/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_EFI_H #define _ASM_X86_EFI_H #include #include #include #include #include #include #include #include extern unsigned long efi_fw_vendor, efi_config_table; /* * We map the EFI regions needed for runtime services non-contiguously, * with preserved alignment on virtual addresses starting from -4G down * for a total max space of 64G. This way, we provide for stable runtime * services addresses across kernels so that a kexec'd kernel can still * use them. * * This is the main reason why we're doing stable VA mappings for RT * services. */ #define EFI32_LOADER_SIGNATURE "EL32" #define EFI64_LOADER_SIGNATURE "EL64" #define ARCH_EFI_IRQ_FLAGS_MASK X86_EFLAGS_IF /* * The EFI services are called through variadic functions in many cases. These * functions are implemented in assembler and support only a fixed number of * arguments. The macros below allows us to check at build time that we don't * try to call them with too many arguments. * * __efi_nargs() will return the number of arguments if it is 7 or less, and * cause a BUILD_BUG otherwise. The limitations of the C preprocessor make it * impossible to calculate the exact number of arguments beyond some * pre-defined limit. The maximum number of arguments currently supported by * any of the thunks is 7, so this is good enough for now and can be extended * in the obvious way if we ever need more. */ #define __efi_nargs(...) __efi_nargs_(__VA_ARGS__) #define __efi_nargs_(...) __efi_nargs__(0, ##__VA_ARGS__, \ __efi_arg_sentinel(7), __efi_arg_sentinel(6), \ __efi_arg_sentinel(5), __efi_arg_sentinel(4), \ __efi_arg_sentinel(3), __efi_arg_sentinel(2), \ __efi_arg_sentinel(1), __efi_arg_sentinel(0)) #define __efi_nargs__(_0, _1, _2, _3, _4, _5, _6, _7, n, ...) \ __take_second_arg(n, \ ({ BUILD_BUG_ON_MSG(1, "__efi_nargs limit exceeded"); 8; })) #define __efi_arg_sentinel(n) , n /* * __efi_nargs_check(f, n, ...) will cause a BUILD_BUG if the ellipsis * represents more than n arguments. */ #define __efi_nargs_check(f, n, ...) \ __efi_nargs_check_(f, __efi_nargs(__VA_ARGS__), n) #define __efi_nargs_check_(f, p, n) __efi_nargs_check__(f, p, n) #define __efi_nargs_check__(f, p, n) ({ \ BUILD_BUG_ON_MSG( \ (p) > (n), \ #f " called with too many arguments (" #p ">" #n ")"); \ }) static inline void efi_fpu_begin(void) { /* * The UEFI calling convention (UEFI spec 2.3.2 and 2.3.4) requires * that FCW and MXCSR (64-bit) must be initialized prior to calling * UEFI code. (Oddly the spec does not require that the FPU stack * be empty.) */ kernel_fpu_begin_mask(KFPU_387 | KFPU_MXCSR); } static inline void efi_fpu_end(void) { kernel_fpu_end(); } #ifdef CONFIG_X86_32 #define arch_efi_call_virt_setup() \ ({ \ efi_fpu_begin(); \ firmware_restrict_branch_speculation_start(); \ }) #define arch_efi_call_virt_teardown() \ ({ \ firmware_restrict_branch_speculation_end(); \ efi_fpu_end(); \ }) #define arch_efi_call_virt(p, f, args...) p->f(args) #else /* !CONFIG_X86_32 */ #define EFI_LOADER_SIGNATURE "EL64" extern asmlinkage u64 __efi_call(void *fp, ...); #define efi_call(...) ({ \ __efi_nargs_check(efi_call, 7, __VA_ARGS__); \ __efi_call(__VA_ARGS__); \ }) /* * struct efi_scratch - Scratch space used while switching to/from efi_mm * @phys_stack: stack used during EFI Mixed Mode * @prev_mm: store/restore stolen mm_struct while switching to/from efi_mm */ struct efi_scratch { u64 phys_stack; struct mm_struct *prev_mm; } __packed; #define arch_efi_call_virt_setup() \ ({ \ efi_sync_low_kernel_mappings(); \ efi_fpu_begin(); \ firmware_restrict_branch_speculation_start(); \ efi_switch_mm(&efi_mm); \ }) #define arch_efi_call_virt(p, f, args...) \ efi_call((void *)p->f, args) \ #define arch_efi_call_virt_teardown() \ ({ \ efi_switch_mm(efi_scratch.prev_mm); \ firmware_restrict_branch_speculation_end(); \ efi_fpu_end(); \ }) #ifdef CONFIG_KASAN /* * CONFIG_KASAN may redefine memset to __memset. __memset function is present * only in kernel binary. Since the EFI stub linked into a separate binary it * doesn't have __memset(). So we should use standard memset from * arch/x86/boot/compressed/string.c. The same applies to memcpy and memmove. */ #undef memcpy #undef memset #undef memmove #endif #endif /* CONFIG_X86_32 */ extern struct efi_scratch efi_scratch; extern int __init efi_memblock_x86_reserve_range(void); extern void __init efi_print_memmap(void); extern void __init efi_map_region(efi_memory_desc_t *md); extern void __init efi_map_region_fixed(efi_memory_desc_t *md); extern void efi_sync_low_kernel_mappings(void); extern int __init efi_alloc_page_tables(void); extern int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages); extern void __init efi_runtime_update_mappings(void); extern void __init efi_dump_pagetable(void); extern void __init efi_apply_memmap_quirks(void); extern int __init efi_reuse_config(u64 tables, int nr_tables); extern void efi_delete_dummy_variable(void); extern void efi_switch_mm(struct mm_struct *mm); extern void efi_recover_from_page_fault(unsigned long phys_addr); extern void efi_free_boot_services(void); /* kexec external ABI */ struct efi_setup_data { u64 fw_vendor; u64 __unused; u64 tables; u64 smbios; u64 reserved[8]; }; extern u64 efi_setup; #ifdef CONFIG_EFI extern efi_status_t __efi64_thunk(u32, ...); #define efi64_thunk(...) ({ \ __efi_nargs_check(efi64_thunk, 6, __VA_ARGS__); \ __efi64_thunk(__VA_ARGS__); \ }) static inline bool efi_is_mixed(void) { if (!IS_ENABLED(CONFIG_EFI_MIXED)) return false; return IS_ENABLED(CONFIG_X86_64) && !efi_enabled(EFI_64BIT); } static inline bool efi_runtime_supported(void) { if (IS_ENABLED(CONFIG_X86_64) == efi_enabled(EFI_64BIT)) return true; return IS_ENABLED(CONFIG_EFI_MIXED); } extern void parse_efi_setup(u64 phys_addr, u32 data_len); extern void efifb_setup_from_dmi(struct screen_info *si, const char *opt); extern void efi_thunk_runtime_setup(void); efi_status_t efi_set_virtual_address_map(unsigned long memory_map_size, unsigned long descriptor_size, u32 descriptor_version, efi_memory_desc_t *virtual_map, unsigned long systab_phys); /* arch specific definitions used by the stub code */ #ifdef CONFIG_EFI_MIXED #define ARCH_HAS_EFISTUB_WRAPPERS static inline bool efi_is_64bit(void) { extern const bool efi_is64; return efi_is64; } static inline bool efi_is_native(void) { return efi_is_64bit(); } #define efi_mixed_mode_cast(attr) \ __builtin_choose_expr( \ __builtin_types_compatible_p(u32, __typeof__(attr)), \ (unsigned long)(attr), (attr)) #define efi_table_attr(inst, attr) \ (efi_is_native() \ ? inst->attr \ : (__typeof__(inst->attr)) \ efi_mixed_mode_cast(inst->mixed_mode.attr)) /* * The following macros allow translating arguments if necessary from native to * mixed mode. The use case for this is to initialize the upper 32 bits of * output parameters, and where the 32-bit method requires a 64-bit argument, * which must be split up into two arguments to be thunked properly. * * As examples, the AllocatePool boot service returns the address of the * allocation, but it will not set the high 32 bits of the address. To ensure * that the full 64-bit address is initialized, we zero-init the address before * calling the thunk. * * The FreePages boot service takes a 64-bit physical address even in 32-bit * mode. For the thunk to work correctly, a native 64-bit call of * free_pages(addr, size) * must be translated to * efi64_thunk(free_pages, addr & U32_MAX, addr >> 32, size) * so that the two 32-bit halves of addr get pushed onto the stack separately. */ static inline void *efi64_zero_upper(void *p) { ((u32 *)p)[1] = 0; return p; } static inline u32 efi64_convert_status(efi_status_t