/* * drivers/mtd/nand/pxa3xx_nand.c * * Copyright © 2005 Intel Corporation * Copyright © 2006 Marvell International Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * See Documentation/mtd/nand/pxa3xx-nand.txt for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CHIP_DELAY_TIMEOUT msecs_to_jiffies(200) #define NAND_STOP_DELAY msecs_to_jiffies(40) #define PAGE_CHUNK_SIZE (2048) /* * Define a buffer size for the initial command that detects the flash device: * STATUS, READID and PARAM. * ONFI param page is 256 bytes, and there are three redundant copies * to be read. JEDEC param page is 512 bytes, and there are also three * redundant copies to be read. * Hence this buffer should be at least 512 x 3. Let's pick 2048. */ #define INIT_BUFFER_SIZE 2048 /* System control register and bit to enable NAND on some SoCs */ #define GENCONF_SOC_DEVICE_MUX 0x208 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) /* registers and bit definitions */ #define NDCR (0x00) /* Control register */ #define NDTR0CS0 (0x04) /* Timing Parameter 0 for CS0 */ #define NDTR1CS0 (0x0C) /* Timing Parameter 1 for CS0 */ #define NDSR (0x14) /* Status Register */ #define NDPCR (0x18) /* Page Count Register */ #define NDBDR0 (0x1C) /* Bad Block Register 0 */ #define NDBDR1 (0x20) /* Bad Block Register 1 */ #define NDECCCTRL (0x28) /* ECC control */ #define NDDB (0x40) /* Data Buffer */ #define NDCB0 (0x48) /* Command Buffer0 */ #define NDCB1 (0x4C) /* Command Buffer1 */ #define NDCB2 (0x50) /* Command Buffer2 */ #define NDCR_SPARE_EN (0x1 << 31) #define NDCR_ECC_EN (0x1 << 30) #define NDCR_DMA_EN (0x1 << 29) #define NDCR_ND_RUN (0x1 << 28) #define NDCR_DWIDTH_C (0x1 << 27) #define NDCR_DWIDTH_M (0x1 << 26) #define NDCR_PAGE_SZ (0x1 << 24) #define NDCR_NCSX (0x1 << 23) #define NDCR_ND_MODE (0x3 << 21) #define NDCR_NAND_MODE (0x0) #define NDCR_CLR_PG_CNT (0x1 << 20) #define NFCV1_NDCR_ARB_CNTL (0x1 << 19) #define NFCV2_NDCR_STOP_ON_UNCOR (0x1 << 19) #define NDCR_RD_ID_CNT_MASK (0x7 << 16) #define NDCR_RD_ID_CNT(x) (((x) << 16) & NDCR_RD_ID_CNT_MASK) #define NDCR_RA_START (0x1 << 15) #define NDCR_PG_PER_BLK (0x1 << 14) #define NDCR_ND_ARB_EN (0x1 << 12) #define NDCR_INT_MASK (0xFFF) #define NDSR_MASK (0xfff) #define NDSR_ERR_CNT_OFF (16) #define NDSR_ERR_CNT_MASK (0x1f) #define NDSR_ERR_CNT(sr) ((sr >> NDSR_ERR_CNT_OFF) & NDSR_ERR_CNT_MASK) #define NDSR_RDY (0x1 << 12) #define NDSR_FLASH_RDY (0x1 << 11) #define NDSR_CS0_PAGED (0x1 << 10) #define NDSR_CS1_PAGED (0x1 << 9) #define NDSR_CS0_CMDD (0x1 << 8) #define NDSR_CS1_CMDD (0x1 << 7) #define NDSR_CS0_BBD (0x1 << 6) #define NDSR_CS1_BBD (0x1 << 5) #define NDSR_UNCORERR (0x1 << 4) #define NDSR_CORERR (0x1 << 3) #define NDSR_WRDREQ (0x1 << 2) #define NDSR_RDDREQ (0x1 << 1) #define NDSR_WRCMDREQ (0x1) #define NDCB0_LEN_OVRD (0x1 << 28) #define NDCB0_ST_ROW_EN (0x1 << 26) #define NDCB0_AUTO_RS (0x1 << 25) #define NDCB0_CSEL (0x1 << 24) #define NDCB0_EXT_CMD_TYPE_MASK (0x7 << 29) #define NDCB0_EXT_CMD_TYPE(x) (((x) << 29) & NDCB0_EXT_CMD_TYPE_MASK) #define NDCB0_CMD_TYPE_MASK (0x7 << 21) #define NDCB0_CMD_TYPE(x) (((x) << 21) & NDCB0_CMD_TYPE_MASK) #define NDCB0_NC (0x1 << 20) #define NDCB0_DBC (0x1 << 19) #define NDCB0_ADDR_CYC_MASK (0x7 << 16) #define NDCB0_ADDR_CYC(x) (((x) << 16) & NDCB0_ADDR_CYC_MASK) #define NDCB0_CMD2_MASK (0xff << 8) #define NDCB0_CMD1_MASK (0xff) #define NDCB0_ADDR_CYC_SHIFT (16) #define EXT_CMD_TYPE_DISPATCH 6 /* Command dispatch */ #define EXT_CMD_TYPE_NAKED_RW 5 /* Naked read or Naked write */ #define EXT_CMD_TYPE_READ 4 /* Read */ #define EXT_CMD_TYPE_DISP_WR 4 /* Command dispatch with write */ #define EXT_CMD_TYPE_FINAL 3 /* Final command */ #define EXT_CMD_TYPE_LAST_RW 1 /* Last naked read/write */ #define EXT_CMD_TYPE_MONO 0 /* Monolithic read/write */ /* * This should be large enough to read 'ONFI' and 'JEDEC'. * Let's use 7 bytes, which is the maximum ID count supported * by the controller (see NDCR_RD_ID_CNT_MASK). */ #define READ_ID_BYTES 7 /* macros for registers read/write */ #define nand_writel(info, off, val) \ do { \ dev_vdbg(&info->pdev->dev, \ "%s():%d nand_writel(0x%x, 0x%04x)\n", \ __func__, __LINE__, (val), (off)); \ writel_relaxed((val), (info)->mmio_base + (off)); \ } while (0) #define nand_readl(info, off) \ ({ \ unsigned int _v; \ _v = readl_relaxed((info)->mmio_base + (off)); \ dev_vdbg(&info->pdev->dev, \ "%s():%d nand_readl(0x%04x) = 0x%x\n", \ __func__, __LINE__, (off), _v); \ _v; \ }) /* error code and state */ enum { ERR_NONE = 0, ERR_DMABUSERR = -1, ERR_SENDCMD = -2, ERR_UNCORERR = -3, ERR_BBERR = -4, ERR_CORERR = -5, }; enum { STATE_IDLE = 0, STATE_PREPARED, STATE_CMD_HANDLE, STATE_DMA_READING, STATE_DMA_WRITING, STATE_DMA_DONE, STATE_PIO_READING, STATE_PIO_WRITING, STATE_CMD_DONE, STATE_READY, }; enum pxa3xx_nand_variant { PXA3XX_NAND_VARIANT_PXA, PXA3XX_NAND_VARIANT_ARMADA370, PXA3XX_NAND_VARIANT_ARMADA_8K, }; struct pxa3xx_nand_host { struct nand_chip chip; void *info_data; /* page size of attached chip */ int use_ecc; int cs; /* calculated from pxa3xx_nand_flash data */ unsigned int col_addr_cycles; unsigned int row_addr_cycles; }; struct pxa3xx_nand_info { struct nand_hw_control controller; struct platform_device *pdev; struct clk *clk; void __iomem *mmio_base; unsigned long mmio_phys; struct completion cmd_complete, dev_ready; unsigned int buf_start; unsigned int buf_count; unsigned int buf_size; unsigned int data_buff_pos; unsigned int oob_buff_pos; /* DMA information */ struct scatterlist sg; enum dma_data_direction dma_dir; struct dma_chan *dma_chan; dma_cookie_t dma_cookie; int drcmr_dat; unsigned char *data_buff; unsigned char *oob_buff; dma_addr_t data_buff_phys; int data_dma_ch; struct pxa3xx_nand_host *host[NUM_CHIP_SELECT]; unsigned int state; /* * This driver supports NFCv1 (as found in PXA SoC) * and NFCv2 (as found in Armada 370/XP SoC). */ enum pxa3xx_nand_variant variant; int cs; int use_ecc; /* use HW ECC ? */ int ecc_bch; /* using BCH ECC? */ int use_dma; /* use DMA ? */ int use_spare; /* use spare ? */ int need_wait; /* Amount of real data per full chunk */ unsigned int chunk_size; /* Amount of spare data per full chunk */ unsigned int spare_size; /* Number of full chunks (i.e chunk_size + spare_size) */ unsigned int nfullchunks; /* * Total number of chunks. If equal to nfullchunks, then there * are only full chunks. Otherwise, there is one last chunk of * size (last_chunk_size + last_spare_size) */ unsigned int ntotalchunks; /* Amount