/* * SPDX-License-Identifier: MIT * * Copyright © 2008-2015 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include "i915_trace.h" static bool shrinker_lock(struct drm_i915_private *i915, unsigned int flags, bool *unlock) { struct mutex *m = &i915->drm.struct_mutex; switch (mutex_trylock_recursive(m)) { case MUTEX_TRYLOCK_RECURSIVE: *unlock = false; return true; case MUTEX_TRYLOCK_FAILED: *unlock = false; if (flags & I915_SHRINK_ACTIVE && mutex_lock_killable_nested(m, I915_MM_SHRINKER) == 0) *unlock = true; return *unlock; case MUTEX_TRYLOCK_SUCCESS: *unlock = true; return true; } BUG(); } static void shrinker_unlock(struct drm_i915_private *i915, bool unlock) { if (!unlock) return; mutex_unlock(&i915->drm.struct_mutex); } static bool swap_available(void) { return get_nr_swap_pages() > 0; } static bool can_release_pages(struct drm_i915_gem_object *obj) { /* Consider only shrinkable ojects. */ if (!i915_gem_object_is_shrinkable(obj)) return false; /* Only report true if by unbinding the object and putting its pages * we can actually make forward progress towards freeing physical * pages. * * If the pages are pinned for any other reason than being bound * to the GPU, simply unbinding from the GPU is not going to succeed * in releasing our pin count on the pages themselves. */ if (atomic_read(&obj->mm.pages_pin_count) > atomic_read(&obj->bind_count)) return false; /* If any vma are "permanently" pinned, it will prevent us from * reclaiming the obj->mm.pages. We only allow scanout objects to claim * a permanent pin, along with a few others like the context objects. * To simplify the scan, and to avoid walking the list of vma under the * object, we just check the count of its permanently pinned. */ if (READ_ONCE(obj->pin_global)) return false; /* We can only return physical pages to the system if we can either * discard the contents (because the user has marked them as being * purgeable) or if we can move their contents out to swap. */ return swap_available() || obj->mm.madv == I915_MADV_DONTNEED; } static bool unsafe_drop_pages(struct drm_i915_gem_object *obj, unsigned long shrink) { unsigned long flags; flags = 0; if (shrink & I915_SHRINK_ACTIVE) flags = I915_GEM_OBJECT_UNBIND_ACTIVE; if (i915_gem_object_unbind(obj, flags) == 0) __i915_gem_object_put_pages(obj, I915_MM_SHRINKER); return !i915_gem_object_has_pages(obj); } static void try_to_writeback(struct drm_i915_gem_object *obj, unsigned int flags) { switch (obj->mm.madv) { case I915_MADV_DONTNEED: i915_gem_object_truncate(obj); case __I915_MADV_PURGED: return; } if (flags & I915_SHRINK_WRITEBACK) i915_gem_object_writeback(obj); } /** * i915_gem_shrink - Shrink buffer object caches * @i915: i915 device * @target: amount of memory to make available, in pages * @nr_scanned: optional output for number of pages scanned (incremental) * @shrink: control flags for selecting cache types * * This function is the main interface to the shrinker. It will try to release * up to @target pages of main memory backing storage from buffer objects. * Selection of the specific caches can be done with @flags. This is e.g. useful * when purgeable objects should be removed from caches preferentially. * * Note that it's not guaranteed that released amount is actually available as * free system memory - the pages might still be in-used to due to other reasons * (like cpu mmaps) or the mm core has reused them before we could grab them. * Therefore code that needs to explicitly shrink buffer objects caches (e.g. to * avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all(). * * Also note that any kind of pinning (both per-vma address space pins and * backing storage pins at the buffer object level) result in the shrinker code * having to skip the object. * * Returns: * The number of pages of backing storage actually released. */ unsigned long i915_gem_shrink(struct drm_i915_private *i915, unsigned long target, unsigned long *nr_scanned, unsigned int shrink) { const struct { struct list_head *list; unsigned int bit; } phases[] = { { &i915->mm.purge_list, ~0u }, { &i915->mm.shrink_list, I915_SHRINK_BOUND | I915_SHRINK_UNBOUND }, { NULL, 0 }, }, *phase; intel_wakeref_t wakeref = 0; unsigned long count = 0; unsigned long scanned = 0; bool unlock; if (!shrinker_lock(i915, shrink, &unlock)) return 0; /* * When shrinking the active list, we should also consider active * contexts. Active contexts are pinned until they are retired, and * so can not be simply unbound to retire and unpin their pages. To * shrink the contexts, we must wait until the gpu is idle and * completed its switch to the kernel context. In short, we do * not have a good mechanism for idling a specific context. */ trace_i915_gem_shrink(i915, target, shrink); /* * Unbinding of objects will require HW access; Let us not wake the * device just to recover a little memory. If absolutely necessary, * we will force the wake during oom-notifier. */ if (shrink & I915_SHRINK_BOUND) { wakeref = intel_runtime_pm_get_if_in_use(&i915->runtime_pm); if (!wakeref) shrink &= ~I915_SHRINK_BOUND; } /* * As we may completely rewrite the (un)bound list whilst unbinding * (due to retiring requests) we have to strictly process only * one element of the list at the time, and recheck the list * on every iteration. * * In particular, we must hold a reference whilst removing the * object as we may end up waiting for and/or retiring the objects. * This might release the final reference (held by the active list) * and result in the object being freed from under us. This is * similar to the precautions the eviction code must take whilst * removing objects. * * Also note that although these lists do not hold a reference to * the object we can safely grab one here: The final object * unreferencing and the bound_list are both protected by the * dev->struct_mutex and so we won't ever be able to observe an * object on the bound_list with a reference count equals 0. */ for (phase = phases; phase->list; phase++) { struct list_head still_in_list; struct drm_i915_gem_object *obj; unsigned long flags; if ((shrink & phase->bit) == 0) continue; INIT_LIST_HEAD(&still_in_list); /* * We serialize our access to unreferenced objects through * the use of the struct_mutex. While the objects are not * yet freed (due to RCU then a workqueue) we still want * to be able to shrink their pages, so they remain on * the unbound/bound list until actually freed. */ spin_lock_irqsave(&i915->mm.obj_lock, flags); while (count < target && (obj = list_first_entry_or_null(phase->list, typeof(*obj), mm.link))) { list_move_tail(&obj->mm.link, &still_in_list); if (shrink & I915_SHRINK_VMAPS && !is_vmalloc_addr(obj->mm.mapping)) continue; if (!(shrink & I915_SHRINK_ACTIVE) && i915_gem_object_is_framebuffer(obj)) continue; if (!(shrink & I915_SHRINK_BOUND) && atomic_read(&obj->bind_count)) continue; if (!can_release_pages(obj)) continue; if (!kref_get_unless_zero(&obj->base.refcount)) continue; spin_unlock_irqrestore(&i915->mm.obj_lock, flags); if (unsafe_drop_pages(obj, shrink)) { /* May arrive from get_pages on another bo */ mutex_lock_nested(&obj->mm.lock, I915_MM_SHRINKER); if (!i915_gem_object_has_pages(obj)) { try_to_writeback(obj, shrink); count += obj->base.size >> PAGE_SHIFT; } mutex_unlock(&obj->mm.lock); } scanned += obj->base.size >> PAGE_SHIFT; i915_gem_object_put(obj); spin_lock_irqsave(&i915->mm.obj_lock, flags); } list_splice_tail(&still_in_list, phase->list); spin_unlock_irqrestore(&i915->mm.obj_lock, flags); } if (shrink & I915_SHRINK_BOUND) intel_runtime_pm_put(&i915->runtime_pm, wakeref); shrinker_unlock(i915, unlock); if (nr_scanned) *nr_scanned += scanned; return count; } /** * i915_gem_shrink_all - Shrink buffer object caches completely * @i915: i915 device * * This is a simple wraper around