// SPDX-License-Identifier: GPL-2.0 OR MIT /* * Copyright 2020-2021 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include "amdgpu_sync.h" #include "amdgpu_object.h" #include "amdgpu_vm.h" #include "amdgpu_mn.h" #include "amdgpu.h" #include "amdgpu_xgmi.h" #include "kfd_priv.h" #include "kfd_svm.h" #include "kfd_migrate.h" #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1 /* Long enough to ensure no retry fault comes after svm range is restored and * page table is updated. */ #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING 2000 static void svm_range_evict_svm_bo_worker(struct work_struct *work); static bool svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni, const struct mmu_notifier_range *range, unsigned long cur_seq); static const struct mmu_interval_notifier_ops svm_range_mn_ops = { .invalidate = svm_range_cpu_invalidate_pagetables, }; /** * svm_range_unlink - unlink svm_range from lists and interval tree * @prange: svm range structure to be removed * * Remove the svm_range from the svms and svm_bo lists and the svms * interval tree. * * Context: The caller must hold svms->lock */ static void svm_range_unlink(struct svm_range *prange) { pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange, prange->start, prange->last); if (prange->svm_bo) { spin_lock(&prange->svm_bo->list_lock); list_del(&prange->svm_bo_list); spin_unlock(&prange->svm_bo->list_lock); } list_del(&prange->list); if (prange->it_node.start != 0 && prange->it_node.last != 0) interval_tree_remove(&prange->it_node, &prange->svms->objects); } static void svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange) { pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange, prange->start, prange->last); mmu_interval_notifier_insert_locked(&prange->notifier, mm, prange->start << PAGE_SHIFT, prange->npages << PAGE_SHIFT, &svm_range_mn_ops); } /** * svm_range_add_to_svms - add svm range to svms * @prange: svm range structure to be added * * Add the svm range to svms interval tree and link list * * Context: The caller must hold svms->lock */ static void svm_range_add_to_svms(struct svm_range *prange) { pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange, prange->start, prange->last); list_add_tail(&prange->list, &prange->svms->list); prange->it_node.start = prange->start; prange->it_node.last = prange->last; interval_tree_insert(&prange->it_node, &prange->svms->objects); } static void svm_range_remove_notifier(struct svm_range *prange) { pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange, prange->notifier.interval_tree.start >> PAGE_SHIFT, prange->notifier.interval_tree.last >> PAGE_SHIFT); if (prange->notifier.interval_tree.start != 0 && prange->notifier.interval_tree.last != 0) mmu_interval_notifier_remove(&prange->notifier); } static int svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange, unsigned long offset, unsigned long npages, unsigned long *hmm_pfns, uint32_t gpuidx) { enum dma_data_direction dir = DMA_BIDIRECTIONAL; dma_addr_t *addr = prange->dma_addr[gpuidx]; struct device *dev = adev->dev; struct page *page; int i, r; if (!addr) { addr = kvmalloc_array(prange->npages, sizeof(*addr), GFP_KERNEL | __GFP_ZERO); if (!addr) return -ENOMEM; prange->dma_addr[gpuidx] = addr; } addr += offset; for (i = 0; i < npages; i++) { if (WARN_ONCE(addr[i] && !dma_mapping_error(dev, addr[i]), "leaking dma mapping\n")) dma_unmap_page(dev, addr[i], PAGE_SIZE, dir); page = hmm_pfn_to_page(hmm_pfns[i]); if (is_zone_device_page(page)) { struct amdgpu_device *bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev); addr[i] = (hmm_pfns[i] << PAGE_SHIFT) + bo_adev->vm_manager.vram_base_offset - bo_adev->kfd.dev->pgmap.range.start; addr[i] |= SVM_RANGE_VRAM_DOMAIN; pr_debug("vram address detected: 0x%llx\n", addr[i]); continue; } addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir); r = dma_mapping_error(dev, addr[i]); if (r) { pr_debug("failed %d dma_map_page\n", r); return r; } pr_debug("dma mapping 0x%llx for page addr 0x%lx\n", addr[i] >> PAGE_SHIFT, page_to_pfn(page)); } return 0; } static int svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap, unsigned long offset, unsigned long npages, unsigned long *hmm_pfns) { struct kfd_process *p; uint32_t gpuidx; int r; p = container_of(prange->svms, struct kfd_process, svms); for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { struct kfd_process_device *pdd; struct amdgpu_device *adev; pr_debug("mapping to gpu idx 0x%x\n", gpuidx); pdd = kfd_process_device_from_gpuidx(p, gpuidx); if (!pdd) { pr_debug("failed to find device idx %d\n", gpuidx); return -EINVAL; } adev = (struct amdgpu_device *)pdd->dev->kgd; r = svm_range_dma_map_dev(adev, prange, offset, npages, hmm_pfns, gpuidx); if (r) break; } return r; } void svm_range_dma_unmap(struct device *dev, dma_addr_t *dma_addr, unsigned long offset, unsigned long npages) { enum dma_data_direction dir = DMA_BIDIRECTIONAL; int i; if (!dma_addr) return; for (i = offset; i < offset + npages; i++) { if (!dma_addr[i] || dma_mapping_error(dev, dma_addr[i])) continue; pr_debug("dma unmapping 0x%llx\n", dma_addr[i] >> PAGE_SHIFT); dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir); dma_addr[i] = 0; } } void svm_range_free_dma_mappings(struct svm_range *prange) { struct kfd_process_device *pdd; dma_addr_t *dma_addr; struct device *dev; struct kfd_process *p; uint32_t gpuidx; p = container_of(prange->svms, struct kfd_process, svms); for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) { dma_addr = prange->dma_addr[gpuidx]; if (!dma_addr) continue; pdd = kfd_process_device_from_gpuidx(p, gpuidx); if (!pdd) { pr_debug("failed to find device idx %d\n", gpuidx); continue; } dev = &pdd->dev->pdev->dev; svm_range_dma_unmap(dev, dma_addr, 0, prange->npages); kvfree(dma_addr); prange->dma_addr[gpuidx] = NULL; } } static void svm_range_free(struct svm_range *prange) { pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange, prange->start, prange->last); svm_range_vram_node_free(prange); svm_range_free_dma_mappings(prange); mutex_destroy(&prange->lock); mutex_destroy(&prange->migrate_mutex); kfree(prange); } static void svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc, uint8_t *granularity, uint32_t *flags) { *location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; *prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; *granularity = 9; *flags = KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT; } static struct svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start, uint64_t last) { uint64_t size = last - start + 1; struct svm_range *prange; struct kfd_process *p; prange = kzalloc(sizeof(*prange), GFP_KERNEL); if (!prange) return NULL; prange->npages = size; prange->svms = svms; prange->start = start; prange->last = last; INIT_LIST_HEAD(&prange->list); INIT_LIST_HEAD(&prange->update_list); INIT_LIST_HEAD(&prange->remove_list); INIT_LIST_HEAD(&prange->insert_list); INIT_LIST_HEAD(&prange->svm_bo_list); INIT_LIST_HEAD(&prange->deferred_list); INIT_LIST_HEAD(&prange->child_list); atomic_set(&prange->invalid, 0); prange->validate_timestamp = 0; mutex_init(&prange->migrate_mutex); mutex_init(&prange->lock); p = container_of(svms, struct kfd_process, svms); if (p->xnack_enabled) bitmap_copy(prange->bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE); svm_range_set_default_attributes(&prange->preferred_loc, &prange->prefetch_loc, &prange->granularity, &prange->flags); pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last); return prange; } static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo) { if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref)) return false; return true; } static void svm_range_bo_release(struct kref *kref) { struct svm_range_bo *svm_bo; svm_bo = container_of(kref, struct svm_range_bo, kref); spin_lock(&svm_bo->list_lock); while (!list_empty(&svm_bo->range_list)) { struct svm_range *prange = list_first_entry(&svm_bo->range_list, struct svm_range, svm_bo_list); /* list_del_init tells a concurrent svm_range_vram_node_new when * it's safe to reuse the svm_bo pointer and svm_bo_list head. */ list_del_init(&prange->svm_bo_list); spin_unlock(&svm_bo->list_lock); pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, prange->last); mutex_lock(&prange->lock); prange->svm_bo = NULL; mutex_unlock(&prange->lock); spin_lock(&svm_bo->list_lock); } spin_unlock(&svm_bo->list_lock); if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base)) { /* We're not in the eviction worker. * Signal the fence and synchronize with any * pending eviction work. */ dma_fence_signal(&svm_bo->eviction_fence->base); cancel_work_sync(&svm_bo->eviction_work); } dma_fence_put(&svm_bo->eviction_fence->base); amdgpu_bo_unref(&svm_bo->bo); kfree(svm_bo); } void svm_range_bo_unref(struct svm_range_bo *svm_bo) { if (!svm_bo) return; kref_put(&svm_bo->kref, svm_range_bo_release); } static bool svm_range_validate_svm_bo(struct amdgpu_device *adev, struct svm_range *prange) { struct amdgpu_device *bo_adev; mutex_lock(&prange->lock); if (!prange->svm_bo) { mutex_unlock(&prange->lock); return false; } if (prange->ttm_res) { /* We still have a reference, all is well */ mutex_unlock(&prange->lock); return true; } if (svm_bo_ref_unless_zero(prange->svm_bo)) { /* * Migrate from GPU to GPU, remove range from source bo_adev * svm_bo range list, and return false to allocate svm_bo from * destination adev. */ bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev); if (bo_adev != adev) { mutex_unlock(&prange->lock); spin_lock(&prange->svm_bo->list_lock); list_del_init(&prange->svm_bo_list); spin_unlock(&prange->svm_bo->list_lock); svm_range_bo_unref(prange->svm_bo); return false; } if (READ_ONCE(prange->svm_bo->evicting)) { struct dma_fence *f; struct svm_range_bo *svm_bo; /* The BO is getting evicted, * we need to get a new one */ mutex_unlock(&prange->lock); svm_bo = prange->svm_bo; f = dma_fence_get(&svm_bo->eviction_fence->base); svm_range_bo_unref(prange->svm_bo); /* wait for the fence to avoid long spin-loop * at list_empty_careful */ dma_fence_wait(f, false); dma_fence_put(f); } else { /* The BO was still around and we got * a new reference to it */ mutex_unlock(&prange->lock); pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, prange->last); prange->ttm_res = prange->svm_bo->bo->tbo.resource; return true; } } else { mutex_unlock(&prange->lock); } /* We need a new svm_bo. Spin-loop to wait for concurrent * svm_range_bo_release to finish