/* * Copyright (c) 1999-2001 Vojtech Pavlik * * Based on the work of: * Andree Borrmann Mats Sjövall */ /* * Atari, Amstrad, Commodore, Amiga, Sega, etc. joystick driver for Linux */ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Should you need to contact me, the author, you can do so either by * e-mail - mail your message to , or by paper mail: * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic */ #include #include #include #include #include #include #include #include MODULE_AUTHOR("Vojtech Pavlik "); MODULE_DESCRIPTION("Atari, Amstrad, Commodore, Amiga, Sega, etc. joystick driver"); MODULE_LICENSE("GPL"); struct db9_config { int args[2]; unsigned int nargs; }; #define DB9_MAX_PORTS 3 static struct db9_config db9_cfg[DB9_MAX_PORTS]; module_param_array_named(dev, db9_cfg[0].args, int, &db9_cfg[0].nargs, 0); MODULE_PARM_DESC(dev, "Describes first attached device (,)"); module_param_array_named(dev2, db9_cfg[1].args, int, &db9_cfg[1].nargs, 0); MODULE_PARM_DESC(dev2, "Describes second attached device (,)"); module_param_array_named(dev3, db9_cfg[2].args, int, &db9_cfg[2].nargs, 0); MODULE_PARM_DESC(dev3, "Describes third attached device (,)"); #define DB9_ARG_PARPORT 0 #define DB9_ARG_MODE 1 #define DB9_MULTI_STICK 0x01 #define DB9_MULTI2_STICK 0x02 #define DB9_GENESIS_PAD 0x03 #define DB9_GENESIS5_PAD 0x05 #define DB9_GENESIS6_PAD 0x06 #define DB9_SATURN_PAD 0x07 #define DB9_MULTI_0802 0x08 #define DB9_MULTI_0802_2 0x09 #define DB9_CD32_PAD 0x0A #define DB9_SATURN_DPP 0x0B #define DB9_SATURN_DPP_2 0x0C #define DB9_MAX_PAD 0x0D #define DB9_UP 0x01 #define DB9_DOWN 0x02 #define DB9_LEFT 0x04 #define DB9_RIGHT 0x08 #define DB9_FIRE1 0x10 #define DB9_FIRE2 0x20 #define DB9_FIRE3 0x40 #define DB9_FIRE4 0x80 #define DB9_NORMAL 0x0a #define DB9_NOSELECT 0x08 #define DB9_GENESIS6_DELAY 14 #define DB9_REFRESH_TIME HZ/100 #define DB9_MAX_DEVICES 2 struct db9_mode_data { const char *name; const short *buttons; int n_buttons; int n_pads; int n_axis; int bidirectional; int reverse; }; struct db9 { struct input_dev *dev[DB9_MAX_DEVICES]; struct timer_list timer; struct pardevice *pd; int mode; int used; int parportno; struct mutex mutex; char phys[DB9_MAX_DEVICES][32]; }; static struct db9 *db9_base[3]; static const short db9_multi_btn[] = { BTN_TRIGGER, BTN_THUMB }; static const short db9_genesis_btn[] = { BTN_START, BTN_A, BTN_B, BTN_C, BTN_X, BTN_Y, BTN_Z, BTN_MODE }; static const short db9_cd32_btn[] = { BTN_A, BTN_B, BTN_C, BTN_X, BTN_Y, BTN_Z, BTN_TL, BTN_TR, BTN_START }; static const short db9_abs[] = { ABS_X, ABS_Y, ABS_RX, ABS_RY, ABS_RZ, ABS_Z, ABS_HAT0X, ABS_HAT0Y, ABS_HAT1X, ABS_HAT1Y }; static const struct db9_mode_data db9_modes[] = { { NULL, NULL, 0, 0, 0, 0, 0 }, { "Multisystem joystick", db9_multi_btn, 1, 1, 2, 1, 1 }, { "Multisystem joystick (2 fire)", db9_multi_btn, 2, 1, 2, 1, 1 }, { "Genesis pad", db9_genesis_btn, 4, 1, 2, 1, 1 }, { NULL, NULL, 0, 0, 0, 0, 0 }, { "Genesis 5 pad", db9_genesis_btn, 6, 1, 2, 1, 1 }, { "Genesis 6 pad", db9_genesis_btn, 8, 1, 2, 1, 1 }, { "Saturn pad", db9_cd32_btn, 9, 6, 7, 0, 1 }, { "Multisystem (0.8.0.2) joystick", db9_multi_btn, 1, 1, 2, 1, 1 }, { "Multisystem (0.8.0.2-dual) joystick", db9_multi_btn, 1, 