/* * vsp1_drm.c -- R-Car VSP1 DRM API * * Copyright (C) 2015 Renesas Electronics Corporation * * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include "vsp1.h" #include "vsp1_bru.h" #include "vsp1_dl.h" #include "vsp1_drm.h" #include "vsp1_lif.h" #include "vsp1_pipe.h" #include "vsp1_rwpf.h" /* ----------------------------------------------------------------------------- * Interrupt Handling */ static void vsp1_du_pipeline_frame_end(struct vsp1_pipeline *pipe) { struct vsp1_drm *drm = to_vsp1_drm(pipe); if (drm->du_complete) drm->du_complete(drm->du_private); } /* ----------------------------------------------------------------------------- * DU Driver API */ int vsp1_du_init(struct device *dev) { struct vsp1_device *vsp1 = dev_get_drvdata(dev); if (!vsp1) return -EPROBE_DEFER; return 0; } EXPORT_SYMBOL_GPL(vsp1_du_init); /** * vsp1_du_setup_lif - Setup the output part of the VSP pipeline * @dev: the VSP device * @pipe_index: the DRM pipeline index * @cfg: the LIF configuration * * Configure the output part of VSP DRM pipeline for the given frame @cfg.width * and @cfg.height. This sets up formats on the blend unit (BRU or BRS) source * pad, the WPF sink and source pads, and the LIF sink pad. * * The @pipe_index argument selects which DRM pipeline to setup. The number of * available pipelines depend on the VSP instance. * * As the media bus code on the blend unit source pad is conditioned by the * configuration of its sink 0 pad, we also set up the formats on all blend unit * sinks, even if the configuration will be overwritten later by * vsp1_du_setup_rpf(). This ensures that the blend unit configuration is set to * a well defined state. * * Return 0 on success or a negative error code on failure. */ int vsp1_du_setup_lif(struct device *dev, unsigned int pipe_index, const struct vsp1_du_lif_config *cfg) { struct vsp1_device *vsp1 = dev_get_drvdata(dev); struct vsp1_pipeline *pipe = &vsp1->drm->pipe; struct vsp1_bru *bru = vsp1->bru; struct v4l2_subdev_format format; unsigned int i; int ret; if (pipe_index > 0) return -EINVAL; if (!cfg) { /* * NULL configuration means the CRTC is being disabled, stop * the pipeline and turn the light off. */ ret = vsp1_pipeline_stop(pipe); if (ret == -ETIMEDOUT) dev_err(vsp1->dev, "DRM pipeline stop timeout\n"); media_pipeline_stop(&pipe->output->entity.subdev.entity); for (i = 0; i < bru->entity.source_pad; ++i) { vsp1->drm->inputs[i].enabled = false; bru->inputs[i].rpf = NULL; pipe->inputs[i] = NULL; } pipe->num_inputs = 0; vsp1->drm->du_complete = NULL; vsp1_dlm_reset(pipe->output->dlm); vsp1_device_put(vsp1); dev_dbg(vsp1->dev, "%s: pipeline disabled\n", __func__); return 0; } dev_dbg(vsp1->dev, "%s: configuring LIF with format %ux%u\n", __func__, cfg->width, cfg->height); /* * Configure the format at the BRU sinks and propagate it through the * pipeline. */ memset(&format, 0, sizeof(format)); format.which = V4L2_SUBDEV_FORMAT_ACTIVE; for (i = 0; i < bru->entity.source_pad; ++i) { format.pad = i; format.format.width = cfg->width; format.format.height = cfg->height; format.format.code = MEDIA_BUS_FMT_ARGB8888_1X32; format.format.field = V4L2_FIELD_NONE; ret = v4l2_subdev_call(&bru->entity.subdev, pad, set_fmt, NULL, &format); if (ret < 0) return ret; dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on