removing this range from * its range list. After this, it is safe to reuse the * svm_bo pointer and svm_bo_list head. */ while (!list_empty_careful(&prange->svm_bo_list)) ; return false; } static struct svm_range_bo *svm_range_bo_new(void) { struct svm_range_bo *svm_bo; svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL); if (!svm_bo) return NULL; kref_init(&svm_bo->kref); INIT_LIST_HEAD(&svm_bo->range_list); spin_lock_init(&svm_bo->list_lock); return svm_bo; } int svm_range_vram_node_new(struct amdgpu_device *adev, struct svm_range *prange, bool clear) { struct amdgpu_bo_param bp; struct svm_range_bo *svm_bo; struct amdgpu_bo_user *ubo; struct amdgpu_bo *bo; struct kfd_process *p; struct mm_struct *mm; int r; p = container_of(prange->svms, struct kfd_process, svms); pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms, prange->start, prange->last); if (svm_range_validate_svm_bo(adev, prange)) return 0; svm_bo = svm_range_bo_new(); if (!svm_bo) { pr_debug("failed to alloc svm bo\n"); return -ENOMEM; } mm = get_task_mm(p->lead_thread); if (!mm) { pr_debug("failed to get mm\n"); kfree(svm_bo); return -ESRCH; } svm_bo->svms = prange->svms; svm_bo->eviction_fence = amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), mm, svm_bo); mmput(mm); INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker); svm_bo->evicting = 0; memset(&bp, 0, sizeof(bp)); bp.size = prange->npages * PAGE_SIZE; bp.byte_align = PAGE_SIZE; bp.domain = AMDGPU_GEM_DOMAIN_VRAM; bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS; bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0; bp.flags |= AMDGPU_AMDKFD_CREATE_SVM_BO; bp.type = ttm_bo_type_device; bp.resv = NULL; r = amdgpu_bo_create_user(adev, &bp, &ubo); if (r) { pr_debug("failed %d to create bo\n", r); goto create_bo_failed; } bo = &ubo->bo; r = amdgpu_bo_reserve(bo, true); if (r) { pr_debug("failed %d to reserve bo\n", r); goto reserve_bo_failed; } r = dma_resv_reserve_shared(bo->tbo.base.resv, 1); if (r) { pr_debug("failed %d to reserve bo\n", r); amdgpu_bo_unreserve(bo); goto reserve_bo_failed; } amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true); amdgpu_bo_unreserve(bo); svm_bo->bo = bo; prange->svm_bo = svm_bo; prange->ttm_res = bo->tbo.resource; prange->offset = 0; spin_lock(&svm_bo->list_lock); list_add(&prange->svm_bo_list, &svm_bo->range_list); spin_unlock(&svm_bo->list_lock); return 0; reserve_bo_failed: amdgpu_bo_unref(&bo); create_bo_failed: dma_fence_put(&svm_bo->eviction_fence->base); kfree(svm_bo); prange->ttm_res = NULL; return r; } void svm_range_vram_node_free(struct svm_range *prange) { svm_range_bo_unref(prange->svm_bo); prange->ttm_res = NULL; } struct amdgpu_device * svm_range_get_adev_by_id(struct svm_range *prange, uint32_t gpu_id) { struct kfd_process_device *pdd; struct kfd_process *p; int32_t gpu_idx; p = container_of(prange->svms, struct kfd_process, svms); gpu_idx = kfd_process_gpuidx_from_gpuid(p, gpu_id); if (gpu_idx < 0) { pr_debug("failed to get device by id 0x%x\n", gpu_id); return NULL; } pdd = kfd_process_device_from_gpuidx(p, gpu_idx); if (!pdd) { pr_debug("failed to get device by idx 0x%x\n", gpu_idx); return NULL; } return (struct amdgpu_device *)pdd->dev->kgd; } struct kfd_process_device * svm_range_get_pdd_by_adev(struct svm_range *prange, struct amdgpu_device *adev) { struct kfd_process *p; int32_t gpu_idx, gpuid; int r; p = container_of(prange->svms, struct kfd_process, svms); r = kfd_process_gpuid_from_kgd(p, adev, &gpuid, &gpu_idx); if (r) { pr_debug("failed to get device id by adev %p\n", adev); return NULL; } return kfd_process_device_from_gpuidx(p, gpu_idx); } static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo) { struct ttm_operation_ctx ctx = { false, false }; amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM); return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); } static int svm_range_check_attr(struct kfd_process *p, uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs) { uint32_t i; for (i = 0; i < nattr; i++) { uint32_t val = attrs[i].value; int gpuidx = MAX_GPU_INSTANCE; switch (attrs[i].type) { case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM && val != KFD_IOCTL_SVM_LOCATION_UNDEFINED) gpuidx = kfd_process_gpuidx_from_gpuid(p, val); break; case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM) gpuidx = kfd_process_gpuidx_from_gpuid(p, val); break; case KFD_IOCTL_SVM_ATTR_ACCESS: case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: case KFD_IOCTL_SVM_ATTR_NO_ACCESS: gpuidx = kfd_process_gpuidx_from_gpuid(p, val); break; case KFD_IOCTL_SVM_ATTR_SET_FLAGS: break; case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: break; case KFD_IOCTL_SVM_ATTR_GRANULARITY: break; default: pr_debug("unknown attr type 0x%x\n", attrs[i].type); return -EINVAL; } if (gpuidx < 0) { pr_debug("no GPU 0x%x found\n", val); return -EINVAL; } else if (gpuidx < MAX_GPU_INSTANCE && !test_bit(gpuidx, p->svms.bitmap_supported)) { pr_debug("GPU 0x%x not supported\n", val); return -EINVAL; } } return 0; } static void svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange, uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs) { uint32_t i; int gpuidx; for (i = 0; i < nattr; i++) { switch (attrs[i].type) { case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: prange->preferred_loc = attrs[i].value; break; case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: prange->prefetch_loc = attrs[i].value; break; case KFD_IOCTL_SVM_ATTR_ACCESS: case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: case KFD_IOCTL_SVM_ATTR_NO_ACCESS: gpuidx = kfd_process_gpuidx_from_gpuid(p, attrs[i].value); if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) { bitmap_clear(prange->bitmap_access, gpuidx, 1); bitmap_clear(prange->bitmap_aip, gpuidx, 1); } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) { bitmap_set(prange->bitmap_access, gpuidx, 1); bitmap_clear(prange->bitmap_aip, gpuidx, 1); } else { bitmap_clear(prange->bitmap_access, gpuidx, 1); bitmap_set(prange->bitmap_aip, gpuidx, 1); } break; case KFD_IOCTL_SVM_ATTR_SET_FLAGS: prange->flags |= attrs[i].value; break; case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: prange->flags &= ~attrs[i].value; break; case KFD_IOCTL_SVM_ATTR_GRANULARITY: prange->granularity = attrs[i].value; break; default: WARN_ONCE(1, "svm_range_check_attrs wasn't called?"); } } } /** * svm_range_debug_dump - print all range information from svms * @svms: svm range list header * * debug output svm range start, end, prefetch location from svms * interval tree and link list * * Context: The caller must hold svms->lock */ static void svm_range_debug_dump(struct svm_range_list *svms) { struct interval_tree_node *node; struct svm_range *prange; pr_debug("dump svms 0x%p list\n", svms); pr_debug("range\tstart\tpage\tend\t\tlocation\n"); list_for_each_entry(prange, &svms->list, list) { pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n", prange, prange->start, prange->npages, prange->start + prange->npages - 1, prange->actual_loc); } pr_debug("dump svms 0x%p interval tree\n", svms); pr_debug("range\tstart\tpage\tend\t\tlocation\n"); node = interval_tree_iter_first(&svms->objects, 0, ~0ULL); while (node) { prange = container_of(node, struct svm_range, it_node); pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n", prange, prange->start, prange->npages, prange->start + prange->npages - 1, prange->actual_loc); node = interval_tree_iter_next(node, 0, ~0ULL); } } static bool svm_range_is_same_attrs(struct svm_range *old, struct svm_range *new) { return (old->prefetch_loc == new->prefetch_loc && old->flags == new->flags && old->granularity == new->granularity); } static int svm_range_split_array(void *ppnew, void *ppold, size_t size, uint64_t old_start, uint64_t old_n, uint64_t new_start, uint64_t new_n) { unsigned char *new, *old, *pold; uint64_t d; if (!ppold) return 0; pold = *(unsigned char **)ppold; if (!pold) return 0; new = kvmalloc_array(new_n, size, GFP_KERNEL); if (!new) return -ENOMEM; d = (new_start - old_start) * size; memcpy(new, pold + d, new_n * size); old = kvmalloc_array(old_n, size, GFP_KERNEL); if (!old) { kvfree(new); return -ENOMEM; } d = (new_start == old_start) ? new_n * size : 0; memcpy(old, pold + d, old_n * size); kvfree(pold); *(void **)ppold = old; *(void **)ppnew = new; return 0; } static int svm_range_split_pages(struct svm_range *new, struct svm_range *old, uint64_t start, uint64_t last) { uint64_t npages = last - start + 1; int i, r; for (i = 0; i < MAX_GPU_INSTANCE; i++) { r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i], sizeof(*old->dma_addr[i]), old->start, npages, new->start, new->npages); if (r) return r; } return 0; } static int svm_range_split_nodes(struct svm_range *new, struct svm_range *old, uint64_t start, uint64_t last) { uint64_t npages = last - start + 1; pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n", new->svms, new, new->start, start, last); if (new->start == old->start) { new->offset = old->offset; old->offset += new->npages; } else { new->offset = old->offset + npages; } new->svm_bo = svm_range_bo_ref(old->svm_bo); new->ttm_res = old->ttm_res; spin_lock(&new->svm_bo->list_lock); list_add(&new->svm_bo_list, &new->svm_bo->range_list); spin_unlock(&new->svm_bo->list_lock); return 0; } /** * svm_range_split_adjust - split range and adjust * * @new: new range * @old: the old range * @start: the old range adjust to start address in pages * @last: the old range adjust to last address in pages * * Copy system memory dma_addr or vram ttm_res in old range to new * range from new_start up to size new->npages, the remaining old range is from * start to last * * Return: * 0 - OK, -ENOMEM - out of memory */ static int svm_range_split_adjust(struct svm_range *new, struct svm_range *old, uint64_t start, uint64_t last) { int r; pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n", new->svms, new->start, old->start, old->last, start, last); if (new->start < old->start || new->last > old->last) { WARN_ONCE(1, "invalid new range start or last\n"); return -EINVAL; } r = svm_range_split_pages(new, old, start, last); if (r) return r; if (old->actual_loc && old->ttm_res) { r = svm_range_split_nodes(new, old, start, last); if (r) return r; } old->npages = last - start + 1; old->start = start; old->last = last; new->flags = old->flags; new->preferred_loc = old->preferred_loc; new->prefetch_loc = old->prefetch_loc; new->actual_loc = old->actual_loc; new->granularity = old->granularity; bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE); bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE); return 0; } /** * svm_range_split - split a range in 2 ranges * * @prange: the svm range to split * @start: the remaining range start address in pages * @last: the remaining range last address in pages * @new: the result new range generated * * Two cases only: * case 1: if start == prange->start * prange ==> prange[start, last] * new range [last + 1, prange->last] * * case 2: if last == prange->last * prange ==> prange[start, last] * new range [prange->start, start - 1] * * Return: * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last */ static int svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last, struct svm_range **new) { uint64_t old_start = prange->start; uint64_t old_last = prange->last; struct svm_range_list *svms; int r = 0; pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms, old_start, old_last, start, last); if (old_start != start && old_last != last) return -EINVAL; if (start < old_start || last > old_last) return -EINVAL; svms = prange->svms; if (old_start == start) *new = svm_range_new(svms, last + 1, old_last); else *new = svm_range_new(svms, old_start, start - 1); if (!