status) { return (u32)(status | (u64)status >> 32); } #define __efi64_argmap_free_pages(addr, size) \ ((addr), 0, (size)) #define __efi64_argmap_get_memory_map(mm_size, mm, key, size, ver) \ ((mm_size), (mm), efi64_zero_upper(key), efi64_zero_upper(size), (ver)) #define __efi64_argmap_allocate_pool(type, size, buffer) \ ((type), (size), efi64_zero_upper(buffer)) #define __efi64_argmap_create_event(type, tpl, f, c, event) \ ((type), (tpl), (f), (c), efi64_zero_upper(event)) #define __efi64_argmap_set_timer(event, type, time) \ ((event), (type), lower_32_bits(time), upper_32_bits(time)) #define __efi64_argmap_wait_for_event(num, event, index) \ ((num), (event), efi64_zero_upper(index)) #define __efi64_argmap_handle_protocol(handle, protocol, interface) \ ((handle), (protocol), efi64_zero_upper(interface)) #define __efi64_argmap_locate_protocol(protocol, reg, interface) \ ((protocol), (reg), efi64_zero_upper(interface)) #define __efi64_argmap_locate_device_path(protocol, path, handle) \ ((protocol), (path), efi64_zero_upper(handle)) #define __efi64_argmap_exit(handle, status, size, data) \ ((handle), efi64_convert_status(status), (size), (data)) /* PCI I/O */ #define __efi64_argmap_get_location(protocol, seg, bus, dev, func) \ ((protocol), efi64_zero_upper(seg), efi64_zero_upper(bus), \ efi64_zero_upper(dev), efi64_zero_upper(func)) /* LoadFile */ #define __efi64_argmap_load_file(protocol, path, policy, bufsize, buf) \ ((protocol), (path), (policy), efi64_zero_upper(bufsize), (buf)) /* Graphics Output Protocol */ #define __efi64_argmap_query_mode(gop, mode, size, info) \ ((gop), (mode), efi64_zero_upper(size), efi64_zero_upper(info)) /* * The macros below handle the plumbing for the argument mapping. To add a * mapping for a specific EFI method, simply define a macro * __efi64_argmap_, following the examples above. */ #define __efi64_thunk_map(inst, func, ...) \ efi64_thunk(inst->mixed_mode.func, \ __efi64_argmap(__efi64_argmap_ ## func(__VA_ARGS__), \ (__VA_ARGS__))) #define __efi64_argmap(mapped, args) \ __PASTE(__efi64_argmap__, __efi_nargs(__efi_eat mapped))(mapped, args) #define __efi64_argmap__0(mapped, args) __efi_eval mapped #define __efi64_argmap__1(mapped, args) __efi_eval args #define __efi_eat(...) #define __efi_eval(...) __VA_ARGS__ /* The three macros below handle dispatching via the thunk if needed */ #define efi_call_proto(inst, func, ...) \ (efi_is_native() \ ? inst->func(inst, ##__VA_ARGS__) \ : __efi64_thunk_map(inst, func, inst, ##__VA_ARGS__)) #define efi_bs_call(func, ...) \ (efi_is_native() \ ? efi_system_table->boottime->func(__VA_ARGS__) \ : __efi64_thunk_map(efi_table_attr(efi_system_table, \ boottime), \ func, __VA_ARGS__)) #define efi_rt_call(func, ...) \ (efi_is_native() \ ? efi_system_table->runtime->func(__VA_ARGS__) \ : __efi64_thunk_map(efi_table_attr(efi_system_table, \ runtime), \ func, __VA_ARGS__)) #else /* CONFIG_EFI_MIXED */ static inline bool efi_is_64bit(void) { return IS_ENABLED(CONFIG_X86_64); } #endif /* CONFIG_EFI_MIXED */ extern bool efi_reboot_required(void); extern bool efi_is_table_address(unsigned long phys_addr); extern void efi_find_mirror(void); extern void efi_reserve_boot_services(void); #else static inline void parse_efi_setup(u64 phys_addr, u32 data_len) {} static inline bool efi_reboot_required(void) { return false; } static inline bool efi_is_table_address(unsigned long phys_addr) { return false; } static inline void efi_find_mirror(void) { } static inline void efi_reserve_boot_services(void) { } #endif /* CONFIG_EFI */ #ifdef CONFIG_EFI_FAKE_MEMMAP extern void __init efi_fake_memmap_early(void); #else static inline void efi_fake_memmap_early(void) { } #endif #define arch_ima_efi_boot_mode \ ({ extern struct boot_params boot_params; boot_params.secure_boot; }) #endif /* _ASM_X86_EFI_H */