(skb); return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) | TXPKT_CSUM_LOC(start + skb->csum_offset); } } static void eth_txq_stop(struct sge_eth_txq *q) { netif_tx_stop_queue(q->txq); q->q.stops++; } static inline void txq_advance(struct sge_txq *q, unsigned int n) { q->in_use += n; q->pidx += n; if (q->pidx >= q->size) q->pidx -= q->size; } /** * t4_eth_xmit - add a packet to an Ethernet Tx queue * @skb: the packet * @dev: the egress net device * * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. */ netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev) { int len; u32 wr_mid; u64 cntrl, *end; int qidx, credits; unsigned int flits, ndesc; struct adapter *adap; struct sge_eth_txq *q; const struct port_info *pi; struct fw_eth_tx_pkt_wr *wr; struct cpl_tx_pkt_core *cpl; const struct skb_shared_info *ssi; dma_addr_t addr[MAX_SKB_FRAGS + 1]; bool immediate = false; /* * The chip min packet length is 10 octets but play safe and reject * anything shorter than an Ethernet header. */ if (unlikely(skb->len < ETH_HLEN)) { out_free: dev_kfree_skb_any(skb); return NETDEV_TX_OK; } pi = netdev_priv(dev); adap = pi->adapter; qidx = skb_get_queue_mapping(skb); q = &adap->sge.ethtxq[qidx + pi->first_qset]; reclaim_completed_tx(adap, &q->q, true); flits = calc_tx_flits(skb); ndesc = flits_to_desc(flits); credits = txq_avail(&q->q) - ndesc; if (unlikely(credits < 0)) { eth_txq_stop(q); dev_err(adap->pdev_dev, "%s: Tx ring %u full while queue awake!\n", dev->name, qidx); return NETDEV_TX_BUSY; } if (is_eth_imm(skb)) immediate = true; if (!immediate && unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) { q->mapping_err++; goto out_free; } wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); if (unlikely(credits < ETHTXQ_STOP_THRES)) { eth_txq_stop(q); wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; } wr = (void *)&q->q.desc[q->q.pidx]; wr->equiq_to_len16 = htonl(wr_mid); wr->r3 = cpu_to_be64(0); end = (u64 *)wr + flits; len = immediate ? skb->len : 0; ssi = skb_shinfo(skb); if (ssi->gso_size) { struct cpl_tx_pkt_lso *lso = (void *)wr; bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; int l3hdr_len = skb_network_header_len(skb); int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; len += sizeof(*lso); wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | FW_WR_IMMDLEN_V(len)); lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) | LSO_FIRST_SLICE | LSO_LAST_SLICE | LSO_IPV6(v6) | LSO_ETHHDR_LEN(eth_xtra_len / 4) | LSO_IPHDR_LEN(l3hdr_len / 4) | LSO_TCPHDR_LEN(tcp_hdr(skb)->doff)); lso->c.ipid_ofst = htons(0); lso->c.mss = htons(ssi->gso_size); lso->c.seqno_offset = htonl(0); if (is_t4(adap->params.chip)) lso->c.len = htonl(skb->len); else lso->c.len = htonl(LSO_T5_XFER_SIZE(skb->len)); cpl = (void *)(lso + 1); cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | TXPKT_IPHDR_LEN(l3hdr_len) | TXPKT_ETHHDR_LEN(eth_xtra_len); q->tso++; q->tx_cso += ssi->gso_segs; } else { len += sizeof(*cpl); wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | FW_WR_IMMDLEN_V(len)); cpl = (void *)(wr + 1); if (skb->ip_summed == CHECKSUM_PARTIAL) { cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS; q->tx_cso++; } else cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS; } if (skb_vlan_tag_present(skb)) { q->vlan_ins++; cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(skb_vlan_tag_get(skb)); } cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) | TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn)); cpl->pack = htons(0); cpl->len = htons(skb->len); cpl->ctrl1 = cpu_to_be64(cntrl); if (immediate) { inline_tx_skb(skb, &q->q, cpl + 1); dev_consume_skb_any(skb); } else { int last_desc; write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0, addr); skb_orphan(skb); last_desc = q->q.pidx + ndesc - 1; if (last_desc >= q->q.size) last_desc -= q->q.size; q->q.sdesc[last_desc].skb = skb; q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1); } txq_advance(&q->q, ndesc); ring_tx_db(adap, &q->q, ndesc); return NETDEV_TX_OK; } /** * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs * @q: the SGE control Tx queue * * This is a variant of reclaim_completed_tx() that is used for Tx queues * that send only immediate data (presently just the control queues) and * thus do not have any sk_buffs to release. */ static inline void reclaim_completed_tx_imm(struct sge_txq *q) { int hw_cidx = ntohs(q->stat->cidx); int reclaim = hw_cidx - q->cidx; if (reclaim < 0) reclaim += q->size; q->in_use -= reclaim; q->cidx = hw_cidx; } /** * is_imm - check whether a packet can be sent as immediate data * @skb: the packet * * Returns true if a packet can be sent as a WR with immediate data. */ static inline int is_imm(const struct sk_buff *skb) { return skb->len <= MAX_CTRL_WR_LEN; } /** * ctrlq_check_stop - check if a control queue is full and should stop * @q: the queue * @wr: most recent WR written to the queue * * Check if a control queue has become full and should be stopped. * We clean up control queue descriptors very lazily, only when we are out. * If the queue is still full after reclaiming any completed descriptors * we suspend it and have the last WR wake it up. */ static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) { reclaim_completed_tx_imm(&q->q); if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); q->q.stops++; q->full = 1; } } /** * ctrl_xmit - send a packet through an SGE control Tx queue * @q: the control queue * @skb: the packet * * Send a packet through an SGE control Tx queue. Packets sent through * a control queue must fit entirely as immediate data. */ static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) { unsigned int ndesc; struct fw_wr_hdr *wr; if (unlikely(!is_imm(skb))) { WARN_ON(1); dev_kfree_skb(skb); return NET_XMIT_DROP; } ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); spin_lock(&q->sendq.lock); if (unlikely(q->full)) { skb->priority = ndesc; /* save for restart */ __skb_queue_tail(&q->sendq, skb); spin_unlock(&q->sendq.lock); return NET_XMIT_CN; } wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; inline_tx_skb(skb, &q->q, wr); txq_advance(&q->q, ndesc); if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) ctrlq_check_stop(q, wr); ring_tx_db(q->adap, &q->q, ndesc); spin_unlock(&q->sendq.lock); kfree_skb(skb); return