2, 2, 1, 1 }, { "Amiga CD-32 pad", db9_cd32_btn, 7, 1, 2, 1, 1 }, { "Saturn dpp", db9_cd32_btn, 9, 6, 7, 0, 0 }, { "Saturn dpp dual", db9_cd32_btn, 9, 12, 7, 0, 0 }, }; /* * Saturn controllers */ #define DB9_SATURN_DELAY 300 static const int db9_saturn_byte[] = { 1, 1, 1, 2, 2, 2, 2, 2, 1 }; static const unsigned char db9_saturn_mask[] = { 0x04, 0x01, 0x02, 0x40, 0x20, 0x10, 0x08, 0x80, 0x08 }; /* * db9_saturn_write_sub() writes 2 bit data. */ static void db9_saturn_write_sub(struct parport *port, int type, unsigned char data, int powered, int pwr_sub) { unsigned char c; switch (type) { case 1: /* DPP1 */ c = 0x80 | 0x30 | (powered ? 0x08 : 0) | (pwr_sub ? 0x04 : 0) | data; parport_write_data(port, c); break; case 2: /* DPP2 */ c = 0x40 | data << 4 | (powered ? 0x08 : 0) | (pwr_sub ? 0x04 : 0) | 0x03; parport_write_data(port, c); break; case 0: /* DB9 */ c = ((((data & 2) ? 2 : 0) | ((data & 1) ? 4 : 0)) ^ 0x02) | !powered; parport_write_control(port, c); break; } } /* * gc_saturn_read_sub() reads 4 bit data. */ static unsigned char db9_saturn_read_sub(struct parport *port, int type) { unsigned char data; if (type) { /* DPP */ data = parport_read_status(port) ^ 0x80; return (data & 0x80 ? 1 : 0) | (data & 0x40 ? 2 : 0) | (data & 0x20 ? 4 : 0) | (data & 0x10 ? 8 : 0); } else { /* DB9 */ data = parport_read_data(port) & 0x0f; return (data & 0x8 ? 1 : 0) | (data & 0x4 ? 2 : 0) | (data & 0x2 ? 4 : 0) | (data & 0x1 ? 8 : 0); } } /* * db9_saturn_read_analog() sends clock and reads 8 bit data. */ static unsigned char db9_saturn_read_analog(struct parport *port, int type, int powered) { unsigned char data; db9_saturn_write_sub(port, type, 0, powered, 0); udelay(DB9_SATURN_DELAY); data = db9_saturn_read_sub(port, type) << 4; db9_saturn_write_sub(port, type, 2, powered, 0); udelay(DB9_SATURN_DELAY); data |= db9_saturn_read_sub(port, type); return data; } /* * db9_saturn_read_packet() reads whole saturn packet at connector * and returns device identifier code. */ static unsigned char db9_saturn_read_packet(struct parport *port, unsigned char *data, int type, int powered) { int i, j; unsigned char tmp; db9_saturn_write_sub(port, type, 3, powered, 0); data[0] = db9_saturn_read_sub(port, type); switch (data[0] & 0x0f) { case 0xf: /* 1111 no pad */ return data[0] = 0xff; case 0x4: case 0x4 | 0x8: /* ?100 : digital controller */ db9_saturn_write_sub(port, type, 0, powered, 1); data[2] = db9_saturn_read_sub(port, type) << 4; db9_saturn_write_sub(port, type, 2, powered, 1); data[1] = db9_saturn_read_sub(port, type) << 4; db9_saturn_write_sub(port, type, 1, powered, 1); data[1] |= db9_saturn_read_sub(port, type); db9_saturn_write_sub(port, type, 3, powered, 1); /* data[2] |= db9_saturn_read_sub(port, type); */ data[2] |= data[0]; return data[0] = 0x02; case 0x1: /* 0001 : analog controller or multitap */ db9_saturn_write_sub(port, type, 2, powered, 0); udelay(DB9_SATURN_DELAY); data[0] = db9_saturn_read_analog(port, type, powered); if (data[0] != 0x41) { /* read analog controller */ for (i = 0; i < (data[0] & 0x0f); i++) data[i + 1] = db9_saturn_read_analog(port, type, powered); db9_saturn_write_sub(port, type, 3, powered, 0); return data[0]; } else { /* read multitap */ if (db9_saturn_read_analog(port, type, powered) != 0x60) return data[0] = 0xff; for (i = 0; i < 60; i += 10) { data[i] = db9_saturn_read_analog(port, type, powered); if (data[i] != 0xff) /* read each pad */ for (j = 0; j < (data[i] & 0x0f); j++) data[i + j + 1] = db9_saturn_read_analog(port, type, powered); } db9_saturn_write_sub(port, type, 3, powered, 0); return 0x41; } case 0x0: /* 0000 : mouse */ db9_saturn_write_sub(port, type, 2, powered, 0); udelay(DB9_SATURN_DELAY); tmp = db9_saturn_read_analog(port, type, powered); if (tmp == 0xff) { for (i = 0; i < 3; i++) data[i + 1] = db9_saturn_read_analog(port, type, powered); db9_saturn_write_sub(port, type, 3, powered, 0); return data[0] = 0xe3; } default: return data[0]; } } /* * db9_saturn_report() analyzes packet and reports. */ static int db9_saturn_report(unsigned char id, unsigned char data[60], struct input_dev *devs[], int n, int max_pads) { struct input_dev *dev; int tmp, i, j; tmp = (id == 0x41) ? 60 : 10; for (j = 0; j < tmp && n < max_pads; j += 10, n++) { dev = devs[n]; switch (data[j]) { case 0x16: /* multi controller (analog 4 axis) */ input_report_abs(dev, db9_abs[5], data[j + 6]); case 0x15: /* mission stick (analog 3 axis) */ input_report_abs(dev, db9_abs[3], data[j + 4]); input_report_abs(dev, db9_abs[4], data[j + 5]); case 0x13: /* racing controller (analog 1 axis) */ input_report_abs(dev, db9_abs[2], data[j + 3]); case 0x34: /* saturn keyboard (udlr ZXC ASD QE Esc) */ case 0x02: /* digital pad (digital 2 axis + buttons) */ input_report_abs(dev, db9_abs[0], !(data[j + 1] & 128) - !(data[j + 1] & 64)); input_report_abs(dev, db9_abs[1], !(data[j + 1] & 32) - !(data[j + 1] & 16)); for (i = 0; i < 9; i++) input_report_key(dev, db9_cd32_btn[i], ~data[j + db9_saturn_byte[i]] & db9_saturn_mask[i]); break; case 0x19: /* mission stick x2 (analog 6 axis + buttons) */ input_report_abs(dev, db9_abs[0], !(data[j + 1] & 128) - !(data[j + 1] & 64)); input_report_abs(dev, db9_abs[1], !(data[j + 1] & 32) - !(data[j + 1] & 16)); for (i = 0; i < 9; i++) input_report_key(dev, db9_cd32_btn[i], ~data[j + db9_saturn_byte[i]] & db9_saturn_mask[i]); input_report_abs(dev, db9_abs[2], data[j + 3]); input_report_abs(dev, db9_abs[3], data[j + 4]); input_report_abs(dev, db9_abs[4], data[j + 5]); /* input_report_abs(dev, db9_abs[8], (data[j + 6] & 128 ? 0 : 1) - (data[j + 6] & 64 ? 0 : 1)); input_report_abs(dev, db9_abs[9], (data[j + 6] & 32 ? 0 : 1) - (data[j + 6] & 16 ? 0 : 1)); */ input_report_abs(dev, db9_abs[6], data[j + 7]); input_report_abs(dev, db9_abs[7], data[j + 8]); input_report_abs(dev, db9_abs[5], data[j + 9]); break; case 0xd3: /* sankyo ff (analog 1 axis + stop btn) */ input_report_key(dev, BTN_A, data[j + 3] & 0x80); input_report_abs(dev, db9_abs[2], data[j + 3] & 0x7f); break; case 0xe3: /* shuttle mouse (analog 2 axis + buttons. signed value) */ input_report_key(dev, BTN_START, data[j + 1] & 0x08); input_report_key(dev, BTN_A, data[j + 1] & 0x04); input_report_key(dev, BTN_C, data[j + 1] & 0x02); input_report_key(dev, BTN_B, data[j + 1] & 0x01); input_report_abs(dev, db9_abs[2], data[j + 2] ^ 0x80); input_report_abs(dev, db9_abs[3], (0xff-(data[j + 3] ^ 0x80))+1); /* */ break; case 0xff: default: /* no pad */ input_report_abs(dev, db9_abs[0], 0); input_report_abs(dev, db9_abs[1], 0); for (i = 0; i < 9; i++) input_report_key(dev, db9_cd32_btn[i], 0); break; } } return n; } static int db9_saturn(int mode, struct parport *port, struct input_dev *devs[]) { unsigned char id, data[60]; int type, n, max_pads; int tmp, i; switch (mode) { case DB9_SATURN_PAD: type = 0; n = 1; break; case DB9_SATURN_DPP: type = 1; n = 1; break; case DB9_SATURN_DPP_2: type = 1; n = 2; break; default: return -1; } max_pads = min(db9_modes[mode].n_pads, DB9_MAX_DEVICES); for (tmp = 0, i = 0; i < n; i++) { id = db9_saturn_read_packet(port, data, type + i, 1); tmp = db9_saturn_report(id, data, devs, tmp, max_pads); } return 0; } static void db9_timer(unsigned long private) { struct db9 *db9 = (void *) private; struct parport *port = db9->pd->port; struct input_dev *dev = db9->dev[0]; struct input_dev *dev2 = db9->dev[1]; int data, i; switch (db9->mode) { case DB9_MULTI_0802_2: data = parport_read_data(port) >> 3; input_report_abs(dev2, ABS_X, (data & DB9_RIGHT ? 0 : 1) - (data & DB9_LEFT ? 0 : 1)); input_report_abs(dev2, ABS_Y, (data & DB9_DOWN ? 0 : 1) - (data & DB9_UP ? 0 : 1)); input_report_key(dev2, BTN_TRIGGER, ~data & DB9_FIRE1); case DB9_MULTI_0802: data = parport_read_status(port) >> 3; input_report_abs(dev, ABS_X, (data & DB9_RIGHT ? 0 : 1) - (data & DB9_LEFT ? 0 : 1)); input_report_abs(dev, ABS_Y, (data & DB9_DOWN ? 0 : 1) - (data & DB9_UP ? 0 : 1)); input_report_key(dev, BTN_TRIGGER, data & DB9_FIRE1); break; case DB9_MULTI_STICK: data = parport_read_data(port); input_report_abs(dev, ABS_X, (data & DB9_RIGHT ? 0 : 1) - (data & DB9_LEFT ? 0 : 1)); input_report_abs(dev, ABS_Y, (data & DB9_DOWN ? 0 : 1) - (data & DB9_UP ? 0 : 1)); input_report_key(dev, BTN_TRIGGER, ~data & DB9_FIRE1); break; case DB9_MULTI2_STICK: data = parport_read_data(port); input_report_abs(dev, ABS_X, (data & DB9_RIGHT ? 0 : 1) - (data & DB9_LEFT ? 0 : 1)); input_report_abs(dev, ABS_Y, (data & DB9_DOWN ? 0 : 1) - (data & DB9_UP ? 0 : 1)); input_report_key(dev, BTN_TRIGGER, ~data & DB9_FIRE1); input_report_key(dev, BTN_THUMB, ~data & DB9_FIRE2); break; case DB9_GENESIS_PAD: parport_write_control(port, DB9_NOSELECT); data = parport_read_data(port); input_report_abs(dev, ABS_X, (data & DB9_RIGHT ? 0 : 1) - (data & DB9_LEFT ? 0 : 1)); input_report_abs(dev, ABS_Y, (data & DB9_DOWN ? 0 : 1) - (data & DB9_UP ? 0 : 1)); input_report_key(dev, BTN_B, ~data & DB9_FIRE1); input_report_key(dev, BTN_C, ~data & DB9_FIRE2); parport_write_control(port, DB9_NORMAL); data = parport_read_data(port); input_report_key(dev, BTN_A, ~data & DB9_FIRE1); input_report_key(dev, BTN_START, ~data & DB9_FIRE2); break; case DB9_GENESIS5_PAD: parport_write_control(port, DB9_NOSELECT); data = parport_read_data(port); input_report_abs(dev, ABS_X, (data & DB9_RIGHT ? 0 : 1) - (data & DB9_LEFT ? 0 : 1)); input_report_abs(dev, ABS_Y, (data & DB9_DOWN ? 0 : 1) - (data & DB9_UP ? 