// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2018-2020, The Linux Foundation. All rights reserved. * */ #include #include #include #include #include #include #include #include #include #include #include "internal.h" int __must_check mhi_read_reg(struct mhi_controller *mhi_cntrl, void __iomem *base, u32 offset, u32 *out) { return mhi_cntrl->read_reg(mhi_cntrl, base + offset, out); } int __must_check mhi_read_reg_field(struct mhi_controller *mhi_cntrl, void __iomem *base, u32 offset, u32 mask, u32 shift, u32 *out) { u32 tmp; int ret; ret = mhi_read_reg(mhi_cntrl, base, offset, &tmp); if (ret) return ret; *out = (tmp & mask) >> shift; return 0; } int __must_check mhi_poll_reg_field(struct mhi_controller *mhi_cntrl, void __iomem *base, u32 offset, u32 mask, u32 shift, u32 val, u32 delayus) { int ret; u32 out, retry = (mhi_cntrl->timeout_ms * 1000) / delayus; while (retry--) { ret = mhi_read_reg_field(mhi_cntrl, base, offset, mask, shift, &out); if (ret) return ret; if (out == val) return 0; fsleep(delayus); } return -ETIMEDOUT; } void mhi_write_reg(struct mhi_controller *mhi_cntrl, void __iomem *base, u32 offset, u32 val) { mhi_cntrl->write_reg(mhi_cntrl, base + offset, val); } void mhi_write_reg_field(struct mhi_controller *mhi_cntrl, void __iomem *base, u32 offset, u32 mask, u32 shift, u32 val) { int ret; u32 tmp; ret = mhi_read_reg(mhi_cntrl, base, offset, &tmp); if (ret) return; tmp &= ~mask; tmp |= (val << shift); mhi_write_reg(mhi_cntrl, base, offset, tmp); } void mhi_write_db(struct mhi_controller *mhi_cntrl, void __iomem *db_addr, dma_addr_t db_val) { mhi_write_reg(mhi_cntrl, db_addr, 4, upper_32_bits(db_val)); mhi_write_reg(mhi_cntrl, db_addr, 0, lower_32_bits(db_val)); } void mhi_db_brstmode(struct mhi_controller *mhi_cntrl, struct db_cfg *db_cfg, void __iomem *db_addr, dma_addr_t db_val) { if (db_cfg->db_mode) { db_cfg->db_val = db_val; mhi_write_db(mhi_cntrl, db_addr, db_val); db_cfg->db_mode = 0; } } void mhi_db_brstmode_disable(struct mhi_controller *mhi_cntrl, struct db_cfg *db_cfg, void __iomem *db_addr, dma_addr_t db_val) { db_cfg->db_val = db_val; mhi_write_db(mhi_cntrl, db_addr, db_val); } void mhi_ring_er_db(struct mhi_event *mhi_event) { struct mhi_ring *ring = &mhi_event->ring; mhi_event->db_cfg.process_db(mhi_event->mhi_cntrl, &mhi_event->db_cfg, ring->db_addr, *ring->ctxt_wp); } void mhi_ring_cmd_db(struct mhi_controller *mhi_cntrl, struct mhi_cmd *mhi_cmd) { dma_addr_t db; struct mhi_ring *ring = &mhi_cmd->ring; db = ring->iommu_base + (ring->wp - ring->base); *ring->ctxt_wp = db; mhi_write_db(mhi_cntrl, ring->db_addr, db); } void mhi_ring_chan_db(struct mhi_controller *mhi_cntrl, struct mhi_chan *mhi_chan) { struct mhi_ring *ring = &mhi_chan->tre_ring; dma_addr_t db; db = ring->iommu_base + (ring->wp - ring->base); /* * Writes to the new ring element must be visible to the hardware * before letting h/w know there is new element to fetch. */ dma_wmb(); *ring->ctxt_wp = db; mhi_chan->db_cfg.process_db(mhi_cntrl, &mhi_chan->db_cfg, ring->db_addr, db); } enum mhi_ee_type mhi_get_exec_env(struct mhi_controller *mhi_cntrl) { u32 exec; int ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_EXECENV, &exec); return (ret) ? MHI_EE_MAX : exec; } EXPORT_SYMBOL_GPL(mhi_get_exec_env); enum mhi_state mhi_get_mhi_state(struct mhi_controller *mhi_cntrl) { u32 state; int ret = mhi_read_reg_field(mhi_cntrl, mhi_cntrl->regs, MHISTATUS, MHISTATUS_MHISTATE_MASK, MHISTATUS_MHISTATE_SHIFT, &state); return ret ? MHI_STATE_MAX : state; } EXPORT_SYMBOL_GPL(mhi_get_mhi_state); void mhi_soc_reset(struct mhi_controller *mhi_cntrl) { if (mhi_cntrl->reset) { mhi_cntrl->reset(mhi_cntrl); return; } /* Generic MHI SoC reset */ mhi_write_reg(mhi_cntrl, mhi_cntrl->regs, MHI_SOC_RESET_REQ_OFFSET, MHI_SOC_RESET_REQ); } EXPORT_SYMBOL_GPL(mhi_soc_reset); int mhi_map_single_no_bb(struct mhi_controller *mhi_cntrl, struct mhi_buf_info *buf_info) { buf_info->p_addr = dma_map_single(mhi_cntrl->cntrl_dev, buf_info->v_addr, buf_info->len, buf_info->dir); if (dma_mapping_error(mhi_cntrl->cntrl_dev, buf_info->p_addr)) return -ENOMEM; return 0; } int mhi_map_single_use_bb(struct mhi_controller *mhi_cntrl, struct mhi_buf_info *buf_info) { void *buf = mhi_alloc_coherent(mhi_cntrl, buf_info->len, &buf_info->p_addr, GFP_ATOMIC); if (!buf) return -ENOMEM; if (buf_info->dir == DMA_TO_DEVICE) memcpy(buf, buf_info->v_addr, buf_info->len); buf_info->bb_addr = buf; return 0; } void mhi_unmap_single_no_bb(struct mhi_controller *mhi_cntrl, struct mhi_buf_info *buf_info) { dma_unmap_single(mhi_cntrl->cntrl_dev, buf_info->p_addr, buf_info->len, buf_info->dir); } void mhi_unmap_single_use_bb(struct mhi_controller *mhi_cntrl, struct mhi_buf_info *buf_info) { if (buf_info->dir == DMA_FROM_DEVICE) memcpy(buf_info->v_addr, buf_info->bb_addr, buf_info->len); mhi_free_coherent(mhi_cntrl, buf_info->len, buf_info->bb_addr, buf_info->p_addr); } static