NET_XMIT_SUCCESS; } /** * restart_ctrlq - restart a suspended control queue * @data: the control queue to restart * * Resumes transmission on a suspended Tx control queue. */ static void restart_ctrlq(unsigned long data) { struct sk_buff *skb; unsigned int written = 0; struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data; spin_lock(&q->sendq.lock); reclaim_completed_tx_imm(&q->q); BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ while ((skb = __skb_dequeue(&q->sendq)) != NULL) { struct fw_wr_hdr *wr; unsigned int ndesc = skb->priority; /* previously saved */ /* * Write descriptors and free skbs outside the lock to limit * wait times. q->full is still set so new skbs will be queued. */ spin_unlock(&q->sendq.lock); wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; inline_tx_skb(skb, &q->q, wr); kfree_skb(skb); written += ndesc; txq_advance(&q->q, ndesc); if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { unsigned long old = q->q.stops; ctrlq_check_stop(q, wr); if (q->q.stops != old) { /* suspended anew */ spin_lock(&q->sendq.lock); goto ringdb; } } if (written > 16) { ring_tx_db(q->adap, &q->q, written); written = 0; } spin_lock(&q->sendq.lock); } q->full = 0; ringdb: if (written) ring_tx_db(q->adap, &q->q, written); spin_unlock(&q->sendq.lock); } /** * t4_mgmt_tx - send a management message * @adap: the adapter * @skb: the packet containing the management message * * Send a management message through control queue 0. */ int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) { int ret; local_bh_disable(); ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); local_bh_enable(); return ret; } /** * is_ofld_imm - check whether a packet can be sent as immediate data * @skb: the packet * * Returns true if a packet can be sent as an offload WR with immediate * data. We currently use the same limit as for Ethernet packets. */ static inline int is_ofld_imm(const struct sk_buff *skb) { return skb->len <= MAX_IMM_TX_PKT_LEN; } /** * calc_tx_flits_ofld - calculate # of flits for an offload packet * @skb: the packet * * Returns the number of flits needed for the given offload packet. * These packets are already fully constructed and no additional headers * will be added. */ static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) { unsigned int flits, cnt; if (is_ofld_imm(skb)) return DIV_ROUND_UP(skb->len, 8); flits = skb_transport_offset(skb) / 8U; /* headers */ cnt = skb_shinfo(skb)->nr_frags; if (skb_tail_pointer(skb) != skb_transport_header(skb)) cnt++; return flits + sgl_len(cnt); } /** * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion * @adap: the adapter * @q: the queue to stop * * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting * inability to map packets. A periodic timer attempts to restart * queues so marked. */ static void txq_stop_maperr(struct sge_ofld_txq *q) { q->mapping_err++; q->q.stops++; set_bit(q->q.cntxt_id - q->adap->sge.egr_start, q->adap->sge.txq_maperr); } /** * ofldtxq_stop - stop an offload Tx queue that has become full * @q: the queue to stop * @skb: the packet causing the queue to become full * * Stops an offload Tx queue that has become full and modifies the packet * being written to request a wakeup. */ static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb) { struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data; wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); q->q.stops++; q->full = 1; } /** * service_ofldq - restart a suspended offload queue * @q: the offload queue * * Services an offload Tx queue by moving packets from its packet queue * to the HW Tx ring. The function starts and ends with the queue locked. */ static void service_ofldq(struct sge_ofld_txq *q) { u64 *pos; int credits; struct sk_buff *skb; unsigned int written = 0; unsigned int flits, ndesc; while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { /* * We drop the lock but leave skb on sendq, thus retaining * exclusive access to the state of the queue. */ spin_unlock(&q->sendq.lock); reclaim_completed_tx(q->adap, &q->q, false); flits = skb->priority; /* previously saved */ ndesc = flits_to_desc(flits); credits = txq_avail(&q->q) - ndesc; BUG_ON(credits < 0); if (unlikely(credits < TXQ_STOP_THRES)) ofldtxq_stop(q, skb); pos = (u64 *)&q->q.desc[q->q.pidx]; if (is_ofld_imm(skb)) inline_tx_skb(skb, &q->q, pos); else if (map_skb(q->adap->pdev_dev, skb, (dma_addr_t *)skb->head)) { txq_stop_maperr(q); spin_lock(&q->sendq.lock); break; } else { int last_desc, hdr_len = skb_transport_offset(skb); memcpy(pos, skb->data, hdr_len); write_sgl(skb, &q->q, (void *)pos + hdr_len, pos + flits, hdr_len, (dma_addr_t *)skb->head); #ifdef CONFIG_NEED_DMA_MAP_STATE skb->dev = q->adap->port[0]; skb->destructor = deferred_unmap_destructor; #endif last_desc = q->q.pidx + ndesc - 1; if (last_desc >= q->q.size) last_desc -= q->q.size; q->q.sdesc[last_desc].skb = skb; } txq_advance(&q->q, ndesc); written += ndesc; if (unlikely(written > 32)) { ring_tx_db(q->adap, &q->q, written); written = 0; } spin_lock(&q->sendq.lock); __skb_unlink(skb, &q->sendq); if (is_ofld_imm(skb)) kfree_skb(skb); } if (likely(written)) ring_tx_db(q->adap, &q->q, written); } /** * ofld_xmit - send a packet through an offload queue * @q: the Tx offload queue * @skb: the packet * * Send an offload packet through an SGE offload queue. */ static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb) { skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ spin_lock(&q->sendq.lock); __skb_queue_tail(&q->sendq, skb); if (q->sendq.qlen == 1) service_ofldq(q); spin_unlock(&q->sendq.lock); return NET_XMIT_SUCCESS; } /** * restart_ofldq - restart a suspended offload queue * @data: the offload queue to restart * * Resumes transmission on a suspended Tx offload queue. */ static void restart_ofldq(unsigned long data) { struct sge_ofld_txq *q = (struct sge_ofld_txq *)data; spin_lock(&q->sendq.lock); q->full = 0; /* the queue actually is completely empty now */ service_ofldq(q); spin_unlock(&q->sendq.lock); } /** * skb_txq - return the Tx queue an offload packet should use * @skb: the packet * * Returns the Tx queue an offload packet should use as indicated by bits * 1-15 in the packet's queue_mapping. */ static inline unsigned int skb_txq(const struct