/* * FSI core driver * * Copyright (C) IBM Corporation 2016 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include "fsi-master.h" #define DEBUG #define FSI_N_SLAVES 4 #define FSI_BREAK 0xc0de0000 #define FSI_SLAVE_CONF_NEXT_MASK 0x80000000 #define FSI_SLAVE_CONF_SLOTS_MASK 0x00ff0000 #define FSI_SLAVE_CONF_SLOTS_SHIFT 16 #define FSI_SLAVE_CONF_VERSION_MASK 0x0000f000 #define FSI_SLAVE_CONF_VERSION_SHIFT 12 #define FSI_SLAVE_CONF_TYPE_MASK 0x00000ff0 #define FSI_SLAVE_CONF_TYPE_SHIFT 4 #define FSI_SLAVE_CONF_CRC_SHIFT 4 #define FSI_SLAVE_CONF_CRC_MASK 0x0000000f #define FSI_SLAVE_CONF_DATA_BITS 28 #define FSI_PEEK_BASE 0x410 #define FSI_SLAVE_BASE 0x800 #define FSI_HUB_CONTROL 0x3400 #define FSI_SLAVE_SMODE_DFLT 0xa0ff0100 #define FSI_IPOLL_PERIOD msecs_to_jiffies(fsi_ipoll_period_ms) #define FSI_ENGID_HUB_MASTER 0x1c #define FSI_ENGID_HUB_LINK 0x1d #define FSI_HUB_LINK_OFFSET 0x80000 #define FSI_MASTER_HUB_LINK_SIZE 0x80000 #define FSI_HUB_MASTER_MAX_LINKS 8 #define FSI_LINK_ENABLE_SETUP_TIME 10 /* in mS */ static const int engine_page_size = 0x400; static struct task_struct *master_ipoll; static unsigned int fsi_ipoll_period_ms = 100; static DEFINE_IDA(master_ida); struct fsi_slave { struct list_head list_link; /* Master's list of slaves */ struct list_head my_engines; struct device dev; struct fsi_master *master; int link; uint8_t id; }; struct fsi_master_hub { struct fsi_master master; struct fsi_slave *slave; struct device dev; uint32_t control_regs; /* slave-relative addr regs */ uint32_t base; /* slave-relative addr of */ /* master address space */ }; #define to_fsi_hub(d) container_of(d, struct fsi_master_hub, dev) #define to_fsi_master_hub(d) container_of(d, struct fsi_master_hub, master) #define to_fsi_slave(d) container_of(d, struct fsi_slave, dev) static void fsi_master_unscan(struct fsi_master *master); static int fsi_slave_read(struct fsi_slave *slave, uint32_t addr, void *val, size_t size); static int fsi_slave_write(struct fsi_slave *slave, uint32_t addr, const void *val, size_t size); /* * FSI slave engine control register offsets */ #define FSI_SMODE 0x0 /* R/W: Mode register */ #define FSI_SI1M 0x18 /* R/W: IRQ mask */ #define FSI_SI1S 0x1C /* R: IRQ status */ #define FSI_SRSIC0 0x68 /* R/W: Remote IRQ condition 0 */ #define FSI_SRSIC1 0x6C /* R/W: Remote IRQ condition 1 */ #define FSI_SRSIM0 0x70 /* R/W: Remote IRQ mask 0 */ #define FSI_SRSIS0 0x78 /* R: Remote IRQ status 0 */ /* * SI1S, SI1M fields */ #define FSI_SI1_HUB_SRC 0x00100000 /* hub IRQ source */ /* * SMODE fields */ #define FSI_SMODE_WSC 0x80000000 /* Warm start done */ #define FSI_SMODE_ECRC 0x20000000 /* Hw CRC check */ #define FSI_SMODE_SID_SHIFT 24 /* ID shift */ #define FSI_SMODE_SID_MASK 3 /* ID Mask */ #define FSI_SMODE_ED_SHIFT 20 /* Echo delay shift */ #define FSI_SMODE_ED_MASK 0xf /* Echo delay mask */ #define FSI_SMODE_SD_SHIFT 16 /* Send delay shift */ #define FSI_SMODE_SD_MASK 0xf /* Send delay mask */ #define FSI_SMODE_LBCRR_SHIFT 8 /* Clk ratio shift */ #define FSI_SMODE_LBCRR_MASK 0xf /* Clk ratio mask */ /* * SRSIS, SRSIM, SRSIC fields */ #define FSI_SRSIX_IRQ1_MASK 0x00aaaaaa /* SI1 IRQ sources */ #define FSI_SRSIX_BITS_PER_LINK 8 /* FSI endpoint-device support */ int fsi_device_read(struct fsi_device *dev, uint32_t addr, void *val, size_t size) { if (addr > dev->size || size > dev->size || addr > dev->size - size) return -EINVAL; return fsi_slave_read(dev->slave, dev->addr + addr, val, size); } EXPORT_SYMBOL_GPL(fsi_device_read); int fsi_device_write(struct fsi_device *dev, uint32_t addr, const void *val, size_t size) { if (addr > dev->size || size > dev->size || addr > dev->size - size) return -EINVAL; return fsi_slave_write(dev->slave, dev->addr + addr, val, size); } EXPORT_SYMBOL_GPL(fsi_device_write); int fsi_device_peek(struct fsi_device *dev, void *val) { uint32_t addr = FSI_PEEK_BASE + ((dev->unit - 2) * sizeof(uint32_t)); return fsi_slave_read(dev->slave, addr, val, sizeof(uint32_t)); } static void fsi_device_release(struct device *_device) { struct fsi_device *device = to_fsi_dev(_device); kfree(device); } static struct fsi_device *fsi_create_device(struct fsi_slave *slave) { struct fsi_device *dev; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return NULL; dev->dev.parent = &slave->dev; dev->dev.bus = &fsi_bus_type; dev->dev.release = fsi_device_release; return dev; } /* crc helpers */ static const uint8_t crc4_tab[] = { 0x0, 0x7, 0xe, 0x9, 0xb, 0xc, 0x5, 0x2, 0x1, 0x6, 0xf, 0x8, 0xa, 0xd, 0x4, 0x3, }; uint8_t fsi_crc4(uint8_t c, uint64_t x, int bits) { int i; /* Align to 4-bits */ bits = (bits + 3) & ~0x3; /* Calculate crc4 over four-bit nibbles, starting at the MSbit */ for (i = bits; i >= 0; i -= 4) c = crc4_tab[c ^ ((x >> i) & 0xf)]; return c; } EXPORT_SYMBOL_GPL(fsi_crc4); /* FSI slave support */ /* Encode slave local bus echo delay */ static inline uint32_t fsi_smode_echodly(int x) { return (x & FSI_SMODE_ED_MASK) << FSI_SMODE_ED_SHIFT; } /* Encode slave local bus send delay */ static inline uint32_t fsi_smode_senddly(int x) { return (x & FSI_SMODE_SD_MASK) << FSI_SMODE_SD_SHIFT; } /* Encode slave local bus clock rate ratio */ static inline uint32_t fsi_smode_lbcrr(int x) { return (x & FSI_SMODE_LBCRR_MASK) << FSI_SMODE_LBCRR_SHIFT; } /* Encode slave ID */ static inline uint32_t fsi_smode_sid(int x) { return (x & FSI_SMODE_SID_MASK) << FSI_SMODE_SID_SHIFT; } static int fsi_slave_read(struct fsi_slave *slave, uint32_t addr, void *val, size_t size) { return slave->master->read(slave->master, slave->link, slave->id, addr, val, size); } static int fsi_slave_write(struct fsi_slave *slave, uint32_t addr, const void *val, size_t size) { return slave->master->write(slave->master, slave->link, slave->id, addr, val, size); } /* * FSI hub master support * * A hub master increases the number of potential target devices that the * primary FSI master can access. For each link a primary master supports * each of those links can in turn be chained to a hub master with multiple * hub links of its own. Hubs differ from cascaded masters (cMFSI) in the * total addressable range per link -hubs having address ranges that are much * larger. Hub masters also contain the registers that describe them * whereas cascaded masters are described by their parent. */ int hub_master_read(struct fsi_master *master, int linkno, uint8_t slave, uint32_t addr, void *val, size_t size) { struct fsi_master_hub *hub = to_fsi_master_hub(master); addr += (linkno * FSI_MASTER_HUB_LINK_SIZE) + hub->base; return fsi_slave_read(hub->slave, addr, val, size); } int hub_master_write(struct fsi_master *master, int linkno, uint8_t slave, uint32_t addr, const void *val, size_t size) { struct fsi_master_hub *hub = to_fsi_master_hub(master); addr += (linkno * FSI_MASTER_HUB_LINK_SIZE) + hub->base; return fsi_slave_write(hub->slave, addr, val, size); } int hub_master_break(struct fsi_master *master, int linkno) { struct fsi_master_hub *hub = to_fsi_master_hub(master); uint32_t command; uint32_t break_offset = 0x4; /* hw workaround: hub links require a */ /* break to offset 4 instead of the */ /* non hub 0 offset. */ uint32_t addr; command = FSI_BREAK; addr = (linkno * FSI_MASTER_HUB_LINK_SIZE) + hub->base; return fsi_slave_write(hub->slave, addr + break_offset, &command, sizeof(command)); } int