/* * Copyright 2010 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "drmP.h" #include "nouveau_drv.h" #include #include "nouveau_pm.h" static u32 read_clk(struct drm_device *, int, bool); static u32 read_pll(struct drm_device *, int, u32); static u32 read_vco(struct drm_device *dev, int clk) { u32 sctl = nv_rd32(dev, 0x4120 + (clk * 4)); if ((sctl & 0x00000030) != 0x00000030) return read_pll(dev, 0x41, 0x00e820); return read_pll(dev, 0x42, 0x00e8a0); } static u32 read_clk(struct drm_device *dev, int clk, bool ignore_en) { struct drm_nouveau_private *dev_priv = dev->dev_private; u32 sctl, sdiv, sclk; /* refclk for the 0xe8xx plls is a fixed frequency */ if (clk >= 0x40) { if (dev_priv->chipset == 0xaf) { /* no joke.. seriously.. sigh.. */ return nv_rd32(dev, 0x00471c) * 1000; } return dev_priv->crystal; } sctl = nv_rd32(dev, 0x4120 + (clk * 4)); if (!ignore_en && !(sctl & 0x00000100)) return 0; switch (sctl & 0x00003000) { case 0x00000000: return dev_priv->crystal; case 0x00002000: if (sctl & 0x00000040) return 108000; return 100000; case 0x00003000: sclk = read_vco(dev, clk); sdiv = ((sctl & 0x003f0000) >> 16) + 2; return (sclk * 2) / sdiv; default: return 0; } } static u32 read_pll(struct drm_device *dev, int clk, u32 pll) { u32 ctrl = nv_rd32(dev, pll + 0); u32 sclk = 0, P = 1, N = 1, M = 1; if (!(ctrl & 0x00000008)) { if (ctrl & 0x00000001) { u32 coef = nv_rd32(dev, pll + 4); M = (coef & 0x000000ff) >> 0; N = (coef & 0x0000ff00) >> 8; P = (coef & 0x003f0000) >> 16; /* no post-divider on these.. */ if ((pll & 0x00ff00) == 0x00e800) P = 1; sclk = read_clk(dev, 0x00 + clk, false); } } else { sclk = read_clk(dev, 0x10 + clk, false); } if (M * P) return sclk * N / (M * P); return 0; } struct creg { u32 clk; u32 pll; }; static int calc_clk(struct drm_device *dev, int clk, u32 pll, u32 khz, struct creg *reg) { struct nvbios_pll limits; u32 oclk, sclk, sdiv; int P, N, M, diff; int ret; reg->pll = 0; reg->clk = 0; if (!khz) { NV_DEBUG(dev, "no clock for 0x%04x/0x%02x\n", pll, clk); return 0; } switch (khz) { case 27000: reg->clk = 0x00000100; return khz; case 100000: reg->clk = 0x00002100; return khz; case 108000: reg->clk = 0x00002140; return khz; default: sclk = read_vco(dev, clk); sdiv = min((sclk * 2) / (khz - 2999), (u32)65); /* if the clock has a PLL attached, and we can get a within * [-2, 3) MHz of a divider, we'll disable the PLL and use * the divider instead. * * divider can go as low as 2, limited here because NVIDIA * and the VBIOS on my NVA8 seem to prefer using the PLL * for 810MHz - is there a good reason? */ if (sdiv > 4) { oclk = (sclk * 2) / sdiv; diff = khz - oclk; if (!pll || (diff >= -2000 && diff < 3000)) { reg->clk = (((sdiv - 2) << 16) | 0x00003100); return oclk; } } if (!pll) { NV_ERROR(dev, "bad freq %02x: %d %d\n", clk, khz, sclk); return -ERANGE; } break; } ret = get_pll_limits(dev, pll, &limits); if (ret) return ret; limits.refclk = read_clk(dev, clk - 0x10, true); if (!limits.refclk) return -EINVAL; ret = nva3_calc_pll(dev, &limits, khz, &N, NULL, &M, &P); if (ret >= 0) { reg->clk = nv_rd32(dev, 0x4120 + (clk * 4)); reg->pll = (P << 16) | (N << 8) | M; } return ret; } static void prog_pll(struct drm_device *dev, int clk, u32 pll, struct creg *reg) { const u32 src0 = 0x004120 + (clk * 4); const u32 src1 = 0x004160 + (clk * 4); const u32 ctrl = pll + 0; const u32 coef = pll + 4; if (!reg->clk && !reg->pll) { NV_DEBUG(dev, "no clock for %02x\n", clk); return; } if (reg->pll) { nv_mask(dev, src0, 0x00000101, 0x00000101); nv_wr32(dev, coef, reg->pll); nv_mask(dev, ctrl, 0x00000015, 0x00000015); nv_mask(dev, ctrl, 0x00000010, 0x00000000); nv_wait(dev, ctrl, 0x00020000, 0x00020000); nv_mask(dev, ctrl, 0x00000010, 0x00000010); nv_mask(dev, ctrl, 0x00000008, 0x00000000); nv_mask(dev, src1, 0x00000100, 0x00000000); nv_mask(dev, src1, 0x00000001, 0x00000000); } else { nv_mask(dev, src1, 0x003f3141, 0x00000101 | reg->clk); nv_mask(dev, ctrl, 0x00000018, 0x00000018); udelay(20); nv_mask(dev, ctrl, 0x00000001, 0x00000000); nv_mask(dev, src0, 0x00000100, 0x00000000); nv_mask(dev, src0, 0x00000001, 0x00000000); } } static void prog_clk(struct drm_device *dev, int clk, struct creg *reg) { if (!reg->clk) { NV_DEBUG(dev, "no clock for %02x\n", clk); return; } nv_mask(dev, 0x004120 + (clk * 4), 0x003f3141, 0x00000101 | reg->clk); } int nva3_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl) { perflvl->core = read_pll(dev, 0x00, 0x4200); perflvl->shader = read_pll(dev, 0x01, 0x4220); perflvl->memory = read_pll(dev, 0x02, 0x4000); perflvl->unka0 = read_clk(dev, 0x20, false); perflvl->vdec = read_clk(dev, 0x21, false); perflvl->daemon = read_clk(dev, 0x25, false); perflvl->copy = perflvl->core; return 0; } struct nva3_pm_state { struct nouveau_pm_level *perflvl; struct creg nclk; struct creg sclk; struct creg vdec; struct creg unka0; struct creg mclk; u8 *rammap; u8 rammap_ver; u8 rammap_len; u8 *ramcfg; u8 ramcfg_len; u32 r004018; u32 r100760; }; void * nva3_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl) { struct nva3_pm_state *info; u8 ramcfg_cnt; int ret; info = kzalloc(sizeof(*info), GFP_KERNEL); if (!info) return ERR_PTR(-ENOMEM); ret = calc_clk(dev, 0x10, 0x4200, perflvl->core, &info->nclk); if (ret < 0) goto out; ret = calc_clk(dev, 0x11, 0x4220, perflvl->shader, &info->sclk); if (ret < 0) goto out; ret = calc_clk(dev, 0x12, 0x4000, perflvl->memory, &info->mclk); if (ret < 0) goto out; ret = calc_clk(dev, 0x20, 0x0000, perflvl->unka0, &info->unka0); if (ret < 0) goto out; ret = calc_clk(dev, 0x21, 0x0000, perflvl->vdec, &info->vdec); if (ret < 0) goto out; info->rammap = nouveau_perf_rammap(dev, perflvl->memory, &info->rammap_ver, &info->rammap_len, &ramcfg_cnt, &info->ramcfg_len); if (info->rammap_ver != 0x10 || info->rammap_len < 5) info->rammap = NULL; info->ramcfg = nouveau_perf_ramcfg(dev, perflvl->memory, &info->rammap_ver, &info->ramcfg_len); if (info->rammap_ver != 0x10) info->ramcfg = NULL; info->perflvl = perflvl; out: if (ret < 0) { kfree(info); info = ERR_PTR(ret); } return info; } static bool nva3_pm_grcp_idle(void *data) { struct drm_device *dev = data; if (!(nv_rd32(dev, 0x400304) & 0x00000001)) return true; if (nv_rd32(dev, 0x400308) == 0x0050001c) return true; return false; } static void mclk_precharge(struct nouveau_mem_exec_func *exec) { nv_wr32(exec->dev, 0x1002d4, 0x00000001); } static void mclk_refresh(struct nouveau_mem_exec_func *exec) { nv_wr32(exec->dev, 0x1002d0, 0x00000001); } static void mclk_refresh_auto(struct nouveau_mem_exec_func *exec, bool enable) { nv_wr32(exec->dev, 0x100210, enable ? 0x80000000 : 0x00000000); } static void mclk_refresh_self(struct nouveau_mem_exec_func *exec, bool enable) { nv_wr32(exec->dev, 0x1002dc, enable ? 