sk_buff *skb) { return skb->queue_mapping >> 1; } /** * is_ctrl_pkt - return whether an offload packet is a control packet * @skb: the packet * * Returns whether an offload packet should use an OFLD or a CTRL * Tx queue as indicated by bit 0 in the packet's queue_mapping. */ static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) { return skb->queue_mapping & 1; } static inline int ofld_send(struct adapter *adap, struct sk_buff *skb) { unsigned int idx = skb_txq(skb); if (unlikely(is_ctrl_pkt(skb))) { /* Single ctrl queue is a requirement for LE workaround path */ if (adap->tids.nsftids) idx = 0; return ctrl_xmit(&adap->sge.ctrlq[idx], skb); } return ofld_xmit(&adap->sge.ofldtxq[idx], skb); } /** * t4_ofld_send - send an offload packet * @adap: the adapter * @skb: the packet * * Sends an offload packet. We use the packet queue_mapping to select the * appropriate Tx queue as follows: bit 0 indicates whether the packet * should be sent as regular or control, bits 1-15 select the queue. */ int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) { int ret; local_bh_disable(); ret = ofld_send(adap, skb); local_bh_enable(); return ret; } /** * cxgb4_ofld_send - send an offload packet * @dev: the net device * @skb: the packet * * Sends an offload packet. This is an exported version of @t4_ofld_send, * intended for ULDs. */ int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) { return t4_ofld_send(netdev2adap(dev), skb); } EXPORT_SYMBOL(cxgb4_ofld_send); static inline void copy_frags(struct sk_buff *skb, const struct pkt_gl *gl, unsigned int offset) { int i; /* usually there's just one frag */ __skb_fill_page_desc(skb, 0, gl->frags[0].page, gl->frags[0].offset + offset, gl->frags[0].size - offset); skb_shinfo(skb)->nr_frags = gl->nfrags; for (i = 1; i < gl->nfrags; i++) __skb_fill_page_desc(skb, i, gl->frags[i].page, gl->frags[i].offset, gl->frags[i].size); /* get a reference to the last page, we don't own it */ get_page(gl->frags[gl->nfrags - 1].page); } /** * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list * @gl: the gather list * @skb_len: size of sk_buff main body if it carries fragments * @pull_len: amount of data to move to the sk_buff's main body * * Builds an sk_buff from the given packet gather list. Returns the * sk_buff or %NULL if sk_buff allocation failed. */ struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, unsigned int skb_len, unsigned int pull_len) { struct sk_buff *skb; /* * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer * size, which is expected since buffers are at least PAGE_SIZEd. * In this case packets up to RX_COPY_THRES have only one fragment. */ if (gl->tot_len <= RX_COPY_THRES) { skb = dev_alloc_skb(gl->tot_len); if (unlikely(!skb)) goto out; __skb_put(skb, gl->tot_len); skb_copy_to_linear_data(skb, gl->va, gl->tot_len); } else { skb = dev_alloc_skb(skb_len); if (unlikely(!skb)) goto out; __skb_put(skb, pull_len); skb_copy_to_linear_data(skb, gl->va, pull_len); copy_frags(skb, gl, pull_len); skb->len = gl->tot_len; skb->data_len = skb->len - pull_len; skb->truesize += skb->data_len; } out: return skb; } EXPORT_SYMBOL(cxgb4_pktgl_to_skb); /** * t4_pktgl_free - free a packet gather list * @gl: the gather list * * Releases the pages of a packet gather list. We do not own the last * page on the list and do not free it. */ static void t4_pktgl_free(const struct pkt_gl *gl) { int n; const struct page_frag *p; for (p = gl->frags, n = gl->nfrags - 1; n--; p++) put_page(p->page); } /* * Process an MPS trace packet. Give it an unused protocol number so it won't * be delivered to anyone and send it to the stack for capture. */ static noinline int handle_trace_pkt(struct adapter *adap, const struct pkt_gl *gl) { struct sk_buff *skb; skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); if (unlikely(!skb)) { t4_pktgl_free(gl); return 0; } if (is_t4(adap->params.chip)) __skb_pull(skb, sizeof(struct cpl_trace_pkt)); else __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt)); skb_reset_mac_header(skb); skb->protocol = htons(0xffff); skb->dev = adap->port[0]; netif_receive_skb(skb); return 0; } static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, const struct cpl_rx_pkt *pkt) { struct adapter *adapter = rxq->rspq.adap; struct sge *s = &adapter->sge; int ret; struct sk_buff *skb; skb = napi_get_frags(&rxq->rspq.napi); if (unlikely(!skb)) { t4_pktgl_free(gl); rxq->stats.rx_drops++; return; } copy_frags(skb, gl, s->pktshift); skb->len = gl->tot_len - s->pktshift; skb->data_len = skb->len; skb->truesize += skb->data_len; skb->ip_summed = CHECKSUM_UNNECESSARY; skb_record_rx_queue(skb, rxq->rspq.idx); skb_mark_napi_id(skb, &rxq->rspq.napi); if (rxq->rspq.netdev->features & NETIF_F_RXHASH) skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, PKT_HASH_TYPE_L3); if (unlikely(pkt->vlan_ex)) { __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); rxq->stats.vlan_ex++; } ret = napi_gro_frags(&rxq->rspq.napi); if (ret == GRO_HELD) rxq->stats.lro_pkts++; else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) rxq->stats.lro_merged++; rxq->stats.pkts++; rxq->stats.rx_cso++; } /** * t4_ethrx_handler - process an ingress ethernet packet * @q: the response queue that received the packet * @rsp: the response queue descriptor holding the RX_PKT message * @si: the gather list of packet fragments * * Process an ingress ethernet packet and deliver it to the stack. */ int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, const struct pkt_gl *si) { bool csum_ok; struct sk_buff *skb; const struct cpl_rx_pkt *pkt; struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); struct sge *s = &q->adap->sge; int cpl_trace_pkt = is_t4(q->adap->params.chip) ? CPL_TRACE_PKT : CPL_TRACE_PKT_T5; if (unlikely(*(u8 *)rsp == cpl_trace_pkt)) return handle_trace_pkt(q->adap, si); pkt = (const struct cpl_rx_pkt *)rsp; csum_ok = pkt->csum_calc && !pkt->err_vec && (q->netdev->features & NETIF_F_RXCSUM); if ((pkt->l2info & htonl(RXF_TCP_F)) && !