of real data in the last chunk */ unsigned int last_chunk_size; /* Amount of spare data in the last chunk */ unsigned int last_spare_size; unsigned int ecc_size; unsigned int ecc_err_cnt; unsigned int max_bitflips; int retcode; /* * Variables only valid during command * execution. step_chunk_size and step_spare_size is the * amount of real data and spare data in the current * chunk. cur_chunk is the current chunk being * read/programmed. */ unsigned int step_chunk_size; unsigned int step_spare_size; unsigned int cur_chunk; /* cached register value */ uint32_t reg_ndcr; uint32_t ndtr0cs0; uint32_t ndtr1cs0; /* generated NDCBx register values */ uint32_t ndcb0; uint32_t ndcb1; uint32_t ndcb2; uint32_t ndcb3; }; static bool use_dma = 1; module_param(use_dma, bool, 0444); MODULE_PARM_DESC(use_dma, "enable DMA for data transferring to/from NAND HW"); struct pxa3xx_nand_timing { unsigned int tCH; /* Enable signal hold time */ unsigned int tCS; /* Enable signal setup time */ unsigned int tWH; /* ND_nWE high duration */ unsigned int tWP; /* ND_nWE pulse time */ unsigned int tRH; /* ND_nRE high duration */ unsigned int tRP; /* ND_nRE pulse width */ unsigned int tR; /* ND_nWE high to ND_nRE low for read */ unsigned int tWHR; /* ND_nWE high to ND_nRE low for status read */ unsigned int tAR; /* ND_ALE low to ND_nRE low delay */ }; struct pxa3xx_nand_flash { uint32_t chip_id; unsigned int flash_width; /* Width of Flash memory (DWIDTH_M) */ unsigned int dfc_width; /* Width of flash controller(DWIDTH_C) */ struct pxa3xx_nand_timing *timing; /* NAND Flash timing */ }; static struct pxa3xx_nand_timing timing[] = { { 40, 80, 60, 100, 80, 100, 90000, 400, 40, }, { 10, 0, 20, 40, 30, 40, 11123, 110, 10, }, { 10, 25, 15, 25, 15, 30, 25000, 60, 10, }, { 10, 35, 15, 25, 15, 25, 25000, 60, 10, }, }; static struct pxa3xx_nand_flash builtin_flash_types[] = { { 0x46ec, 16, 16, &timing[1] }, { 0xdaec, 8, 8, &timing[1] }, { 0xd7ec, 8, 8, &timing[1] }, { 0xa12c, 8, 8, &timing[2] }, { 0xb12c, 16, 16, &timing[2] }, { 0xdc2c, 8, 8, &timing[2] }, { 0xcc2c, 16, 16, &timing[2] }, { 0xba20, 16, 16, &timing[3] }, }; static int pxa3xx_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct pxa3xx_nand_host *host = nand_get_controller_data(chip); struct pxa3xx_nand_info *info = host->info_data; int nchunks = mtd->writesize / info->chunk_size; if (section >= nchunks) return -ERANGE; oobregion->offset = ((info->ecc_size + info->spare_size) * section) + info->spare_size; oobregion->length = info->ecc_size; return 0; } static int pxa3xx_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct pxa3xx_nand_host *host = nand_get_controller_data(chip); struct pxa3xx_nand_info *info = host->info_data; int nchunks = mtd->writesize / info->chunk_size; if (section >= nchunks) return -ERANGE; if (!info->spare_size) return 0; oobregion->offset = section * (info->ecc_size + info->spare_size); oobregion->length = info->spare_size; if (!section) { /* * Bootrom looks in bytes 0 & 5 for bad blocks for the * 4KB page / 4bit BCH combination. */ if (mtd->writesize == 4096 && info->chunk_size == 2048) { oobregion->offset += 6; oobregion->length -= 6; } else { oobregion->offset += 2; oobregion->length -= 2; } } return 0; } static const struct mtd_ooblayout_ops pxa3xx_ooblayout_ops = { .ecc = pxa3xx_ooblayout_ecc, .free = pxa3xx_ooblayout_free, }; static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; static struct nand_bbt_descr bbt_main_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION, .offs = 8, .len = 6, .veroffs = 14, .maxblocks = 8, /* Last 8 blocks in each chip */ .pattern = bbt_pattern }; static struct nand_bbt_descr bbt_mirror_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION, .offs = 8, .len = 6, .veroffs = 14, .maxblocks = 8, /* Last 8 blocks in each chip */ .pattern = bbt_mirror_pattern }; #define NDTR0_tCH(c) (min((c), 7) << 19) #define NDTR0_tCS(c) (min((c), 7) << 16) #define NDTR0_tWH(c) (min((c), 7) << 11) #define NDTR0_tWP(c) (min((c), 7) << 8) #define NDTR0_tRH(c) (min((c), 7) << 3) #define NDTR0_tRP(c) (min((c), 7) << 0) #define NDTR1_tR(c) (min((c), 65535) << 16) #define NDTR1_tWHR(c) (min((c), 15) << 4) #define NDTR1_tAR(c) (min((c), 15) << 0) /* convert nano-seconds to nand flash controller clock cycles */ #define ns2cycle(ns, clk) (int)((ns) * (clk / 1000000) / 1000) static const struct of_device_id pxa3xx_nand_dt_ids[] = { { .compatible = "marvell,pxa3xx-nand", .data = (void *)PXA3XX_NAND_VARIANT_PXA, }, { .compatible = "marvell,armada370-nand", .data = (void *)PXA3XX_NAND_VARIANT_ARMADA370, }, { .compatible = "marvell,armada-8k-nand", .data = (void *)PXA3XX_NAND_VARIANT_ARMADA_8K, }, {} }; MODULE_DEVICE_TABLE(of, pxa3xx_nand_dt_ids); static enum pxa3xx_nand_variant pxa3xx_nand_get_variant(struct platform_device *pdev) { const struct of_device_id *of_id = of_match_device(pxa3xx_nand_dt_ids, &pdev->dev); if (!of_id) return PXA3XX_NAND_VARIANT_PXA; return (enum pxa3xx_nand_variant)of_id->data; } static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host, const struct pxa3xx_nand_timing *t) { struct pxa3xx_nand_info *info = host->info_data; unsigned long nand_clk = clk_get_rate(info->clk); uint32_t ndtr0, ndtr1; ndtr0 = NDTR0_tCH(ns2cycle(t->tCH, nand_clk)) | NDTR0_tCS(ns2cycle(t->tCS, nand_clk)) | NDTR0_tWH(ns2cycle(t->tWH, nand_clk)) | NDTR0_tWP(ns2cycle(t->tWP, nand_clk)) | NDTR0_tRH(ns2cycle(t->tRH, nand_clk)) | NDTR0_tRP(ns2cycle(t->tRP, nand_clk)); ndtr1 = NDTR1_tR(ns2cycle(t->tR, nand_clk)) | NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) | NDTR1_tAR(ns2cycle(t->tAR, nand_clk)); info->ndtr0cs0 = ndtr0; info->ndtr1cs0 = ndtr1; nand_writel(info, NDTR0CS0, ndtr0); nand_writel(info, NDTR1CS0, ndtr1); } static void pxa3xx_nand_set_sdr_timing(struct pxa3xx_nand_host *host, const struct nand_sdr_timings *t) { struct pxa3xx_nand_info *info = host->info_data; struct nand_chip *chip = &host->chip; unsigned long nand_clk = clk_get_rate(info->clk); uint32_t ndtr0, ndtr1; u32 tCH_min = DIV_ROUND_UP(t->tCH_min, 1000); u32 tCS_min = DIV_ROUND_UP(t->tCS_min, 1000); u32 tWH_min = DIV_ROUND_UP(t->tWH_min, 1000); u32 tWP_min = DIV_ROUND_UP(t->tWC_min - t->tWH_min, 1000); u32 tREH_min = DIV_ROUND_UP(t->tREH_min, 1000); u32 tRP_min = DIV_ROUND_UP(t->tRC_min - t->tREH_min, 1000); u32 tR = chip->chip_delay * 1000; u32 tWHR_min = DIV_ROUND_UP(t->tWHR_min, 1000); u32 tAR_min = DIV_ROUND_UP(t->tAR_min, 1000); /* fallback to a default value