/* * Copyright 2010 Tilera Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for * more details. */ #ifndef _ASM_TILE_PAGE_H #define _ASM_TILE_PAGE_H #include #include #include /* PAGE_SHIFT and HPAGE_SHIFT determine the page sizes. */ #if defined(CONFIG_PAGE_SIZE_16KB) #define PAGE_SHIFT 14 #define CTX_PAGE_FLAG HV_CTX_PG_SM_16K #elif defined(CONFIG_PAGE_SIZE_64KB) #define PAGE_SHIFT 16 #define CTX_PAGE_FLAG HV_CTX_PG_SM_64K #else #define PAGE_SHIFT HV_LOG2_DEFAULT_PAGE_SIZE_SMALL #define CTX_PAGE_FLAG 0 #endif #define HPAGE_SHIFT HV_LOG2_DEFAULT_PAGE_SIZE_LARGE #define PAGE_SIZE (_AC(1, UL) << PAGE_SHIFT) #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT) #define PAGE_MASK (~(PAGE_SIZE - 1)) #define HPAGE_MASK (~(HPAGE_SIZE - 1)) /* * If the Kconfig doesn't specify, set a maximum zone order that * is enough so that we can create huge pages from small pages given * the respective sizes of the two page types. See . */ #ifndef CONFIG_FORCE_MAX_ZONEORDER #define CONFIG_FORCE_MAX_ZONEORDER (HPAGE_SHIFT - PAGE_SHIFT + 1) #endif #ifndef __ASSEMBLY__ #include #include struct page; static inline void clear_page(void *page) { memset(page, 0, PAGE_SIZE); } static inline void copy_page(void *to, void *from) { memcpy(to, from, PAGE_SIZE); } static inline void clear_user_page(void *page, unsigned long vaddr, struct page *pg) { clear_page(page); } static inline void copy_user_page(void *to, void *from, unsigned long vaddr, struct page *topage) { copy_page(to, from); } /* * Hypervisor page tables are made of the same basic structure. */ typedef HV_PTE pte_t; typedef HV_PTE pgd_t; typedef HV_PTE pgprot_t; /* * User L2 page tables are managed as one L2 page table per page, * because we use the page allocator for them. This keeps the allocation * simple, but it's also inefficient, since L2 page tables are much smaller * than pages (currently 2KB vs 64KB). So we should revisit this. */ typedef struct page *pgtable_t; /* Must be a macro since it is used to create constants. */ #define __pgprot(val) hv_pte(val) /* Rarely-used initializers, typically with a "zero" value. */ #define __pte(x) hv_pte(x) #define __pgd(x) hv_pte(x) static inline u64 pgprot_val(pgprot_t pgprot) { return hv_pte_val(pgprot); } static inline u64 pte_val(pte_t pte) { return hv_pte_val(pte); } static inline u64 pgd_val(pgd_t pgd) { return hv_pte_val(pgd); } #ifdef __tilegx__ typedef HV_PTE pmd_t; #define __pmd(x) hv_pte(x) static inline u64 pmd_val(pmd_t pmd) { return hv_pte_val(pmd); } #endif static inline __attribute_const__ int get_order(unsigned long size) { return BITS_PER_LONG - __builtin_clzl((size - 1) >> PAGE_SHIFT); } #endif /* !__ASSEMBLY__ */ #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT) #define HUGE_MAX_HSTATE 6 #ifdef CONFIG_HUGETLB_PAGE #define HAVE_ARCH_HUGETLB_UNMAPPED_AREA #endif /* Allow overriding how much VA or PA the kernel will use. */ #define MAX_PA_WIDTH CHIP_PA_WIDTH() #define MAX_VA_WIDTH CHIP_VA_WIDTH() /* Each memory controller has PAs distinct in their high bits. */ #define NR_PA_HIGHBIT_SHIFT (MAX_PA_WIDTH - CHIP_LOG_NUM_MSHIMS()) #define NR_PA_HIGHBIT_VALUES (1 << CHIP_LOG_NUM_MSHIMS()) #define __pa_to_highbits(pa) ((phys_addr_t)(pa) >> NR_PA_HIGHBIT_SHIFT) #define __pfn_to_highbits(pfn) ((pfn) >> (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT)) #ifdef __tilegx__ /* * We reserve the lower half of memory for user-space programs, and the * upper half for system code. We re-map all of physical memory in the * upper half, which takes a quarter of our VA space. Then we have * the vmalloc regions. The supervisor code lives at the highest address, * with the hypervisor above that. * * Loadable kernel modules are placed immediately after the static * supervisor code, with each being allocated a 256MB region of * address space, so we don't have to worry about the range of "jal" * and other branch instructions. * * For now we keep life simple and just allocate one pmd (4GB) for vmalloc. * Similarly, for now we don't play any struct page mapping games. */ #if MAX_PA_WIDTH + 2 > MAX_VA_WIDTH # error Too much PA to map with the VA available! #endif #define PAGE_OFFSET (-(_AC(1, UL) << (MAX_VA_WIDTH - 1))) #define KERNEL_HIGH_VADDR _AC(0xfffffff800000000, UL) /* high 32GB */ #define FIXADDR_BASE (KERNEL_HIGH_VADDR - 0x300000000) /* 4 GB */ #define FIXADDR_TOP (KERNEL_HIGH_VADDR - 0x200000000) /* 4 GB */ #define _VMALLOC_START FIXADDR_TOP #define MEM_SV_START (KERNEL_HIGH_VADDR - 0x100000000) /* 256 MB */ #define MEM_MODULE_START (MEM_SV_START + (256*1024*1024)) /* 256 MB */ #define MEM_MODULE_END (MEM_MODULE_START + (256*1024*1024)) #else /* !__tilegx__ */ /* * A PAGE_OFFSET of 0xC0000000 means that the kernel has * a virtual address space of one gigabyte, which limits the * amount of physical memory you can use to about 768MB. * If you want more physical memory than this then see the CONFIG_HIGHMEM * option in the kernel configuration. * * The top 16MB chunk in the table below is unavailable to Linux. Since * the kernel interrupt vectors must live at ether 0xfe000000 or 0xfd000000 * (depending on whether the kernel is at PL2 or Pl1), we map all of the * bottom of RAM at this address with a huge page table entry to minimize * its ITLB footprint (as well as at PAGE_OFFSET). The last architected * requirement is that user interrupt vectors live at 0xfc000000, so we * make that range of memory available to user processes. The remaining * regions are sized as shown; the first four addresses use the PL 1 * values, and after that, we show "typical" values, since the actual * addresses depend on kernel #defines. * * MEM_HV_START 0xfe000000 * MEM_SV_START (kernel code) 0xfd000000 * MEM_USER_INTRPT (user vector) 0xfc000000 * FIX_KMAP_xxx 0xfa000000 (via NR_CPUS * KM_TYPE_NR) * PKMAP_BASE 0xf9000000 (via LAST_PKMAP) * VMALLOC_START 0xf7000000 (via VMALLOC_RESERVE) * mapped LOWMEM 0xc0000000 */ #define MEM_USER_INTRPT _AC(0xfc000000, UL) #define MEM_SV_START _AC(0xfd000000, UL) #define MEM_HV_START _AC(0xfe000000, UL) #define INTRPT_SIZE 0x4000 /* Tolerate page size larger than the architecture interrupt region size. */ #if PAGE_SIZE > INTRPT_SIZE #undef INTRPT_SIZE #define INTRPT_SIZE PAGE_SIZE #endif #define KERNEL_HIGH_VADDR MEM_USER_INTRPT #define FIXADDR_TOP (KERNEL_HIGH_VADDR - PAGE_SIZE) #define PAGE_OFFSET _AC(CONFIG_PAGE_OFFSET, UL) /* On 32-bit architectures we mix kernel modules in with other vmaps. */ #define MEM_MODULE_START VMALLOC_START #define MEM_MODULE_END VMALLOC_END #endif /* __tilegx__ */ #if !defined(__ASSEMBLY__) && !defined(VDSO_BUILD) #ifdef CONFIG_HIGHMEM /* Map kernel virtual addresses to page frames, in HPAGE_SIZE chunks. */ extern unsigned long pbase_map[]; extern void *vbase_map[]; static inline unsigned long kaddr_to_pfn(const volatile void *_kaddr) { unsigned long kaddr = (unsigned long)_kaddr; return pbase_map[kaddr >> HPAGE_SHIFT] + ((kaddr & (HPAGE_SIZE - 1)) >> PAGE_SHIFT); } static inline void *pfn_to_kaddr(unsigned long pfn) { return vbase_map[__pfn_to_highbits(pfn)] + (pfn << PAGE_SHIFT); } static inline phys_addr_t virt_to_phys(const volatile void *kaddr) { unsigned long pfn = kaddr_to_pfn(kaddr); return ((phys_addr_t)pfn << PAGE_SHIFT) + ((unsigned long)kaddr & (PAGE_SIZE-1)); } static inline void *phys_to_virt(phys_addr_t paddr) { return pfn_to_kaddr(paddr >> PAGE_SHIFT) + (paddr & (PAGE_SIZE-1)); } /* With HIGHMEM, we pack PAGE_OFFSET through high_memory with all valid VAs. */ static inline int virt_addr_valid(const volatile void *kaddr) { extern void *high_memory; /* copied from */ return ((unsigned long)kaddr >= PAGE_OFFSET && kaddr < high_memory); } #else /* !CONFIG_HIGHMEM */ static inline unsigned long kaddr_to_pfn(const volatile void *kaddr) { return ((unsigned long)kaddr - PAGE_OFFSET) >> PAGE_SHIFT; } static inline void *pfn_to_kaddr(unsigned long pfn) { return (void *)((pfn << PAGE_SHIFT) + PAGE_OFFSET); } static inline phys_addr_t virt_to_phys(const volatile void *kaddr) { return (phys_addr_t)((unsigned long)kaddr - PAGE_OFFSET); } static inline void *phys_to_virt(phys_addr_t paddr) { return (void *)((unsigned long)paddr + PAGE_OFFSET); } /* Check that the given address is within some mapped range of PAs. */ #define virt_addr_valid(kaddr) pfn_valid(kaddr_to_pfn(kaddr)) #endif /* !CONFIG_HIGHMEM */ /* All callers are not consistent in how they call these functions. */ #define __pa(kaddr) virt_to_phys((void *)(unsigned long)(kaddr)) #define __va(paddr) phys_to_virt((phys_addr_t)(paddr)) extern int devmem_is_allowed(unsigned long pagenr); #ifdef CONFIG_FLATMEM static inline int pfn_valid(unsigned long pfn) { return pfn < max_mapnr; } #endif /* Provide as macros since these require some other headers included. */ #define page_to_pa(page) ((phys_addr_t)(page_to_pfn(page)) << PAGE_SHIFT) #define virt_to_page(kaddr) pfn_to_page(kaddr_to_pfn((void *)(kaddr))) #define page_to_virt(page) pfn_to_kaddr(page_to_pfn(page)) /* * The kernel text is mapped at MEM_SV_START as read-only. To allow * modifying kernel text, it is also mapped at PAGE_OFFSET as read-write. * This macro converts a kernel address to its writable kernel text mapping, * which is used to modify the text code on a running kernel by kgdb, * ftrace, kprobe, jump label, etc. */ #define ktext_writable_addr(kaddr) \ ((unsigned long)(kaddr) - MEM_SV_START + PAGE_OFFSET) struct mm_struct; extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr); extern pte_t *virt_to_kpte(unsigned long kaddr); #endif /* !__ASSEMBLY__ */ #define VM_DATA_DEFAULT_FLAGS \ (VM_READ | VM_WRITE | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) #include #endif /* _ASM_TILE_PAGE_H */