/* * Copyright (C) 2012,2013 - ARM Ltd * Author: Marc Zyngier * * Derived from arch/arm/include/asm/kvm_host.h: * Copyright (C) 2012 - Virtual Open Systems and Columbia University * Author: Christoffer Dall * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef __ARM64_KVM_HOST_H__ #define __ARM64_KVM_HOST_H__ #include #include #include #include #include #include #include #include #include #define __KVM_HAVE_ARCH_INTC_INITIALIZED #define KVM_USER_MEM_SLOTS 512 #define KVM_HALT_POLL_NS_DEFAULT 500000 #include #include #include #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS #define KVM_VCPU_MAX_FEATURES 4 #define KVM_REQ_SLEEP \ KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) #define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1) DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use); int __attribute_const__ kvm_target_cpu(void); int kvm_reset_vcpu(struct kvm_vcpu *vcpu); int kvm_arch_dev_ioctl_check_extension(struct kvm *kvm, long ext); void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start); struct kvm_arch { /* The VMID generation used for the virt. memory system */ u64 vmid_gen; u32 vmid; /* 1-level 2nd stage table and lock */ spinlock_t pgd_lock; pgd_t *pgd; /* VTTBR value associated with above pgd and vmid */ u64 vttbr; /* The last vcpu id that ran on each physical CPU */ int __percpu *last_vcpu_ran; /* The maximum number of vCPUs depends on the used GIC model */ int max_vcpus; /* Interrupt controller */ struct vgic_dist vgic; /* Mandated version of PSCI */ u32 psci_version; }; #define KVM_NR_MEM_OBJS 40 /* * We don't want allocation failures within the mmu code, so we preallocate * enough memory for a single page fault in a cache. */ struct kvm_mmu_memory_cache { int nobjs; void *objects[KVM_NR_MEM_OBJS]; }; struct kvm_vcpu_fault_info { u32 esr_el2; /* Hyp Syndrom Register */ u64 far_el2; /* Hyp Fault Address Register */ u64 hpfar_el2; /* Hyp IPA Fault Address Register */ u64 disr_el1; /* Deferred [SError] Status Register */ }; /* * 0 is reserved as an invalid value. * Order should be kept in sync with the save/restore code. */ enum vcpu_sysreg { __INVALID_SYSREG__, MPIDR_EL1, /* MultiProcessor Affinity Register */ CSSELR_EL1, /* Cache Size Selection Register */ SCTLR_EL1, /* System Control Register */ ACTLR_EL1, /* Auxiliary Control Register */ CPACR_EL1, /* Coprocessor Access Control */ TTBR0_EL1, /* Translation Table Base Register 0 */ TTBR1_EL1, /* Translation Table Base Register 1 */ TCR_EL1, /* Translation Control Register */ ESR_EL1, /* Exception Syndrome Register */ AFSR0_EL1, /* Auxiliary Fault Status Register 0 */ AFSR1_EL1, /* Auxiliary Fault Status Register 1 */ FAR_EL1, /* Fault Address Register */ MAIR_EL1, /* Memory Attribute Indirection Register */ VBAR_EL1, /* Vector Base Address Register */ CONTEXTIDR_EL1, /* Context ID Register */ TPIDR_EL0, /* Thread ID, User R/W */ TPIDRRO_EL0, /* Thread ID, User R/O */ TPIDR_EL1, /* Thread ID, Privileged */ AMAIR_EL1, /* Aux Memory Attribute Indirection Register */ CNTKCTL_EL1, /* Timer Control Register (EL1) */ PAR_EL1, /* Physical Address Register */ MDSCR_EL1, /* Monitor Debug System Control Register */ MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */ DISR_EL1, /* Deferred Interrupt Status Register */ /* Performance Monitors Registers */ PMCR_EL0, /* Control Register */ PMSELR_EL0, /* Event Counter Selection Register */ PMEVCNTR0_EL0, /* Event Counter Register (0-30) */ PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30, PMCCNTR_EL0, /* Cycle Counter Register */ PMEVTYPER0_EL0, /* Event Type Register (0-30) */ PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30, PMCCFILTR_EL0, /* Cycle Count Filter Register */ PMCNTENSET_EL0, /* Count Enable Set Register */ PMINTENSET_EL1, /* Interrupt Enable Set Register */ PMOVSSET_EL0, /* Overflow Flag Status Set Register */ PMSWINC_EL0, /* Software Increment Register */ PMUSERENR_EL0, /* User Enable Register */ /* 32bit specific registers. Keep them at the end of the range */ DACR32_EL2, /* Domain Access Control Register */ IFSR32_EL2, /* Instruction Fault Status Register */ FPEXC32_EL2, /* Floating-Point Exception Control Register */ DBGVCR32_EL2, /* Debug Vector Catch Register */ NR_SYS_REGS /* Nothing after this line! */ }; /* 32bit mapping */ #define c0_MPIDR (MPIDR_EL1 * 2) /* MultiProcessor ID Register */ #define c0_CSSELR (CSSELR_EL1 * 2)/* Cache Size Selection Register */ #define c1_SCTLR (SCTLR_EL1 * 2) /* System Control Register */ #define c1_ACTLR (ACTLR_EL1 * 2) /* Auxiliary Control Register */ #define c1_CPACR (CPACR_EL1 * 2) /* Coprocessor Access Control */ #define c2_TTBR0 (TTBR0_EL1 * 2) /* Translation Table Base Register 0 */ #define c2_TTBR0_high (c2_TTBR0 + 1) /* TTBR0 top 32 bits */ #define c2_TTBR1 (TTBR1_EL1 * 2) /* Translation Table Base Register 1 */ #define c2_TTBR1_high (c2_TTBR1 + 1) /* TTBR1 top 32 bits */ #define c2_TTBCR (TCR_EL1 * 2) /* Translation Table Base Control R. */ #define c3_DACR (DACR32_EL2 * 2)/* Domain Access Control Register */ #define c5_DFSR (ESR_EL1 * 2) /* Data Fault Status Register */ #define c5_IFSR (IFSR32_EL2 * 2)/* Instruction Fault Status Register */ #define c5_ADFSR (AFSR0_EL1 * 2) /* Auxiliary Data Fault Status R */ #define c5_AIFSR (AFSR1_EL1 * 2) /* Auxiliary Instr Fault Status R */ #define c6_DFAR (FAR_EL1 * 2) /* Data Fault Address Register */ #define c6_IFAR (c6_DFAR + 1) /* Instruction Fault Address Register */ #define c7_PAR (PAR_EL1 * 2) /* Physical Address Register */ #define c7_PAR_high (c7_PAR + 1) /* PAR top 32 bits */ #define c10_PRRR (MAIR_EL1 * 2) /* Primary Region Remap Register */ #define c10_NMRR (c10_PRRR + 1) /* Normal Memory Remap Register */ #define c12_VBAR (VBAR_EL1 * 2) /* Vector Base Address Register */ #define c13_CID (CONTEXTIDR_EL1 * 2) /* Context ID Register */ #define c13_TID_URW (TPIDR_EL0 * 2) /* Thread ID, User R/W */ #define c13_TID_URO (TPIDRRO_EL0 * 2)/* Thread ID, User R/O */ #define c13_TID_PRIV (TPIDR_EL1 * 2) /* Thread ID, Privileged */ #define c10_AMAIR0 (AMAIR_EL1 * 2) /* Aux Memory Attr Indirection Reg */ #define c10_AMAIR1 (c10_AMAIR0 + 1)/* Aux Memory Attr Indirection Reg */ #define c14_CNTKCTL (CNTKCTL_EL1 * 2) /* Timer Control Register (PL1) */ #define cp14_DBGDSCRext (MDSCR_EL1 * 2) #define cp14_DBGBCR0 (DBGBCR0_EL1 * 2) #define cp14_DBGBVR0 (DBGBVR0_EL1 * 2) #define cp14_DBGBXVR0 (cp14_DBGBVR0 + 1) #define cp14_DBGWCR0 (DBGWCR0_EL1 * 2) #define cp14_DBGWVR0 (DBGWVR0_EL1 * 2) #define cp14_DBGDCCINT (MDCCINT_EL1 * 2) #define NR_COPRO_REGS (NR_SYS_REGS * 2) struct kvm_cpu_context { struct kvm_regs gp_regs; union { u64 sys_regs[NR_SYS_REGS]; u32 copro[NR_COPRO_REGS]; }; struct kvm_vcpu *__hyp_running_vcpu; }; typedef struct kvm_cpu_context kvm_cpu_context_t; struct kvm_vcpu_arch { struct kvm_cpu_context ctxt; /* HYP configuration */ u64 hcr_el2; u32 mdcr_el2; /* Exception Information */ struct kvm_vcpu_fault_info fault; /* State of various workarounds, see kvm_asm.h for bit assignment */ u64 workaround_flags; /* Miscellaneous vcpu state flags */ u64 flags; /* * We maintain more than a single set of debug registers to support * debugging the guest from the host and to maintain separate host and * guest state during world switches. vcpu_debug_state are the debug * registers of the vcpu as the guest sees them. host_debug_state are * the host registers which are saved and restored during * world switches. external_debug_state contains the debug * values we want to debug the guest. This is set via the * KVM_SET_GUEST_DEBUG ioctl. * * debug_ptr points to the set of debug registers that should be loaded * onto the hardware when running the guest. */ struct kvm_guest_debug_arch *debug_ptr; struct kvm_guest_debug_arch vcpu_debug_state; struct kvm_guest_debug_arch external_debug_state; /* Pointer to host CPU context */ kvm_cpu_context_t *host_cpu_context; struct thread_info *host_thread_info; /* hyp VA */ struct user_fpsimd_state *host_fpsimd_state; /* hyp VA */ struct { /* {Break,watch}point registers */ struct kvm_guest_debug_arch regs; /* Statistical profiling extension */ u64 pmscr_el1; } host_debug_state; /* VGIC