if tR = 0 */ if (!tR) tR = 20000; ndtr0 = NDTR0_tCH(ns2cycle(tCH_min, nand_clk)) | NDTR0_tCS(ns2cycle(tCS_min, nand_clk)) | NDTR0_tWH(ns2cycle(tWH_min, nand_clk)) | NDTR0_tWP(ns2cycle(tWP_min, nand_clk)) | NDTR0_tRH(ns2cycle(tREH_min, nand_clk)) | NDTR0_tRP(ns2cycle(tRP_min, nand_clk)); ndtr1 = NDTR1_tR(ns2cycle(tR, nand_clk)) | NDTR1_tWHR(ns2cycle(tWHR_min, nand_clk)) | NDTR1_tAR(ns2cycle(tAR_min, nand_clk)); info->ndtr0cs0 = ndtr0; info->ndtr1cs0 = ndtr1; nand_writel(info, NDTR0CS0, ndtr0); nand_writel(info, NDTR1CS0, ndtr1); } static int pxa3xx_nand_init_timings_compat(struct pxa3xx_nand_host *host, unsigned int *flash_width, unsigned int *dfc_width) { struct nand_chip *chip = &host->chip; struct pxa3xx_nand_info *info = host->info_data; const struct pxa3xx_nand_flash *f = NULL; int i, id, ntypes; u8 idbuf[2]; ntypes = ARRAY_SIZE(builtin_flash_types); nand_readid_op(chip, 0, idbuf, sizeof(idbuf)); id = idbuf[0] | (idbuf[1] << 8); for (i = 0; i < ntypes; i++) { f = &builtin_flash_types[i]; if (f->chip_id == id) break; } if (i == ntypes) { dev_err(&info->pdev->dev, "Error: timings not found\n"); return -EINVAL; } pxa3xx_nand_set_timing(host, f->timing); *flash_width = f->flash_width; *dfc_width = f->dfc_width; return 0; } static int pxa3xx_nand_init_timings_onfi(struct pxa3xx_nand_host *host, int mode) { const struct nand_sdr_timings *timings; mode = fls(mode) - 1; if (mode < 0) mode = 0; timings = onfi_async_timing_mode_to_sdr_timings(mode); if (IS_ERR(timings)) return PTR_ERR(timings); pxa3xx_nand_set_sdr_timing(host, timings); return 0; } static int pxa3xx_nand_init(struct pxa3xx_nand_host *host) { struct nand_chip *chip = &host->chip; struct pxa3xx_nand_info *info = host->info_data; unsigned int flash_width = 0, dfc_width = 0; int mode, err; mode = onfi_get_async_timing_mode(chip); if (mode == ONFI_TIMING_MODE_UNKNOWN) { err = pxa3xx_nand_init_timings_compat(host, &flash_width, &dfc_width); if (err) return err; if (flash_width == 16) { info->reg_ndcr |= NDCR_DWIDTH_M; chip->options |= NAND_BUSWIDTH_16; } info->reg_ndcr |= (dfc_width == 16) ? NDCR_DWIDTH_C : 0; } else { err = pxa3xx_nand_init_timings_onfi(host, mode); if (err) return err; } return 0; } /** * NOTE: it is a must to set ND_RUN firstly, then write * command buffer, otherwise, it does not work. * We enable all the interrupt at the same time, and * let pxa3xx_nand_irq to handle all logic. */ static void pxa3xx_nand_start(struct pxa3xx_nand_info *info) { uint32_t ndcr; ndcr = info->reg_ndcr; if (info->use_ecc) { ndcr |= NDCR_ECC_EN; if (info->ecc_bch) nand_writel(info, NDECCCTRL, 0x1); } else { ndcr &= ~NDCR_ECC_EN; if (info->ecc_bch) nand_writel(info, NDECCCTRL, 0x0); } if (info->use_dma) ndcr |= NDCR_DMA_EN; else ndcr &= ~NDCR_DMA_EN; if (info->use_spare) ndcr |= NDCR_SPARE_EN; else ndcr &= ~NDCR_SPARE_EN; ndcr |= NDCR_ND_RUN; /* clear status bits and run */ nand_writel(info, NDSR, NDSR_MASK); nand_writel(info, NDCR, 0); nand_writel(info, NDCR, ndcr); } static void pxa3xx_nand_stop(struct pxa3xx_nand_info *info) { uint32_t ndcr; int timeout = NAND_STOP_DELAY; /* wait RUN bit in NDCR become 0 */ ndcr = nand_readl(info, NDCR); while ((ndcr & NDCR_ND_RUN) && (timeout-- > 0)) { ndcr = nand_readl(info, NDCR); udelay(1); } if (timeout <= 0) { ndcr &= ~NDCR_ND_RUN; nand_writel(info, NDCR, ndcr); } if (info->dma_chan) dmaengine_terminate_all(info->dma_chan); /* clear status bits */ nand_writel(info, NDSR, NDSR_MASK); } static void __maybe_unused enable_int(struct pxa3xx_nand_info *info, uint32_t int_mask) { uint32_t ndcr; ndcr = nand_readl(info, NDCR); nand_writel(info, NDCR, ndcr & ~int_mask); } static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask) { uint32_t ndcr; ndcr = nand_readl(info, NDCR); nand_writel(info, NDCR, ndcr | int_mask); } static void drain_fifo(struct pxa3xx_nand_info *info, void *data, int len) { if (info->ecc_bch) { u32 val; int ret; /* * According to the datasheet, when reading from NDDB * with BCH enabled, after each 32 bytes reads, we * have to make sure that the NDSR.RDDREQ bit is set. * * Drain the FIFO 8 32 bits reads at a time, and skip * the polling on the last read. */ while (len > 8) { ioread32_rep(info->mmio_base + NDDB, data, 8); ret = readl_relaxed_poll_timeout(info->mmio_base + NDSR, val, val & NDSR_RDDREQ, 1000, 5000); if (ret) { dev_err(&info->pdev->dev, "Timeout on RDDREQ while draining the FIFO\n"); return; } data += 32; len -= 8; } } ioread32_rep(info->mmio_base + NDDB, data, len); } static void handle_data_pio(struct pxa3xx_nand_info *info) { switch (info->state) { case STATE_PIO_WRITING: if (info->step_chunk_size) writesl(info->mmio_base + NDDB, info->data_buff + info->data_buff_pos, DIV_ROUND_UP(info->step_chunk_size, 4)); if (info->step_spare_size) writesl(info->mmio_base + NDDB, info->oob_buff + info->oob_buff_pos, DIV_ROUND_UP(info->step_spare_size, 4)); break; case STATE_PIO_READING: if (info->step_chunk_size) drain_fifo(info, info->data_buff + info->data_buff_pos, DIV_ROUND_UP(info->step_chunk_size, 4)); if (info->step_spare_size) drain_fifo(info, info->oob_buff + info->oob_buff_pos, DIV_ROUND_UP(info->step_spare_size, 4)); break; default: dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__, info->state); BUG(); } /* Update buffer pointers for multi-page read/write */ info->data_buff_pos += info->step_chunk_size; info->oob_buff_pos += info->step_spare_size; } static void pxa3xx_nand_data_dma_irq(void *data) { struct pxa3xx_nand_info *info = data; struct dma_tx_state state; enum dma_status status; status = dmaengine_tx_status(info->dma_chan, info->dma_cookie, &state); if (likely(status == DMA_COMPLETE)) { info->state = STATE_DMA_DONE; } else { dev_err(&info->pdev->dev, "DMA error on data channel\n"); info->retcode = ERR_DMABUSERR; } dma_unmap_sg(info->dma_chan->device->dev, &info->sg, 1, info->dma_dir); nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ); enable_int(info, NDCR_INT_MASK); } static void start_data_dma(struct pxa3xx_nand_info *info) { enum dma_transfer_direction direction; struct dma_async_tx_descriptor *tx; switch (info->state) { case STATE_DMA_WRITING: info->dma_dir = DMA_TO_DEVICE; direction = DMA_MEM_TO_DEV; break; case STATE_DMA_READING: info->dma_dir = DMA_FROM_DEVICE; direction = DMA_DEV_TO_MEM; break; default: dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__, info->state); BUG(); } info->sg.length = info->chunk_size; if (info->use_spare) info->sg.length += info->spare_size + info->ecc_size; dma_map_sg(info->dma_chan->device->dev, &info->sg, 1, info->dma_dir); tx = dmaengine_prep_slave_sg(info->dma_chan, &info->sg, 1, direction, DMA_PREP_INTERRUPT); if (!tx) { dev_err(&info->pdev->dev, "prep_slave_sg() failed\n"); return; } tx->callback = pxa3xx_nand_data_dma_irq; tx->callback_param = info; info->dma_cookie = dmaengine_submit(tx); dma_async_issue_pending(info->dma_chan); dev_dbg(&info->pdev->dev, "%s(dir=%d cookie=%x size=%u)\n", __func__, direction, info->dma_cookie, info->sg.length); } static irqreturn_t pxa3xx_nand_irq_thread(int irq, void *data) { struct pxa3xx_nand_info *info = data; handle_data_pio(info); info->state = STATE_CMD_DONE; nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ); return IRQ_HANDLED; } static irqreturn_t pxa3xx_nand_irq(int irq, void *devid) { struct pxa3xx_nand_info *info = devid; unsigned int status, is_completed = 0, is_ready = 0; unsigned int ready, cmd_done; irqreturn_t ret = IRQ_HANDLED; if (info->cs == 0) { ready = NDSR_FLASH_RDY; cmd_done = NDSR_CS0_CMDD; } else { ready = NDSR_RDY; cmd_done = NDSR_CS1_CMDD; } status = nand_readl(info, NDSR); if (status & NDSR_UNCORERR) info->retcode = ERR_UNCORERR; if (status & NDSR_CORERR) { info->retcode = ERR_CORERR; if ((info->variant == PXA3XX_NAND_VARIANT_ARMADA370 || info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K) && info->ecc_bch) info->ecc_err_cnt = NDSR_ERR_CNT(status); else info->ecc_err_cnt = 1; /* * Each chunk composing a page is corrected independently, * and we need to store maximum number of corrected bitflips * to return it to the MTD layer in ecc.read_page(). */ info->max_bitflips = max_t(unsigned int, info->max_bitflips, info->ecc_err_cnt); } if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) { /* whether use dma to transfer data */ if (info->use_dma) { disable_int(info, NDCR_INT_MASK); info->state = (status & NDSR_RDDREQ) ? STATE_DMA_READING : STATE_DMA_WRITING; start_data_dma(info); goto NORMAL_IRQ_EXIT; } else { info->state = (status & NDSR_RDDREQ) ? STATE_PIO_READING : STATE_PIO_WRITING; ret = IRQ_WAKE_THREAD; goto NORMAL_IRQ_EXIT; } } if (status & cmd_done) { info->state = STATE_CMD_DONE; is_completed = 1; } if (status & ready) { info->state = STATE_READY; is_ready = 1; } /* * Clear all status bit before issuing the next command, which * can and will alter the status bits and will deserve a new * interrupt on its own. This lets the controller exit the IRQ */ nand_writel(info, NDSR, status); if (status & NDSR_WRCMDREQ) { status &= ~NDSR_WRCMDREQ; info->state = STATE_CMD_HANDLE; /* * Command buffer registers NDCB{0-2} (and optionally NDCB3) * must be loaded by writing directly either 12 or 16 * bytes directly to NDCB0, four bytes at a time. * * Direct write access to NDCB1, NDCB2 and NDCB3 is ignored * but each NDCBx register can be read. */ nand_writel(info, NDCB0, info->ndcb0); nand_writel(info, NDCB0, info->ndcb1); nand_writel(info, NDCB0, info->ndcb2); /* NDCB3 register is available in NFCv2 (Armada 370/XP SoC) */ if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 || info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K) nand_writel(info, NDCB0, info->ndcb3); } if (is_completed) complete(&info->cmd_complete); if (is_ready) complete(&info->dev_ready); NORMAL_IRQ_EXIT: return ret; } static inline int is_buf_blank(uint8_t *buf, size_t len) { for (; len > 0; len--) if (*buf++ != 0xff) return 0; return 1; } static void set_command_address(struct pxa3xx_nand_info *info, unsigned int page_size, uint16_t column, int page_addr) { /* small page addr setting */ if (page_size < PAGE_CHUNK_SIZE) { info->ndcb1 = ((page_addr & 0xFFFFFF) << 8) | (column & 0xFF); info->ndcb2 = 0; } else { info->ndcb1 = ((page_addr & 0xFFFF) << 16) | (column & 0xFFFF); if (page_addr & 0xFF0000) info->ndcb2 = (page_addr & 0xFF0000) >> 16; else info->ndcb2 = 0; } } static void prepare_start_command(struct pxa3xx_nand_info *info, int command) { struct pxa3xx_nand_host *host = info->host[info->cs]; struct mtd_info *mtd = nand_to_mtd(&host->chip); /* reset data and oob column point to handle data */ info->buf_start = 0; info->buf_count = 0; info->data_buff_pos = 0; info->oob_buff_pos = 0; info->step_chunk_size = 0; info->step_spare_size = 0; info->cur_chunk = 0; info->use_ecc = 0; info->use_spare = 1; info->retcode = ERR_NONE; info->ecc_err_cnt = 0; info->ndcb3 = 0; info->need_wait = 0; switch (command) { case NAND_CMD_READ0: case NAND_CMD_PAGEPROG: info->use_ecc = 1; break; case NAND_CMD_PARAM: info->use_spare = 0; break; default: info->ndcb1 = 0; info->ndcb2 = 0; break; } /* * If we are about to issue a read command, or about to set * the write address, then clean the data buffer. */ if (command == NAND_CMD_READ0 || command == NAND_CMD_READOOB || command == NAND_CMD_SEQIN) { info->buf_count = mtd->writesize + mtd->oobsize; memset(info->data_buff, 0xFF, info->buf_count); } } static int prepare_set_command(struct pxa3xx_nand_info *info, int command, int ext_cmd_type, uint16_t column, int page_addr) { int addr_cycle, exec_cmd; struct pxa3xx_nand_host *host; struct mtd_info *mtd; host = info->host[info->cs]; mtd = nand_to_mtd(&host->chip); addr_cycle = 0; exec_cmd = 1; if (info->cs != 0) info->ndcb0 = NDCB0_CSEL; else info->ndcb0 = 0; if (command == NAND_CMD_SEQIN) exec_cmd = 0; addr_cycle = NDCB0_ADDR_CYC(host->row_addr_cycles + host->col_addr_cycles); switch (command) { case NAND_CMD_READOOB: case NAND_CMD_READ0: info->buf_start = column; info->ndcb0 |= NDCB0_CMD_TYPE(0) | addr_cycle | NAND_CMD_READ0; if (command == NAND_CMD_READOOB) info->buf_start += mtd->writesize; if (info->cur_chunk < info->nfullchunks) { info->step_chunk_size = info->chunk_size; info->step_spare_size = info->spare_size; } else { info->step_chunk_size = info->last_chunk_size; info->step_spare_size = info->last_spare_size; } /* * Multiple page read needs an 'extended command type' field, * which is either naked-read or last-read according to the * state. */ if (mtd->writesize == PAGE_CHUNK_SIZE) { info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8); } else if (mtd->writesize > PAGE_CHUNK_SIZE) { info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8) | NDCB0_LEN_OVRD | NDCB0_EXT_CMD_TYPE(ext_cmd_type); info->ndcb3 = info->step_chunk_size + info->step_spare_size; } set_command_address(info, mtd->writesize, column, page_addr); break; case NAND_CMD_SEQIN: info->buf_start = column; set_command_address(info, mtd->writesize, 