i915_gem_shrink() to aggressively shrink all * caches completely. It also first waits for and retires all outstanding * requests to also be able to release backing storage for active objects. * * This should only be used in code to intentionally quiescent the gpu or as a * last-ditch effort when memory seems to have run out. * * Returns: * The number of pages of backing storage actually released. */ unsigned long i915_gem_shrink_all(struct drm_i915_private *i915) { intel_wakeref_t wakeref; unsigned long freed = 0; with_intel_runtime_pm(&i915->runtime_pm, wakeref) { freed = i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_ACTIVE); } return freed; } static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc) { struct drm_i915_private *i915 = container_of(shrinker, struct drm_i915_private, mm.shrinker); unsigned long num_objects; unsigned long count; count = READ_ONCE(i915->mm.shrink_memory) >> PAGE_SHIFT; num_objects = READ_ONCE(i915->mm.shrink_count); /* * Update our preferred vmscan batch size for the next pass. * Our rough guess for an effective batch size is roughly 2 * available GEM objects worth of pages. That is we don't want * the shrinker to fire, until it is worth the cost of freeing an * entire GEM object. */ if (num_objects) { unsigned long avg = 2 * count / num_objects; i915->mm.shrinker.batch = max((i915->mm.shrinker.batch + avg) >> 1, 128ul /* default SHRINK_BATCH */); } return count; } static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc) { struct drm_i915_private *i915 = container_of(shrinker, struct drm_i915_private, mm.shrinker); unsigned long freed; bool unlock; sc->nr_scanned = 0; if (!shrinker_lock(i915, 0, &unlock)) return SHRINK_STOP; freed = i915_gem_shrink(i915, sc->nr_to_scan, &sc->nr_scanned, I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_WRITEBACK); if (sc->nr_scanned < sc->nr_to_scan && current_is_kswapd()) { intel_wakeref_t wakeref; with_intel_runtime_pm(&i915->runtime_pm, wakeref) { freed += i915_gem_shrink(i915, sc->nr_to_scan - sc->nr_scanned, &sc->nr_scanned, I915_SHRINK_ACTIVE | I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_WRITEBACK); } } shrinker_unlock(i915, unlock); return sc->nr_scanned ? freed : SHRINK_STOP; } static int i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr) { struct drm_i915_private *i915 = container_of(nb, struct drm_i915_private, mm.oom_notifier); struct drm_i915_gem_object *obj; unsigned long unevictable, available, freed_pages; intel_wakeref_t wakeref; unsigned long flags; freed_pages = 0; with_intel_runtime_pm(&i915->runtime_pm, wakeref) freed_pages += i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_WRITEBACK); /* Because we may be allocating inside our own driver, we cannot * assert that there are no objects with pinned pages that are not * being pointed to by hardware. */ available = unevictable = 0; spin_lock_irqsave(&i915->mm.obj_lock, flags); list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) { if (!can_release_pages(obj)) unevictable += obj->base.size >> PAGE_SHIFT; else available += obj->base.size >> PAGE_SHIFT; } spin_unlock_irqrestore(&i915->mm.obj_lock, flags); if (freed_pages || available) pr_info("Purging GPU memory, %lu pages freed, " "%lu pages still pinned, %lu pages left available.\n", freed_pages, unevictable, available); *(unsigned long *)ptr += freed_pages; return NOTIFY_DONE; } static int i915_gem_shrinker_vmap(struct notifier_block *nb, unsigned long event, void *ptr) { struct drm_i915_private *i915 = container_of(nb, struct drm_i915_private, mm.vmap_notifier); struct i915_vma *vma, *next; unsigned long freed_pages = 0; intel_wakeref_t wakeref; bool unlock; if (!shrinker_lock(i915, 0, &unlock)) return NOTIFY_DONE; with_intel_runtime_pm(&i915->runtime_pm, wakeref) freed_pages += i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_VMAPS); /* We also want to clear any cached iomaps as they wrap