int get_nr_avail_ring_elements(struct mhi_controller *mhi_cntrl, struct mhi_ring *ring) { int nr_el; if (ring->wp < ring->rp) { nr_el = ((ring->rp - ring->wp) / ring->el_size) - 1; } else { nr_el = (ring->rp - ring->base) / ring->el_size; nr_el += ((ring->base + ring->len - ring->wp) / ring->el_size) - 1; } return nr_el; } static void *mhi_to_virtual(struct mhi_ring *ring, dma_addr_t addr) { return (addr - ring->iommu_base) + ring->base; } static void mhi_add_ring_element(struct mhi_controller *mhi_cntrl, struct mhi_ring *ring) { ring->wp += ring->el_size; if (ring->wp >= (ring->base + ring->len)) ring->wp = ring->base; /* smp update */ smp_wmb(); } static void mhi_del_ring_element(struct mhi_controller *mhi_cntrl, struct mhi_ring *ring) { ring->rp += ring->el_size; if (ring->rp >= (ring->base + ring->len)) ring->rp = ring->base; /* smp update */ smp_wmb(); } int mhi_destroy_device(struct device *dev, void *data) { struct mhi_chan *ul_chan, *dl_chan; struct mhi_device *mhi_dev; struct mhi_controller *mhi_cntrl; enum mhi_ee_type ee = MHI_EE_MAX; if (dev->bus != &mhi_bus_type) return 0; mhi_dev = to_mhi_device(dev); mhi_cntrl = mhi_dev->mhi_cntrl; /* Only destroy virtual devices thats attached to bus */ if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER) return 0; ul_chan = mhi_dev->ul_chan; dl_chan = mhi_dev->dl_chan; /* * If execution environment is specified, remove only those devices that * started in them based on ee_mask for the channels as we move on to a * different execution environment */ if (data) ee = *(enum mhi_ee_type *)data; /* * For the suspend and resume case, this function will get called * without mhi_unregister_controller(). Hence, we need to drop the * references to mhi_dev created for ul and dl channels. We can * be sure that there will be no instances of mhi_dev left after * this. */ if (ul_chan) { if (ee != MHI_EE_MAX && !(ul_chan->ee_mask & BIT(ee))) return 0; put_device(&ul_chan->mhi_dev->dev); } if (dl_chan) { if (ee != MHI_EE_MAX && !(dl_chan->ee_mask & BIT(ee))) return 0; put_device(&dl_chan->mhi_dev->dev); } dev_dbg(&mhi_cntrl->mhi_dev->dev, "destroy device for chan:%s\n", mhi_dev->name); /* Notify the client and remove the device from MHI bus */ device_del(dev); put_device(dev); return 0; } int mhi_get_free_desc_count(struct mhi_device *mhi_dev, enum dma_data_direction dir) { struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; struct mhi_chan *mhi_chan = (dir == DMA_TO_DEVICE) ? mhi_dev->ul_chan : mhi_dev->dl_chan; struct mhi_ring *tre_ring = &mhi_chan->tre_ring; return get_nr_avail_ring_elements(mhi_cntrl, tre_ring); } EXPORT_SYMBOL_GPL(mhi_get_free_desc_count); void mhi_notify(struct mhi_device *mhi_dev, enum mhi_callback cb_reason) { struct mhi_driver *mhi_drv; if (!mhi_dev->dev.driver) return; mhi_drv = to_mhi_driver(mhi_dev->dev.driver); if (mhi_drv->status_cb) mhi_drv->status_cb(mhi_dev, cb_reason); } EXPORT_SYMBOL_GPL(mhi_notify); /* Bind MHI channels to MHI devices */ void mhi_create_devices(struct mhi_controller *mhi_cntrl) { struct mhi_chan *mhi_chan; struct mhi_device *mhi_dev; struct device *dev = &mhi_cntrl->mhi_dev->dev; int i, ret; mhi_chan = mhi_cntrl->mhi_chan; for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) { if (!mhi_chan->configured || mhi_chan->mhi_dev || !(mhi_chan->ee_mask & BIT(mhi_cntrl->ee))) continue; mhi_dev = mhi_alloc_device(mhi_cntrl); if (IS_ERR(mhi_dev)) return; mhi_dev->dev_type = MHI_DEVICE_XFER; switch (mhi_chan->dir) { case DMA_TO_DEVICE: mhi_dev->ul_chan = mhi_chan; mhi_dev->ul_chan_id = mhi_chan->chan; break; case DMA_FROM_DEVICE: /* We use dl_chan as offload channels */ mhi_dev->dl_chan = mhi_chan; mhi_dev->dl_chan_id = mhi_chan->chan; break; default: dev_err(dev, "Direction not supported\n"); put_device(&mhi_dev->dev); return; } get_device(&mhi_dev->dev); mhi_chan->mhi_dev = mhi_dev; /* Check next channel if it matches */ if ((i + 1) < mhi_cntrl->max_chan && mhi_chan[1].configured) { if (!strcmp(mhi_chan[1].name, mhi_chan->name)) { i++; mhi_chan++; if (mhi_chan->dir == DMA_TO_DEVICE) { mhi_dev->ul_chan = mhi_chan; mhi_dev->ul_chan_id = mhi_chan->chan; } else { mhi_dev->dl_chan = mhi_chan; mhi_dev->dl_chan_id = mhi_chan->chan; } get_device(&mhi_dev->dev); mhi_chan->mhi_dev = mhi_dev; } } /* Channel name is same for both UL and DL */ mhi_dev->name = mhi_chan->name; dev_set_name(&mhi_dev->dev, "%s_%s", dev_name(&mhi_cntrl->mhi_dev->dev), mhi_dev->name); /* Init wakeup source if available */ if (mhi_dev->dl_chan && mhi_dev->dl_chan->wake_capable) device_init_wakeup(&mhi_dev->dev, true); ret = device_add(&mhi_dev->dev); if (ret) put_device(&mhi_dev->dev); } } irqreturn_t mhi_irq_handler(int irq_number, void *dev) { struct mhi_event *mhi_event = dev; struct mhi_controller *mhi_cntrl = mhi_event->mhi_cntrl; struct mhi_event_ctxt *er_ctxt = &mhi_cntrl->mhi_ctxt->er_ctxt[mhi_event->er_index]; struct mhi_ring *ev_ring = &mhi_event->ring; void *dev_rp = mhi_to_virtual(ev_ring, er_ctxt->rp); /* Only proceed if event ring has pending events */ if (ev_ring->rp == dev_rp) return IRQ_HANDLED; /* For client managed event ring, notify pending data */ if (mhi_event->cl_manage) { struct mhi_chan *mhi_chan = mhi_event->mhi_chan; struct mhi_device *mhi_dev = mhi_chan->mhi_dev; if (mhi_dev) mhi_notify(mhi_dev, MHI_CB_PENDING_DATA); } else { tasklet_schedule(&mhi_event->task); } return IRQ_HANDLED; } irqreturn_t mhi_intvec_threaded_handler(int irq_number, void *priv) { struct mhi_controller *mhi_cntrl = priv; struct device *dev = &mhi_cntrl->mhi_dev->dev; enum mhi_state state; enum mhi_pm_state pm_state = 0; enum mhi_ee_type ee; write_lock_irq(&mhi_cntrl->pm_lock); if (!MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) { write_unlock_irq(&mhi_cntrl->pm_lock); goto exit_intvec; } state = mhi_get_mhi_state(mhi_cntrl); ee = mhi_get_exec_env(mhi_cntrl); dev_dbg(dev, "local ee: %s state: %s device ee: %s state: %s\n", TO_MHI_EXEC_STR(mhi_cntrl->ee), TO_MHI_STATE_STR(mhi_cntrl->dev_state), TO_MHI_EXEC_STR(ee), TO_MHI_STATE_STR(state)); if (state == MHI_STATE_SYS_ERR) { dev_dbg(dev, "System error detected\n"); pm_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_SYS_ERR_DETECT); } write_unlock_irq(&mhi_cntrl->pm_lock); if (pm_state != MHI_PM_SYS_ERR_DETECT || ee == mhi_cntrl->ee) goto exit_intvec; switch (ee) { case MHI_EE_RDDM: /* proceed if power down is not already in progress */ if (mhi_cntrl->rddm_image && mhi_is_active(mhi_cntrl)) { mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_EE_RDDM); mhi_cntrl->ee = ee; wake_up_all(&mhi_cntrl->state_event); } break; case MHI_EE_PBL: case MHI_EE_EDL: case MHI_EE_PTHRU: mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_FATAL_ERROR); mhi_cntrl->ee = ee; wake_up_all(&mhi_cntrl->state_event); mhi_pm_sys_err_handler(mhi_cntrl); break; default: wake_up_all(&mhi_cntrl->state_event); mhi_pm_sys_err_handler(mhi_cntrl); break; } exit_intvec: return IRQ_HANDLED; } irqreturn_t mhi_intvec_handler(int irq_number, void *dev) { struct mhi_controller *mhi_cntrl = dev; /* Wake up events waiting for state change */ wake_up_all(&mhi_cntrl->state_event); return IRQ_WAKE_THREAD; } static void mhi_recycle_ev_ring_element(struct mhi_controller *mhi_cntrl, struct mhi_ring *ring) { dma_addr_t ctxt_wp; /* Update the WP */ ring->wp += ring->el_size; ctxt_wp = *ring->ctxt_wp + ring->el_size; if (ring->wp >= (ring->base + ring->len)) { ring->wp = ring->base; ctxt_wp = ring->iommu_base; } *ring->ctxt_wp = ctxt_wp; /* Update the RP */ ring->rp += ring->el_size; if (ring->rp >= (ring->base + ring->len)) ring->rp = ring->base; /* Update to all cores */ smp_wmb(); } static int parse_xfer_event(struct mhi_controller *mhi_cntrl, struct mhi_tre *event, struct mhi_chan *mhi_chan) { struct mhi_ring *buf_ring, *tre_ring; struct device *dev = &mhi_cntrl->mhi_dev->dev; struct mhi_result result; unsigned long flags = 0; u32 ev_code; ev_code = MHI_TRE_GET_EV_CODE(event); buf_ring = &mhi_chan->buf_ring; tre_ring = &mhi_chan->tre_ring; result.transaction_status = (ev_code == MHI_EV_CC_OVERFLOW) ? -EOVERFLOW : 0; /* * If it's a DB Event then we need to grab the lock * with preemption disabled and as a write because we * have to update db register and there are chances that * another thread could be doing the same. */ if (ev_code >= MHI_EV_CC_OOB) write_lock_irqsave(&mhi_chan->lock, flags); else read_lock_bh(&mhi_chan->lock); if (mhi_chan->ch_state != MHI_CH_STATE_ENABLED) goto end_process_tx_event; switch (ev_code) { case MHI_EV_CC_OVERFLOW: case MHI_EV_CC_EOB: case MHI_EV_CC_EOT: { dma_addr_t ptr = MHI_TRE_GET_EV_PTR(event); struct mhi_tre *local_rp, *ev_tre; void *dev_rp; struct mhi_buf_info *buf_info; u16 xfer_len; /* Get the TRB this event points to */ ev_tre = mhi_to_virtual(tre_ring, ptr); dev_rp = ev_tre + 1; if (dev_rp >= (tre_ring->base + tre_ring->len)) dev_rp = tre_ring->base; result.dir = mhi_chan->dir; local_rp = tre_ring->rp; while (local_rp != dev_rp) { buf_info = buf_ring->rp; /* If it's the last TRE, get length from the event */ if (local_rp == ev_tre) xfer_len = MHI_TRE_GET_EV_LEN(event); else xfer_len = buf_info->len; /* Unmap if it's not pre-mapped by client */ if (likely(!buf_info->pre_mapped)) mhi_cntrl->unmap_single(mhi_cntrl, buf_info); result.buf_addr = buf_info->cb_buf; /* truncate to buf len if xfer_len is larger */ result.bytes_xferd = min_t(u16, xfer_len, buf_info->len); mhi_del_ring_element(mhi_cntrl, buf_ring); mhi_del_ring_element(mhi_cntrl, tre_ring); local_rp = tre_ring->rp; /* notify client */ mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); if (mhi_chan->dir == DMA_TO_DEVICE) { atomic_dec(&mhi_cntrl->pending_pkts); /* Release the reference got from mhi_queue() */ mhi_cntrl->runtime_put(mhi_cntrl); } /* * Recycle the buffer if buffer is pre-allocated, * if there is an error, not much we can do apart * from dropping the packet */ if (mhi_chan->pre_alloc) { if (mhi_queue_buf(mhi_chan->mhi_dev, mhi_chan->dir, buf_info->cb_buf, buf_info->len, MHI_EOT)) { dev_err(dev, "Error recycling buffer for chan:%d\n", mhi_chan->chan); kfree(buf_info->cb_buf); } } } break; } /* CC_EOT */ case MHI_EV_CC_OOB: case MHI_EV_CC_DB_MODE: { unsigned long flags; mhi_chan->db_cfg.db_mode = 1; read_lock_irqsave(&mhi_cntrl->pm_lock, flags); if (tre_ring->wp != tre_ring->rp && MHI_DB_ACCESS_VALID(mhi_cntrl)) { mhi_ring_chan_db(mhi_cntrl, mhi_chan); } read_unlock_irqrestore(&mhi_cntrl->pm_lock, flags); break; } case MHI_EV_CC_BAD_TRE: default: dev_err(dev, "Unknown event 0x%x\n", ev_code); break; } /* switch(MHI_EV_READ_CODE(EV_TRB_CODE,event)) */ end_process_tx_event: if (ev_code >= MHI_EV_CC_OOB) write_unlock_irqrestore(&mhi_chan->lock, flags); else read_unlock_bh(&mhi_chan->lock); return 0; } static int parse_rsc_event(struct mhi_controller *mhi_cntrl, struct mhi_tre *event, struct mhi_chan *mhi_chan) { struct mhi_ring *buf_ring, *tre_ring; struct mhi_buf_info *buf_info; struct mhi_result result; int ev_code; u32 cookie; /* offset to local descriptor */ u16 xfer_len; buf_ring = &mhi_chan->buf_ring; tre_ring = &mhi_chan->tre_ring; ev_code = MHI_TRE_GET_EV_CODE(event); cookie = MHI_TRE_GET_EV_COOKIE(event); xfer_len = MHI_TRE_GET_EV_LEN(event); /* Received out of bound cookie */ WARN_ON(cookie >= buf_ring->len); buf_info = buf_ring->base + cookie; result.transaction_status = (ev_code == MHI_EV_CC_OVERFLOW) ? -EOVERFLOW : 0; /* truncate to buf len if xfer_len is larger */ result.bytes_xferd = min_t(u16, xfer_len, buf_info->len); result.buf_addr = buf_info->cb_buf; result.dir = mhi_chan->dir; read_lock_bh(&mhi_chan->lock); if (mhi_chan->ch_state != MHI_CH_STATE_ENABLED) goto end_process_rsc_event; WARN_ON(!buf_info->used); /* notify the client */ mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); /* * Note: We're arbitrarily incrementing RP even though, completion * packet we processed might not be the same one, reason we can do this * is because device guaranteed to cache descriptors in order it * receive, so even though completion event is different we can re-use * all descriptors in between. * Example: * Transfer Ring has descriptors: A, B, C, D * Last descriptor host queue is D (WP) and first descriptor * host queue is A (RP). * The completion event we just serviced is descriptor C. * Then we can safely queue descriptors to replace A, B, and C * even though host did not receive any completions. */ mhi_del_ring_element(mhi_cntrl, tre_ring); buf_info->used = false; end_process_rsc_event: read_unlock_bh(&mhi_chan->lock); return 0; } static void mhi_process_cmd_completion(struct mhi_controller *mhi_cntrl, struct mhi_tre *tre) { dma_addr_t ptr = MHI_TRE_GET_EV_PTR(tre); struct mhi_cmd *cmd_ring = &mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING]; struct mhi_ring *mhi_ring = &cmd_ring->ring; struct mhi_tre *cmd_pkt; struct mhi_chan *mhi_chan; u32 chan; cmd_pkt = mhi_to_virtual(mhi_ring, ptr); chan = MHI_TRE_GET_CMD_CHID(cmd_pkt); mhi_chan = &mhi_cntrl->mhi_chan[chan]; write_lock_bh(&mhi_chan->lock); mhi_chan->ccs = MHI_TRE_GET_EV_CODE(tre); complete(&mhi_chan->completion); write_unlock_bh(&mhi_chan->lock); mhi_del_ring_element(mhi_cntrl, mhi_ring); } int mhi_process_ctrl_ev_ring(struct mhi_controller *mhi_cntrl, struct mhi_event *mhi_event, u32 event_quota) { struct mhi_tre *dev_rp, *local_rp; struct mhi_ring *ev_ring = &mhi_event->ring; struct mhi_event_ctxt *er_ctxt = &mhi_cntrl->mhi_ctxt->er_ctxt[mhi_event->er_index]; struct mhi_chan *mhi_chan; struct device *dev = &mhi_cntrl->mhi_dev->dev; u32 chan; int count = 0; /* * This is a quick check to avoid unnecessary event processing * in case MHI is already in error state, but it's still possible * to transition to error state while processing events */ if (unlikely(MHI_EVENT_ACCESS_INVALID(mhi_cntrl->pm_state))) return -EIO; dev_rp = mhi_to_virtual(ev_ring, er_ctxt->rp); local_rp = ev_ring->rp; while (dev_rp != local_rp) { enum mhi_pkt_type type = MHI_TRE_GET_EV_TYPE(local_rp); switch (type) { case MHI_PKT_TYPE_BW_REQ_EVENT: { struct mhi_link_info *link_info; link_info = &mhi_cntrl->mhi_link_info; write_lock_irq(&mhi_cntrl->pm_lock); link_info->target_link_speed = MHI_TRE_GET_EV_LINKSPEED(local_rp); link_info->target_link_width = MHI_TRE_GET_EV_LINKWIDTH(local_rp); write_unlock_irq(&mhi_cntrl->pm_lock); dev_dbg(dev, "Received BW_REQ event\n"); mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_BW_REQ); break; } case MHI_PKT_TYPE_STATE_CHANGE_EVENT: { enum mhi_state new_state; new_state = MHI_TRE_GET_EV_STATE(local_rp); dev_dbg(dev, "State change event to state: %s\n", TO_MHI_STATE_STR(new_state)); switch (new_state) { case MHI_STATE_M0: mhi_pm_m0_transition(mhi_cntrl); break; case MHI_STATE_M1: mhi_pm_m1_transition(mhi_cntrl); break; case MHI_STATE_M3: mhi_pm_m3_transition(mhi_cntrl); break; case MHI_STATE_SYS_ERR: { enum mhi_pm_state new_state; dev_dbg(dev, "System error detected\n"); write_lock_irq(&mhi_cntrl->pm_lock); new_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_SYS_ERR_DETECT); write_unlock_irq(&mhi_cntrl->pm_lock); if (new_state == MHI_PM_SYS_ERR_DETECT) mhi_pm_sys_err_handler(mhi_cntrl); break; } default: dev_err(dev, "Invalid state: %s\n", TO_MHI_STATE_STR(new_state)); } break; } case MHI_PKT_TYPE_CMD_COMPLETION_EVENT: mhi_process_cmd_completion(mhi_cntrl, local_rp); break; case MHI_PKT_TYPE_EE_EVENT: { enum dev_st_transition st = DEV_ST_TRANSITION_MAX; enum mhi_ee_type event = MHI_TRE_GET_EV_EXECENV(local_rp); dev_dbg(dev, "Received EE event: %s\n", TO_MHI_EXEC_STR(event)); switch (event) { case MHI_EE_SBL: st = DEV_ST_TRANSITION_SBL; break; case MHI_EE_WFW: case MHI_EE_AMSS: st = DEV_ST_TRANSITION_MISSION_MODE; break; case MHI_EE_FP: st = DEV_ST_TRANSITION_FP; break; case MHI_EE_RDDM: mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_EE_RDDM); write_lock_irq(&mhi_cntrl->pm_lock); mhi_cntrl->ee = event; write_unlock_irq(&mhi_cntrl->pm_lock); wake_up_all(&mhi_cntrl->state_event); break; default: dev_err(dev, "Unhandled EE event: 0x%x\n", type); } if (st != DEV_ST_TRANSITION_MAX) mhi_queue_state_transition(mhi_cntrl, st); break; } case MHI_PKT_TYPE_TX_EVENT: chan = MHI_TRE_GET_EV_CHID(local_rp); WARN_ON(chan >= mhi_cntrl->max_chan); /* * Only process the event ring elements whose channel * ID is within the maximum supported range. */ if (chan < mhi_cntrl->max_chan) { mhi_chan = &mhi_cntrl->mhi_chan[chan]; parse_xfer_event(mhi_cntrl, local_rp, mhi_chan); event_quota--; } break; default: dev_err(dev, "Unhandled event type: %d\n", type); break; } mhi_recycle_ev_ring_element(mhi_cntrl, ev_ring); local_rp = ev_ring->rp; dev_rp = mhi_to_virtual(ev_ring, er_ctxt->rp); count++; } read_lock_bh(&mhi_cntrl->pm_lock); if (likely(MHI_DB_ACCESS_VALID(mhi_cntrl))) mhi_ring_er_db(mhi_event); read_unlock_bh(&mhi_cntrl->pm_lock); return count; } int mhi_process_data_event_ring(struct mhi_controller *mhi_cntrl, struct mhi_event *mhi_event, u32 event_quota) { struct mhi_tre *dev_rp, *local_rp; struct mhi_ring *ev_ring = &mhi_event->ring; struct mhi_event_ctxt *er_ctxt = &mhi_cntrl->mhi_ctxt->er_ctxt[mhi_event->er_index]; int count = 0; u32 chan; struct mhi_chan *mhi_chan; if (unlikely(MHI_EVENT_ACCESS_INVALID(mhi_cntrl->pm_state))) return -EIO; dev_rp = mhi_to_virtual(ev_ring, er_ctxt->rp); local_rp = ev_ring->rp; while (dev_rp != local_rp && event_quota > 0) { enum mhi_pkt_type type = MHI_TRE_GET_EV_TYPE(local_rp); chan = MHI_TRE_GET_EV_CHID(local_rp); WARN_ON(chan >= mhi_cntrl->max_chan); /* * Only process the event ring elements whose channel * ID is within the maximum supported range. */ if (chan < mhi_cntrl->max_chan) { mhi_chan = &mhi_cntrl->mhi_chan[chan]; if (likely(type == MHI_PKT_TYPE_TX_EVENT)) { parse_xfer_event(mhi_cntrl, local_rp, mhi_chan); event_quota--; } else if (type == MHI_PKT_TYPE_RSC_TX_EVENT) { parse_rsc_event(mhi_cntrl, local_rp, mhi_chan); event_quota--; } } mhi_recycle_ev_ring_element(mhi_cntrl, ev_ring); local_rp = ev_ring->rp; dev_rp = mhi_to_virtual(ev_ring, er_ctxt->rp); count++; } read_lock_bh(&mhi_cntrl->pm_lock); if (likely(MHI_DB_ACCESS_VALID(mhi_cntrl))) mhi_ring_er_db(mhi_event); read_unlock_bh(&mhi_cntrl->pm_lock); return count; } void mhi_ev_task(unsigned long data) { struct mhi_event *mhi_event = (struct mhi_event *)data; struct mhi_controller *mhi_cntrl = mhi_event->mhi_cntrl; /* process all pending events */ spin_lock_bh(&mhi_event->lock); mhi_event->process_event(mhi_cntrl, mhi_event, U32_MAX); spin_unlock_bh(&mhi_event->lock); } void mhi_ctrl_ev_task(unsigned long data) { struct mhi_event *mhi_event = (struct mhi_event *)data; struct mhi_controller *mhi_cntrl = mhi_event->mhi_cntrl; struct device *dev = &mhi_cntrl->mhi_dev->dev; enum mhi_state state; enum mhi_pm_state pm_state = 0; int ret; /* * We can check PM state w/o a lock here because there is no way * PM state can change from reg access valid to no access while this * thread being executed. */ if (!MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) { /* * We may have a pending event but not allowed to * process it since we are probably in a suspended state, * so trigger a resume. */ mhi_trigger_resume(mhi_cntrl); return; } /* Process ctrl events events */ ret = mhi_event->process_event(mhi_cntrl, mhi_event, U32_MAX); /* * We received an IRQ but no events to process, maybe device went to * SYS_ERR state? Check the state to confirm. */ if (!ret) { write_lock_irq(&mhi_cntrl->pm_lock); state = mhi_get_mhi_state(mhi_cntrl); if (state == MHI_STATE_SYS_ERR) { dev_dbg(dev, "System error detected\n"); pm_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_SYS_ERR_DETECT); } write_unlock_irq(&mhi_cntrl->pm_lock); if (pm_state == MHI_PM_SYS_ERR_DETECT) mhi_pm_sys_err_handler(mhi_cntrl); } } static bool mhi_is_ring_full(struct mhi_controller *mhi_cntrl, struct mhi_ring *ring) { void *tmp = ring->wp + ring->el_size; if (tmp >= (ring->base + ring->len)) tmp = ring->base; return (tmp == ring->rp); } static int mhi_queue(struct mhi_device *mhi_dev, struct mhi_buf_info *buf_info, enum dma_data_direction dir, enum mhi_flags mflags) { struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; struct mhi_chan *mhi_chan = (dir == DMA_TO_DEVICE) ? mhi_dev->ul_chan : mhi_dev->dl_chan; struct mhi_ring *tre_ring = &mhi_chan->tre_ring; unsigned long flags; int ret; if (unlikely(MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))) return -EIO; read_lock_irqsave(&mhi_cntrl->pm_lock, flags); ret = mhi_is_ring_full(mhi_cntrl, tre_ring); if (unlikely(ret)) { ret = -EAGAIN; goto exit_unlock; } ret = mhi_gen_tre(mhi_cntrl, mhi_chan, buf_info, mflags); if (unlikely(ret)) goto exit_unlock; /* Packet is queued, take a usage ref to exit M3 if necessary * for host->device buffer, balanced put is done on buffer completion * for device->host buffer, balanced put is after ringing the DB */ mhi_cntrl->runtime_get(mhi_cntrl); /* Assert dev_wake (to exit/prevent M1/M2)*/ mhi_cntrl->wake_toggle(mhi_cntrl); if (mhi_chan->dir == DMA_TO_DEVICE) atomic_inc(&mhi_cntrl->pending_pkts); if (likely(MHI_DB_ACCESS_VALID(mhi_cntrl))) mhi_ring_chan_db(mhi_cntrl, mhi_chan); if (dir == DMA_FROM_DEVICE) mhi_cntrl->runtime_put(mhi_cntrl); exit_unlock: read_unlock_irqrestore(&mhi_cntrl->pm_lock, flags); return ret; } int mhi_queue_skb(struct mhi_device *mhi_dev, enum dma_data_direction dir, struct sk_buff *skb, size_t len, enum mhi_flags mflags) { struct mhi_chan *mhi_chan = (dir == DMA_TO_DEVICE) ? mhi_dev->ul_chan : mhi_dev->dl_chan; struct mhi_buf_info buf_info = { }; buf_info.v_addr = skb->data; buf_info.cb_buf = skb; buf_info.len = len; if (unlikely(mhi_chan->pre_alloc)) return -EINVAL; return mhi_queue(mhi_dev, &buf_info, dir, mflags); } EXPORT_SYMBOL_GPL(mhi_queue_skb); int mhi_queue_dma(struct mhi_device *mhi_dev, enum dma_data_direction dir, struct mhi_buf *mhi_buf, size_t len, enum mhi_flags mflags) { struct mhi_chan *mhi_chan = (dir == DMA_TO_DEVICE) ? mhi_dev->ul_chan : mhi_dev->dl_chan; struct mhi_buf_info buf_info = { }; buf_info.p_addr = mhi_buf->dma_addr; buf_info.cb_buf = mhi_buf; buf_info.pre_mapped = true; buf_info.len = len; if (unlikely(mhi_chan->pre_alloc)) return -EINVAL; return mhi_queue(mhi_dev, &buf_info, dir, mflags); } EXPORT_SYMBOL_GPL(mhi_queue_dma); int mhi_gen_tre(struct mhi_controller *mhi_cntrl, struct mhi_chan *mhi_chan, struct mhi_buf_info *info, enum mhi_flags flags) { struct mhi_ring *buf_ring, *tre_ring; struct mhi_tre *mhi_tre; struct mhi_buf_info *buf_info; int eot, eob, chain, bei; int ret; buf_ring = &mhi_chan->buf_ring; tre_ring = &mhi_chan->tre_ring; buf_info = buf_ring->wp; WARN_ON(buf_info->used); buf_info->pre_mapped = info->pre_mapped; if (info->pre_mapped) buf_info->p_addr = info->p_addr; else buf_info->v_addr = info->v_addr; buf_info->cb_buf = info->cb_buf; buf_info->wp = tre_ring->wp; buf_info->dir = mhi_chan->dir; buf_info->len = info->len; if (!info->pre_mapped) { ret = mhi_cntrl->map_single(mhi_cntrl, buf_info); if (ret) return ret; } eob = !!(flags & MHI_EOB); eot = !!(flags & MHI_EOT); chain = !!(flags & MHI_CHAIN); bei = !!(mhi_chan->intmod); mhi_tre = tre_ring->wp; mhi_tre->ptr = MHI_TRE_DATA_PTR(buf_info->p_addr); mhi_tre->dword[0] = MHI_TRE_DATA_DWORD0(info->len); mhi_tre->dword[1] = MHI_TRE_DATA_DWORD1(bei, eot, eob, chain); /* increment WP */ mhi_add_ring_element(mhi_cntrl, tre_ring); mhi_add_ring_element(mhi_cntrl, buf_ring); return 0; } int mhi_queue_buf(struct mhi_device *mhi_dev, enum dma_data_direction dir, void *buf, size_t len, enum mhi_flags mflags) { struct mhi_buf_info buf_info = { }; buf_info.v_addr = buf; buf_info.cb_buf = buf; buf_info.len = len; return mhi_queue(mhi_dev, &buf_info, dir, mflags); } EXPORT_SYMBOL_GPL(mhi_queue_buf); bool mhi_queue_is_full(struct mhi_device *mhi_dev, enum dma_data_direction dir) { struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; struct mhi_chan *mhi_chan = (dir == DMA_TO_DEVICE) ? mhi_dev->ul_chan : mhi_dev->dl_chan; struct mhi_ring *tre_ring = &mhi_chan->tre_ring; return mhi_is_ring_full(mhi_cntrl, tre_ring); } EXPORT_SYMBOL_GPL(mhi_queue_is_full); int mhi_send_cmd(struct mhi_controller *mhi_cntrl, struct mhi_chan *mhi_chan, enum mhi_cmd_type cmd) { struct mhi_tre *cmd_tre = NULL; struct mhi_cmd *mhi_cmd = &mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING]; struct mhi_ring *ring = &mhi_cmd->ring; struct device *dev = &mhi_cntrl->mhi_dev->dev; int