BRU pad %u\n", __func__, format.format.width, format.format.height, format.format.code, i); } format.pad = bru->entity.source_pad; format.format.width = cfg->width; format.format.height = cfg->height; format.format.code = MEDIA_BUS_FMT_ARGB8888_1X32; format.format.field = V4L2_FIELD_NONE; ret = v4l2_subdev_call(&bru->entity.subdev, pad, set_fmt, NULL, &format); if (ret < 0) return ret; dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on BRU pad %u\n", __func__, format.format.width, format.format.height, format.format.code, i); format.pad = RWPF_PAD_SINK; ret = v4l2_subdev_call(&vsp1->wpf[0]->entity.subdev, pad, set_fmt, NULL, &format); if (ret < 0) return ret; dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on WPF0 sink\n", __func__, format.format.width, format.format.height, format.format.code); format.pad = RWPF_PAD_SOURCE; ret = v4l2_subdev_call(&vsp1->wpf[0]->entity.subdev, pad, get_fmt, NULL, &format); if (ret < 0) return ret; dev_dbg(vsp1->dev, "%s: got format %ux%u (%x) on WPF0 source\n", __func__, format.format.width, format.format.height, format.format.code); format.pad = LIF_PAD_SINK; ret = v4l2_subdev_call(&vsp1->lif->entity.subdev, pad, set_fmt, NULL, &format); if (ret < 0) return ret; dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on LIF sink\n", __func__, format.format.width, format.format.height, format.format.code); /* * Verify that the format at the output of the pipeline matches the * requested frame size and media bus code. */ if (format.format.width != cfg->width || format.format.height != cfg->height || format.format.code != MEDIA_BUS_FMT_ARGB8888_1X32) { dev_dbg(vsp1->dev, "%s: format mismatch\n", __func__); return -EPIPE; } /* * Mark the pipeline as streaming and enable the VSP1. This will store * the pipeline pointer in all entities, which the s_stream handlers * will need. We don't start the entities themselves right at this point * as there's no plane configured yet, so we can't start processing * buffers. */ ret = vsp1_device_get(vsp1); if (ret < 0) return ret; /* * Register a callback to allow us to notify the DRM driver of frame * completion events. */ vsp1->drm->du_complete = cfg->callback; vsp1->drm->du_private = cfg->callback_data; ret = media_pipeline_start(&pipe->output->entity.subdev.entity, &pipe->pipe); if (ret < 0) { dev_dbg(vsp1->dev, "%s: pipeline start failed\n", __func__); vsp1_device_put(vsp1); return ret; } /* Disable the display interrupts. */ vsp1_write(vsp1, VI6_DISP_IRQ_STA, 0); vsp1_write(vsp1, VI6_DISP_IRQ_ENB, 0); dev_dbg(vsp1->dev, "%s: pipeline enabled\n", __func__); return 0; } EXPORT_SYMBOL_GPL(vsp1_du_setup_lif); /** * vsp1_du_atomic_begin - Prepare for an atomic update * @dev: the VSP device * @pipe_index: the DRM pipeline index */ void vsp1_du_atomic_begin(struct device *dev, unsigned int pipe_index) { struct vsp1_device *vsp1 = dev_get_drvdata(dev); struct vsp1_pipeline *pipe = &vsp1->drm->pipe; vsp1->drm->num_inputs = pipe->num_inputs; } EXPORT_SYMBOL_GPL(vsp1_du_atomic_begin); /** * vsp1_du_atomic_update - Setup one RPF input of the VSP pipeline * @dev: the VSP device * @pipe_index: the DRM pipeline index * @rpf_index: index of the RPF to setup (0-based) * @cfg: the RPF configuration * * Configure the VSP to perform