(cxgb_poll_busy_polling(q)) && (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { do_gro(rxq, si, pkt); return 0; } skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); if (unlikely(!skb)) { t4_pktgl_free(si); rxq->stats.rx_drops++; return 0; } __skb_pull(skb, s->pktshift); /* remove ethernet header padding */ skb->protocol = eth_type_trans(skb, q->netdev); skb_record_rx_queue(skb, q->idx); if (skb->dev->features & NETIF_F_RXHASH) skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, PKT_HASH_TYPE_L3); rxq->stats.pkts++; if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) { if (!pkt->ip_frag) { skb->ip_summed = CHECKSUM_UNNECESSARY; rxq->stats.rx_cso++; } else if (pkt->l2info & htonl(RXF_IP_F)) { __sum16 c = (__force __sum16)pkt->csum; skb->csum = csum_unfold(c); skb->ip_summed = CHECKSUM_COMPLETE; rxq->stats.rx_cso++; } } else skb_checksum_none_assert(skb); if (unlikely(pkt->vlan_ex)) { __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); rxq->stats.vlan_ex++; } skb_mark_napi_id(skb, &q->napi); netif_receive_skb(skb); return 0; } /** * restore_rx_bufs - put back a packet's Rx buffers * @si: the packet gather list * @q: the SGE free list * @frags: number of FL buffers to restore * * Puts back on an FL the Rx buffers associated with @si. The buffers * have already been unmapped and are left unmapped, we mark them so to * prevent further unmapping attempts. * * This function undoes a series of @unmap_rx_buf calls when we find out * that the current packet can't be processed right away afterall and we * need to come back to it later. This is a very rare event and there's * no effort to make this particularly efficient. */ static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, int frags) { struct rx_sw_desc *d; while (frags--) { if (q->cidx == 0) q->cidx = q->size - 1; else q->cidx--; d = &q->sdesc[q->cidx]; d->page = si->frags[frags].page; d->dma_addr |= RX_UNMAPPED_BUF; q->avail++; } } /** * is_new_response - check if a response is newly written * @r: the response descriptor * @q: the response queue * * Returns true if a response descriptor contains a yet unprocessed * response. */ static inline bool is_new_response(const struct rsp_ctrl *r, const struct sge_rspq *q) { return RSPD_GEN(r->type_gen) == q->gen; } /** * rspq_next - advance to the next entry in a response queue * @q: the queue * * Updates the state of a response queue to advance it to the next entry. */ static inline void rspq_next(struct sge_rspq *q) { q->cur_desc = (void *)q->cur_desc + q->iqe_len; if (unlikely(++q->cidx == q->size)) { q->cidx = 0; q->gen ^= 1; q->cur_desc = q->desc; } } /** * process_responses - process responses from an SGE response queue * @q: the ingress queue to process * @budget: how many responses can be processed in this round * * Process responses from an SGE response queue up to the supplied budget. * Responses include received packets as well as control messages from FW * or HW. * * Additionally choose the interrupt holdoff time for the next interrupt * on this queue. If the system is under memory shortage use a fairly * long delay to help recovery. */ static int process_responses(struct sge_rspq *q, int budget) { int ret, rsp_type; int budget_left = budget; const struct rsp_ctrl *rc; struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); struct adapter *adapter = q->adap; struct sge *s = &adapter->sge; while (likely(budget_left)) { rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); if (!is_new_response(rc, q)) break; rmb(); rsp_type = RSPD_TYPE(rc->type_gen); if (likely(rsp_type == RSP_TYPE_FLBUF)) { struct page_frag *fp; struct pkt_gl si; const struct rx_sw_desc *rsd; u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; if (len & RSPD_NEWBUF) { if (likely(q->offset > 0)) { free_rx_bufs(q->adap, &rxq->fl, 1); q->offset = 0; } len = RSPD_LEN(len); } si.tot_len = len; /* gather packet fragments */ for (frags = 0, fp = si.frags; ; frags++, fp++) { rsd = &rxq->fl.sdesc[rxq->fl.cidx]; bufsz = get_buf_size(adapter, rsd); fp->page = rsd->page; fp->offset = q->offset; fp->size = min(bufsz, len); len -= fp->size; if (!len) break; unmap_rx_buf(q->adap, &rxq->fl); } /* * Last buffer remains mapped so explicitly make it * coherent for CPU access. */ dma_sync_single_for_cpu(q->adap->pdev_dev, get_buf_addr(rsd), fp->size, DMA_FROM_DEVICE); si.va = page_address(si.frags[0].page) + si.frags[0].offset; prefetch(si.va); si.nfrags = frags + 1; ret = q->handler(q, q->cur_desc, &si); if (likely(ret == 0)) q->offset += ALIGN(fp->size, s->fl_align); else restore_rx_bufs(&si, &rxq->fl, frags); } else if (likely(rsp_type == RSP_TYPE_CPL)) { ret = q->handler(q, q->cur_desc, NULL); } else { ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); } if (unlikely(ret)) { /* couldn't process descriptor, back off for recovery */ q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX); break; } rspq_next(q); budget_left--; } if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16) __refill_fl(q->adap, &rxq->fl); return budget - budget_left; } #ifdef CONFIG_NET_RX_BUSY_POLL int cxgb_busy_poll(struct napi_struct *napi) { struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); unsigned int params, work_done; u32 val; if (!cxgb_poll_lock_poll(q)) return LL_FLUSH_BUSY; work_done = process_responses(q, 4); params = QINTR_TIMER_IDX(TIMERREG_COUNTER0_X) | QINTR_CNT_EN; q->next_intr_params = params; val = CIDXINC_V(work_done) | SEINTARM_V(params); /* If we don't have access to the new User GTS (T5+), use the old * doorbell mechanism; otherwise use the new BAR2 mechanism. */ if (unlikely(!q->bar2_addr)) t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), val | INGRESSQID_V((u32)q->cntxt_id)); else { writel(val | INGRESSQID_V(q->bar2_qid), q->bar2_addr + SGE_UDB_GTS); wmb(); } cxgb_poll_unlock_poll(q); return work_done; } #endif /* CONFIG_NET_RX_BUSY_POLL */ /** * napi_rx_handler - the NAPI handler for Rx processing * @napi: the napi instance * @budget: how many packets we can process in this round * * Handler for new data events when using NAPI. This does not need any * locking or protection from interrupts as data interrupts are off at * this point and other adapter interrupts do not interfere (the latter * in not a concern at all with MSI-X as non-data interrupts then have * a separate handler). */ static int napi_rx_handler(struct napi_struct *napi, int budget) { unsigned int params; struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); int work_done; u32 val; if (!cxgb_poll_lock_napi(q)) return budget; work_done = process_responses(q, budget); if (likely(work_done < budget)) { int timer_index; napi_complete(napi); timer_index = QINTR_TIMER_IDX_GET(q->next_intr_params); if (q->adaptive_rx) { if (work_done > max(timer_pkt_quota[timer_index], MIN_NAPI_WORK)) timer_index = (timer_index + 1); else timer_index = timer_index - 1; timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1); q->next_intr_params = QINTR_TIMER_IDX(timer_index) | V_QINTR_CNT_EN; params = q->next_intr_params; } else { params = q->next_intr_params; q->next_intr_params = q->intr_params; } } else params = QINTR_TIMER_IDX(7); val = CIDXINC_V(work_done) | SEINTARM_V(params); /* If we don't have access to the new User GTS (T5+), use the old * doorbell mechanism; otherwise use the new BAR2 mechanism. */ if (unlikely(q->bar2_addr == NULL)) { t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), val | INGRESSQID_V((u32)q->cntxt_id)); } else { writel(val | INGRESSQID_V(q->bar2_qid), q->bar2_addr + SGE_UDB_GTS); wmb(); } cxgb_poll_unlock_napi(q); return work_done; } /* * The MSI-X interrupt handler for an SGE response queue. */ irqreturn_t t4_sge_intr_msix(int irq, void *cookie) { struct sge_rspq *q = cookie; napi_schedule(&q->napi); return IRQ_HANDLED; } /* * Process the indirect interrupt entries in the interrupt queue and kick off * NAPI for each queue that has generated an entry. */ static unsigned int process_intrq(struct adapter *adap) { unsigned int credits; const struct rsp_ctrl *rc; struct sge_rspq *q = &adap->sge.intrq; u32 val; spin_lock(&adap->sge.intrq_lock); for (credits = 0; ; credits++) { rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); if (!is_new_response(rc, q)) break; rmb(); if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) { unsigned int qid = ntohl(rc->pldbuflen_qid); qid -= adap->sge.ingr_start; napi_schedule(&adap->sge.ingr_map[qid]->napi); } rspq_next(q); } val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params); /* If we don't have access to the new User GTS (T5+), use the old * doorbell mechanism; otherwise use the new BAR2 mechanism. */ if (unlikely(q->bar2_addr == NULL)) { t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), val | INGRESSQID_V(q->cntxt_id)); } else { writel(val | INGRESSQID_V(q->bar2_qid), q->bar2_addr + SGE_UDB_GTS); wmb(); } spin_unlock(&adap->sge.intrq_lock); return credits; } /* * The MSI interrupt handler, which handles data events from SGE response queues * as well as error and other async events as they all use the same MSI vector. */ static irqreturn_t t4_intr_msi(int irq, void *cookie) { struct adapter *adap = cookie; t4_slow_intr_handler(adap); process_intrq(adap); return IRQ_HANDLED; } /* * Interrupt handler for legacy INTx interrupts. * Handles data events from SGE response queues as well as error and other * async events as they all use the same interrupt line. */ static irqreturn_t t4_intr_intx(int irq, void *cookie) { struct adapter *adap = cookie; t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0); if (t4_slow_intr_handler(adap) | process_intrq(adap)) return IRQ_HANDLED; return IRQ_NONE; /* probably shared interrupt */ } /** * t4_intr_handler - select the top-level interrupt handler * @adap: the adapter * * Selects the top-level interrupt handler based on the type of interrupts * (MSI-X, MSI, or INTx). */ irq_handler_t t4_intr_handler(struct adapter *adap) { if (adap->flags & USING_MSIX) return t4_sge_intr_msix; if (adap->flags & USING_MSI) return t4_intr_msi; return t4_intr_intx; } static void sge_rx_timer_cb(unsigned long data) { unsigned long m; unsigned int i, idma_same_state_cnt[2]; struct adapter *adap = (struct adapter *)data; struct sge *s = &adap->sge; for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) for (m = s->starving_fl[i]; m; m &= m - 1) { struct sge_eth_rxq *rxq; unsigned int id = __ffs(m) + i * BITS_PER_LONG; struct sge_fl *fl = s->egr_map[id]; clear_bit(id, s->starving_fl); smp_mb__after_atomic(); if (fl_starving(fl)) { rxq = container_of(fl, struct sge_eth_rxq, fl); if (napi_reschedule(&rxq->rspq.napi)) fl->starving++; else set_bit(id, s->starving_fl); } } t4_write_reg(adap, SGE_DEBUG_INDEX_A, 13); idma_same_state_cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH_A); idma_same_state_cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A); for (i = 0; i < 2; i++) { u32 debug0, debug11; /* If the Ingress DMA Same State Counter ("timer") is less * than 1s, then we can reset our synthesized Stall Timer and * continue. If we have previously emitted warnings about a * potential stalled Ingress Queue, issue a note indicating * that the Ingress Queue has resumed forward progress. */ if (idma_same_state_cnt[i] < s->idma_1s_thresh) { if (s->idma_stalled[i] >= SGE_IDMA_WARN_THRESH) CH_WARN(adap, "SGE idma%d, queue%u,resumed after %d sec\n", i, s->idma_qid[i], s->idma_stalled[i]/HZ); s->idma_stalled[i] = 0; continue; } /* Synthesize an SGE Ingress DMA Same State Timer in the Hz * domain. The first time we get here it'll be because we * passed the 1s Threshold; each additional time it'll be * because the RX Timer Callback is being fired on its regular * schedule. * * If the stall is below our Potential Hung Ingress Queue * Warning Threshold, continue. */ if (s->idma_stalled[i] == 0) s->idma_stalled[i] = HZ; else s->idma_stalled[i] += RX_QCHECK_PERIOD; if (s->idma_stalled[i] < SGE_IDMA_WARN_THRESH) continue; /* We'll issue a warning every SGE_IDMA_WARN_REPEAT Hz */ if (((s->idma_stalled[i] - HZ) % SGE_IDMA_WARN_REPEAT) != 0) continue; /* Read and save the SGE IDMA State and Queue ID information. * We do this every time in case it changes across time ... */ t4_write_reg(adap, SGE_DEBUG_INDEX_A, 0); debug0 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A); s->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; t4_write_reg(adap, SGE_DEBUG_INDEX_A, 11); debug11 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A); s->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; CH_WARN(adap, "SGE idma%u, queue%u, maybe stuck state%u %dsecs (debug0=%#x, debug11=%#x)\n", i, s->idma_qid[i], s->idma_state[i], s->idma_stalled[i]/HZ, debug0, debug11); t4_sge_decode_idma_state(adap, s->idma_state[i]); } mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); } static void sge_tx_timer_cb(unsigned long data) { unsigned long m; unsigned int i, budget; struct adapter *adap = (struct adapter *)data; struct sge *s = &adap->sge; for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++) for (m = s->txq_maperr[i]; m; m &= m - 1) { unsigned long id = __ffs(m) + i * BITS_PER_LONG; struct sge_ofld_txq *txq = s->egr_map[id]; clear_bit(id, s->txq_maperr); tasklet_schedule(&txq->qresume_tsk); } budget = MAX_TIMER_TX_RECLAIM; i = s->ethtxq_rover; do { struct sge_eth_txq *q = &s->ethtxq[i]; if (q->q.in_use && time_after_eq(jiffies, q->txq->trans_start + HZ / 100) && __netif_tx_trylock(q->txq)) { int avail = reclaimable(&q->q); if (avail) { if (avail > budget) avail = budget; free_tx_desc(adap, &q->q, avail, true); q->q.in_use -= avail; budget -= avail; } __netif_tx_unlock(q->txq); } if (++i >= s->ethqsets) i = 0; } while (budget && i != s->ethtxq_rover); s->ethtxq_rover = i; mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2)); } /** * bar2_address - return the BAR2 address for an SGE Queue's Registers * @adapter: the adapter * @qid: the SGE Queue ID * @qtype: the SGE Queue Type (Egress or Ingress) * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues * * Returns the BAR2 address for the SGE Queue Registers associated with * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" * Registers are supported (e.g. the Write Combining Doorbell Buffer). */ static void __iomem *bar2_address(struct adapter *adapter, unsigned int qid, enum t4_bar2_qtype qtype, unsigned int *pbar2_qid) { u64 bar2_qoffset; int ret; ret = cxgb4_t4_bar2_sge_qregs(adapter, qid, qtype, &bar2_qoffset, pbar2_qid); if (ret) return NULL; return adapter->bar2 + bar2_qoffset; } int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, struct net_device *dev, int intr_idx, struct sge_fl *fl, rspq_handler_t hnd) { int ret, flsz = 0; struct fw_iq_cmd c; struct sge *s = &adap->sge; struct port_info *pi = netdev_priv(dev); /* Size needs to be multiple of 16, including status entry. */ iq->size = roundup(iq->size, 16); iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, &iq->phys_addr, NULL, 0, NUMA_NO_NODE); if (!iq->desc) return -ENOMEM; memset(&c, 0, sizeof(c)); c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(adap->fn) | FW_IQ_CMD_VFN_V(0)); c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F | FW_LEN16(c)); c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) | FW_IQ_CMD_IQANDST_V(intr_idx < 0) | FW_IQ_CMD_IQANUD_V(1) | FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx : -intr_idx - 1)); c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) | FW_IQ_CMD_IQGTSMODE_F | FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) | FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4)); c.iqsize = htons(iq->size); c.iqaddr = cpu_to_be64(iq->phys_addr); if (fl) { fl->size = roundup(fl->size, 8); fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), sizeof(struct rx_sw_desc), &fl->addr, &fl->sdesc, s->stat_len, NUMA_NO_NODE); if (!fl->desc) goto fl_nomem; flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN_F | FW_IQ_CMD_FL0FETCHRO_F | FW_IQ_CMD_FL0DATARO_F | FW_IQ_CMD_FL0PADEN_F); c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN_V(2) | FW_IQ_CMD_FL0FBMAX_V(3)); c.fl0size = htons(flsz); c.fl0addr = cpu_to_be64(fl->addr); } ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); if (ret) goto err; netif_napi_add(dev, &iq->napi, napi_rx_handler, 64); napi_hash_add(&iq->napi); iq->cur_desc = iq->desc; iq->cidx = 0; iq->gen = 1; iq->next_intr_params = iq->intr_params; iq->cntxt_id = ntohs(c.iqid); iq->abs_id = ntohs(c.physiqid); iq->bar2_addr = bar2_address(adap, iq->cntxt_id, T4_BAR2_QTYPE_INGRESS, &iq->bar2_qid); iq->size--; /* subtract status entry */ iq->netdev = dev; iq->handler = hnd; /* set offset to -1 to distinguish ingress queues without FL */ iq->offset = fl ? 0 : -1; adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; if (fl) { fl->cntxt_id = ntohs(c.fl0id); fl->avail = fl->pend_cred = 0; fl->pidx = fl->cidx = 0; fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; /* Note, we must initialize the BAR2 Free List User Doorbell * information before refilling the Free List! */ fl->bar2_addr = bar2_address(adap, fl->cntxt_id, T4_BAR2_QTYPE_EGRESS, &fl->bar2_qid); refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); } return 0; fl_nomem: ret = -ENOMEM; err: if (iq->desc) { dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, iq->desc, iq->phys_addr); iq->desc = NULL; } if (fl && fl->desc) { kfree(fl->sdesc); fl->sdesc = NULL; dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), fl->desc, fl->addr); fl->desc = NULL; } return ret; } static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) { q->cntxt_id = id; q->bar2_addr = bar2_address(adap, q->cntxt_id, T4_BAR2_QTYPE_EGRESS, &q->bar2_qid); q->in_use = 0; q->cidx = q->pidx = 0; q->stops = q->restarts = 0; q->stat = (void *)&q->desc[q->size]; spin_lock_init(&q->db_lock); adap->sge.egr_map[id - adap->sge.egr_start] = q; } int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, struct net_device *dev, struct netdev_queue *netdevq, unsigned int iqid) { int ret, nentries; struct fw_eq_eth_cmd c; struct sge *s = &adap->sge; struct port_info *pi = netdev_priv(dev); /* Add status entries */ nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, sizeof(struct tx_desc), sizeof(struct tx_sw_desc), &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, netdev_queue_numa_node_read(netdevq)); if (!txq->q.desc) return -ENOMEM; memset(&c, 0, sizeof(c)); c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_CMD_EXEC_F | FW_EQ_ETH_CMD_PFN_V(adap->fn) | FW_EQ_ETH_CMD_VFN_V(0)); c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F | FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c)); c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F | FW_EQ_ETH_CMD_VIID_V(pi->viid)); c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(2) | FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) | FW_EQ_ETH_CMD_FETCHRO_V(1) | FW_EQ_ETH_CMD_IQID_V(iqid)); c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN_V(2) | FW_EQ_ETH_CMD_FBMAX_V(3) | FW_EQ_ETH_CMD_CIDXFTHRESH_V(5) | FW_EQ_ETH_CMD_EQSIZE_V(nentries)); c.eqaddr = cpu_to_be64(txq->q.phys_addr); ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); if (ret) { kfree(txq->q.sdesc); txq->q.sdesc = NULL; dma_free_coherent(adap->pdev_dev, nentries * sizeof(struct tx_desc), txq->q.desc, txq->q.phys_addr); txq->q.desc = NULL; return ret; } init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd))); txq->txq = netdevq; txq->tso = txq->tx_cso = txq->vlan_ins = 0; txq->mapping_err = 0; return 0; } int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, struct net_device *dev, unsigned int iqid, unsigned int cmplqid) { int ret, nentries; struct fw_eq_ctrl_cmd c; struct sge *s = &adap->sge; struct port_info *pi = netdev_priv(dev); /* Add status entries */ nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); txq->q.desc = alloc_ring(adap->pdev_dev, nentries, sizeof(struct tx_desc), 0, &txq->q.phys_addr, NULL, 0, NUMA_NO_NODE); if (!txq->q.desc) return -ENOMEM; c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_CMD_EXEC_F | FW_EQ_CTRL_CMD_PFN_V(adap->fn) | FW_EQ_CTRL_CMD_VFN_V(0)); c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F | FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c)); c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid)); c.physeqid_pkd = htonl(0); c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(2) | FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) | FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid)); c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN_V(2) | FW_EQ_CTRL_CMD_FBMAX_V(3) | FW_EQ_CTRL_CMD_CIDXFTHRESH_V(5) | FW_EQ_CTRL_CMD_EQSIZE_V(nentries)); c.eqaddr = cpu_to_be64(txq->q.phys_addr); ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); if (ret) { dma_free_coherent(adap->pdev_dev, nentries * sizeof(struct tx_desc), txq->q.desc, txq->q.phys_addr); txq->q.desc = NULL; return ret; } init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid))); txq->adap = adap; skb_queue_head_init(&txq->sendq); tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq); txq->full = 0; return 0; } int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq, struct net_device *dev, unsigned int iqid) { int ret, nentries; struct fw_eq_ofld_cmd c; struct sge *s = &adap->sge; struct port_info *pi = netdev_priv(dev); /* Add status entries */ nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, sizeof(struct tx_desc), sizeof(struct tx_sw_desc), &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, NUMA_NO_NODE); if (!txq->q.desc) return -ENOMEM; memset(&c, 0, sizeof(c)); c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_CMD_EXEC_F | FW_EQ_OFLD_CMD_PFN_V(adap->fn) | FW_EQ_OFLD_CMD_VFN_V(0)); c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F | FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c)); c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(2) | FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) | FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid)); c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN_V(2) | FW_EQ_OFLD_CMD_FBMAX_V(3) | FW_EQ_OFLD_CMD_CIDXFTHRESH_V(5) | FW_EQ_OFLD_CMD_EQSIZE_V(nentries)); c.eqaddr = cpu_to_be64(txq->q.phys_addr); ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); if (ret) { kfree(txq->q.sdesc); txq->q.sdesc = NULL; dma_free_coherent(adap->pdev_dev, nentries * sizeof(struct tx_desc), txq->q.desc, txq->q.phys_addr); txq->q.desc = NULL; return ret; } init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd))); txq->adap = adap; skb_queue_head_init(&txq->sendq); tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq); txq->full = 0; txq->mapping_err = 0; return 0; } static void free_txq(struct adapter *adap, struct sge_txq *q) { struct sge *s = &adap->sge; dma_free_coherent(adap->pdev_dev, q->size * sizeof(struct tx_desc) + s->stat_len, q->desc, q->phys_addr); q->cntxt_id = 0; q->sdesc = NULL; q->desc = NULL; } static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, struct sge_fl *fl) { struct sge *s = &adap->sge; unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP, rq->cntxt_id, fl_id, 0xffff); dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, rq->desc, rq->phys_addr); napi_hash_del(&rq->napi); netif_napi_del(&rq->napi); rq->netdev = NULL; rq->cntxt_id = rq->abs_id = 0; rq->desc = NULL; if (fl) { free_rx_bufs(adap, fl, fl->avail); dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len, fl->desc, fl->addr); kfree(fl->sdesc); fl->sdesc = NULL; fl->cntxt_id = 0; fl->desc = NULL; } } /** * t4_free_ofld_rxqs - free a block of consecutive Rx queues * @adap: the adapter * @n: number of queues * @q: pointer to first queue * * Release the resources of a consecutive block of offload Rx queues. */ void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q) { for ( ; n; n--, q++) if (q->rspq.desc) free_rspq_fl(adap, &q->rspq, q->fl.size ? &q->fl : NULL); } /** * t4_free_sge_resources - free SGE resources * @adap: the adapter * * Frees resources used by the SGE queue sets. */ void t4_free_sge_resources(struct adapter *adap) { int i; struct sge_eth_rxq *eq = adap->sge.ethrxq; struct sge_eth_txq *etq = adap->sge.ethtxq; /* clean up Ethernet Tx/Rx queues */ for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) { if (eq->rspq.desc) free_rspq_fl(adap, &eq->rspq, eq->fl.size ? &eq->fl : NULL); if (etq->q.desc) { t4_eth_eq_free(adap, adap->fn, adap->fn, 0, etq->q.cntxt_id); free_tx_desc(adap, &etq->q, etq->q.in_use, true); kfree(etq->q.sdesc); free_txq(adap, &etq->q); } } /* clean up RDMA and iSCSI Rx queues */ t4_free_ofld_rxqs(adap, adap->sge.ofldqsets, adap->sge.ofldrxq); t4_free_ofld_rxqs(adap, adap->sge.rdmaqs, adap->sge.rdmarxq); t4_free_ofld_rxqs(adap, adap->sge.rdmaciqs, adap->sge.rdmaciq); /* clean up offload Tx queues */ for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) { struct sge_ofld_txq *q = &adap->sge.ofldtxq[i]; if (q->q.desc) { tasklet_kill(&q->qresume_tsk); t4_ofld_eq_free(adap, adap->fn, adap->fn, 0, q->q.cntxt_id); free_tx_desc(adap, &q->q, q->q.in_use, false); kfree(q->q.sdesc); __skb_queue_purge(&q->sendq); free_txq(adap, &q->q); } } /* clean up control Tx queues */ for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; if (cq->q.desc) { tasklet_kill(&cq->qresume_tsk); t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0, cq->q.cntxt_id); __skb_queue_purge(&cq->sendq); free_txq(adap, &cq->q); } } if (adap->sge.fw_evtq.desc) free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); if (adap->sge.intrq.desc) free_rspq_fl(adap, &adap->sge.intrq, NULL); /* clear