0x00000001 : 0x00000000); } static void mclk_wait(struct nouveau_mem_exec_func *exec, u32 nsec) { volatile u32 post = nv_rd32(exec->dev, 0); (void)post; udelay((nsec + 500) / 1000); } static u32 mclk_mrg(struct nouveau_mem_exec_func *exec, int mr) { if (mr <= 1) return nv_rd32(exec->dev, 0x1002c0 + ((mr - 0) * 4)); if (mr <= 3) return nv_rd32(exec->dev, 0x1002e0 + ((mr - 2) * 4)); return 0; } static void mclk_mrs(struct nouveau_mem_exec_func *exec, int mr, u32 data) { struct drm_nouveau_private *dev_priv = exec->dev->dev_private; if (mr <= 1) { if (dev_priv->vram_rank_B) nv_wr32(exec->dev, 0x1002c8 + ((mr - 0) * 4), data); nv_wr32(exec->dev, 0x1002c0 + ((mr - 0) * 4), data); } else if (mr <= 3) { if (dev_priv->vram_rank_B) nv_wr32(exec->dev, 0x1002e8 + ((mr - 2) * 4), data); nv_wr32(exec->dev, 0x1002e0 + ((mr - 2) * 4), data); } } static void mclk_clock_set(struct nouveau_mem_exec_func *exec) { struct drm_device *dev = exec->dev; struct nva3_pm_state *info = exec->priv; u32 ctrl; ctrl = nv_rd32(dev, 0x004000); if (!(ctrl & 0x00000008) && info->mclk.pll) { nv_wr32(dev, 0x004000, (ctrl |= 0x00000008)); nv_mask(dev, 0x1110e0, 0x00088000, 0x00088000); nv_wr32(dev, 0x004018, 0x00001000); nv_wr32(dev, 0x004000, (ctrl &= ~0x00000001)); nv_wr32(dev, 0x004004, info->mclk.pll); nv_wr32(dev, 0x004000, (ctrl |= 0x00000001)); udelay(64); nv_wr32(dev, 0x004018, 0x00005000 | info->r004018); udelay(20); } else if (!info->mclk.pll) { nv_mask(dev, 0x004168, 0x003f3040, info->mclk.clk); nv_wr32(dev, 0x004000, (ctrl |= 0x00000008)); nv_mask(dev, 0x1110e0, 0x00088000, 0x00088000); nv_wr32(dev, 0x004018, 0x0000d000 | info->r004018); } if (info->rammap) { if (info->ramcfg && (info->rammap[4] & 0x08)) { u32 unk5a0 = (ROM16(info->ramcfg[5]) << 8) | info->ramcfg[5]; u32 unk5a4 = ROM16(info->ramcfg[7]); u32 unk804 = (info->ramcfg[9] & 0xf0) << 16 | (info->ramcfg[3] & 0x0f) << 16 | (info->ramcfg[9] & 0x0f) | 0x80000000; nv_wr32(dev, 0x1005a0, unk5a0); nv_wr32(dev, 0x1005a4, unk5a4); nv_wr32(dev, 0x10f804, unk804); nv_mask(dev, 0x10053c, 0x00001000, 0x00000000); } else { nv_mask(dev, 0x10053c, 0x00001000, 0x00001000); nv_mask(dev, 0x10f804, 0x80000000, 0x00000000); nv_mask(dev, 0x100760, 0x22222222, info->r100760); nv_mask(dev, 0x1007a0, 0x22222222, info->r100760); nv_mask(dev, 0x1007e0, 0x22222222, info->r100760); } } if (info->mclk.pll) { nv_mask(dev, 0x1110e0, 0x00088000, 0x00011000); nv_wr32(dev, 0x004000, (ctrl &= ~0x00000008)); } } static void mclk_timing_set(struct nouveau_mem_exec_func *exec) { struct drm_device *dev = exec->dev; struct nva3_pm_state *info = exec->priv; struct nouveau_pm_level *perflvl = info->perflvl; int i; for (i = 0; i < 9; i++) nv_wr32(dev, 0x100220 + (i * 4), perflvl->timing.reg[i]); if (info->ramcfg) { u32 data = (info->ramcfg[2] & 0x08) ? 0x00000000 : 0x00001000; nv_mask(dev, 0x100200, 0x00001000, data); } if (info->ramcfg) { u32 unk714 = nv_rd32(dev, 0x100714) & ~0xf0000010; u32 unk718 = nv_rd32(dev, 0x100718) & ~0x00000100; u32 unk71c = nv_rd32(dev, 0x10071c) & ~0x00000100; if ( (info->ramcfg[2] & 0x20)) unk714 |= 0xf0000000; if (!