image composition through RPF @rpf_index as * described by the @cfg configuration. The image to compose is referenced by * @cfg.mem and composed using the @cfg.src crop rectangle and the @cfg.dst * composition rectangle. The Z-order is configurable with higher @zpos values * displayed on top. * * If the @cfg configuration is NULL, the RPF will be disabled. Calling the * function on a disabled RPF is allowed. * * Image format as stored in memory is expressed as a V4L2 @cfg.pixelformat * value. The memory pitch is configurable to allow for padding at end of lines, * or simply for images that extend beyond the crop rectangle boundaries. The * @cfg.pitch value is expressed in bytes and applies to all planes for * multiplanar formats. * * The source memory buffer is referenced by the DMA address of its planes in * the @cfg.mem array. Up to two planes are supported. The second plane DMA * address is ignored for formats using a single plane. * * This function isn't reentrant, the caller needs to serialize calls. * * Return 0 on success or a negative error code on failure. */ int vsp1_du_atomic_update(struct device *dev, unsigned int pipe_index, unsigned int rpf_index, const struct vsp1_du_atomic_config *cfg) { struct vsp1_device *vsp1 = dev_get_drvdata(dev); const struct vsp1_format_info *fmtinfo; struct vsp1_rwpf *rpf; if (rpf_index >= vsp1->info->rpf_count) return -EINVAL; rpf = vsp1->rpf[rpf_index]; if (!cfg) { dev_dbg(vsp1->dev, "%s: RPF%u: disable requested\n", __func__, rpf_index); vsp1->drm->inputs[rpf_index].enabled = false; return 0; } dev_dbg(vsp1->dev, "%s: RPF%u: (%u,%u)/%ux%u -> (%u,%u)/%ux%u (%08x), pitch %u dma { %pad, %pad, %pad } zpos %u\n", __func__, rpf_index, cfg->src.left, cfg->src.top, cfg->src.width, cfg->src.height, cfg->dst.left, cfg->dst.top, cfg->dst.width, cfg->dst.height, cfg->pixelformat, cfg->pitch, &cfg->mem[0], &cfg->mem[1], &cfg->mem[2], cfg->zpos); /* * Store the format, stride, memory buffer address, crop and compose * rectangles and Z-order position and for the input. */ fmtinfo = vsp1_get_format_info(vsp1, cfg->pixelformat); if (!fmtinfo) { dev_dbg(vsp1->dev, "Unsupport pixel format %08x for RPF\n", cfg->pixelformat); return -EINVAL; } rpf->fmtinfo = fmtinfo; rpf->format.num_planes = fmtinfo->planes; rpf->format.plane_fmt[0].bytesperline = cfg->pitch; rpf->format.plane_fmt[1].bytesperline = cfg->pitch; rpf->alpha = cfg->alpha; rpf->mem.addr[0] = cfg->mem[0]; rpf->mem.addr[1] = cfg->mem[1]; rpf->mem.addr[2] = cfg->mem[2]; vsp1->drm->inputs[rpf_index].crop = cfg->src; vsp1->drm->inputs[rpf_index].compose = cfg->dst; vsp1->drm->inputs[rpf_index].zpos = cfg->zpos; vsp1->drm->inputs[rpf_index].enabled = true; return 0; } EXPORT_SYMBOL_GPL(vsp1_du_atomic_update); static int vsp1_du_setup_rpf_pipe(struct vsp1_device *vsp1, struct vsp1_rwpf *rpf, unsigned int bru_input) { struct v4l2_subdev_selection sel; struct v4l2_subdev_format format; const struct v4l2_rect *crop; int ret; /* * Configure the format on the RPF sink pad and propagate it up to the * BRU sink pad. */ crop = &vsp1->drm->inputs[rpf->entity.index].crop; memset(&format, 0, sizeof(format)); format.which = V4L2_SUBDEV_FORMAT_ACTIVE; format.pad = RWPF_PAD_SINK; format.format.width = crop->width + crop->left; format.format.height = crop->height + crop->top; format.format.code = rpf->fmtinfo->mbus; format.format.field = V4L2_FIELD_NONE; ret = v4l2_subdev_call(&rpf->entity.subdev, pad, set_fmt, NULL, &format); if (ret < 0) return ret; dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on RPF%u sink\n", __func__, format.format.width, format.format.height, format.format.code, rpf->entity.index); memset(&sel, 0, sizeof(sel)); sel.which = V4L2_SUBDEV_FORMAT_ACTIVE; sel.pad = RWPF_PAD_SINK; sel.target = V4L2_SEL_TGT_CROP; sel.r = *crop; ret = v4l2_subdev_call(&rpf->entity.subdev, pad, set_selection, NULL, &sel); if (ret < 0) return ret; dev_dbg(vsp1->dev, "%s: set selection (%u,%u)/%ux%u on RPF%u sink\n", __func__, sel.r.left, sel.r.top, sel.r.width, sel.r.height, rpf->entity.index); /* * RPF source, hardcode the format to ARGB8888 to turn on format * conversion if needed. */ format.pad = RWPF_PAD_SOURCE; ret = v4l2_subdev_call(&rpf->entity.subdev, pad, get_fmt, NULL, &format); if (ret < 0) return ret; dev_dbg(vsp1->dev, "%s: got format %ux%u (%x) on RPF%u source\n", __func__, format.format.width, format.format.height, format.format.code, rpf->entity.index); format.format.code = MEDIA_BUS_FMT_ARGB8888_1X32; ret = v4l2_subdev_call(&rpf->entity.subdev, pad, set_fmt, NULL, &format); if (ret < 0) return ret; /* BRU sink, propagate the format from the RPF source. */ format.pad = bru_input; ret = v4l2_subdev_call(&vsp1->bru->entity.subdev, pad, set_fmt, NULL, &format); if (ret < 0) return ret; dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on BRU pad %u\n", __func__, format.format.width, format.format.height, format.format.code, format.pad); sel.pad = bru_input; sel.target = V4L2_SEL_TGT_COMPOSE; sel.r = vsp1->drm->inputs[rpf->entity.index].compose; ret = v4l2_subdev_call(&vsp1->bru->entity.subdev, pad, set_selection, NULL, &sel); if (ret < 0) return ret; dev_dbg(vsp1->dev, "%s: set selection (%u,%u)/%ux%u on BRU pad %u\n", __func__, sel.r.left, sel.r.top, sel.r.width, sel.r.height, sel.pad); return 0; } static unsigned int rpf_zpos(struct vsp1_device *vsp1, struct vsp1_rwpf *rpf) { return vsp1->drm->inputs[rpf->entity.index].zpos; } /** * vsp1_du_atomic_flush - Commit an atomic update * @dev: the VSP device * @pipe_index: the DRM pipeline index */ void vsp1_du_atomic_flush(struct device *dev, unsigned int pipe_index) { struct vsp1_device *vsp1 = dev_get_drvdata(dev); struct vsp1_pipeline *pipe = &vsp1->drm->pipe; struct vsp1_rwpf *inputs[VSP1_MAX_RPF] = { NULL, }; struct vsp1_entity *entity; struct vsp1_dl_list *dl; unsigned long flags; unsigned int i; int ret; /* Prepare the display list. */ dl = vsp1_dl_list_get(pipe->output->dlm); /* Count the number of enabled inputs and sort them by Z-order. */ pipe->num_inputs = 0; for (i = 0; i < vsp1->info->rpf_count; ++i) { struct vsp1_rwpf *rpf = vsp1->rpf[i]; unsigned int j; if (!vsp1->drm->inputs[i].enabled) { pipe->inputs[i] = NULL; continue; } pipe->inputs[i] = rpf; /* Insert the RPF in the sorted RPFs array. */ for (j = pipe->num_inputs++; j > 0; --j) { if (rpf_zpos(vsp1, inputs[j-1]) <= rpf_zpos(vsp1, rpf)) break; inputs[j] = inputs[j-1]; } inputs[j] = rpf; } /* Setup the RPF input pipeline for every enabled input. */ for (i = 0; i < vsp1->info->num_bru_inputs; ++i) { struct vsp1_rwpf *rpf = inputs[i]; if (!rpf) { vsp1->bru->inputs[i].rpf = NULL; continue; } vsp1->bru->inputs[i].rpf = rpf; rpf->bru_input = i; rpf->entity.sink = &vsp1->bru->entity; rpf->entity.sink_pad = i; dev_dbg(vsp1->dev, "%s: connecting RPF.