0, page_addr); /* * Multiple page programming needs to execute the initial * SEQIN command that sets the page address. */ if (mtd->writesize > PAGE_CHUNK_SIZE) { info->ndcb0 |= NDCB0_CMD_TYPE(0x1) | NDCB0_EXT_CMD_TYPE(ext_cmd_type) | addr_cycle | command; exec_cmd = 1; } break; case NAND_CMD_PAGEPROG: if (is_buf_blank(info->data_buff, (mtd->writesize + mtd->oobsize))) { exec_cmd = 0; break; } if (info->cur_chunk < info->nfullchunks) { info->step_chunk_size = info->chunk_size; info->step_spare_size = info->spare_size; } else { info->step_chunk_size = info->last_chunk_size; info->step_spare_size = info->last_spare_size; } /* Second command setting for large pages */ if (mtd->writesize > PAGE_CHUNK_SIZE) { /* * Multiple page write uses the 'extended command' * field. This can be used to issue a command dispatch * or a naked-write depending on the current stage. */ info->ndcb0 |= NDCB0_CMD_TYPE(0x1) | NDCB0_LEN_OVRD | NDCB0_EXT_CMD_TYPE(ext_cmd_type); info->ndcb3 = info->step_chunk_size + info->step_spare_size; /* * This is the command dispatch that completes a chunked * page program operation. */ if (info->cur_chunk == info->ntotalchunks) { info->ndcb0 = NDCB0_CMD_TYPE(0x1) | NDCB0_EXT_CMD_TYPE(ext_cmd_type) | command; info->ndcb1 = 0; info->ndcb2 = 0; info->ndcb3 = 0; } } else { info->ndcb0 |= NDCB0_CMD_TYPE(0x1) | NDCB0_AUTO_RS | NDCB0_ST_ROW_EN | NDCB0_DBC | (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN | addr_cycle; } break; case NAND_CMD_PARAM: info->buf_count = INIT_BUFFER_SIZE; info->ndcb0 |= NDCB0_CMD_TYPE(0) | NDCB0_ADDR_CYC(1) | NDCB0_LEN_OVRD | command; info->ndcb1 = (column & 0xFF); info->ndcb3 = INIT_BUFFER_SIZE; info->step_chunk_size = INIT_BUFFER_SIZE; break; case NAND_CMD_READID: info->buf_count = READ_ID_BYTES; info->ndcb0 |= NDCB0_CMD_TYPE(3) | NDCB0_ADDR_CYC(1) | command; info->ndcb1 = (column & 0xFF); info->step_chunk_size = 8; break; case NAND_CMD_STATUS: info->buf_count = 1; info->ndcb0 |= NDCB0_CMD_TYPE(4) | NDCB0_ADDR_CYC(1) | command; info->step_chunk_size = 8; break; case NAND_CMD_ERASE1: info->ndcb0 |= NDCB0_CMD_TYPE(2) | NDCB0_AUTO_RS | NDCB0_ADDR_CYC(3) | NDCB0_DBC | (NAND_CMD_ERASE2 << 8) | NAND_CMD_ERASE1; info->ndcb1 = page_addr; info->ndcb2 = 0; break; case NAND_CMD_RESET: info->ndcb0 |= NDCB0_CMD_TYPE(5) | command; break; case NAND_CMD_ERASE2: exec_cmd = 0; break; default: exec_cmd = 0; dev_err(&info->pdev->dev, "non-supported command %x\n", command); break; } return exec_cmd; } static void nand_cmdfunc(struct mtd_info *mtd, unsigned command, int column, int page_addr) { struct nand_chip *chip = mtd_to_nand(mtd); struct pxa3xx_nand_host *host = nand_get_controller_data(chip); struct pxa3xx_nand_info *info = host->info_data; int exec_cmd; /* * if this is a x16 device ,then convert the input * "byte" address into a "word" address appropriate * for indexing a word-oriented device */ if (info->reg_ndcr & NDCR_DWIDTH_M) column /= 2; /* * There may be different NAND chip hooked to * different chip select, so check whether * chip select has been changed, if yes, reset the timing */ if (info->cs != host->cs) { info->cs = host->cs; nand_writel(info, NDTR0CS0, info->ndtr0cs0); nand_writel(info, NDTR1CS0, info->ndtr1cs0); } prepare_start_command(info, command); info->state = STATE_PREPARED; exec_cmd = prepare_set_command(info, command, 0, column, page_addr); if (exec_cmd) { init_completion(&info->cmd_complete); init_completion(&info->dev_ready); info->need_wait = 1; pxa3xx_nand_start(info); if (!wait_for_completion_timeout(&info->cmd_complete, CHIP_DELAY_TIMEOUT)) { dev_err(&info->pdev->dev, "Wait time out!!!\n"); /* Stop State Machine for next command cycle */ pxa3xx_nand_stop(info); } } info->state = STATE_IDLE; } static void nand_cmdfunc_extended(struct mtd_info *mtd, const unsigned command, int column, int page_addr) { struct nand_chip *chip = mtd_to_nand(mtd); struct pxa3xx_nand_host *host = nand_get_controller_data(chip); struct pxa3xx_nand_info *info = host->info_data; int exec_cmd, ext_cmd_type; /* * if this is a x16 device then convert the input * "byte" address into a "word" address appropriate * for indexing a word-oriented device */ if (info->reg_ndcr & NDCR_DWIDTH_M) column /= 2; /* * There may be different NAND chip hooked to * different chip select, so check whether * chip select has been changed, if yes, reset the timing */ if (info->cs != host->cs) { info->cs = host->cs; nand_writel(info, NDTR0CS0, info->ndtr0cs0); nand_writel(info, NDTR1CS0, info->ndtr1cs0); } /* Select the extended command for the first command */ switch (command) { case NAND_CMD_READ0: case NAND_CMD_READOOB: ext_cmd_type = EXT_CMD_TYPE_MONO; break; case NAND_CMD_SEQIN: ext_cmd_type = EXT_CMD_TYPE_DISPATCH; break; case NAND_CMD_PAGEPROG: ext_cmd_type = EXT_CMD_TYPE_NAKED_RW; break; default: ext_cmd_type = 0; break; } prepare_start_command(info, command); /* * Prepare the "is ready" completion before starting a command * transaction sequence. If the command is not executed the * completion will be completed, see below. * * We can do that inside the loop because the command variable * is invariant and thus so is the exec_cmd. */ info->need_wait = 1; init_completion(&info->dev_ready); do { info->state = STATE_PREPARED; exec_cmd = prepare_set_command(info, command, ext_cmd_type, column, page_addr); if (!exec_cmd) { info->need_wait = 0; complete(&info->dev_ready); break; } init_completion(&info->cmd_complete); pxa3xx_nand_start(info); if (!wait_for_completion_timeout(&info->cmd_complete, CHIP_DELAY_TIMEOUT)) { dev_err(&info->pdev->dev, "Wait time out!!!