0 : 1)); input_report_key(dev, BTN_B, ~data & DB9_FIRE1); input_report_key(dev, BTN_C, ~data & DB9_FIRE2); parport_write_control(port, DB9_NORMAL); data = parport_read_data(port); input_report_key(dev, BTN_A, ~data & DB9_FIRE1); input_report_key(dev, BTN_X, ~data & DB9_FIRE2); input_report_key(dev, BTN_Y, ~data & DB9_LEFT); input_report_key(dev, BTN_START, ~data & DB9_RIGHT); break; case DB9_GENESIS6_PAD: parport_write_control(port, DB9_NOSELECT); /* 1 */ udelay(DB9_GENESIS6_DELAY); data = parport_read_data(port); input_report_abs(dev, ABS_X, (data & DB9_RIGHT ? 0 : 1) - (data & DB9_LEFT ? 0 : 1)); input_report_abs(dev, ABS_Y, (data & DB9_DOWN ? 0 : 1) - (data & DB9_UP ? 0 : 1)); input_report_key(dev, BTN_B, ~data & DB9_FIRE1); input_report_key(dev, BTN_C, ~data & DB9_FIRE2); parport_write_control(port, DB9_NORMAL); udelay(DB9_GENESIS6_DELAY); data = parport_read_data(port); input_report_key(dev, BTN_A, ~data & DB9_FIRE1); input_report_key(dev, BTN_START, ~data & DB9_FIRE2); parport_write_control(port, DB9_NOSELECT); /* 2 */ udelay(DB9_GENESIS6_DELAY); parport_write_control(port, DB9_NORMAL); udelay(DB9_GENESIS6_DELAY); parport_write_control(port, DB9_NOSELECT); /* 3 */ udelay(DB9_GENESIS6_DELAY); data=parport_read_data(port); input_report_key(dev, BTN_X, ~data & DB9_LEFT); input_report_key(dev, BTN_Y, ~data & DB9_DOWN); input_report_key(dev, BTN_Z, ~data & DB9_UP); input_report_key(dev, BTN_MODE, ~data & DB9_RIGHT); parport_write_control(port, DB9_NORMAL); udelay(DB9_GENESIS6_DELAY); parport_write_control(port, DB9_NOSELECT); /* 4 */ udelay(DB9_GENESIS6_DELAY); parport_write_control(port, DB9_NORMAL); break; case DB9_SATURN_PAD: case DB9_SATURN_DPP: case DB9_SATURN_DPP_2: db9_saturn(db9->mode, port, db9->dev); break; case DB9_CD32_PAD: data = parport_read_data(port); input_report_abs(dev, ABS_X, (data & DB9_RIGHT ? 0 : 1) - (data & DB9_LEFT ? 0 : 1)); input_report_abs(dev, ABS_Y, (data & DB9_DOWN ? 0 : 1) - (data & DB9_UP ? 0 : 1)); parport_write_control(port, 0x0a); for (i = 0; i < 7; i++) { data = parport_read_data(port); parport_write_control(port, 0x02); parport_write_control(port, 0x0a); input_report_key(dev, db9_cd32_btn[i], ~data & DB9_FIRE2); } parport_write_control(port, 0x00); break; } input_sync(dev); mod_timer(&db9->timer, jiffies + DB9_REFRESH_TIME); } static int db9_open(struct input_dev *dev) { struct db9 *db9 = input_get_drvdata(dev); struct parport *port = db9->pd->port; int err; err = mutex_lock_interruptible(&db9->mutex); if (err) return err; if (!db9->used++) { parport_claim(db9->pd); parport_write_data(port, 0xff); if (db9_modes[db9->mode].reverse) { parport_data_reverse(port); parport_write_control(port, DB9_NORMAL); } mod_timer(&db9->timer, jiffies + DB9_REFRESH_TIME); } mutex_unlock(&db9->mutex); return 0; } static void db9_close(struct input_dev *dev) { struct db9 *db9 = input_get_drvdata(dev); struct parport *port = db9->pd->port; mutex_lock(&db9->mutex); if (!--db9->used) { del_timer_sync(&db9->timer); parport_write_control(port, 0x00); parport_data_forward(port); parport_release(db9->pd); } mutex_unlock(&db9->mutex); } static void db9_attach(struct parport *pp) { struct db9 *db9; const struct db9_mode_data *db9_mode; struct pardevice *pd; struct input_dev *input_dev; int i, j, port_idx; int mode; struct pardev_cb db9_parport_cb; for (port_idx = 0; port_idx < DB9_MAX_PORTS; port_idx++) { if (db9_cfg[port_idx].nargs == 0 || db9_cfg[port_idx].args[DB9_ARG_PARPORT] < 0) continue; if (db9_cfg[port_idx].args[DB9_ARG_PARPORT] == pp->number) break; } if (port_idx == DB9_MAX_PORTS) { pr_debug("Not using parport%d.