%u to BRU:%u\n", __func__, rpf->entity.index, i); ret = vsp1_du_setup_rpf_pipe(vsp1, rpf, i); if (ret < 0) dev_err(vsp1->dev, "%s: failed to setup RPF.%u\n", __func__, rpf->entity.index); } /* Configure all entities in the pipeline. */ list_for_each_entry(entity, &pipe->entities, list_pipe) { /* Disconnect unused RPFs from the pipeline. */ if (entity->type == VSP1_ENTITY_RPF) { struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev); if (!pipe->inputs[rpf->entity.index]) { vsp1_dl_list_write(dl, entity->route->reg, VI6_DPR_NODE_UNUSED); continue; } } vsp1_entity_route_setup(entity, pipe, dl); if (entity->ops->configure) { entity->ops->configure(entity, pipe, dl, VSP1_ENTITY_PARAMS_INIT); entity->ops->configure(entity, pipe, dl, VSP1_ENTITY_PARAMS_RUNTIME); entity->ops->configure(entity, pipe, dl, VSP1_ENTITY_PARAMS_PARTITION); } } vsp1_dl_list_commit(dl); /* Start or stop the pipeline if needed. */ if (!vsp1->drm->num_inputs && pipe->num_inputs) { spin_lock_irqsave(&pipe->irqlock, flags); vsp1_pipeline_run(pipe); spin_unlock_irqrestore(&pipe->irqlock, flags); } else if (vsp1->drm->num_inputs && !pipe->num_inputs) { vsp1_pipeline_stop(pipe); } } EXPORT_SYMBOL_GPL(vsp1_du_atomic_flush); int vsp1_du_map_sg(struct device *dev, struct sg_table *sgt) { struct vsp1_device *vsp1 = dev_get_drvdata(dev); /* * As all the buffers allocated by the DU driver are coherent, we can * skip cache sync. This will need to be revisited when support for * non-coherent buffers will be added to the DU driver. */ return dma_map_sg_attrs(vsp1->bus_master, sgt->sgl, sgt->nents, DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); } EXPORT_SYMBOL_GPL(vsp1_du_map_sg); void vsp1_du_unmap_sg(struct device *dev, struct sg_table *sgt) { struct vsp1_device *vsp1 = dev_get_drvdata(dev); dma_unmap_sg_attrs(vsp1->bus_master, sgt->sgl, sgt->nents, DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); } EXPORT_SYMBOL_GPL(vsp1_du_unmap_sg); /* ----------------------------------------------------------------------------- * Initialization */ int vsp1_drm_init(struct vsp1_device *vsp1) { struct vsp1_pipeline *pipe; unsigned int i; vsp1->drm = devm_kzalloc(vsp1->dev, sizeof(*vsp1->drm), GFP_KERNEL); if (!vsp1->drm) return -ENOMEM; pipe = &vsp1->drm->pipe; vsp1_pipeline_init(pipe); /* The DRM pipeline is static, add entities manually. */ for (i = 0; i < vsp1->info->rpf_count; ++i) { struct vsp1_rwpf *input = vsp1->rpf[i]; list_add_tail(&input->entity.list_pipe, &pipe->entities); } vsp1->bru->entity.sink = &vsp1->wpf[0]->entity; vsp1->bru->entity.sink_pad = 0; vsp1->wpf[0]->entity.sink = &vsp1->lif->entity; vsp1->wpf[0]->entity.sink_pad = 0; list_add_tail(&vsp1->bru->entity.list_pipe, &pipe->entities); list_add_tail(&vsp1->wpf[0]->entity.list_pipe, &pipe->entities); list_add_tail(&vsp1->lif->entity.list_pipe, &pipe->entities); pipe->bru = &vsp1->bru->entity; pipe->lif = &vsp1->lif->entity; pipe->output = vsp1->wpf[0]; pipe->output->pipe = pipe; pipe->frame_end = vsp1_du_pipeline_frame_end; return 0; } void vsp1_drm_cleanup(struct vsp1_device *vsp1) { }