hub_master_link_enable(struct fsi_master *master, int linkno) { struct fsi_master_hub *hub = to_fsi_master_hub(master); uint32_t menp = L_MSB_MASK(linkno); int rc; rc = fsi_slave_write(hub->slave, hub->control_regs + FSI_MSENP0, &menp, sizeof(menp)); /* * Wait for hw to finish enable - there is latency in logic setup * before link operations like break, etc can be done */ mdelay(FSI_LINK_ENABLE_SETUP_TIME); return rc; } static int hub_master_init(struct fsi_master_hub *hub) { int rc; uint32_t mver; struct fsi_master *master = &hub->master; master->read = hub_master_read; master->write = hub_master_write; master->send_break = hub_master_break; master->link_enable = hub_master_link_enable; /* Initialize the MFSI (hub master) engine */ rc = fsi_slave_read(hub->slave, hub->control_regs + FSI_MVER, &mver, sizeof(mver)); if (rc) return rc; mver = FSI_MRESP_RST_ALL_MASTER | FSI_MRESP_RST_ALL_LINK | FSI_MRESP_RST_MCR | FSI_MRESP_RST_PYE; rc = fsi_slave_write(hub->slave, hub->control_regs + FSI_MRESP0, &mver, sizeof(mver)); if (rc) return rc; mver = FSI_MECTRL_EOAE | FSI_MECTRL_P8_AUTO_TERM; rc = fsi_slave_write(hub->slave, hub->control_regs + FSI_MECTRL, &mver, sizeof(mver)); if (rc) return rc; mver = FSI_MMODE_EIP | FSI_MMODE_ECRC | FSI_MMODE_EPC | fsi_mmode_crs0(1) | fsi_mmode_crs1(1) | FSI_MMODE_P8_TO_LSB; rc = fsi_slave_write(hub->slave, hub->control_regs + FSI_MMODE, &mver, sizeof(mver)); if (rc) return rc; mver = 0xffff0000; rc = fsi_slave_write(hub->slave, hub->control_regs + FSI_MDLYR, &mver, sizeof(mver)); if (rc) return rc; mver = ~0; rc = fsi_slave_write(hub->slave, hub->control_regs + FSI_MSENP0, &mver, sizeof(mver)); if (rc) return rc; /* Leave enabled long enough for master logic to set up */ mdelay(FSI_LINK_ENABLE_SETUP_TIME); rc = fsi_slave_write(hub->slave, hub->control_regs + FSI_MCENP0, &mver, sizeof(mver)); if (rc) return rc; rc = fsi_slave_read(hub->slave, hub->control_regs + FSI_MAEB, &mver, sizeof(mver)); if (rc) return rc; mver = FSI_MRESP_RST_ALL_MASTER | FSI_MRESP_RST_ALL_LINK; rc = fsi_slave_write(hub->slave, hub->control_regs + FSI_MRESP0, &mver, sizeof(mver)); if (rc) return rc; rc = fsi_slave_read(hub->slave, hub->control_regs + FSI_MLEVP0, &mver, sizeof(mver)); if (rc) return rc; /* Reset the master bridge */ mver = FSI_MRESB_RST_GEN; rc = fsi_slave_write(hub->slave, hub->control_regs + FSI_MRESB0, &mver, sizeof(mver)); if (rc) return rc; mver = FSI_MRESB_RST_ERR; return fsi_slave_write(hub->slave, hub->control_regs + FSI_MRESB0, &mver, sizeof(mver)); } static void hub_master_release(struct device *dev) { struct fsi_master_hub *hub = to_fsi_hub(dev); kfree(hub); } static int fsi_slave_scan(struct fsi_slave *slave) { uint32_t engine_addr; uint32_t conf; int rc, i; uint8_t si1s_bit = 1; uint8_t conf_link_count = 0; struct fsi_master_hub *hub; INIT_LIST_HEAD(&slave->my_engines); /* * scan engines * * We keep the peek mode and slave engines for the core; so start * at the third slot in the configuration table. We also need to * skip the chip ID entry at the start of the address space. */ engine_addr = engine_page_size * 3; for (i = 2; i < engine_page_size / sizeof(uint32_t); i++) { uint8_t slots, version, type, crc; struct fsi_device *dev; rc = fsi_slave_read(slave, (i + 1) * sizeof(conf), &conf, sizeof(conf)); if (rc) { dev_warn(&slave->dev, "error reading slave registers\n"); return -1; } crc = fsi_crc4(0, conf >> FSI_SLAVE_CONF_CRC_SHIFT, FSI_SLAVE_CONF_DATA_BITS); if (crc != (conf & FSI_SLAVE_CONF_CRC_MASK)) { dev_warn(&slave->dev, "crc error in slave register at 0x%04x\n", i); return -1; } slots = (conf & FSI_SLAVE_CONF_SLOTS_MASK) >> FSI_SLAVE_CONF_SLOTS_SHIFT; version = (conf & FSI_SLAVE_CONF_VERSION_MASK) >> FSI_SLAVE_CONF_VERSION_SHIFT; type = (conf & FSI_SLAVE_CONF_TYPE_MASK) >> FSI_SLAVE_CONF_TYPE_SHIFT; switch (type) { case 0: /* * Unused address areas are marked by a zero type * value; this skips the defined address areas */ break; case FSI_ENGID_HUB_MASTER: hub = kzalloc(sizeof(*hub), GFP_KERNEL); if (!hub) return -ENOMEM; device_initialize(&hub->dev); dev_set_name(&hub->dev, "hub@%02x", slave->master->idx); hub->dev.release = hub_master_release; hub->master.dev = &hub->dev; hub->master.dev->parent = &slave->dev; dev_set_drvdata(&hub->dev, hub); rc = device_add(&hub->dev); if (rc) return rc; hub->base = FSI_HUB_LINK_OFFSET; hub->control_regs = engine_addr; hub->slave = slave; rc = hub_master_init(hub); break; case FSI_ENGID_HUB_LINK: conf_link_count++; break; default: if (slots == 0) break; /* create device */ dev = fsi_create_device(slave); if (!dev) return -ENOMEM; dev->slave = slave; dev->engine_type = type; dev->version = version; dev->unit = i; dev->addr = engine_addr; dev->size = slots * engine_page_size; dev->si1s_bit = si1s_bit++; dev_info(&slave->dev, "engine[%i]: type %x, version %x, addr %x size %x\n", dev->unit, dev->engine_type, version, dev->addr, dev->size); device_initialize(&dev->dev); dev_set_name(&dev->dev, "%02x:%02x:%02x:%02x", slave->master->idx, slave->link, slave->id, i - 2); rc = device_add(&dev->dev); if (rc) { dev_warn(&slave->dev, "add failed: %d\n", rc); put_device(&dev->dev); continue; } list_add(&dev->link, &slave->my_engines); } engine_addr += slots * engine_page_size; if (!(conf & FSI_SLAVE_CONF_NEXT_MASK)) break; } if (hub) { hub->master.n_links = conf_link_count / 2; fsi_master_register(&hub->master); } return 0; } static void fsi_slave_release(struct device *dev) { struct fsi_slave *slave = to_fsi_slave(dev); kfree(slave); } static uint32_t set_smode_defaults(struct fsi_master *master) { return FSI_SMODE_WSC | FSI_SMODE_ECRC | fsi_smode_echodly(0xf) | fsi_smode_senddly(0xf) | fsi_smode_lbcrr(1); } static int fsi_slave_set_smode(struct fsi_master *master, int link, int id) { uint32_t smode = set_smode_defaults(master); smode |= fsi_smode_sid(id); return master->write(master, link, 3, FSI_SLAVE_BASE + FSI_SMODE, &smode, sizeof(smode)); } static ssize_t fsi_slave_sysfs_raw_read(struct file *file, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct fsi_slave *slave = to_fsi_slave(kobj_to_dev(kobj)); int rc; if (count != 4 || off & 0x3) return -EINVAL; if (off > 0xfffffffc || off < 0) return -EINVAL; rc = fsi_slave_read(slave, off, buf, 4); return rc ? rc : count; } static ssize_t fsi_slave_sysfs_raw_write(struct file *file, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct fsi_slave *slave = to_fsi_slave(kobj_to_dev(kobj)); int rc; if (count != 4 || off & 0x3) return -EINVAL; if (off > 0xfffffffc || off < 0) return -EINVAL; rc = fsi_slave_write(slave, off, buf, 4); return rc ? rc : count; } static struct bin_attribute fsi_slave_raw_attr = { .attr = { .name = "raw", .mode = S_IRUSR | S_IWUSR, }, .size = 0, .read = fsi_slave_sysfs_raw_read, .write = fsi_slave_sysfs_raw_write, }; static int fsi_slave_irq_clear(struct fsi_slave *slave) { uint32_t clear = ~0; int rc; rc = fsi_slave_write(slave, FSI_SLAVE_BASE + FSI_SRSIC0, &clear, sizeof(clear)); if (rc) { dev_dbg(&slave->dev, "Failed on write to SRSIC0\n"); return rc; } return fsi_slave_write(slave, FSI_SLAVE_BASE + FSI_SRSIC1, &clear, sizeof(clear)); } static int fsi_slave_init(struct fsi_master *master, int link, uint8_t slave_id) { struct fsi_slave *slave; uint32_t chip_id; int rc; uint8_t crc; /* * todo: Due to CFAM hardware issues related