\n", pp->number); return; } mode = db9_cfg[port_idx].args[DB9_ARG_MODE]; if (mode < 1 || mode >= DB9_MAX_PAD || !db9_modes[mode].n_buttons) { printk(KERN_ERR "db9.c: Bad device type %d\n", mode); return; } db9_mode = &db9_modes[mode]; if (db9_mode->bidirectional && !(pp->modes & PARPORT_MODE_TRISTATE)) { printk(KERN_ERR "db9.c: specified parport is not bidirectional\n"); return; } db9_parport_cb.flags = PARPORT_FLAG_EXCL; pd = parport_register_dev_model(pp, "db9", &db9_parport_cb, port_idx); if (!pd) { printk(KERN_ERR "db9.c: parport busy already - lp.o loaded?\n"); return; } db9 = kzalloc(sizeof(struct db9), GFP_KERNEL); if (!db9) goto err_unreg_pardev; mutex_init(&db9->mutex); db9->pd = pd; db9->mode = mode; db9->parportno = pp->number; init_timer(&db9->timer); db9->timer.data = (long) db9; db9->timer.function = db9_timer; for (i = 0; i < (min(db9_mode->n_pads, DB9_MAX_DEVICES)); i++) { db9->dev[i] = input_dev = input_allocate_device(); if (!input_dev) { printk(KERN_ERR "db9.c: Not enough memory for input device\n"); goto err_unreg_devs; } snprintf(db9->phys[i], sizeof(db9->phys[i]), "%s/input%d", db9->pd->port->name, i); input_dev->name = db9_mode->name; input_dev->phys = db9->phys[i]; input_dev->id.bustype = BUS_PARPORT; input_dev->id.vendor = 0x0002; input_dev->id.product = mode; input_dev->id.version = 0x0100; input_set_drvdata(input_dev, db9); input_dev->open = db9_open; input_dev->close = db9_close; input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS); for (j = 0; j < db9_mode->n_buttons; j++) set_bit(db9_mode->buttons[j], input_dev->keybit); for (j = 0; j < db9_mode->n_axis; j++) { if (j < 2) input_set_abs_params(input_dev, db9_abs[j], -1, 1, 0, 0); else input_set_abs_params(input_dev, db9_abs[j], 1, 255, 0, 0); } if (input_register_device(input_dev)) goto err_free_dev; } db9_base[port_idx] = db9; return; err_free_dev: input_free_device(db9->dev[i]); err_unreg_devs: while (--i >= 0) input_unregister_device(db9->dev[i]); kfree(db9); err_unreg_pardev: parport_unregister_device(pd); } static void db9_detach(struct parport *port) { int i; struct db9 *db9; for (i = 0; i < DB9_MAX_PORTS; i++) { if (db9_base[i] && db9_base[i]->parportno == port->number) break; } if (i == DB9_MAX_PORTS) return; db9 = db9_base[i]; db9_base[i] = NULL; for (i = 0; i < min(db9_modes[db9->mode].n_pads, DB9_MAX_DEVICES); i++) input_unregister_device(db9->dev[i]); parport_unregister_device(db9->pd); kfree(db9); } static struct parport_driver db9_parport_driver = { .name = "db9", .match_port = db9_attach, .detach = db9_detach, .devmodel = true, }; static int __init db9_init(void) { int i; int have_dev = 0; for (i = 0; i < DB9_MAX_PORTS; i++) { if (db9_cfg[i].nargs == 0 || db9_cfg[i].args[DB9_ARG_PARPORT] < 0) continue; if (db9_cfg[i].nargs < 2) { printk(KERN_ERR "db9.c: Device type must be specified.\n"); return -EINVAL; } have_dev = 1; } if (!have_dev) return -ENODEV; return parport_register_driver(&db9_parport_driver); } static void __exit db9_exit(void) { parport_unregister_driver(&db9_parport_driver); } module_init(db9_init); module_exit(db9_exit);