\n"); /* Stop State Machine for next command cycle */ pxa3xx_nand_stop(info); break; } /* Only a few commands need several steps */ if (command != NAND_CMD_PAGEPROG && command != NAND_CMD_READ0 && command != NAND_CMD_READOOB) break; info->cur_chunk++; /* Check if the sequence is complete */ if (info->cur_chunk == info->ntotalchunks && command != NAND_CMD_PAGEPROG) break; /* * After a splitted program command sequence has issued * the command dispatch, the command sequence is complete. */ if (info->cur_chunk == (info->ntotalchunks + 1) && command == NAND_CMD_PAGEPROG && ext_cmd_type == EXT_CMD_TYPE_DISPATCH) break; if (command == NAND_CMD_READ0 || command == NAND_CMD_READOOB) { /* Last read: issue a 'last naked read' */ if (info->cur_chunk == info->ntotalchunks - 1) ext_cmd_type = EXT_CMD_TYPE_LAST_RW; else ext_cmd_type = EXT_CMD_TYPE_NAKED_RW; /* * If a splitted program command has no more data to transfer, * the command dispatch must be issued to complete. */ } else if (command == NAND_CMD_PAGEPROG && info->cur_chunk == info->ntotalchunks) { ext_cmd_type = EXT_CMD_TYPE_DISPATCH; } } while (1); info->state = STATE_IDLE; } static int pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); return nand_prog_page_end_op(chip); } static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct pxa3xx_nand_host *host = nand_get_controller_data(chip); struct pxa3xx_nand_info *info = host->info_data; nand_read_page_op(chip, page, 0, buf, mtd->writesize); chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); if (info->retcode == ERR_CORERR && info->use_ecc) { mtd->ecc_stats.corrected += info->ecc_err_cnt; } else if (info->retcode == ERR_UNCORERR) { /* * for blank page (all 0xff), HW will calculate its ECC as * 0, which is different from the ECC information within * OOB, ignore such uncorrectable errors */ if (is_buf_blank(buf, mtd->writesize)) info->retcode = ERR_NONE; else mtd->ecc_stats.failed++; } return info->max_bitflips; } static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); struct pxa3xx_nand_host *host = nand_get_controller_data(chip); struct pxa3xx_nand_info *info = host->info_data; char retval = 0xFF; if (info->buf_start < info->buf_count) /* Has just send a new command? */ retval = info->data_buff[info->buf_start++]; return retval; } static u16 pxa3xx_nand_read_word(struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); struct pxa3xx_nand_host *host = nand_get_controller_data(chip); struct pxa3xx_nand_info *info = host->info_data; u16 retval = 0xFFFF; if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) { retval = *((u16 *)(info->data_buff+info->buf_start)); info->buf_start += 2; } return retval; } static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { struct nand_chip *chip = mtd_to_nand(mtd); struct pxa3xx_nand_host *host = nand_get_controller_data(chip); struct pxa3xx_nand_info *info = host->info_data; int real_len = min_t(size_t, len, info->buf_count - info->buf_start); memcpy(buf, info->data_buff + info->buf_start, real_len); info->buf_start += real_len; } static void pxa3xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct nand_chip *chip = mtd_to_nand(mtd); struct pxa3xx_nand_host *host = nand_get_controller_data(chip); struct pxa3xx_nand_info *info = host->info_data; int real_len = min_t(size_t, len, info->buf_count - info->buf_start); memcpy(info->data_buff + info->buf_start, buf, real_len); info->buf_start += real_len; } static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip) { return; } static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this) { struct nand_chip *chip = mtd_to_nand(mtd); struct pxa3xx_nand_host *host = nand_get_controller_data(chip); struct pxa3xx_nand_info *info = host->info_data; if (info->need_wait) { info->need_wait = 0; if (!wait_for_completion_timeout(&info->dev_ready, CHIP_DELAY_TIMEOUT)) { dev_err(&info->pdev->dev, "Ready time out!!!\n"); return NAND_STATUS_FAIL; } } /* pxa3xx_nand_send_command has waited for command complete */ if (this->state == FL_WRITING || this->state == FL_ERASING) { if (info->retcode == ERR_NONE) return 0; else return NAND_STATUS_FAIL; } return NAND_STATUS_READY; } static int pxa3xx_nand_config_ident(struct pxa3xx_nand_info *info) { struct pxa3xx_nand_host *host = info->host[info->cs]; struct platform_device *pdev = info->pdev; struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); const struct nand_sdr_timings *timings; /* Configure default flash values */ info->chunk_size = PAGE_CHUNK_SIZE; info->reg_ndcr = 0x0; /* enable all interrupts */ info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0; info->reg_ndcr |= NDCR_RD_ID_CNT(READ_ID_BYTES); info->reg_ndcr |= NDCR_SPARE_EN; /* use the common timing to make a try */ timings = onfi_async_timing_mode_to_sdr_timings(0); if (IS_ERR(timings)) return PTR_ERR(timings); pxa3xx_nand_set_sdr_timing(host, timings); return 0; } static void pxa3xx_nand_config_tail(struct pxa3xx_nand_info *info) { struct pxa3xx_nand_host *host = info->host[info->cs]; struct nand_chip *chip = &host->chip; struct mtd_info *mtd = nand_to_mtd(chip); info->reg_ndcr |= (host->col_addr_cycles == 2) ? NDCR_RA_START : 0; info->reg_ndcr |= (chip->page_shift == 6) ? NDCR_PG_PER_BLK : 0; info->reg_ndcr |= (mtd->writesize == 2048) ? NDCR_PAGE_SZ : 0; } static void pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info) { struct platform_device *pdev = info->pdev; struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); uint32_t ndcr = nand_readl(info, NDCR); /* Set an initial chunk size */ info->chunk_size = ndcr & NDCR_PAGE_SZ ? 2048 : 512; info->reg_ndcr = ndcr & ~(NDCR_INT_MASK | NDCR_ND_ARB_EN | NFCV1_NDCR_ARB_CNTL); info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0; info->ndtr0cs0 = nand_readl(info, NDTR0CS0); info->ndtr1cs0 = nand_readl(info, NDTR1CS0); } static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info) { struct platform_device *pdev = info->pdev; struct dma_slave_config config; dma_cap_mask_t mask; struct pxad_param param; int ret; info->data_buff = kmalloc(info->buf_size, GFP_KERNEL); if (info->data_buff == NULL) return -ENOMEM; if (use_dma == 0) return 0; ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (ret) return ret; sg_init_one(&info->sg, info->data_buff, info->buf_size); dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); param.prio = PXAD_PRIO_LOWEST; param.drcmr = info->drcmr_dat; info->dma_chan = dma_request_slave_channel_compat(mask, pxad_filter_fn, ¶m, &pdev->dev, "data"); if (!info->dma_chan) { dev_err(&pdev->dev, "unable to request data dma channel\n"); return -ENODEV; } memset(&config, 0, sizeof(config)); config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; config.src_addr = info->mmio_phys + NDDB; config.dst_addr = info->mmio_phys + NDDB; config.src_maxburst = 32; config.dst_maxburst = 32; ret = dmaengine_slave_config(info->dma_chan, &config); if (ret < 0) { dev_err(&info->pdev->dev, "dma channel configuration failed: %d\n", ret); return ret; } /* * Now that DMA buffers are allocated we turn on * DMA proper for I/O operations. */ info->use_dma = 1; return 0; } static void pxa3xx_nand_free_buff(struct pxa3xx_nand_info *info) { if (info->use_dma) { dmaengine_terminate_all(info->dma_chan); dma_release_channel(info->dma_chan); } kfree(info->data_buff); } static int pxa_ecc_init(struct pxa3xx_nand_info *info, struct mtd_info *mtd, int strength, int ecc_stepsize, int page_size) { struct nand_chip *chip = mtd_to_nand(mtd); struct nand_ecc_ctrl *ecc = &chip->ecc; if (strength == 1 && ecc_stepsize == 512 && page_size == 2048) { info->nfullchunks = 1; info->ntotalchunks = 1; info->chunk_size = 2048; info->spare_size = 40; info->ecc_size = 24; ecc->mode = NAND_ECC_HW; ecc->size = 512; ecc->strength = 1; } else if (strength == 1 && ecc_stepsize == 512 && page_size == 512) { info->nfullchunks = 1; info->ntotalchunks = 1; info->chunk_size = 512; info->spare_size = 8; info->ecc_size = 8; ecc->mode = NAND_ECC_HW; ecc->size = 512; ecc->strength = 1; /* * Required ECC: 4-bit correction per 512 bytes * Select: 16-bit correction per 2048 bytes */ } else if (strength == 4 && ecc_stepsize == 512 && page_size == 2048) { info->ecc_bch = 1; info->nfullchunks = 1; info->ntotalchunks = 1; info->chunk_size = 2048; info->spare_size = 32; info->ecc_size = 32; ecc->mode = NAND_ECC_HW; ecc->size = info->chunk_size; mtd_set_ooblayout(mtd, &pxa3xx_ooblayout_ops); ecc->strength = 16; } else if (strength == 4 && ecc_stepsize == 512 && page_size == 4096) { info->ecc_bch = 1; info->nfullchunks = 2; info->ntotalchunks = 2; info->chunk_size = 2048; info->spare_size = 32; info->ecc_size = 32; ecc->mode = NAND_ECC_HW; ecc->size = info->chunk_size; mtd_set_ooblayout(mtd, &pxa3xx_ooblayout_ops); ecc->strength = 16; /* * Required ECC: 8-bit correction per 512 bytes * Select: 16-bit correction per 1024 bytes */ } else if (strength == 8 && ecc_stepsize == 512 && page_size == 4096) { info->ecc_bch = 1; info->nfullchunks = 4; info->ntotalchunks = 5; info->chunk_size = 1024; info->spare_size = 0; info->last_chunk_size = 0; info->last_spare_size = 64; info->ecc_size = 32; ecc->mode = NAND_ECC_HW; ecc->size = info->chunk_size; mtd_set_ooblayout(mtd, &pxa3xx_ooblayout_ops); ecc->strength = 16; } else { dev_err(&info->pdev->dev, "ECC strength %d at page size %d is not supported\n", strength, page_size); return -ENODEV; } dev_info(&info->pdev->dev, "ECC strength %d, ECC step size %d\n", ecc->strength, ecc->size); return 0; } static int pxa3xx_nand_scan(struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); struct pxa3xx_nand_host *host = nand_get_controller_data(chip); struct pxa3xx_nand_info *info = host->info_data; struct platform_device *pdev = info->pdev; struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); int ret; uint16_t ecc_strength, ecc_step; if (pdata->keep_config) { pxa3xx_nand_detect_config(info); } else { ret = pxa3xx_nand_config_ident(info); if (ret) return ret; } if (info->reg_ndcr & NDCR_DWIDTH_M) chip->options |= NAND_BUSWIDTH_16; /* Device detection must be done with ECC disabled */ if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 || info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K) nand_writel(info, NDECCCTRL, 0x0); if (pdata->flash_bbt) chip->bbt_options |= NAND_BBT_USE_FLASH; chip->ecc.strength = pdata->ecc_strength; chip->ecc.size = pdata->ecc_step_size; ret = nand_scan_ident(mtd, 1, NULL); if (ret) return ret; if (!pdata->keep_config) { ret = pxa3xx_nand_init(host); if (ret) { dev_err(&info->pdev->dev, "Failed to init nand: %d\n", ret); return ret; } } if (chip->bbt_options & NAND_BBT_USE_FLASH) { /* * We'll use a bad block table stored in-flash and don't * allow writing the bad block marker to the flash. */ chip->bbt_options |= NAND_BBT_NO_OOB_BBM; chip->bbt_td = &bbt_main_descr; chip->bbt_md = &bbt_mirror_descr; } /* * If the page size is bigger than the FIFO size, let's check * we are given the right variant and then switch to the extended * (aka splitted) command handling, */ if (mtd->writesize > PAGE_CHUNK_SIZE) { if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 || info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K) { chip->cmdfunc = nand_cmdfunc_extended; } else { dev_err(&info->pdev->dev, "unsupported page size on this variant\n"); return -ENODEV; } } ecc_strength = chip->ecc.strength; ecc_step = chip->ecc.size; if (!ecc_strength || !ecc_step) { ecc_strength = chip->ecc_strength_ds; ecc_step = chip->ecc_step_ds; } /* Set default ECC strength requirements on non-ONFI devices */ if (ecc_strength < 1 && ecc_step < 1) { ecc_strength = 1; ecc_step = 512; } ret = pxa_ecc_init(info, mtd, ecc_strength, ecc_step, mtd->writesize); if (ret) return ret; /* calculate addressing information */ if (mtd->writesize >= 2048) host->col_addr_cycles = 2; else host->col_addr_cycles = 1; /* release the initial buffer */ kfree(info->data_buff); /* allocate the real data + oob buffer */ info->buf_size = mtd->writesize + mtd->oobsize; ret = pxa3xx_nand_init_buff(info); if (ret) return ret; info->oob_buff = info->data_buff + mtd->writesize; if ((mtd->size >> chip->page_shift) > 65536) host->row_addr_cycles = 3; else host->row_addr_cycles = 2; if (!pdata->keep_config) pxa3xx_nand_config_tail(info); return nand_scan_tail(mtd); } static int alloc_nand_resource(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct pxa3xx_nand_platform_data *pdata; struct pxa3xx_nand_info *info; struct pxa3xx_nand_host *host; struct nand_chip *chip = NULL; struct mtd_info *mtd; struct resource *r; int ret, irq, cs; pdata = dev_get_platdata(&pdev->dev); if (pdata->num_cs <= 0) { dev_err(&pdev->dev, "invalid number of chip selects\n"); return -ENODEV; } info = devm_kzalloc(&pdev->dev, sizeof(*info) + sizeof(*host) * pdata->num_cs, GFP_KERNEL); if (!info) return -ENOMEM; info->pdev = pdev; info->variant = pxa3xx_nand_get_variant(pdev); for (cs = 0; cs < pdata->num_cs; cs++) { host = (void *)&info[1] + sizeof(*host) * cs; chip = &host->chip; nand_set_controller_data(chip, host); mtd = nand_to_mtd(chip); info->host[cs] = host; host->cs = cs; host->info_data = info; mtd->dev.parent = &pdev->dev; /* FIXME: all chips use the same device tree partitions */ nand_set_flash_node(chip, np); nand_set_controller_data(chip, host); chip->ecc.read_page = pxa3xx_nand_read_page_hwecc; chip->ecc.write_page = pxa3xx_nand_write_page_hwecc; chip->controller = &info->controller; chip->waitfunc = pxa3xx_nand_waitfunc; chip->select_chip = pxa3xx_nand_select_chip; chip->read_word = pxa3xx_nand_read_word; chip->read_byte = pxa3xx_nand_read_byte; chip->read_buf = pxa3xx_nand_read_buf; chip->write_buf = pxa3xx_nand_write_buf; chip->options |= NAND_NO_SUBPAGE_WRITE; chip->cmdfunc = nand_cmdfunc; chip->onfi_set_features = nand_onfi_get_set_features_notsupp; chip->onfi_get_features = nand_onfi_get_set_features_notsupp; } nand_hw_control_init(chip->controller); info->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(info->clk)) { ret = PTR_ERR(info->clk); dev_err(&pdev->dev, "failed to get nand clock: %d\n", ret); return ret; } ret = clk_prepare_enable(info->clk); if (ret < 0) return ret; if (!np && use_dma) { r = platform_get_resource(pdev, IORESOURCE_DMA, 0); if (r == NULL) { dev_err(&pdev->dev, "no resource defined for data DMA\n"); ret = -ENXIO; goto fail_disable_clk; } info->drcmr_dat = r->start; } irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(&pdev->dev, "no IRQ resource defined\n"); ret = -ENXIO; goto fail_disable_clk; } r = platform_get_resource(pdev, IORESOURCE_MEM, 0); info->mmio_base = devm_ioremap_resource(&pdev->dev, r); if (IS_ERR(info->mmio_base)) { ret = PTR_ERR(info->mmio_base); dev_err(&pdev->dev, "failed to map register space: %d\n", ret); goto fail_disable_clk; } info->mmio_phys = r->start; /* Allocate a buffer to allow flash detection */ info->buf_size = INIT_BUFFER_SIZE; info->data_buff = kmalloc(info->buf_size, GFP_KERNEL); if (info->data_buff == NULL) { ret = -ENOMEM; goto fail_disable_clk; } /* initialize all interrupts to be disabled */ disable_int(info, NDSR_MASK); ret = request_threaded_irq(irq, pxa3xx_nand_irq, pxa3xx_nand_irq_thread, IRQF_ONESHOT, pdev->name, info); if (ret < 0) { dev_err(&pdev->dev, "failed to request IRQ: %d\n", ret); goto fail_free_buf; } platform_set_drvdata(pdev, info); return 0; fail_free_buf: free_irq(irq, info); kfree(info->data_buff); fail_disable_clk: clk_disable_unprepare(info->clk); return ret; } static int pxa3xx_nand_remove(struct platform_device *pdev) { struct pxa3xx_nand_info *info = platform_get_drvdata(pdev); struct pxa3xx_nand_platform_data *pdata; int irq, cs; if (!info) return 0; pdata = dev_get_platdata(&pdev->dev); irq = platform_get_irq(pdev, 0); if (irq >= 0) free_irq(irq, info); pxa3xx_nand_free_buff(info); /* * In the pxa3xx case, the DFI bus is shared between the SMC and NFC. * In order to prevent a lockup of the system bus, the DFI bus * arbitration is granted to SMC upon driver removal. This is done by * setting the x_ARB_CNTL bit, which also prevents the NAND to have * access to the bus anymore. */ nand_writel(info, NDCR, (nand_readl(info, NDCR) & ~NDCR_ND_ARB_EN) | NFCV1_NDCR_ARB_CNTL); clk_disable_unprepare(info->clk); for (cs = 0; cs < pdata->num_cs; cs++) nand_release(nand_to_mtd(&info->host[cs]->chip)); return 0; } static int pxa3xx_nand_probe_dt(struct platform_device *pdev) { struct pxa3xx_nand_platform_data *pdata; struct device_node *np = pdev->dev.of_node; const struct of_device_id *of_id = of_match_device(pxa3xx_nand_dt_ids, &pdev->dev); if (!of_id) return 0; /* * Some SoCs like A7k/A8k need to enable manually the NAND * controller to avoid being bootloader dependent. This is done * through the use of a single bit in the System Functions registers. */ if (pxa3xx_nand_get_variant(pdev) == PXA3XX_NAND_VARIANT_ARMADA_8K) { struct regmap *sysctrl_base = syscon_regmap_lookup_by_phandle( pdev->dev.of_node, "marvell,system-controller"); u32 reg; if (IS_ERR(sysctrl_base)) return PTR_ERR(sysctrl_base); regmap_read(sysctrl_base, GENCONF_SOC_DEVICE_MUX, ®); reg |= GENCONF_SOC_DEVICE_MUX_NFC_EN; regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg); } pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return -ENOMEM; if (of_get_property(np, "marvell,nand-enable-arbiter", NULL)) pdata->enable_arbiter = 1; if (of_get_property(np, "marvell,nand-keep-config", NULL)) pdata->keep_config = 1; of_property_read_u32(np, "num-cs", &pdata->num_cs); pdev->dev.platform_data = pdata; return 0; } static int pxa3xx_nand_probe(struct platform_device *pdev) { struct pxa3xx_nand_platform_data *pdata; struct pxa3xx_nand_info *info; int ret, cs, probe_success, dma_available; dma_available = IS_ENABLED(CONFIG_ARM) && (IS_ENABLED(CONFIG_ARCH_PXA) || IS_ENABLED(CONFIG_ARCH_MMP)); if (use_dma && !dma_available) { use_dma = 0; dev_warn(&pdev->dev, "This platform can't do DMA on this device\n"); } ret = pxa3xx_nand_probe_dt(pdev); if (ret) return ret; pdata = dev_get_platdata(&pdev->dev); if (!pdata) { dev_err(&pdev->dev, "no platform data defined\n"); return -ENODEV; } ret = alloc_nand_resource(pdev); if (ret) return ret; info = platform_get_drvdata(pdev); probe_success = 0; for (cs = 0; cs < pdata->num_cs; cs++) { struct mtd_info *mtd = nand_to_mtd(&info->host[cs]->chip); /* * The mtd name matches the one used in 'mtdparts' kernel * parameter. This name cannot be changed or otherwise * user's mtd partitions configuration would get broken. */ mtd->name = "pxa3xx_nand-0"; info->cs = cs; ret = pxa3xx_nand_scan(mtd); if (ret) { dev_warn(&pdev->dev, "failed to scan nand at cs %d\n", cs); continue; } ret = mtd_device_register(mtd, pdata->parts[cs], pdata->nr_parts[cs]); if (!ret) probe_success = 1; } if (!probe_success) { pxa3xx_nand_remove(pdev); return -ENODEV; } return 0; } #ifdef CONFIG_PM static int pxa3xx_nand_suspend(struct device *dev) { struct pxa3xx_nand_info *info = dev_get_drvdata(dev); if (info->state) { dev_err(dev, "driver busy, state = %d\n", info->state); return -EAGAIN; } clk_disable(info->clk); return 0; } static int pxa3xx_nand_resume(struct device *dev) { struct pxa3xx_nand_info *info = dev_get_drvdata(dev); int ret; ret = clk_enable(info->clk); if (ret < 0) return ret; /* We don't want to handle interrupt without calling mtd routine */ disable_int(info, NDCR_INT_MASK); /* * Directly set the chip select to a invalid value, * then the driver would reset the timing according * to current chip select at the beginning of cmdfunc */ info->cs = 0xff; /* * As the spec says, the NDSR would be updated to 0x1800 when * doing the nand_clk disable/enable. * To prevent it damaging state machine of the driver, clear * all status before resume */ nand_writel(info, NDSR, NDSR_MASK); return 0; } #else #define pxa3xx_nand_suspend NULL #define pxa3xx_nand_resume NULL #endif static const struct dev_pm_ops pxa3xx_nand_pm_ops = { .suspend = pxa3xx_nand_suspend, .resume = pxa3xx_nand_resume, }; static struct platform_driver pxa3xx_nand_driver = { .driver = { .name = "pxa3xx-nand", .of_match_table = pxa3xx_nand_dt_ids, .pm = &pxa3xx_nand_pm_ops, }, .probe = pxa3xx_nand_probe, .remove = pxa3xx_nand_remove, }; module_platform_driver(pxa3xx_nand_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("PXA3xx NAND controller driver");