to BREAK commands we're * limited to only one CFAM per link. Once issues are resolved this * restriction can be removed. */ if (slave_id > 0) return 0; rc = fsi_slave_set_smode(master, link, slave_id); if (rc) { dev_warn(master->dev, "can't set smode on slave:%02x:%02x %d\n", link, slave_id, rc); return -ENODEV; } rc = master->read(master, link, slave_id, 0, &chip_id, sizeof(chip_id)); if (rc) { dev_warn(master->dev, "can't read slave %02x:%02x: %d\n", link, slave_id, rc); return -ENODEV; } crc = fsi_crc4(0, chip_id >> FSI_SLAVE_CONF_CRC_SHIFT, FSI_SLAVE_CONF_DATA_BITS); if (crc != (chip_id & FSI_SLAVE_CONF_CRC_MASK)) { dev_warn(master->dev, "slave %02x:%02x invalid chip id CRC!\n", link, slave_id); return -EIO; } pr_debug("fsi: found chip %08x at %02x:%02x:%02x\n", master->idx, chip_id, link, slave_id); /* we can communicate with a slave; create devices and scan */ slave = kzalloc(sizeof(*slave), GFP_KERNEL); if (!slave) return -ENOMEM; slave->master = master; slave->id = slave_id; slave->dev.parent = master->dev; slave->dev.release = fsi_slave_release; slave->link = link; dev_set_name(&slave->dev, "slave@%02x:%02x", link, slave_id); rc = device_register(&slave->dev); if (rc < 0) { dev_warn(master->dev, "failed to create slave device: %d\n", rc); put_device(&slave->dev); return rc; } rc = device_create_bin_file(&slave->dev, &fsi_slave_raw_attr); if (rc) dev_warn(&slave->dev, "failed to create raw attr: %d\n", rc); list_add(&slave->list_link, &master->my_slaves); rc = fsi_slave_scan(slave); if (rc) return rc; return fsi_slave_irq_clear(slave); } /* FSI master support */ static int fsi_master_link_enable(struct fsi_master *master, int link) { if (master->link_enable) return master->link_enable(master, link); return 0; } /* * Issue a break command on this link */ static int fsi_master_break(struct fsi_master *master, int link) { if (master->send_break) return master->send_break(master, link); return 0; } void fsi_master_handle_error(struct fsi_master *master, uint32_t addr) { uint32_t smode = FSI_SLAVE_SMODE_DFLT; static atomic_t in_err_cleanup = ATOMIC_INIT(-1); if (!atomic_inc_and_test(&in_err_cleanup)) return; fsi_master_break(master, 0); udelay(200); master->write(master, 0, 0, FSI_SLAVE_BASE + FSI_SMODE, &smode, sizeof(smode)); smode = FSI_MRESB_RST_GEN | FSI_MRESB_RST_ERR; master->write(master, 0, 0, FSI_HUB_CONTROL + FSI_MRESB0, &smode, sizeof(smode)); if (addr > FSI_HUB_LINK_OFFSET) { smode = FSI_BREAK; master->write(master, 0, 0, 0x100004, &smode, sizeof(smode)); smode = FSI_SLAVE_SMODE_DFLT; master->write(master, 0, 0, 0x100800, &smode, sizeof(smode)); } atomic_set(&in_err_cleanup, -1); } EXPORT_SYMBOL(fsi_master_handle_error); static int fsi_master_scan(struct fsi_master *master) { int link, slave_id, rc; uint32_t smode; if (!master->slave_list) { INIT_LIST_HEAD(&master->my_slaves); master->slave_list = true; } for (link = 0; link < master->n_links; link++) { rc = fsi_master_link_enable(master, link); if (rc) { dev_dbg(master->dev, "enable link:%d failed with:%d\n", link, rc); continue; } rc = fsi_master_break(master, link); if (rc) { dev_dbg(master->dev, "Break to link:%d failed with:%d\n", link, rc); continue; } /* * Verify can read slave at default ID location. If fails * there must be nothing on other end of link */ rc = master->read(master, link, 3, FSI_SLAVE_BASE + FSI_SMODE, &smode, sizeof(smode)); if (rc) { dev_dbg(master->dev, "Read link:%d smode default id failed:%d\n", link, rc); continue; } for (slave_id = 0; slave_id < FSI_N_SLAVES; slave_id++) fsi_slave_init(master, link, slave_id); } return 0; } static ssize_t fsi_ipoll_period_show(struct device *dev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE - 1, "%u\n", fsi_ipoll_period_ms); } static ssize_t fsi_ipoll_period_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int rc; unsigned long val = 0; rc = kstrtoul(buf, 0, &val); if (val > 1 && val < 10000) fsi_ipoll_period_ms = val; return count; } DEVICE_ATTR(fsi_ipoll_period, S_IRUGO | S_IWUSR, fsi_ipoll_period_show, fsi_ipoll_period_store); static int fsi_unregister_hubs(struct device *dev, void *data) { struct fsi_master_hub *hub = dev_get_drvdata(dev); if (!hub) return 0; ida_simple_remove(&master_ida, hub->master.idx); hub->master.idx = -1; device_remove_file(dev, &dev_attr_fsi_ipoll_period); fsi_master_unscan(&hub->master); device_del(dev); return 0; } static void fsi_master_unscan(struct fsi_master *master) { struct fsi_slave *slave, *slave_tmp; struct fsi_device *fsi_dev, *fsi_dev_tmp; if (!master->slave_list) return; list_for_each_entry_safe(slave, slave_tmp, &master->my_slaves, list_link) { list_del(&slave->list_link); list_for_each_entry_safe(fsi_dev, fsi_dev_tmp, &slave->my_engines, link) { list_del(&fsi_dev->link); device_del(&fsi_dev->dev); put_device(&fsi_dev->dev); } /* Remove any hub masters */ device_for_each_child(&slave->dev, NULL, fsi_unregister_hubs); device_unregister(&slave->dev); } master->slave_list = false; } /* TODO: Add support for hub links 4-7 */ static int next_hublink_source(struct fsi_slave *slave, uint32_t srsis) { int index; if (!slave) return -EINVAL; if (!(srsis & FSI_SRSIX_IRQ1_MASK)) { dev_dbg(&slave->dev, "Unexpected IRQ source SRSIS:0x%08x\n", srsis); return -EINVAL; } /* * TODO: add a fair scheduler to ensure we don't favor lower * hublink IRQ sources over others */ index = __clz(srsis); dev_dbg(&slave->dev, "SRSIS:0x%08x index:%d\n", srsis, index); return index / FSI_SRSIX_BITS_PER_LINK; } static int __fsi_dev_irq(struct device *dev, void *data); static int __fsi_hub_slave_irq(struct device *dev, void *data) { int rc; struct fsi_slave *hub_slave = to_fsi_slave(dev); uint32_t si1s; if (!hub_slave) { dev_dbg(dev, "Could not find hub slave\n"); return -ENODEV; } rc = fsi_slave_read(hub_slave, FSI_SLAVE_BASE + FSI_SI1S, &si1s, sizeof(si1s)); if (rc) { dev_dbg(dev, "Fail on read of hub slave si1s\n"); return rc; } if (!si1s) return 0; return device_for_each_child(dev, &si1s, __fsi_dev_irq); } static int __fsi_dev_irq(struct device *dev, void *data) { uint32_t *si1s = data, srsis; struct fsi_device *fsi_dev = to_fsi_dev(dev); struct fsi_slave *slave; struct fsi_master_hub *hub; int rc, hublink; if (!fsi_dev || !si1s) { dev_dbg(dev, "Invalid input: %p %p\n", fsi_dev, si1s); return -EINVAL; } if (*si1s & (0x80000000 >> fsi_dev->si1s_bit) && fsi_dev->irq_handler) { fsi_dev->irq_handler(0, &fsi_dev->dev); return 1; } if (!(*si1s & FSI_SI1_HUB_SRC)) { dev_dbg(dev, "IRQ not from a hub source\n"); return 0; } hub = dev_get_drvdata(dev); if (!hub) { dev_dbg(dev, "Not a hub device\n"); return 0; } /* Scan the hub links for the source of IRQ */ slave = to_fsi_slave(dev->parent); if (!slave) { dev_dbg(dev, "Could not retrieve device's slave\n"); return -ENODEV; } rc = fsi_slave_read(slave, FSI_SLAVE_BASE + FSI_SRSIS0, &srsis, sizeof(srsis)); if (rc) { dev_dbg(&slave->dev, "Failed to read SRSIS0\n"); return rc; } if (srsis) { hublink = next_hublink_source(slave, srsis); if (!hub->master.dev) return 0; device_for_each_child(dev, &hublink, __fsi_hub_slave_irq); /* Clear out the interrupting condition */ srsis = 0xff000000 >> (hublink * FSI_SRSIX_BITS_PER_LINK); rc = fsi_slave_write(slave, FSI_SLAVE_BASE + FSI_SRSIC0, &srsis, sizeof(srsis)); if (rc) { dev_dbg(&slave->dev, "Failed to clear out SRSIC\n"); return rc; } } else { dev_dbg(&slave->dev, "SI1S HUB src but no SRSIS0 bits!