chan = 0; if (mhi_chan) chan = mhi_chan->chan; spin_lock_bh(&mhi_cmd->lock); if (!get_nr_avail_ring_elements(mhi_cntrl, ring)) { spin_unlock_bh(&mhi_cmd->lock); return -ENOMEM; } /* prepare the cmd tre */ cmd_tre = ring->wp; switch (cmd) { case MHI_CMD_RESET_CHAN: cmd_tre->ptr = MHI_TRE_CMD_RESET_PTR; cmd_tre->dword[0] = MHI_TRE_CMD_RESET_DWORD0; cmd_tre->dword[1] = MHI_TRE_CMD_RESET_DWORD1(chan); break; case MHI_CMD_STOP_CHAN: cmd_tre->ptr = MHI_TRE_CMD_STOP_PTR; cmd_tre->dword[0] = MHI_TRE_CMD_STOP_DWORD0; cmd_tre->dword[1] = MHI_TRE_CMD_STOP_DWORD1(chan); break; case MHI_CMD_START_CHAN: cmd_tre->ptr = MHI_TRE_CMD_START_PTR; cmd_tre->dword[0] = MHI_TRE_CMD_START_DWORD0; cmd_tre->dword[1] = MHI_TRE_CMD_START_DWORD1(chan); break; default: dev_err(dev, "Command not supported\n"); break; } /* queue to hardware */ mhi_add_ring_element(mhi_cntrl, ring); read_lock_bh(&mhi_cntrl->pm_lock); if (likely(MHI_DB_ACCESS_VALID(mhi_cntrl))) mhi_ring_cmd_db(mhi_cntrl, mhi_cmd); read_unlock_bh(&mhi_cntrl->pm_lock); spin_unlock_bh(&mhi_cmd->lock); return 0; } static int mhi_update_channel_state(struct mhi_controller *mhi_cntrl, struct mhi_chan *mhi_chan, enum mhi_ch_state_type to_state) { struct device *dev = &mhi_chan->mhi_dev->dev; enum mhi_cmd_type cmd = MHI_CMD_NOP; int ret; dev_dbg(dev, "%d: Updating channel state to: %s\n", mhi_chan->chan, TO_CH_STATE_TYPE_STR(to_state)); switch (to_state) { case MHI_CH_STATE_TYPE_RESET: write_lock_irq(&mhi_chan->lock); if (mhi_chan->ch_state != MHI_CH_STATE_STOP && mhi_chan->ch_state != MHI_CH_STATE_ENABLED && mhi_chan->ch_state != MHI_CH_STATE_SUSPENDED) { write_unlock_irq(&mhi_chan->lock); return -EINVAL; } mhi_chan->ch_state = MHI_CH_STATE_DISABLED; write_unlock_irq(&mhi_chan->lock); cmd = MHI_CMD_RESET_CHAN; break; case MHI_CH_STATE_TYPE_STOP: if (mhi_chan->ch_state != MHI_CH_STATE_ENABLED) return -EINVAL; cmd = MHI_CMD_STOP_CHAN; break; case MHI_CH_STATE_TYPE_START: if (mhi_chan->ch_state != MHI_CH_STATE_STOP && mhi_chan->ch_state != MHI_CH_STATE_DISABLED) return -EINVAL; cmd = MHI_CMD_START_CHAN; break; default: dev_err(dev, "%d: Channel state update to %s not allowed\n", mhi_chan->chan, TO_CH_STATE_TYPE_STR(to_state)); return -EINVAL; } /* bring host and device out of suspended states */ ret = mhi_device_get_sync(mhi_cntrl->mhi_dev); if (ret) return ret; mhi_cntrl->runtime_get(mhi_cntrl); reinit_completion(&mhi_chan->completion); ret = mhi_send_cmd(mhi_cntrl, mhi_chan, cmd); if (ret) { dev_err(dev, "%d: Failed to send %s channel command\n", mhi_chan->chan, TO_CH_STATE_TYPE_STR(to_state)); goto exit_channel_update; } ret = wait_for_completion_timeout(&mhi_chan->completion, msecs_to_jiffies(mhi_cntrl->timeout_ms)); if (!ret || mhi_chan->ccs != MHI_EV_CC_SUCCESS) { dev_err(dev, "%d: Failed to receive %s channel command completion\n", mhi_chan->chan, TO_CH_STATE_TYPE_STR(to_state)); ret = -EIO; goto exit_channel_update; } ret = 0; if (to_state != MHI_CH_STATE_TYPE_RESET) { write_lock_irq(&mhi_chan->lock); mhi_chan->ch_state = (to_state == MHI_CH_STATE_TYPE_START) ? MHI_CH_STATE_ENABLED : MHI_CH_STATE_STOP; write_unlock_irq(&mhi_chan->lock); } dev_dbg(dev, "%d: Channel state change to %s successful\n", mhi_chan->chan, TO_CH_STATE_TYPE_STR(to_state)); exit_channel_update: mhi_cntrl->runtime_put(mhi_cntrl); mhi_device_put(mhi_cntrl->mhi_dev); return ret; } static void mhi_unprepare_channel(struct mhi_controller *mhi_cntrl, struct mhi_chan *mhi_chan) { int ret; struct device *dev = &mhi_chan->mhi_dev->dev; mutex_lock(&mhi_chan->mutex); if (!(BIT(mhi_cntrl->ee) & mhi_chan->ee_mask)) { dev_dbg(dev, "Current EE: %s Required EE Mask: 0x%x\n", TO_MHI_EXEC_STR(mhi_cntrl->ee), mhi_chan->ee_mask); goto exit_unprepare_channel; } /* no more processing events for this channel */ ret = mhi_update_channel_state(mhi_cntrl, mhi_chan, MHI_CH_STATE_TYPE_RESET); if (ret) dev_err(dev, "%d: Failed to reset channel, still resetting\n", mhi_chan->chan); exit_unprepare_channel: write_lock_irq(&mhi_chan->lock); mhi_chan->ch_state = MHI_CH_STATE_DISABLED; write_unlock_irq(&mhi_chan->lock); if (!mhi_chan->offload_ch) { mhi_reset_chan(mhi_cntrl, mhi_chan); mhi_deinit_chan_ctxt(mhi_cntrl, mhi_chan); } dev_dbg(dev, "%d: successfully reset\n", mhi_chan->chan); mutex_unlock(&mhi_chan->mutex); } int mhi_prepare_channel(struct mhi_controller *mhi_cntrl, struct mhi_chan *mhi_chan) { int ret = 0; struct device *dev = &mhi_chan->mhi_dev->dev; if (!