(info->ramcfg[2] & 0x04)) unk714 |= 0x00000010; nv_wr32(dev, 0x100714, unk714); if (info->ramcfg[2] & 0x01) unk71c |= 0x00000100; nv_wr32(dev, 0x10071c, unk71c); if (info->ramcfg[2] & 0x02) unk718 |= 0x00000100; nv_wr32(dev, 0x100718, unk718); if (info->ramcfg[2] & 0x10) nv_wr32(dev, 0x111100, 0x48000000); /*XXX*/ } } static void prog_mem(struct drm_device *dev, struct nva3_pm_state *info) { struct nouveau_mem_exec_func exec = { .dev = dev, .precharge = mclk_precharge, .refresh = mclk_refresh, .refresh_auto = mclk_refresh_auto, .refresh_self = mclk_refresh_self, .wait = mclk_wait, .mrg = mclk_mrg, .mrs = mclk_mrs, .clock_set = mclk_clock_set, .timing_set = mclk_timing_set, .priv = info }; u32 ctrl; /* XXX: where the fuck does 750MHz come from? */ if (info->perflvl->memory <= 750000) { info->r004018 = 0x10000000; info->r100760 = 0x22222222; } ctrl = nv_rd32(dev, 0x004000); if (ctrl & 0x00000008) { if (info->mclk.pll) { nv_mask(dev, 0x004128, 0x00000101, 0x00000101); nv_wr32(dev, 0x004004, info->mclk.pll); nv_wr32(dev, 0x004000, (ctrl |= 0x00000001)); nv_wr32(dev, 0x004000, (ctrl &= 0xffffffef)); nv_wait(dev, 0x004000, 0x00020000, 0x00020000); nv_wr32(dev, 0x004000, (ctrl |= 0x00000010)); nv_wr32(dev, 0x004018, 0x00005000 | info->r004018); nv_wr32(dev, 0x004000, (ctrl |= 0x00000004)); } } else { u32 ssel = 0x00000101; if (info->mclk.clk) ssel |= info->mclk.clk; else ssel |= 0x00080000; /* 324MHz, shouldn't matter... */ nv_mask(dev, 0x004168, 0x003f3141, ctrl); } if (info->ramcfg) { if (info->ramcfg[2] & 0x10) { nv_mask(dev, 0x111104, 0x00000600, 0x00000000); } else { nv_mask(dev, 0x111100, 0x40000000, 0x40000000); nv_mask(dev, 0x111104, 0x00000180, 0x00000000); } } if (info->rammap && !(info->rammap[4] & 0x02)) nv_mask(dev, 0x100200, 0x00000800, 0x00000000); nv_wr32(dev, 0x611200, 0x00003300); if (!(info->ramcfg[2] & 0x10)) nv_wr32(dev, 0x111100, 0x4c020000); /*XXX*/ nouveau_mem_exec(&exec, info->perflvl); nv_wr32(dev, 0x611200, 0x00003330); if (info->rammap && (info->rammap[4] & 0x02)) nv_mask(dev, 0x100200, 0x00000800, 0x00000800); if (info->ramcfg) { if (info->ramcfg[2] & 0x10) { nv_mask(dev, 0x111104, 0x00000180, 0x00000180); nv_mask(dev, 0x111100, 0x40000000, 0x00000000); } else { nv_mask(dev, 0x111104, 0x00000600, 0x00000600); } } if (info->mclk.pll) { nv_mask(dev, 0x004168, 0x00000001, 0x00000000); nv_mask(dev, 0x004168, 0x00000100, 0x00000000); } else { nv_mask(dev, 0x004000, 0x00000001, 0x00000000); nv_mask(dev, 0x004128, 0x00000001, 0x00000000); nv_mask(dev, 0x004128, 0x00000100, 0x00000000); } } int nva3_pm_clocks_set(struct drm_device *dev, void *pre_state) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nva3_pm_state *info = pre_state; unsigned long flags; int ret = -EAGAIN; /* prevent any new grctx switches from starting */ spin_lock_irqsave(&dev_priv->context_switch_lock, flags); nv_wr32(dev, 0x400324, 0x00000000); nv_wr32(dev, 0x400328, 0x0050001c); /* wait flag 0x1c */ /* wait for any pending grctx switches to complete */ if (!nv_wait_cb(dev, nva3_pm_grcp_idle, dev)) { NV_ERROR(dev, "pm: ctxprog didn't go idle\n"); goto cleanup; } /* freeze PFIFO */ nv_mask(dev, 0x002504, 0x00000001, 0x00000001); if (!nv_wait(dev, 0x002504, 0x00000010, 0x00000010)) { NV_ERROR(dev, "pm: fifo didn't go idle\n"); goto cleanup; } prog_pll(dev, 0x00, 0x004200, &info->nclk); prog_pll(dev, 0x01, 0x004220, &info->sclk); prog_clk(dev, 0x20, &info->unka0); prog_clk(dev, 0x21, &info->vdec); if (info->mclk.clk || info->mclk.pll) prog_mem(dev, info); ret = 0; cleanup: /* unfreeze PFIFO */ nv_mask(dev, 0x002504, 0x00000001, 0x00000000); /* restore ctxprog to normal */ nv_wr32(dev, 0x400324, 0x00000000); nv_wr32(dev, 0x400328, 0x0070009c); /* set flag 0x1c */ /* unblock it if necessary */ if (nv_rd32(dev, 0x400308) == 0x0050001c) nv_mask(dev, 0x400824, 0x10000000, 0x10000000); spin_unlock_irqrestore(&dev_priv->context_switch_lock, flags); kfree(info); return ret; }