\n"); return -EINVAL; } return 1; } static int __fsi_slave_irq(struct device *dev, void *data) { return device_for_each_child(dev, data, __fsi_dev_irq); } static void fsi_master_irq(struct fsi_master *master, int link, uint32_t si1s) { device_for_each_child(master->dev, &si1s, __fsi_slave_irq); } static int fsi_master_ipoll(void *data) { int rc; uint32_t si1s; unsigned long elapsed = 0; unsigned long previous_jiffies = jiffies; struct fsi_master *master = data; while (!kthread_should_stop()) { if (!master->ipoll) goto done; /* Ignore errors for now */ rc = master->read(master, 0, 0, FSI_SLAVE_BASE + FSI_SI1S, &si1s, sizeof(uint32_t)); if (rc) goto done; if (si1s & master->ipoll) fsi_master_irq(master, 0, si1s); done: elapsed = jiffies - previous_jiffies; if (elapsed < FSI_IPOLL_PERIOD) { set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(FSI_IPOLL_PERIOD - elapsed); } previous_jiffies = jiffies; } return 0; } int fsi_master_register(struct fsi_master *master) { if (!master || !master->dev) return -EINVAL; master->idx = ida_simple_get(&master_ida, 0, INT_MAX, GFP_KERNEL); master->slave_list = false; get_device(master->dev); fsi_master_scan(master); device_create_file(master->dev, &dev_attr_fsi_ipoll_period); return 0; } EXPORT_SYMBOL_GPL(fsi_master_register); void fsi_master_unregister(struct fsi_master *master) { if (!master || !master->dev || master->idx < 0) return; ida_simple_remove(&master_ida, master->idx); master->idx = -1; device_remove_file(master->dev, &dev_attr_fsi_ipoll_period); fsi_master_unscan(master); put_device(master->dev); if (master_ipoll) { kthread_stop(master_ipoll); master_ipoll = NULL; } } EXPORT_SYMBOL_GPL(fsi_master_unregister); /* * TODO: move this to master->start_ipoll( ) -each master may have its * own way of doing this */ int fsi_master_start_ipoll(struct fsi_master *master) { if (master_ipoll) { dev_err(master->dev, "Already polling for irqs\n"); return -EALREADY; } master_ipoll = kthread_create(fsi_master_ipoll, master, "fsi_master_ipoll"); if (IS_ERR(master_ipoll)) { dev_err(master->dev, "Couldn't create ipoll thread rc:%d\n", (int)PTR_ERR(master_ipoll)); return PTR_ERR(master_ipoll); } wake_up_process(master_ipoll); return 0; } EXPORT_SYMBOL_GPL(fsi_master_start_ipoll); /* FSI core & Linux bus type definitions */ static int fsi_bus_match(struct device *dev, struct device_driver *drv) { struct fsi_device *fsi_dev = to_fsi_dev(dev); struct fsi_driver *fsi_drv = to_fsi_drv(drv); const struct fsi_device_id *id; if (!fsi_drv->id_table) return 0; for (id = fsi_drv->id_table; id->engine_type; id++) { if (id->engine_type != fsi_dev->engine_type) continue; if (id->version == FSI_VERSION_ANY || id->version == fsi_dev->version) return 1; } return 0; } int fsi_driver_register(struct fsi_driver *fsi_drv) { if (!fsi_drv) return -EINVAL; if (!fsi_drv->id_table) return -EINVAL; return driver_register(&fsi_drv->drv); } EXPORT_SYMBOL_GPL(fsi_driver_register); void fsi_driver_unregister(struct fsi_driver *fsi_drv) { driver_unregister(&fsi_drv->drv); } EXPORT_SYMBOL_GPL(fsi_driver_unregister); static uint32_t link_to_srsim_mask(int link) { return ((0x80000000 >> 6) >> FSI_SRSIX_BITS_PER_LINK*link); } static uint32_t link_to_msiep_mask(int link) { return (0xf0000000 >> (FSI_MSIEP_BITS_PER_LINK*link)); } static int set_si1m(struct fsi_slave *slave, uint32_t mask, int on) { int rc; uint32_t si1m; rc = fsi_slave_read(slave, FSI_SLAVE_BASE + FSI_SI1M, &si1m, sizeof(si1m)); if (rc) { dev_dbg(&slave->dev, "Failed to read SI1M\n"); return rc; } if (on) si1m |= mask; else si1m &= ~mask; return