vmap */ mutex_lock(&i915->ggtt.vm.mutex); list_for_each_entry_safe(vma, next, &i915->ggtt.vm.bound_list, vm_link) { unsigned long count = vma->node.size >> PAGE_SHIFT; if (!vma->iomap || i915_vma_is_active(vma)) continue; mutex_unlock(&i915->ggtt.vm.mutex); if (i915_vma_unbind(vma) == 0) freed_pages += count; mutex_lock(&i915->ggtt.vm.mutex); } mutex_unlock(&i915->ggtt.vm.mutex); shrinker_unlock(i915, unlock); *(unsigned long *)ptr += freed_pages; return NOTIFY_DONE; } void i915_gem_driver_register__shrinker(struct drm_i915_private *i915) { i915->mm.shrinker.scan_objects = i915_gem_shrinker_scan; i915->mm.shrinker.count_objects = i915_gem_shrinker_count; i915->mm.shrinker.seeks = DEFAULT_SEEKS; i915->mm.shrinker.batch = 4096; WARN_ON(register_shrinker(&i915->mm.shrinker)); i915->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom; WARN_ON(register_oom_notifier(&i915->mm.oom_notifier)); i915->mm.vmap_notifier.notifier_call = i915_gem_shrinker_vmap; WARN_ON(register_vmap_purge_notifier(&i915->mm.vmap_notifier)); } void i915_gem_driver_unregister__shrinker(struct drm_i915_private *i915) { WARN_ON(unregister_vmap_purge_notifier(&i915->mm.vmap_notifier)); WARN_ON(unregister_oom_notifier(&i915->mm.oom_notifier)); unregister_shrinker(&i915->mm.shrinker); } void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915, struct mutex *mutex) { bool unlock = false; if (!IS_ENABLED(CONFIG_LOCKDEP)) return; if (!lockdep_is_held_type(&i915->drm.struct_mutex, -1)) { mutex_acquire(&i915->drm.struct_mutex.dep_map, I915_MM_NORMAL, 0, _RET_IP_); unlock = true; } fs_reclaim_acquire(GFP_KERNEL); /* * As we invariably rely on the struct_mutex within the shrinker, * but have a complicated recursion dance, taint all the mutexes used * within the shrinker with the struct_mutex. For completeness, we * taint with all subclass of struct_mutex, even though we should * only need tainting by I915_MM_NORMAL to catch possible ABBA * deadlocks from using struct_mutex inside @mutex. */ mutex_acquire(&i915->drm.struct_mutex.dep_map, I915_MM_SHRINKER, 0, _RET_IP_); mutex_acquire(&mutex->dep_map, 0, 0, _RET_IP_); mutex_release(&mutex->dep_map, _RET_IP_); mutex_release(&i915->drm.struct_mutex.dep_map, _RET_IP_); fs_reclaim_release(GFP_KERNEL); if (unlock) mutex_release(&i915->drm.struct_mutex.dep_map, _RET_IP_); } #define obj_to_i915(obj__) to_i915((obj__)->base.dev) void i915_gem_object_make_unshrinkable(struct drm_i915_gem_object *obj) { /* * We can only be called while the pages are pinned or when * the pages are released. If pinned, we should only be called * from a single caller under controlled conditions; and on release * only one caller may release us. Neither the two may cross. */ if (!list_empty(&obj->mm.link)) { /* pinned by caller */ struct drm_i915_private *i915 = obj_to_i915(obj); unsigned long flags; spin_lock_irqsave(&i915->mm.obj_lock, flags); GEM_BUG_ON(list_empty(&obj->mm.link)); list_del_init(&obj->mm.link); i915->mm.shrink_count--; i915->mm.shrink_memory -= obj->base.size; spin_unlock_irqrestore(&i915->mm.obj_lock, flags); } } static void __i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj, struct list_head *head) { GEM_BUG_ON(!i915_gem_object_has_pages(obj)); GEM_BUG_ON(!list_empty(&obj->mm.link)); if (i915_gem_object_is_shrinkable(obj)) { struct drm_i915_private *i915 = obj_to_i915(obj); unsigned long flags; spin_lock_irqsave(&i915->mm.obj_lock, flags); GEM_BUG_ON(!kref_read(&obj->base.refcount)); list_add_tail(&obj->mm.link, head); i915->mm.shrink_count++; i915->mm.shrink_memory += obj->base.size; spin_unlock_irqrestore(&i915->mm.obj_lock, flags); } } void i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj) { __i915_gem_object_make_shrinkable(obj, &obj_to_i915(obj)->mm.shrink_list); } void i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj) { __i915_gem_object_make_shrinkable(obj, &obj_to_i915(obj)->mm.purge_list); }