(BIT(mhi_cntrl->ee) & mhi_chan->ee_mask)) { dev_err(dev, "Current EE: %s Required EE Mask: 0x%x\n", TO_MHI_EXEC_STR(mhi_cntrl->ee), mhi_chan->ee_mask); return -ENOTCONN; } mutex_lock(&mhi_chan->mutex); /* Check of client manages channel context for offload channels */ if (!mhi_chan->offload_ch) { ret = mhi_init_chan_ctxt(mhi_cntrl, mhi_chan); if (ret) goto error_init_chan; } ret = mhi_update_channel_state(mhi_cntrl, mhi_chan, MHI_CH_STATE_TYPE_START); if (ret) goto error_pm_state; /* Pre-allocate buffer for xfer ring */ if (mhi_chan->pre_alloc) { int nr_el = get_nr_avail_ring_elements(mhi_cntrl, &mhi_chan->tre_ring); size_t len = mhi_cntrl->buffer_len; while (nr_el--) { void *buf; struct mhi_buf_info info = { }; buf = kmalloc(len, GFP_KERNEL); if (!buf) { ret = -ENOMEM; goto error_pre_alloc; } /* Prepare transfer descriptors */ info.v_addr = buf; info.cb_buf = buf; info.len = len; ret = mhi_gen_tre(mhi_cntrl, mhi_chan, &info, MHI_EOT); if (ret) { kfree(buf); goto error_pre_alloc; } } read_lock_bh(&mhi_cntrl->pm_lock); if (MHI_DB_ACCESS_VALID(mhi_cntrl)) { read_lock_irq(&mhi_chan->lock); mhi_ring_chan_db(mhi_cntrl, mhi_chan); read_unlock_irq(&mhi_chan->lock); } read_unlock_bh(&mhi_cntrl->pm_lock); } mutex_unlock(&mhi_chan->mutex); return 0; error_pm_state: if (!mhi_chan->offload_ch) mhi_deinit_chan_ctxt(mhi_cntrl, mhi_chan); error_init_chan: mutex_unlock(&mhi_chan->mutex); return ret; error_pre_alloc: mutex_unlock(&mhi_chan->mutex); mhi_unprepare_channel(mhi_cntrl, mhi_chan); return ret; } static void mhi_mark_stale_events(struct mhi_controller *mhi_cntrl, struct mhi_event *mhi_event, struct mhi_event_ctxt *er_ctxt, int chan) { struct mhi_tre *dev_rp, *local_rp; struct mhi_ring *ev_ring; struct device *dev = &mhi_cntrl->mhi_dev->dev; unsigned long flags; dev_dbg(dev, "Marking all events for chan: %d as stale\n", chan); ev_ring = &mhi_event->ring; /* mark all stale events related to channel as STALE event */ spin_lock_irqsave(&mhi_event->lock, flags); dev_rp = mhi_to_virtual(ev_ring, er_ctxt->rp); local_rp = ev_ring->rp; while (dev_rp != local_rp) { if (MHI_TRE_GET_EV_TYPE(local_rp) == MHI_PKT_TYPE_TX_EVENT && chan == MHI_TRE_GET_EV_CHID(local_rp)) local_rp->dword[1] = MHI_TRE_EV_DWORD1(chan, MHI_PKT_TYPE_STALE_EVENT); local_rp++; if (local_rp == (ev_ring->base + ev_ring->len)) local_rp = ev_ring->base; } dev_dbg(dev, "Finished marking events as stale events\n"); spin_unlock_irqrestore(&mhi_event->lock, flags); } static void mhi_reset_data_chan(struct mhi_controller *mhi_cntrl, struct mhi_chan *mhi_chan) { struct mhi_ring *buf_ring, *tre_ring; struct mhi_result result; /* Reset any pending buffers */ buf_ring = &mhi_chan->buf_ring; tre_ring = &mhi_chan->tre_ring; result.transaction_status = -ENOTCONN; result.bytes_xferd = 0; while (tre_ring->rp != tre_ring->wp) { struct mhi_buf_info *buf_info = buf_ring->rp; if (mhi_chan->dir == DMA_TO_DEVICE) { atomic_dec(&mhi_cntrl->pending_pkts); /* Release the reference got from mhi_queue() */ mhi_cntrl->runtime_put(mhi_cntrl); } if (!buf_info->pre_mapped) mhi_cntrl->unmap_single(mhi_cntrl, buf_info); mhi_del_ring_element(mhi_cntrl, buf_ring); mhi_del_ring_element(mhi_cntrl, tre_ring); if (mhi_chan->pre_alloc) { kfree(buf_info->cb_buf); } else { result.buf_addr = buf_info->cb_buf; mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); } } } void mhi_reset_chan(struct mhi_controller *mhi_cntrl, struct mhi_chan *mhi_chan) { struct mhi_event *mhi_event; struct mhi_event_ctxt *er_ctxt; int chan = mhi_chan->chan; /* Nothing to reset, client doesn't queue buffers */ if (mhi_chan->offload_ch) return; read_lock_bh(&mhi_cntrl->pm_lock); mhi_event = &mhi_cntrl->mhi_event[mhi_chan->er_index]; er_ctxt = &mhi_cntrl->mhi_ctxt->er_ctxt[mhi_chan->er_index]; mhi_mark_stale_events(mhi_cntrl, mhi_event, er_ctxt, chan); mhi_reset_data_chan(mhi_cntrl, mhi_chan); read_unlock_bh(&mhi_cntrl->pm_lock); } /* Move channel to start state */ int mhi_prepare_for_transfer(struct mhi_device *mhi_dev) { int ret, dir; struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; struct mhi_chan *mhi_chan; for (dir = 0; dir < 2; dir++) { mhi_chan = dir ? mhi_dev->dl_chan : mhi_dev->ul_chan; if (!mhi_chan) continue; ret = mhi_prepare_channel(mhi_cntrl, mhi_chan); if (ret) goto error_open_chan; } return 0; error_open_chan: for (--dir; dir >= 0; dir--) { mhi_chan = dir ? mhi_dev->dl_chan : mhi_dev->ul_chan; if (!mhi_chan) continue; mhi_unprepare_channel(mhi_cntrl, mhi_chan); } return ret; } EXPORT_SYMBOL_GPL(mhi_prepare_for_transfer); void mhi_unprepare_from_transfer(struct mhi_device *mhi_dev) { struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; struct mhi_chan *mhi_chan; int dir; for (dir = 0; dir < 2; dir++) { mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan; if (!mhi_chan) continue; mhi_unprepare_channel(mhi_cntrl, mhi_chan); } } EXPORT_SYMBOL_GPL(mhi_unprepare_from_transfer); int mhi_poll(struct mhi_device *mhi_dev, u32 budget) { struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; struct mhi_chan *mhi_chan = mhi_dev->dl_chan; struct mhi_event *mhi_event = &mhi_cntrl->mhi_event[mhi_chan->er_index]; int ret; spin_lock_bh(&mhi_event->lock); ret = mhi_event->process_event(mhi_cntrl, mhi_event, budget); spin_unlock_bh(&mhi_event->lock); return ret; } EXPORT_SYMBOL_GPL(mhi_poll);