*new) return -ENOMEM; r = svm_range_split_adjust(*new, prange, start, last); if (r) { pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", r, old_start, old_last, start, last); svm_range_free(*new); *new = NULL; } return r; } static int svm_range_split_tail(struct svm_range *prange, struct svm_range *new, uint64_t new_last, struct list_head *insert_list) { struct svm_range *tail; int r = svm_range_split(prange, prange->start, new_last, &tail); if (!r) list_add(&tail->insert_list, insert_list); return r; } static int svm_range_split_head(struct svm_range *prange, struct svm_range *new, uint64_t new_start, struct list_head *insert_list) { struct svm_range *head; int r = svm_range_split(prange, new_start, prange->last, &head); if (!r) list_add(&head->insert_list, insert_list); return r; } static void svm_range_add_child(struct svm_range *prange, struct mm_struct *mm, struct svm_range *pchild, enum svm_work_list_ops op) { pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n", pchild, pchild->start, pchild->last, prange, op); pchild->work_item.mm = mm; pchild->work_item.op = op; list_add_tail(&pchild->child_list, &prange->child_list); } /** * svm_range_split_by_granularity - collect ranges within granularity boundary * * @p: the process with svms list * @mm: mm structure * @addr: the vm fault address in pages, to split the prange * @parent: parent range if prange is from child list * @prange: prange to split * * Trims @prange to be a single aligned block of prange->granularity if * possible. The head and tail are added to the child_list in @parent. * * Context: caller must hold mmap_read_lock and prange->lock * * Return: * 0 - OK, otherwise error code */ int svm_range_split_by_granularity(struct kfd_process *p, struct mm_struct *mm, unsigned long addr, struct svm_range *parent, struct svm_range *prange) { struct svm_range *head, *tail; unsigned long start, last, size; int r; /* Align splited range start and size to granularity size, then a single * PTE will be used for whole range, this reduces the number of PTE * updated and the L1 TLB space used for translation. */ size = 1UL << prange->granularity; start = ALIGN_DOWN(addr, size); last = ALIGN(addr + 1, size) - 1; pr_debug("svms 0x%p split [0x%lx 0x%lx] to [0x%lx 0x%lx] size 0x%lx\n", prange->svms, prange->start, prange->last, start, last, size); if (start > prange->start) { r = svm_range_split(prange, start, prange->last, &head); if (r) return r; svm_range_add_child(parent, mm, head, SVM_OP_ADD_RANGE); } if (last < prange->last) { r = svm_range_split(prange, prange->start, last, &tail); if (r) return r; svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE); } /* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */ if (p->xnack_enabled && prange->work_item.op == SVM_OP_ADD_RANGE) { prange->work_item.op = SVM_OP_ADD_RANGE_AND_MAP; pr_debug("change prange 0x%p [0x%lx 0x%lx] op %d\n", prange, prange->start, prange->last, SVM_OP_ADD_RANGE_AND_MAP); } return 0; } static uint64_t svm_range_get_pte_flags(struct amdgpu_device *adev, struct svm_range *prange, int domain) { struct amdgpu_device *bo_adev; uint32_t flags = prange->flags; uint32_t mapping_flags = 0; uint64_t pte_flags; bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN); bool coherent = flags & KFD_IOCTL_SVM_FLAG_COHERENT; if (domain == SVM_RANGE_VRAM_DOMAIN) bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev); switch (adev->asic_type) { case CHIP_ARCTURUS: if (domain == SVM_RANGE_VRAM_DOMAIN) { if (bo_adev == adev) { mapping_flags |= coherent ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW; } else { mapping_flags |= coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; if (amdgpu_xgmi_same_hive(adev, bo_adev)) snoop = true; } } else { mapping_flags |= coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; } break; case CHIP_ALDEBARAN: if (domain == SVM_RANGE_VRAM_DOMAIN) { if (bo_adev == adev) { mapping_flags |= coherent ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW; if (adev->gmc.xgmi.connected_to_cpu) snoop = true; } else { mapping_flags |= coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; if (amdgpu_xgmi_same_hive(adev, bo_adev)) snoop = true; } } else { mapping_flags |= coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; } break; default: mapping_flags |= coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; } mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE; if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO) mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE; if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC) mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; pte_flags = AMDGPU_PTE_VALID; pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM; pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0; pte_flags |= amdgpu_gem_va_map_flags(adev, mapping_flags); return pte_flags; } static int svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm, uint64_t start, uint64_t last, struct dma_fence **fence) { uint64_t init_pte_value = 0; pr_debug("[0x%llx 0x%llx]\n", start, last); return amdgpu_vm_bo_update_mapping(adev, adev, vm, false, true, NULL, start, last, init_pte_value, 0, NULL, NULL, fence, NULL); } static int svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start, unsigned long last) { DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE); struct kfd_process_device *pdd; struct dma_fence *fence = NULL; struct amdgpu_device *adev; struct kfd_process *p; uint32_t gpuidx; int r = 0; bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip, MAX_GPU_INSTANCE); p = container_of(prange->svms, struct kfd_process, svms); for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { pr_debug("unmap from gpu idx 0x%x\n", gpuidx); pdd = kfd_process_device_from_gpuidx(p, gpuidx); if (!pdd) { pr_debug("failed to find device idx %d\n", gpuidx); return -EINVAL; } adev = (struct amdgpu_device *)pdd->dev->kgd; r = svm_range_unmap_from_gpu(adev, drm_priv_to_vm(pdd->drm_priv), start, last, &fence); if (r) break; if (fence) { r = dma_fence_wait(fence, false); dma_fence_put(fence); fence = NULL; if (r) break; } amdgpu_amdkfd_flush_gpu_tlb_pasid((struct kgd_dev *)adev, p->pasid, TLB_FLUSH_HEAVYWEIGHT); } return r; } static int svm_range_map_to_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct svm_range *prange, unsigned long offset, unsigned long npages, bool readonly, dma_addr_t *dma_addr, struct amdgpu_device *bo_adev, struct dma_fence **fence) { struct amdgpu_bo_va bo_va; bool table_freed = false; uint64_t pte_flags; unsigned long last_start; int last_domain; int r = 0; int64_t i; last_start = prange->start + offset; pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms, last_start, last_start + npages - 1, readonly); if (prange->svm_bo && prange->ttm_res) bo_va.is_xgmi = amdgpu_xgmi_same_hive(adev, bo_adev); for (i = offset; i < offset + npages; i++) { last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN; dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN; if ((prange->start + i) < prange->last && last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN)) continue; pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n", last_start, prange->start + i, last_domain ? "GPU" : "CPU"); pte_flags = svm_range_get_pte_flags(adev, prange, last_domain); if (readonly) pte_flags &= ~AMDGPU_PTE_WRITEABLE; pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n", prange->svms, last_start, prange->start + i, (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0, pte_flags); r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false, NULL, last_start, prange->start + i, pte_flags, last_start - prange->start, NULL, dma_addr, &vm->last_update, &table_freed); if (r) { pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start); goto out; } last_start = prange->start + i + 1; } r = amdgpu_vm_update_pdes(adev, vm, false); if (r) { pr_debug("failed %d to update directories 0x%lx\n", r, prange->start); goto out; } if (fence) *fence = dma_fence_get(vm->last_update); if (table_freed) { struct kfd_process *p; p = container_of(prange->svms, struct kfd_process, svms); amdgpu_amdkfd_flush_gpu_tlb_pasid((struct kgd_dev *)adev, p->pasid, TLB_FLUSH_LEGACY); } out: return r; } static int svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset, unsigned long npages, bool readonly, unsigned long *bitmap, bool wait) { struct kfd_process_device *pdd; struct amdgpu_device *bo_adev; struct amdgpu_device *adev; struct kfd_process *p; struct dma_fence *fence = NULL; uint32_t gpuidx; int r = 0; if (prange->svm_bo && prange->ttm_res) bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev); else bo_adev = NULL; p = container_of(prange->svms, struct kfd_process, svms); for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { pr_debug("mapping to gpu idx 0x%x\n", gpuidx); pdd = kfd_process_device_from_gpuidx(p, gpuidx); if (!pdd) { pr_debug("failed to find device idx %d\n", gpuidx); return -EINVAL; } adev = (struct amdgpu_device *)pdd->dev->kgd; pdd = kfd_bind_process_to_device(pdd->dev, p); if (IS_ERR(pdd)) return -EINVAL; if (bo_adev && adev != bo_adev && !amdgpu_xgmi_same_hive(adev, bo_adev)) { pr_debug("cannot map to device idx %d\n", gpuidx); continue; } r = svm_range_map_to_gpu(adev, drm_priv_to_vm(pdd->drm_priv), prange, offset, npages, readonly, prange->dma_addr[gpuidx], bo_adev, wait ? &fence : NULL); if (r) break; if (fence) { r = dma_fence_wait(fence, false); dma_fence_put(fence); fence = NULL; if (r) { pr_debug("failed %d to dma fence wait\n", r); break; } } } return r; } struct svm_validate_context { struct kfd_process *process; struct svm_range *prange; bool intr; unsigned long bitmap[MAX_GPU_INSTANCE]; struct ttm_validate_buffer tv[MAX_GPU_INSTANCE+1]; struct list_head validate_list; struct ww_acquire_ctx ticket; }; static int svm_range_reserve_bos(struct svm_validate_context *ctx) { struct kfd_process_device *pdd; struct amdgpu_device *adev; struct amdgpu_vm *vm; uint32_t gpuidx; int r; INIT_LIST_HEAD(&ctx->validate_list); for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) { pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx); if (!pdd) { pr_debug("failed to find device idx %d\n", gpuidx); return -EINVAL; } adev = (struct amdgpu_device *)pdd->dev->kgd; vm = drm_priv_to_vm(pdd->drm_priv); ctx->tv[gpuidx].bo = &vm->root.bo->tbo; ctx->tv[gpuidx].num_shared = 4; list_add(&ctx->tv[gpuidx].head, &ctx->validate_list); } if (ctx->prange->svm_bo && ctx->prange->ttm_res) { ctx->tv[MAX_GPU_INSTANCE].bo = &ctx->prange->svm_bo->bo->tbo; ctx->tv[MAX_GPU_INSTANCE].num_shared = 1; list_add(&ctx->tv[MAX_GPU_INSTANCE].head, &ctx->validate_list); } r = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->validate_list, ctx->intr, NULL); if (r) { pr_debug("failed %d to reserve bo\n", r); return r; } for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) { pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx); if (!pdd) { pr_debug("failed to find device idx %d\n", gpuidx); r = -EINVAL; goto unreserve_out; } adev = (struct amdgpu_device *)pdd->dev->kgd; r = amdgpu_vm_validate_pt_bos(adev, drm_priv_to_vm(pdd->drm_priv), svm_range_bo_validate, NULL); if (r) { pr_debug("failed %d validate pt bos\n", r); goto unreserve_out; } } return 0; unreserve_out: ttm_eu_backoff_reservation(&ctx->ticket, &ctx->validate_list); return r; } static void svm_range_unreserve_bos(struct svm_validate_context *ctx) { ttm_eu_backoff_reservation(&ctx->ticket, &ctx->validate_list); } static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx) { struct kfd_process_device *pdd; struct amdgpu_device *adev; pdd = kfd_process_device_from_gpuidx(p, gpuidx); adev = (struct amdgpu_device *)pdd->dev->kgd; return SVM_ADEV_PGMAP_OWNER(adev); } /* * Validation+GPU mapping with concurrent invalidation (MMU notifiers) * * To prevent concurrent destruction or change of range attributes, the * svm_read_lock must be held. The caller must not hold the svm_write_lock * because that would block concurrent evictions and lead to deadlocks. To * serialize concurrent migrations or validations of the same range, the * prange->migrate_mutex must be held. * * For VRAM ranges, the SVM BO must be allocated and valid (protected by its * eviction fence. * * The following sequence ensures race-free validation and GPU mapping: * * 1. Reserve page table (and SVM BO if range is in VRAM) * 2. hmm_range_fault to get page addresses (if system memory) * 3. DMA-map pages (if system memory) * 4-a. Take notifier lock * 4-b. Check that pages still valid (mmu_interval_read_retry) * 4-c. Check that the range was not split or otherwise invalidated * 4-d. Update GPU page table * 4.e. Release notifier lock * 5. Release page table (and SVM BO) reservation */ static int svm_range_validate_and_map(struct mm_struct *mm, struct svm_range *prange, int32_t gpuidx, bool intr, bool wait) { struct svm_validate_context ctx; unsigned long start, end, addr; struct kfd_process *p; void *owner; int32_t idx; int r = 0; ctx.process = container_of(prange->svms, struct kfd_process, svms); ctx.prange = prange; ctx.intr = intr; if (gpuidx < MAX_GPU_INSTANCE) { bitmap_zero(ctx.bitmap, MAX_GPU_INSTANCE); bitmap_set(ctx.bitmap, gpuidx, 1); } else if (ctx.process->xnack_enabled) { bitmap_copy(ctx.bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE); /* If prefetch range to GPU, or GPU retry fault migrate range to * GPU, which has ACCESS attribute to the range, create mapping * on that GPU. */ if (prange->actual_loc) { gpuidx = kfd_process_gpuidx_from_gpuid(ctx.process, prange->actual_loc); if (gpuidx < 0) { WARN_ONCE(1, "failed get device by id 0x%x\n", prange->actual_loc); return -EINVAL; } if (test_bit(gpuidx, prange->bitmap_access)) bitmap_set(ctx.bitmap, gpuidx, 1); } } else { bitmap_or(ctx.bitmap, prange->bitmap_access, prange->bitmap_aip, MAX_GPU_INSTANCE); } if (bitmap_empty(ctx.bitmap, MAX_GPU_INSTANCE)) return 0; if (prange->actual_loc && !prange->ttm_res) { /* This should never happen. actual_loc gets set by * svm_migrate_ram_to_vram after allocating a BO. */ WARN(1, "VRAM BO missing during validation\n"); return -EINVAL; } svm_range_reserve_bos(&ctx); p = container_of(prange->svms, struct kfd_process, svms); owner = kfd_svm_page_owner(p, find_first_bit(ctx.bitmap, MAX_GPU_INSTANCE)); for_each_set_bit(idx, ctx.bitmap, MAX_GPU_INSTANCE) { if (kfd_svm_page_owner(p, idx) != owner) { owner = NULL; break; } } start = prange->start << PAGE_SHIFT; end = (prange->last + 1) << PAGE_SHIFT; for (addr = start; addr < end && !r; ) { struct hmm_range *hmm_range; struct vm_area_struct *vma; unsigned long next; unsigned long offset; unsigned long npages; bool readonly; vma = find_vma(mm, addr); if (!vma || addr < vma->vm_start) { r = -EFAULT; goto unreserve_out; } readonly = !(vma->vm_flags & VM_WRITE); next = min(vma->vm_end, end); npages = (next - addr) >> PAGE_SHIFT; r = amdgpu_hmm_range_get_pages(&prange->notifier, mm, NULL, addr, npages, &hmm_range, readonly, true, owner); if (r) { pr_debug("failed %d to get svm range pages\n", r); goto unreserve_out; } offset = (addr - start) >> PAGE_SHIFT; r = svm_range_dma_map(prange, ctx.bitmap, offset, npages, hmm_range->hmm_pfns); if (r) { pr_debug("failed %d to dma map range\n", r); goto unreserve_out; } svm_range_lock(prange); if (amdgpu_hmm_range_get_pages_done(hmm_range)) { pr_debug("hmm update the range, need validate again\n"); r = -EAGAIN; goto unlock_out; } if (!list_empty(&prange->child_list)) { pr_debug("range split by unmap in parallel, validate again\n"); r = -EAGAIN; goto unlock_out; } r = svm_range_map_to_gpus(prange, offset, npages, readonly, ctx.bitmap, wait); unlock_out: svm_range_unlock(prange); addr = next; } if (addr == end) prange->validated_once = true; unreserve_out: svm_range_unreserve_bos(&ctx); if (!r) prange->validate_timestamp = ktime_to_us(ktime_get()); return r; } /** * svm_range_list_lock_and_flush_work - flush pending deferred work * * @svms: the svm range list * @mm: the mm structure * * Context: Returns with mmap write lock held, pending deferred work flushed * */ static void svm_range_list_lock_and_flush_work(struct svm_range_list *svms, struct mm_struct *mm) { retry_flush_work: flush_work(&svms->deferred_list_work); mmap_write_lock(mm); if (list_empty(&svms->deferred_range_list)) return; mmap_write_unlock(mm); pr_debug("retry flush\n"); goto retry_flush_work; } static void svm_range_restore_work(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct amdkfd_process_info *process_info; struct svm_range_list *svms; struct svm_range *prange; struct kfd_process *p; struct mm_struct *mm; int evicted_ranges; int invalid; int r; svms = container_of(dwork, struct svm_range_list, restore_work); evicted_ranges = atomic_read(&svms->evicted_ranges); if (!evicted_ranges) return; pr_debug("restore svm ranges\n"); /* kfd_process_notifier_release destroys this worker thread. So during * the lifetime of this thread, kfd_process and mm will be valid. */ p = container_of(svms, struct kfd_process, svms); process_info = p->kgd_process_info; mm = p->mm; if (!mm) return; mutex_lock(&process_info->lock); svm_range_list_lock_and_flush_work(svms, mm); mutex_lock(&svms->lock); evicted_ranges = atomic_read(&svms->evicted_ranges); list_for_each_entry(prange, &svms->list, list) { invalid = atomic_read(&prange->invalid); if (!invalid) continue; pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n", prange->svms, prange, prange->start, prange->last, invalid); /* * If range is migrating, wait for migration is done. */ mutex_lock(&prange->migrate_mutex); r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE, false, true); if (r) pr_debug("failed %d to map 0x%lx to gpus\n", r, prange->start); mutex_unlock(&prange->migrate_mutex); if (r) goto out_reschedule; if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid) goto out_reschedule; } if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) != evicted_ranges) goto out_reschedule; evicted_ranges = 0; r = kgd2kfd_resume_mm(mm); if (r) { /* No recovery from this failure. Probably the CP is * hanging. No point trying again. */ pr_debug("failed %d to resume KFD\n", r); } pr_debug("restore svm ranges successfully\n"); out_reschedule: mutex_unlock(&svms->lock); mmap_write_unlock(mm); mutex_unlock(&process_info->lock); /* If validation failed, reschedule another attempt */ if (evicted_ranges) { pr_debug("reschedule to restore svm range\n"); schedule_delayed_work(&svms->restore_work, msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS)); } } /** * svm_range_evict - evict svm range * * Stop all queues of the process to ensure GPU doesn't access the memory, then * return to let CPU evict the buffer and proceed CPU pagetable update. * * Don't need use lock to sync cpu pagetable invalidation with GPU execution. * If invalidation happens while restore work is running, restore work will * restart to ensure to get the latest CPU pages mapping to GPU, then start * the queues. */ static int svm_range_evict(struct svm_range *prange, struct mm_struct *mm, unsigned long start, unsigned long last) { struct svm_range_list *svms = prange->svms; struct svm_range *pchild; struct kfd_process *p; int r = 0; p = container_of(svms, struct kfd_process, svms); pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms, prange->start, prange->last, start, last); if (!p->xnack_enabled) { int evicted_ranges; list_for_each_entry(pchild, &prange->child_list, child_list) { mutex_lock_nested(&pchild->lock, 1); if (pchild->start <= last && pchild->last >= start) { pr_debug("increment pchild invalid [0x%lx 0x%lx]\n", pchild->start, pchild->last); atomic_inc(&pchild->invalid); } mutex_unlock(&pchild->lock); } if (prange->start <= last && prange->last >= start) atomic_inc(&prange->invalid); evicted_ranges = atomic_inc_return(&svms->evicted_ranges); if (evicted_ranges != 1) return r; pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n", prange->svms, prange->start, prange->last); /* First eviction, stop the queues */ r = kgd2kfd_quiesce_mm(mm); if (r) pr_debug("failed to quiesce KFD\n"); pr_debug("schedule to restore svm %p ranges\n", svms); schedule_delayed_work(&svms->restore_work, msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS)); } else { unsigned long s, l; pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n", prange->svms, start, last); list_for_each_entry(pchild, &prange->child_list, child_list) { mutex_lock_nested(&pchild->lock, 1); s = max(start, pchild->start); l = min(last, pchild->last); if (l >= s) svm_range_unmap_from_gpus(pchild, s, l); mutex_unlock(&pchild->lock); } s = max(start, prange->start); l = min(last, prange->last); if (l >= s) svm_range_unmap_from_gpus(prange, s, l); } return r; } static struct svm_range *svm_range_clone(struct svm_range *old) { struct svm_range *new; new = svm_range_new(old->svms, old->start, old->last); if (!new) return NULL; if (old->svm_bo) { new->ttm_res = old->ttm_res; new->offset = old->offset; new->svm_bo = svm_range_bo_ref(old->svm_bo); spin_lock(&new->svm_bo->list_lock); list_add(&new->svm_bo_list, &new->svm_bo->range_list); spin_unlock(&new->svm_bo->list_lock); } new->flags = old->flags; new->preferred_loc = old->preferred_loc; new->prefetch_loc = old->prefetch_loc; new->actual_loc = old->actual_loc; new->granularity = old->granularity; bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE); bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE); return new; } /** * svm_range_handle_overlap - split overlap ranges * @svms: svm range list header * @new: range added with this attributes * @start: range added start address, in pages * @last: range last address, in pages * @update_list: output, the ranges attributes are updated. For set_attr, this * will do validation and map to GPUs. For unmap, this will be * removed and unmap from GPUs * @insert_list: output, the ranges will be inserted into svms, attributes are * not changes. For set_attr, this will add into svms. * @remove_list:output, the ranges will be removed from svms * @left: the remaining range after overlap, For set_attr, this will be added * as new range. * * Total have 5 overlap cases. * * This function handles overlap of an address interval with existing * struct svm_ranges for applying new attributes. This may require * splitting existing struct svm_ranges. All changes should be applied to * the range_list and interval tree transactionally. If any split operation * fails, the entire update fails. Therefore the existing overlapping * svm_ranges are cloned and the original svm_ranges left unchanged. If the * transaction succeeds, the modified clones are added and the originals * freed. Otherwise the clones are removed and the old svm_ranges remain. * * Context: The caller must hold svms->lock */ static int svm_range_handle_overlap(struct svm_range_list *svms, struct svm_range *new, unsigned long start, unsigned long last, struct list_head *update_list, struct list_head *insert_list, struct list_head *remove_list, unsigned long *left) { struct interval_tree_node *node; struct svm_range *prange; struct svm_range *tmp; int r = 0; INIT_LIST_HEAD(update_list); INIT_LIST_HEAD(insert_list); INIT_LIST_HEAD(remove_list); node = interval_tree_iter_first(&svms->objects, start, last); while (node) { struct interval_tree_node *next; struct svm_range *old; unsigned long next_start; pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start, node->last); old = container_of(node, struct svm_range, it_node); next = interval_tree_iter_next(node, start, last); next_start = min(node->last, last) + 1; if (node->start < start || node->last > last) { /* node intersects the updated range, clone+split it */ prange = svm_range_clone(old); if (!prange) { r = -ENOMEM; goto out; } list_add(&old->remove_list, remove_list); list_add(&prange->insert_list, insert_list); if (node->start < start) { pr_debug("change old range start\n"); r = svm_range_split_head(prange, new, start, insert_list); if (r) goto out; } if (node->last > last) { pr_debug("change old range last\n"); r = svm_range_split_tail(prange, new, last, insert_list); if (r) goto out; } } else { /* The node is contained within start..last, * just update it */ prange = old; } if (!svm_range_is_same_attrs(prange, new)) list_add(&prange->update_list, update_list); /* insert a new node if needed */ if (node->start > start) { prange = svm_range_new(prange->svms, start, node->start - 1); if (!prange) { r = -ENOMEM; goto out; } list_add(&prange->insert_list, insert_list); list_add(&prange->update_list, update_list); } node = next; start = next_start; } if (left && start <= last) *left = last - start + 1; out: if (r) list_for_each_entry_safe(prange, tmp, insert_list, insert_list) svm_range_free(prange); return r; } static void svm_range_update_notifier_and_interval_tree(struct mm_struct *mm, struct svm_range *prange) { unsigned long start; unsigned long last; start = prange->notifier.interval_tree.start >> PAGE_SHIFT; last = prange->notifier.interval_tree.last >> PAGE_SHIFT; if (prange->start == start && prange->last == last) return; pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", prange->svms, prange, start, last, prange->start, prange->last); if (start != 0 && last != 0) { interval_tree_remove(&prange->it_node, &prange->svms->objects); svm_range_remove_notifier(prange); } prange->it_node.start = prange->start; prange->it_node.last = prange->last; interval_tree_insert(&prange->it_node, &prange->svms->objects); svm_range_add_notifier_locked(mm, prange); } static void svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange) { struct mm_struct *mm = prange->work_item.mm; switch (prange->work_item.op) { case SVM_OP_NULL: pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange, prange->start, prange->last); break; case SVM_OP_UNMAP_RANGE: pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange, prange->start, prange->last); svm_range_unlink(prange); svm_range_remove_notifier(prange); svm_range_free(prange); break; case SVM_OP_UPDATE_RANGE_NOTIFIER: pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange, prange->start, prange->last); svm_range_update_notifier_and_interval_tree(mm, prange); break; case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP: pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange, prange->start, prange->last); svm_range_update_notifier_and_interval_tree(mm, prange); /* TODO: implement deferred validation and mapping */ break; case SVM_OP_ADD_RANGE: pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange, prange->start, prange->last); svm_range_add_to_svms(prange); svm_range_add_notifier_locked(mm, prange); break; case SVM_OP_ADD_RANGE_AND_MAP: pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange, prange->start, prange->last); svm_range_add_to_svms(prange); svm_range_add_notifier_locked(mm, prange); /* TODO: implement deferred validation and mapping */ break; default: WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange, prange->work_item.op); } } static void svm_range_drain_retry_fault(struct svm_range_list *svms) { struct kfd_process_device *pdd; struct amdgpu_device *adev; struct kfd_process *p; uint32_t i; p = container_of(svms, struct kfd_process, svms); for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) { pdd = p->pdds[i]; if (!pdd) continue; pr_debug("drain retry fault gpu %d svms %p\n", i, svms); adev = (struct amdgpu_device *)pdd->dev->kgd; amdgpu_ih_wait_on_checkpoint_process(adev, &adev->irq.ih1); pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms); } } static void svm_range_deferred_list_work(struct work_struct *work) { struct svm_range_list *svms; struct svm_range *prange; struct mm_struct *mm; svms = container_of(work, struct svm_range_list, deferred_list_work); pr_debug("enter svms 0x%p\n", svms); spin_lock(&svms->deferred_list_lock); while (!list_empty(&svms->deferred_range_list)) { prange = list_first_entry(&svms->deferred_range_list, struct svm_range, deferred_list); spin_unlock(&svms->deferred_list_lock); pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange, prange->start, prange->last, prange->work_item.op); /* Make sure no stale retry fault coming after range is freed */ if (prange->work_item.op == SVM_OP_UNMAP_RANGE) svm_range_drain_retry_fault(prange->svms); mm = prange->work_item.mm; mmap_write_lock(mm); mutex_lock(&svms->lock); /* Remove from deferred_list must be inside mmap write lock, * otherwise, svm_range_list_lock_and_flush_work may hold mmap * write lock, and continue because deferred_list is empty, then * deferred_list handle is blocked by mmap write lock. */ spin_lock(&svms->deferred_list_lock); list_del_init(&prange->deferred_list); spin_unlock(&svms->deferred_list_lock); mutex_lock(&prange->migrate_mutex); while (!list_empty(&prange->child_list)) { struct svm_range *pchild; pchild = list_first_entry(&prange->child_list, struct svm_range, child_list); pr_debug("child prange 0x%p op %d\n", pchild, pchild->work_item.op); list_del_init(&pchild->child_list); svm_range_handle_list_op(svms, pchild); } mutex_unlock(&prange->migrate_mutex); svm_range_handle_list_op(svms, prange); mutex_unlock(&svms->lock); mmap_write_unlock(mm); spin_lock(&svms->deferred_list_lock); } spin_unlock(&svms->deferred_list_lock); pr_debug("exit svms 0x%p\n", svms); } void svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange, struct mm_struct *mm, enum svm_work_list_ops op) { spin_lock(&svms->deferred_list_lock); /* if prange is on the deferred list */ if (!list_empty(&prange->deferred_list)) { pr_debug("update exist prange 0x%p work op %d\n", prange, op); WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n"); if (op != SVM_OP_NULL && prange->work_item.op != SVM_OP_UNMAP_RANGE) prange->work_item.op = op; } else { prange->work_item.op = op; prange->work_item.mm = mm; list_add_tail(&prange->deferred_list, &prange->svms->deferred_range_list); pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n", prange, prange->start, prange->last, op); } spin_unlock(&svms->deferred_list_lock); } void schedule_deferred_list_work(struct svm_range_list *svms) { spin_lock(&svms->deferred_list_lock); if (!list_empty(&svms->deferred_range_list)) schedule_work(&svms->deferred_list_work); spin_unlock(&svms->deferred_list_lock); } static void svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent, struct svm_range *prange, unsigned long start, unsigned long last) { struct svm_range *head; struct svm_range *tail; if (prange->work_item.op == SVM_OP_UNMAP_RANGE) { pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange, prange->start, prange->last); return; } if (start > prange->last || last < prange->start) return; head = tail = prange; if (start > prange->start) svm_range_split(prange, prange->start, start - 1, &tail); if (last < tail->last) svm_range_split(tail, last + 1, tail->last, &head); if (head != prange && tail != prange) { svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE); svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE); } else if (tail != prange) { svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE); } else if (head != prange) { svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE); } else if (parent != prange) { prange->work_item.op = SVM_OP_UNMAP_RANGE; } } static void svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange, unsigned long start, unsigned long last) { struct svm_range_list *svms; struct svm_range *pchild; struct kfd_process *p; unsigned long s, l; bool unmap_parent; p = kfd_lookup_process_by_mm(mm); if (!p) return; svms = &p->svms; pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms, prange, prange->start, prange->last, start, last); unmap_parent = start <= prange->start && last >= prange->last; list_for_each_entry(pchild, &prange->child_list, child_list) { mutex_lock_nested(&pchild->lock, 1); s = max(start, pchild->start); l = min(last, pchild->last); if (l >= s) svm_range_unmap_from_gpus(pchild, s, l); svm_range_unmap_split(mm, prange, pchild, start, last); mutex_unlock(&pchild->lock); } s = max(start, prange->start); l = min(last, prange->last); if (l >= s) svm_range_unmap_from_gpus(prange, s, l); svm_range_unmap_split(mm, prange, prange, start, last); if (unmap_parent) svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE); else svm_range_add_list_work(svms, prange, mm, SVM_OP_UPDATE_RANGE_NOTIFIER); schedule_deferred_list_work(svms); kfd_unref_process(p); } /** * svm_range_cpu_invalidate_pagetables - interval notifier callback * * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it * is from migration, or CPU page invalidation callback. * * For unmap event, unmap range from GPUs, remove prange from svms in a delayed * work thread, and split prange if only part of prange is unmapped. * * For invalidation event, if GPU retry fault is not enabled, evict the queues, * then schedule svm_range_restore_work to update GPU mapping and resume queues. * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will * update GPU mapping to recover. * * Context: mmap lock, notifier_invalidate_start lock are held * for invalidate event, prange lock is held if this is from migration */ static bool svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni, const struct mmu_notifier_range *range, unsigned long cur_seq) { struct svm_range *prange; unsigned long start; unsigned long last; if (range->event == MMU_NOTIFY_RELEASE) return true; start = mni->interval_tree.start; last = mni->interval_tree.last; start = (start > range->start ? start : range->start) >> PAGE_SHIFT; last = (last < (range->end - 1) ? last : range->end - 1) >> PAGE_SHIFT; pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n", start, last, range->start >> PAGE_SHIFT, (range->end - 1) >> PAGE_SHIFT, mni->interval_tree.start >> PAGE_SHIFT, mni->interval_tree.last >> PAGE_SHIFT, range->event); prange = container_of(mni, struct svm_range, notifier); svm_range_lock(prange); mmu_interval_set_seq(mni, cur_seq); switch (range->event) { case MMU_NOTIFY_UNMAP: svm_range_unmap_from_cpu(mni->mm, prange, start, last); break; default: svm_range_evict(prange, mni->mm, start, last); break; } svm_range_unlock(prange); return true; } /** * svm_range_from_addr - find svm range from fault address * @svms: svm range list header * @addr: address to search range interval tree, in pages * @parent: parent range if range is on child list * * Context: The caller must hold svms->lock * * Return: the svm_range found or NULL */ struct svm_range * svm_range_from_addr(struct svm_range_list *svms, unsigned long addr, struct svm_range **parent) { struct interval_tree_node *node; struct svm_range *prange; struct svm_range *pchild; node = interval_tree_iter_first(&svms->objects, addr, addr); if (!node) return NULL; prange = container_of(node, struct svm_range, it_node); pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n", addr, prange->start, prange->last, node->start, node->last); if (addr >= prange->start && addr <= prange->last) { if (parent) *parent = prange; return prange; } list_for_each_entry(pchild, &prange->child_list, child_list) if (addr >= pchild->start && addr <= pchild->last) { pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n", addr, pchild->start, pchild->last); if (parent) *parent = prange; return pchild; } return NULL; } /* svm_range_best_restore_location - decide the best fault restore location * @prange: svm range structure * @adev: the GPU on which vm fault happened * * This is only called when xnack is on, to decide the best location to restore * the range mapping after GPU vm fault. Caller uses the best location to do * migration if actual loc is not best location, then update GPU page table * mapping to the best location. * * If vm fault gpu is range preferred loc, the best_loc is preferred loc. * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then * if range actual loc is cpu, best_loc is cpu * if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is * range actual loc. * Otherwise, GPU no access, best_loc is -1. * * Return: * -1 means vm fault GPU no access * 0 for CPU or GPU id */ static int32_t svm_range_best_restore_location(struct svm_range *prange, struct amdgpu_device *adev, int32_t *gpuidx) { struct amdgpu_device *bo_adev; struct kfd_process *p; uint32_t gpuid; int r; p = container_of(prange->svms, struct kfd_process, svms); r = kfd_process_gpuid_from_kgd(p, adev, &gpuid, gpuidx); if (r < 0) { pr_debug("failed to get gpuid from kgd\n"); return -1; } if (prange->preferred_loc == gpuid) return prange->preferred_loc; if (test_bit(*gpuidx, prange->bitmap_access)) return gpuid; if (test_bit(*gpuidx, prange->bitmap_aip)) { if (!prange->actual_loc) return 0; bo_adev = svm_range_get_adev_by_id(prange, prange->actual_loc); if (amdgpu_xgmi_same_hive(adev, bo_adev)) return prange->actual_loc; else return 0; } return -1; } static int svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr, unsigned long *start, unsigned long *last) { struct vm_area_struct *vma; struct interval_tree_node *node; unsigned long start_limit, end_limit; vma = find_vma(p->mm, addr << PAGE_SHIFT); if (!vma || (addr << PAGE_SHIFT) < vma->vm_start) { pr_debug("VMA does not exist in address [0x%llx]\n", addr); return -EFAULT; } start_limit = max(vma->vm_start >> PAGE_SHIFT, (unsigned long)ALIGN_DOWN(addr, 2UL << 8)); end_limit = min(vma->vm_end >> PAGE_SHIFT, (unsigned long)ALIGN(addr + 1, 2UL << 8)); /* First range that starts after the fault address */ node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX); if (node) { end_limit = min(end_limit, node->start); /* Last range that ends before the fault address */ node = container_of(rb_prev(&node->rb), struct interval_tree_node, rb); } else { /* Last range must end before addr because * there was no range after addr */ node = container_of(rb_last(&p->svms.objects.rb_root), struct interval_tree_node, rb); } if (node) { if (node->last >= addr) { WARN(1, "Overlap with prev node and page fault addr\n"); return -EFAULT; } start_limit = max(start_limit, node->last + 1); } *start = start_limit; *last = end_limit - 1; pr_debug("vma start: 0x%lx start: 0x%lx vma end: 0x%lx last: 0x%lx\n", vma->vm_start >> PAGE_SHIFT, *start, vma->vm_end >> PAGE_SHIFT, *last); return 0; } static struct svm_range *svm_range_create_unregistered_range(struct amdgpu_device *adev, struct kfd_process *p, struct mm_struct *mm, int64_t addr) { struct svm_range *prange = NULL; unsigned long start, last; uint32_t gpuid, gpuidx; if (svm_range_get_range_boundaries(p, addr, &start, &last)) return NULL; prange = svm_range_new(&p->svms, start, last); if (!prange) { pr_debug("Failed to create prange in address [0x%llx]\n", addr); return NULL; } if (kfd_process_gpuid_from_kgd(p, adev, &gpuid, &gpuidx)) { pr_debug("failed to get gpuid from kgd\n"); svm_range_free(prange); return NULL; } svm_range_add_to_svms(prange); svm_range_add_notifier_locked(mm, prange); return prange; } /* svm_range_skip_recover - decide if prange can be recovered * @prange: svm range structure * * GPU vm retry fault handle skip recover the range for cases: * 1. prange is on deferred list to be removed after unmap, it is stale fault, * deferred list work will drain the stale fault before free the prange. * 2. prange is on deferred list to add interval notifier after split, or * 3. prange is child range, it is split from parent prange, recover later * after interval notifier is added. * * Return: true to skip recover, false to recover */ static bool svm_range_skip_recover(struct svm_range *prange) { struct svm_range_list *svms = prange->svms; spin_lock(&svms->deferred_list_lock); if (list_empty(&prange->deferred_list) && list_empty(&prange->child_list)) { spin_unlock(&svms->deferred_list_lock); return false; } spin_unlock(&svms->deferred_list_lock); if (prange->work_item.op == SVM_OP_UNMAP_RANGE) { pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n", svms, prange, prange->start, prange->last); return true; } if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP || prange->work_item.op == SVM_OP_ADD_RANGE) { pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n", svms, prange, prange->start, prange->last); return true; } return false; } static void svm_range_count_fault(struct amdgpu_device *adev, struct kfd_process *p, int32_t gpuidx) { struct kfd_process_device *pdd; /* fault is on different page of same range * or fault is skipped to recover later * or fault is on invalid virtual address */ if (gpuidx == MAX_GPU_INSTANCE) { uint32_t gpuid; int r; r = kfd_process_gpuid_from_kgd(p, adev, &gpuid, &gpuidx); if (r < 0) return; } /* fault is recovered * or fault cannot recover because GPU no access on the range */ pdd = kfd_process_device_from_gpuidx(p, gpuidx); if (pdd) WRITE_ONCE(pdd->faults, pdd->faults + 1); } static bool svm_fault_allowed(struct mm_struct *mm, uint64_t addr, bool write_fault) { unsigned long requested = VM_READ; struct vm_area_struct *vma; if (write_fault) requested |= VM_WRITE; vma = find_vma(mm, addr << PAGE_SHIFT); if (!vma || (addr << PAGE_SHIFT) < vma->vm_start) { pr_debug("address 0x%llx VMA is removed\n", addr); return true; } pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested, vma->vm_flags); return (vma->vm_flags & requested) == requested; } int svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid, uint64_t addr, bool write_fault) { struct mm_struct *mm = NULL; struct svm_range_list *svms; struct svm_range *prange; struct kfd_process *p; uint64_t timestamp; int32_t best_loc; int32_t gpuidx = MAX_GPU_INSTANCE; bool write_locked = false; int r = 0; if (!KFD_IS_SVM_API_SUPPORTED(adev->kfd.dev)) { pr_debug("device does not support SVM\n"); return -EFAULT; } p = kfd_lookup_process_by_pasid(pasid); if (!p) { pr_debug("kfd process not founded pasid 0x%x\n", pasid); return -ESRCH; } if (!p->xnack_enabled) { pr_debug("XNACK not enabled for pasid 0x%x\n", pasid); return -EFAULT; } svms = &p->svms; pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr); mm = get_task_mm(p->lead_thread); if (!mm) { pr_debug("svms 0x%p failed to get mm\n", svms); r = -ESRCH; goto out; } mmap_read_lock(mm); retry_write_locked: mutex_lock(&svms->lock); prange = svm_range_from_addr(svms, addr, NULL); if (!prange) { pr_debug("failed to find prange svms 0x%p address [0x%llx]\n", svms, addr); if (!write_locked) { /* Need the write lock to create new range with MMU notifier. * Also flush pending deferred work to make sure the interval * tree is up to date before we add a new range */ mutex_unlock(&svms->lock); mmap_read_unlock(mm); mmap_write_lock(mm); write_locked = true; goto retry_write_locked; } prange = svm_range_create_unregistered_range(adev, p, mm, addr); if (!prange) { pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n", svms, addr); mmap_write_downgrade(mm); r = -EFAULT; goto out_unlock_svms; } } if (write_locked) mmap_write_downgrade(mm); mutex_lock(&prange->migrate_mutex); if (svm_range_skip_recover(prange)) { amdgpu_gmc_filter_faults_remove(adev, addr, pasid); goto out_unlock_range; } timestamp = ktime_to_us(ktime_get()) - prange->validate_timestamp; /* skip duplicate vm fault on different pages of same range */ if (timestamp < AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING) { pr_debug("svms 0x%p [0x%lx %lx] already restored\n", svms, prange->start, prange->last); goto out_unlock_range; } if (!svm_fault_allowed(mm, addr, write_fault)) { pr_debug("fault addr 0x%llx no %s permission\n", addr, write_fault ? "write" : "read"); r = -EPERM; goto out_unlock_range; } best_loc = svm_range_best_restore_location(prange, adev, &gpuidx); if (best_loc == -1) { pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n", svms, prange->start, prange->last); r = -EACCES; goto out_unlock_range; } pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n", svms, prange->start, prange->last, best_loc, prange->actual_loc); if (prange->actual_loc != best_loc) { if (best_loc) { r = svm_migrate_to_vram(prange, best_loc, mm); if (r) { pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n", r, addr); /* Fallback to system memory if migration to * VRAM failed */ if (prange->actual_loc) r = svm_migrate_vram_to_ram(prange, mm); else r = 0; } } else { r = svm_migrate_vram_to_ram(prange, mm); } if (r) { pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n", r, svms, prange->start, prange->last); goto out_unlock_range; } } r = svm_range_validate_and_map(mm, prange, gpuidx, false, false); if (r) pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n", r, svms, prange->start, prange->last); out_unlock_range: mutex_unlock(&prange->migrate_mutex); out_unlock_svms: mutex_unlock(&svms->lock); mmap_read_unlock(mm); svm_range_count_fault(adev, p, gpuidx); mmput(mm); out: kfd_unref_process(p); if (r == -EAGAIN) { pr_debug("recover vm fault later\n"); amdgpu_gmc_filter_faults_remove(adev, addr, pasid); r = 0; } return r; } void svm_range_list_fini(struct kfd_process *p) { struct svm_range *prange; struct svm_range *next; pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms); /* Ensure list work is finished before process is destroyed */ flush_work(&p->svms.deferred_list_work); list_for_each_entry_safe(prange, next, &p->svms.list, list) { svm_range_unlink(prange); svm_range_remove_notifier(prange); svm_range_free(prange); } mutex_destroy(&p->svms.lock); pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms); } int svm_range_list_init(struct kfd_process *p) { struct svm_range_list *svms = &p->svms; int i; svms->objects = RB_ROOT_CACHED; mutex_init(&svms->lock); INIT_LIST_HEAD(&svms->list); atomic_set(&svms->evicted_ranges, 0); INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work); INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work); INIT_LIST_HEAD(&svms->deferred_range_list); spin_lock_init(&svms->deferred_list_lock); for (i = 0; i < p->n_pdds; i++) if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev)) bitmap_set(svms->bitmap_supported, i, 1); return 0; } /** * svm_range_is_valid - check if virtual address range is valid * @mm: current process mm_struct * @start: range start address, in pages * @size: range size, in pages * * Valid virtual address range means it belongs to one or more VMAs * * Context: Process context * * Return: * true - valid svm range * false - invalid svm range */ static bool svm_range_is_valid(struct mm_struct *mm, uint64_t start, uint64_t size) { const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP; struct vm_area_struct *vma; unsigned long end; start <<= PAGE_SHIFT; end = start + (size << PAGE_SHIFT); do { vma = find_vma(mm, start); if (!vma || start < vma->vm_start || (vma->vm_flags & device_vma)) return false; start = min(end, vma->vm_end); } while (start < end); return true; } /** * svm_range_add - add svm range and handle overlap * @p: the range add to this process svms * @start: page size aligned * @size: page size aligned * @nattr: number of attributes * @attrs: array of attributes * @update_list: output, the ranges need validate and update GPU mapping * @insert_list: output, the ranges need insert to svms * @remove_list: output, the ranges are replaced and need remove from svms * * Check if the virtual address range has overlap with the registered ranges, * split the overlapped range, copy and adjust pages address and vram nodes in * old and new ranges. * * Context: Process context, caller must hold svms->lock * * Return: * 0 - OK, otherwise error code */ static int svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size, uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs, struct list_head *update_list, struct list_head *insert_list, struct list_head *remove_list) { uint64_t last = start + size - 1UL; struct svm_range_list *svms; struct svm_range new = {0}; struct svm_range *prange; unsigned long left = 0; int r = 0; pr_debug("svms 0x%p [0x%llx 0x%llx]\n", &p->svms, start, last); svm_range_apply_attrs(p, &new, nattr, attrs); svms = &p->svms; r = svm_range_handle_overlap(svms, &new, start, last, update_list, insert_list, remove_list, &left); if (r) return r; if (left) { prange = svm_range_new(svms, last - left + 1, last); list_add(&prange->insert_list, insert_list); list_add(&prange->update_list, update_list); } return 0; } /** * svm_range_best_prefetch_location - decide the best prefetch location * @prange: svm range structure * * For xnack off: * If range map to single GPU, the best prefetch location is prefetch_loc, which * can be CPU or GPU. * * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise * the best prefetch location is always CPU, because GPU can not have coherent * mapping VRAM of other GPUs even with large-BAR PCIe connection. * * For xnack on: * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is * prefetch_loc, other GPU access will generate vm fault and trigger migration. * * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same * hive, the best prefetch location is prefetch_loc GPU, otherwise the best * prefetch location is always CPU. * * Context: Process context * * Return: * 0 for CPU or GPU id */ static uint32_t svm_range_best_prefetch_location(struct svm_range *prange) { DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE); uint32_t best_loc = prange->prefetch_loc; struct kfd_process_device *pdd; struct amdgpu_device *bo_adev; struct amdgpu_device *adev; struct kfd_process *p; uint32_t gpuidx; p = container_of(prange->svms, struct kfd_process, svms); if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) goto out; bo_adev = svm_range_get_adev_by_id(prange, best_loc); if (!bo_adev) { WARN_ONCE(1, "failed to get device by id 0x%x\n", best_loc); best_loc = 0; goto out; } if (p->xnack_enabled) bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE); else bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip, MAX_GPU_INSTANCE); for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { pdd = kfd_process_device_from_gpuidx(p, gpuidx); if (!pdd) { pr_debug("failed to get device by idx 0x%x\n", gpuidx); continue; } adev = (struct amdgpu_device *)pdd->dev->kgd; if (adev == bo_adev) continue; if (!amdgpu_xgmi_same_hive(adev, bo_adev)) { best_loc = 0; break; } } out: pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n", p->xnack_enabled, &p->svms, prange->start, prange->last, best_loc); return best_loc; } /* FIXME: This is a workaround for page locking bug when some pages are * invalid during migration to VRAM */ void svm_range_prefault(struct svm_range *prange, struct mm_struct *mm, void *owner) { struct hmm_range *hmm_range; int r; if (prange->validated_once) return; r = amdgpu_hmm_range_get_pages(&prange->notifier, mm, NULL, prange->start << PAGE_SHIFT, prange->npages, &hmm_range, false, true, owner); if (!r) { amdgpu_hmm_range_get_pages_done(hmm_range); prange->validated_once = true; } } /* svm_range_trigger_migration - start page migration if prefetch loc changed * @mm: current process mm_struct * @prange: svm range structure * @migrated: output, true if migration is triggered * * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range * from ram to vram. * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range * from vram to ram. * * If GPU vm fault retry is not enabled, migration interact with MMU notifier * and restore work: * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict * stops all queues, schedule restore work * 2. svm_range_restore_work wait for migration is done by * a. svm_range_validate_vram takes prange->migrate_mutex * b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns * 3. restore work update mappings of GPU, resume all queues. * * Context: Process context * * Return: * 0 - OK, otherwise - error code of migration */ static int svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange, bool *migrated) { uint32_t best_loc; int r = 0; *migrated = false; best_loc = svm_range_best_prefetch_location(prange); if (best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED || best_loc == prange->actual_loc) return 0; if (!best_loc) { r = svm_migrate_vram_to_ram(prange, mm); *migrated = !r; return r; } r = svm_migrate_to_vram(prange, best_loc, mm); *migrated = !r; return r; } int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence) { if (!fence) return -EINVAL; if (dma_fence_is_signaled(&fence->base)) return 0; if (fence->svm_bo) { WRITE_ONCE(fence->svm_bo->evicting, 1); schedule_work(&fence->svm_bo->eviction_work); } return 0; } static void svm_range_evict_svm_bo_worker(struct work_struct *work) { struct svm_range_bo *svm_bo; struct kfd_process *p; struct mm_struct *mm; svm_bo = container_of(work, struct svm_range_bo, eviction_work); if (!svm_bo_ref_unless_zero(svm_bo)) return; /* svm_bo was freed while eviction was pending */ /* svm_range_bo_release destroys this worker thread. So during * the lifetime of this thread, kfd_process and mm will be valid. */ p = container_of(svm_bo->svms, struct kfd_process, svms); mm = p->mm; if (!mm) return; mmap_read_lock(mm); spin_lock(&svm_bo->list_lock); while (!list_empty(&svm_bo->range_list)) { struct svm_range *prange = list_first_entry(&svm_bo->range_list, struct svm_range, svm_bo_list); list_del_init(&prange->svm_bo_list); spin_unlock(&svm_bo->list_lock); pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, prange->last); mutex_lock(&prange->migrate_mutex); svm_migrate_vram_to_ram(prange, svm_bo->eviction_fence->mm); mutex_lock(&prange->lock); prange->svm_bo = NULL; mutex_unlock(&prange->lock); mutex_unlock(&prange->migrate_mutex); spin_lock(&svm_bo->list_lock); } spin_unlock(&svm_bo->list_lock); mmap_read_unlock(mm); dma_fence_signal(&svm_bo->eviction_fence->base); /* This is the last reference to svm_bo, after svm_range_vram_node_free * has been called in svm_migrate_vram_to_ram */ WARN_ONCE(kref_read(&svm_bo->kref) != 1, "This was not the last reference\n"); svm_range_bo_unref(svm_bo); } static int svm_range_set_attr(struct kfd_process *p, uint64_t start, uint64_t size, uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs) { struct amdkfd_process_info *process_info = p->kgd_process_info; struct mm_struct *mm = current->mm; struct list_head update_list; struct list_head insert_list; struct list_head remove_list; struct svm_range_list *svms; struct svm_range *prange; struct svm_range *next; int r = 0; pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n", p->pasid, &p->svms, start, start + size - 1, size); r = svm_range_check_attr(p, nattr, attrs); if (r) return r; svms = &p->svms; mutex_lock(&process_info->lock); svm_range_list_lock_and_flush_work(svms, mm); if (!svm_range_is_valid(mm, start, size)) { pr_debug("invalid range\n"); r = -EFAULT; mmap_write_unlock(mm); goto out; } mutex_lock(&svms->lock); /* Add new range and split existing ranges as needed */ r = svm_range_add(p, start, size, nattr, attrs, &update_list, &insert_list, &remove_list); if (r) { mutex_unlock(&svms->lock); mmap_write_unlock(mm); goto out; } /* Apply changes as a transaction */ list_for_each_entry_safe(prange, next, &insert_list, insert_list) { svm_range_add_to_svms(prange); svm_range_add_notifier_locked(mm, prange); } list_for_each_entry(prange, &update_list, update_list) { svm_range_apply_attrs(p, prange, nattr, attrs); /* TODO: unmap ranges from GPU that lost access */ } list_for_each_entry_safe(prange, next, &remove_list, remove_list) { pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange, prange->start, prange->last); svm_range_unlink(prange); svm_range_remove_notifier(prange); svm_range_free(prange); } mmap_write_downgrade(mm); /* Trigger migrations and revalidate and map to GPUs as needed. If * this fails we may be left with partially completed actions. There * is no clean way of rolling back to the previous state in such a * case because the rollback wouldn't be guaranteed to work either. */ list_for_each_entry(prange, &update_list, update_list) { bool migrated; mutex_lock(&prange->migrate_mutex); r = svm_range_trigger_migration(mm, prange, &migrated); if (r) goto out_unlock_range; if (migrated && !p->xnack_enabled) { pr_debug("restore_work will update mappings of GPUs\n"); mutex_unlock(&prange->migrate_mutex); continue; } r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE, true, true); if (r) pr_debug("failed %d to map svm range\n", r); out_unlock_range: mutex_unlock(&prange->migrate_mutex); if (r) break; } svm_range_debug_dump(svms); mutex_unlock(&svms->lock); mmap_read_unlock(mm); out: mutex_unlock(&process_info->lock); pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid, &p->svms, start, start + size - 1, r); return r; } static int svm_range_get_attr(struct kfd_process *p, uint64_t start, uint64_t size, uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs) { DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE); DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE); bool get_preferred_loc = false; bool get_prefetch_loc = false; bool get_granularity = false; bool get_accessible = false; bool get_flags = false; uint64_t last = start + size - 1UL; struct mm_struct *mm = current->mm; uint8_t granularity = 0xff; struct interval_tree_node *node; struct svm_range_list *svms; struct svm_range *prange; uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; uint32_t flags_and = 0xffffffff; uint32_t flags_or = 0; int gpuidx; uint32_t i; pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start, start + size - 1, nattr); /* Flush pending deferred work to avoid racing with deferred actions from * previous memory map changes (e.g. munmap). Concurrent memory map changes * can still race with get_attr because we don't hold the mmap lock. But that * would be a race condition in the application anyway, and undefined * behaviour is acceptable in that case. */ flush_work(&p->svms.deferred_list_work); mmap_read_lock(mm); if (!svm_range_is_valid(mm, start, size)) { pr_debug("invalid range\n"); mmap_read_unlock(mm); return -EINVAL; } mmap_read_unlock(mm); for (i = 0; i < nattr; i++) { switch (attrs[i].type) { case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: get_preferred_loc = true; break; case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: get_prefetch_loc = true; break; case KFD_IOCTL_SVM_ATTR_ACCESS: get_accessible = true; break; case KFD_IOCTL_SVM_ATTR_SET_FLAGS: case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: get_flags = true; break; case KFD_IOCTL_SVM_ATTR_GRANULARITY: get_granularity = true; break; case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: case KFD_IOCTL_SVM_ATTR_NO_ACCESS: fallthrough; default: pr_debug("get invalid attr type 0x%x\n", attrs[i].type); return -EINVAL; } } svms = &p->svms; mutex_lock(&svms->lock); node = interval_tree_iter_first(&svms->objects, start, last); if (!node) { pr_debug("range attrs not found return default values\n"); svm_range_set_default_attributes(&location, &prefetch_loc, &granularity, &flags_and); flags_or = flags_and; if (p->xnack_enabled) bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE); else bitmap_zero(bitmap_access, MAX_GPU_INSTANCE); bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE); goto fill_values; } bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE); bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE); while (node) { struct interval_tree_node *next; prange = container_of(node, struct svm_range, it_node); next = interval_tree_iter_next(node, start, last); if (get_preferred_loc) { if (prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED || (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED && location != prange->preferred_loc)) { location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; get_preferred_loc = false; } else { location = prange->preferred_loc; } } if (get_prefetch_loc) { if (prange->prefetch_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED || (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED && prefetch_loc != prange->prefetch_loc)) { prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; get_prefetch_loc = false; } else { prefetch_loc = prange->prefetch_loc; } } if (get_accessible) { bitmap_and(bitmap_access, bitmap_access, prange->bitmap_access, MAX_GPU_INSTANCE); bitmap_and(bitmap_aip, bitmap_aip, prange->bitmap_aip, MAX_GPU_INSTANCE); } if (get_flags) { flags_and &= prange->flags; flags_or |= prange->flags; } if (get_granularity && prange->granularity < granularity) granularity = prange->granularity; node = next; } fill_values: mutex_unlock(&svms->lock); for (i = 0; i < nattr; i++) { switch (attrs[i].type) { case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: attrs[i].value = location; break; case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: attrs[i].value = prefetch_loc; break; case KFD_IOCTL_SVM_ATTR_ACCESS: gpuidx = kfd_process_gpuidx_from_gpuid(p, attrs[i].value); if (gpuidx < 0) { pr_debug("invalid gpuid %x\n", attrs[i].value); return -EINVAL; } if (test_bit(gpuidx, bitmap_access)) attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS; else if (test_bit(gpuidx, bitmap_aip)) attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE; else attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS; break; case KFD_IOCTL_SVM_ATTR_SET_FLAGS: attrs[i].value = flags_and; break; case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: attrs[i].value = ~flags_or; break; case KFD_IOCTL_SVM_ATTR_GRANULARITY: attrs[i].value = (uint32_t)granularity; break; } } return 0; } int svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start, uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs) { int r; start >>= PAGE_SHIFT; size >>= PAGE_SHIFT; switch (op) { case KFD_IOCTL_SVM_OP_SET_ATTR: r = svm_range_set_attr(p, start, size, nattrs, attrs); break; case KFD_IOCTL_SVM_OP_GET_ATTR: r = svm_range_get_attr(p, start, size, nattrs, attrs); break; default: r = EINVAL; break; } return r; }