the reverse egress queue map */ memset(adap->sge.egr_map, 0, sizeof(adap->sge.egr_map)); } void t4_sge_start(struct adapter *adap) { adap->sge.ethtxq_rover = 0; mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); } /** * t4_sge_stop - disable SGE operation * @adap: the adapter * * Stop tasklets and timers associated with the DMA engine. Note that * this is effective only if measures have been taken to disable any HW * events that may restart them. */ void t4_sge_stop(struct adapter *adap) { int i; struct sge *s = &adap->sge; if (in_interrupt()) /* actions below require waiting */ return; if (s->rx_timer.function) del_timer_sync(&s->rx_timer); if (s->tx_timer.function) del_timer_sync(&s->tx_timer); for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) { struct sge_ofld_txq *q = &s->ofldtxq[i]; if (q->q.desc) tasklet_kill(&q->qresume_tsk); } for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { struct sge_ctrl_txq *cq = &s->ctrlq[i]; if (cq->q.desc) tasklet_kill(&cq->qresume_tsk); } } /** * t4_sge_init_soft - grab core SGE values needed by SGE code * @adap: the adapter * * We need to grab the SGE operating parameters that we need to have * in order to do our job and make sure we can live with them. */ static int t4_sge_init_soft(struct adapter *adap) { struct sge *s = &adap->sge; u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; u32 ingress_rx_threshold; /* * Verify that CPL messages are going to the Ingress Queue for * process_responses() and that only packet data is going to the * Free Lists. */ if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) != RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) { dev_err(adap->pdev_dev, "bad SGE CPL MODE\n"); return -EINVAL; } /* * Validate the Host Buffer Register Array indices that we want to * use ... * * XXX Note that we should really read through the Host Buffer Size * XXX register array and find the indices of the Buffer Sizes which * XXX meet our needs! */ #define READ_FL_BUF(x) \ t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32)) fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); /* We only bother using the Large Page logic if the Large Page Buffer * is larger than our Page Size Buffer. */ if (fl_large_pg <= fl_small_pg) fl_large_pg = 0; #undef READ_FL_BUF /* The Page Size Buffer must be exactly equal to our Page Size and the * Large Page Size Buffer should be 0 (per above) or a power of 2. */ if (fl_small_pg != PAGE_SIZE || (fl_large_pg & (fl_large_pg-1)) != 0) { dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n", fl_small_pg, fl_large_pg); return -EINVAL; } if (fl_large_pg) s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) || fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n", fl_small_mtu, fl_large_mtu); return -EINVAL; } /* * Retrieve our RX interrupt holdoff timer values and counter * threshold values from the SGE parameters. */ timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A); timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A); timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A); s->timer_val[0] = core_ticks_to_us(adap, TIMERVALUE0_G(timer_value_0_and_1)); s->timer_val[1] = core_ticks_to_us(adap, TIMERVALUE1_G(timer_value_0_and_1)); s->timer_val[2] = core_ticks_to_us(adap, TIMERVALUE2_G(timer_value_2_and_3)); s->timer_val[3] = core_ticks_to_us(adap, TIMERVALUE3_G(timer_value_2_and_3)); s->timer_val[4] = core_ticks_to_us(adap, TIMERVALUE4_G(timer_value_4_and_5)); s->timer_val[5] = core_ticks_to_us(adap, TIMERVALUE5_G(timer_value_4_and_5)); ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A); s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); return 0; } /** * t4_sge_init - initialize SGE * @adap: the adapter * * Perform low-level SGE code initialization needed every time after a * chip reset. */ int t4_sge_init(struct adapter *adap) { struct sge *s = &adap->sge; u32 sge_control, sge_control2, sge_conm_ctrl; unsigned int ingpadboundary, ingpackboundary; int ret, egress_threshold; /* * Ingress Padding Boundary and Egress Status Page Size are set up by * t4_fixup_host_params(). */ sge_control = t4_read_reg(adap, SGE_CONTROL_A); s->pktshift = PKTSHIFT_G(sge_control); s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; /* T4 uses a single control field to specify both the PCIe Padding and * Packing Boundary. T5 introduced the ability to specify these * separately. The actual Ingress Packet Data alignment boundary * within Packed Buffer Mode is the maximum of these two * specifications. */ ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + INGPADBOUNDARY_SHIFT_X); if (is_t4(adap->params.chip)) { s->fl_align = ingpadboundary; } else { /* T5 has a different interpretation of one of the PCIe Packing * Boundary values. */ sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); ingpackboundary = INGPACKBOUNDARY_G(sge_control2); if (ingpackboundary == INGPACKBOUNDARY_16B_X) ingpackboundary = 16; else ingpackboundary = 1 << (ingpackboundary + INGPACKBOUNDARY_SHIFT_X); s->fl_align = max(ingpadboundary, ingpackboundary); } ret = t4_sge_init_soft(adap); if (ret < 0) return ret; /* * A FL with <= fl_starve_thres buffers is starving and a periodic * timer will attempt to refill it. This needs to be larger than the * SGE's Egress Congestion Threshold. If it isn't, then we can get * stuck waiting for new packets while the SGE is waiting for us to * give it more Free List entries. (Note that the SGE's Egress * Congestion Threshold is in units of 2 Free List pointers.) For T4, * there was only a single field to control this. For T5 there's the * original field which now only applies to Unpacked Mode Free List * buffers and a new field which only applies to Packed Mode Free List * buffers. */ sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A); if (is_t4(adap->params.chip)) egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl); else egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl); s->fl_starve_thres = 2*egress_threshold + 1; setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap); setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap); s->idma_1s_thresh = core_ticks_per_usec(adap) * 1000000; /* 1 s */ s->idma_stalled[0] = 0; s->idma_stalled[1] = 0; spin_lock_init(&s->intrq_lock); return 0; }