fsi_slave_write(slave, FSI_SLAVE_BASE + FSI_SI1M, &si1m, sizeof(si1m)); } static int set_upstream_irq_masks(struct fsi_master *master, struct fsi_slave *slave, int on) { struct fsi_slave *upstream_slave; struct fsi_master *upstream_master; uint32_t mask, si1m; int rc; if (master->idx <= 0) return 0; upstream_slave = to_fsi_slave(slave->master->dev->parent); if (!upstream_slave) { dev_dbg(&slave->dev, "No upstream slave found\n"); return -ENODEV; } rc = fsi_slave_read(upstream_slave, FSI_SLAVE_BASE + FSI_SRSIM0, &si1m, sizeof(si1m)); if (rc) { dev_dbg(&slave->dev, "Failed to read SRSIM0\n"); return rc; } mask = link_to_srsim_mask(slave->link); if (on) si1m |= mask; else si1m &= ~mask; rc = fsi_slave_write(upstream_slave, FSI_SLAVE_BASE + FSI_SRSIM0, &si1m, sizeof(si1m)); if (rc) { dev_dbg(&slave->dev, "Failed to write SRSIM0\n"); return rc; } upstream_master = upstream_slave->master; if (!upstream_master) { dev_dbg(&upstream_slave->dev, "Cannot find master\n"); return -ENODEV; } rc = upstream_master->read(upstream_master, 0, 0, FSI_HUB_CONTROL + FSI_MSIEP0, &si1m, sizeof(si1m)); if (rc) { dev_dbg(&upstream_slave->dev, "Could not read master's MSIEP\n"); return rc; } /* TODO: merge this into above on/off check */ mask = link_to_msiep_mask(slave->link); if (on) { upstream_master->ipoll |= FSI_SI1_HUB_SRC; si1m |= mask; } else { upstream_master->ipoll &= ~FSI_SI1_HUB_SRC; si1m &= ~mask; } rc = upstream_master->write(upstream_master, 0, 0, FSI_HUB_CONTROL + FSI_MSIEP0, &si1m, sizeof(si1m)); if (rc) { dev_dbg(&upstream_slave->dev, "Failed to write to master's MSIEP\n"); return rc; } si1m = 0xd0040410; rc = upstream_master->write(upstream_master, 0, 0, FSI_HUB_CONTROL + FSI_MMODE, &si1m, sizeof(si1m)); if (rc) { dev_dbg(&upstream_slave->dev, "Failed to set hub I POLL\n"); } si1m = FSI_SI1_HUB_SRC; rc = upstream_master->write(upstream_master, 0, 0, FSI_SLAVE_BASE + FSI_SI1M, &si1m, sizeof(si1m)); if (rc) { dev_dbg(&upstream_slave->dev, "Failed to set hub mask in SI1M\n"); } return set_si1m(upstream_slave, FSI_SI1_HUB_SRC, on); } int fsi_enable_irq(struct fsi_device *dev) { int rc; u32 si1m; u32 bit = 0x80000000 >> dev->si1s_bit; struct fsi_master *master = dev->slave->master; struct fsi_slave *slave = dev->slave; int link = slave->link; if (!dev->irq_handler) return -EINVAL; rc = master->read(master, link, 0, FSI_SLAVE_BASE + FSI_SI1M, &si1m, sizeof(u32)); if (rc) { dev_err(master->dev, "couldn't read si1m:%d\n", rc); return rc; } si1m |= bit; rc = master->write(master, link, 0, FSI_SLAVE_BASE + FSI_SI1M, &si1m, sizeof(u32)); if (rc) { dev_err(master->dev, "couldn't write si1m:%d\n", rc); return rc; } master->ipoll |= bit; return set_upstream_irq_masks(master, slave, 1); } EXPORT_SYMBOL_GPL(fsi_enable_irq); void fsi_disable_irq(struct fsi_device *dev) { int rc; u32 si1m; u32 bits = ~(0x80000000 >> dev->si1s_bit); struct fsi_master *master = dev->slave->master; struct fsi_slave *slave = dev->slave; int link = dev->slave->link; master->ipoll &= bits; rc = master->read(master, link, 0, FSI_SLAVE_BASE + FSI_SI1M, &si1m, sizeof(u32)); if (rc) { dev_err(master->dev, "couldn't read si1m:%d\n", rc); return; } si1m &= bits; rc = master->write(master, link, 0, FSI_SLAVE_BASE + FSI_SI1M, &si1m, sizeof(u32)); if (rc) { dev_err(master->dev, "couldn't write si1m:%d\n", rc); return; } if (!master->ipoll) set_upstream_irq_masks(master, slave, 0); } struct bus_type fsi_bus_type = { .name = "fsi", .match = fsi_bus_match, }; EXPORT_SYMBOL_GPL(fsi_bus_type); static int fsi_init(void) { return bus_register(&fsi_bus_type); } static void fsi_exit(void) { bus_unregister(&fsi_bus_type); } module_init(fsi_init); module_exit(fsi_exit);