state */ struct vgic_cpu vgic_cpu; struct arch_timer_cpu timer_cpu; struct kvm_pmu pmu; /* * Anything that is not used directly from assembly code goes * here. */ /* * Guest registers we preserve during guest debugging. * * These shadow registers are updated by the kvm_handle_sys_reg * trap handler if the guest accesses or updates them while we * are using guest debug. */ struct { u32 mdscr_el1; } guest_debug_preserved; /* vcpu power-off state */ bool power_off; /* Don't run the guest (internal implementation need) */ bool pause; /* IO related fields */ struct kvm_decode mmio_decode; /* Cache some mmu pages needed inside spinlock regions */ struct kvm_mmu_memory_cache mmu_page_cache; /* Target CPU and feature flags */ int target; DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES); /* Detect first run of a vcpu */ bool has_run_once; /* Virtual SError ESR to restore when HCR_EL2.VSE is set */ u64 vsesr_el2; /* True when deferrable sysregs are loaded on the physical CPU, * see kvm_vcpu_load_sysregs and kvm_vcpu_put_sysregs. */ bool sysregs_loaded_on_cpu; }; /* vcpu_arch flags field values: */ #define KVM_ARM64_DEBUG_DIRTY (1 << 0) #define KVM_ARM64_FP_ENABLED (1 << 1) /* guest FP regs loaded */ #define KVM_ARM64_FP_HOST (1 << 2) /* host FP regs loaded */ #define KVM_ARM64_HOST_SVE_IN_USE (1 << 3) /* backup for host TIF_SVE */ #define KVM_ARM64_HOST_SVE_ENABLED (1 << 4) /* SVE enabled for EL0 */ #define vcpu_gp_regs(v) (&(v)->arch.ctxt.gp_regs) /* * Only use __vcpu_sys_reg if you know you want the memory backed version of a * register, and not the one most recently accessed by a running VCPU. For * example, for userspace access or for system registers that are never context * switched, but only emulated. */ #define __vcpu_sys_reg(v,r) ((v)->arch.ctxt.sys_regs[(r)]) u64 vcpu_read_sys_reg(struct kvm_vcpu *vcpu, int reg); void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg); /* * CP14 and CP15 live in the same array, as they are backed by the * same system registers. */ #define vcpu_cp14(v,r) ((v)->arch.ctxt.copro[(r)]) #define vcpu_cp15(v,r) ((v)->arch.ctxt.copro[(r)]) struct kvm_vm_stat { ulong remote_tlb_flush; }; struct kvm_vcpu_stat { u64 halt_successful_poll; u64 halt_attempted_poll; u64 halt_poll_invalid; u64 halt_wakeup; u64 hvc_exit_stat; u64 wfe_exit_stat; u64 wfi_exit_stat; u64 mmio_exit_user; u64 mmio_exit_kernel; u64 exits; }; int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init); unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu); int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices); int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); #define KVM_ARCH_WANT_MMU_NOTIFIER int kvm_unmap_hva(struct kvm *kvm, unsigned long hva); int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end); void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte); int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end); int kvm_test_age_hva(struct kvm *kvm, unsigned long hva); struct kvm_vcpu *kvm_arm_get_running_vcpu(void); struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); void kvm_arm_halt_guest(struct kvm *kvm); void kvm_arm_resume_guest(struct kvm *kvm); u64 __kvm_call_hyp(void *hypfn, ...); #define kvm_call_hyp(f, ...) __kvm_call_hyp(kvm_ksym_ref(f), ##__VA_ARGS__) void force_vm_exit(const cpumask_t *mask); void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot); int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run, int exception_index); void handle_exit_early(struct kvm_vcpu *vcpu, struct kvm_run *run, int exception_index); int kvm_perf_init(void); int kvm_perf_teardown(void); struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr); void __kvm_set_tpidr_el2(u64 tpidr_el2); DECLARE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state); static inline void __cpu_init_hyp_mode(phys_addr_t pgd_ptr, unsigned long hyp_stack_ptr, unsigned long vector_ptr) { u64 tpidr_el2; /* * Call initialization code, and switch to the full blown HYP code. * If the cpucaps haven't been finalized yet, something has gone very * wrong, and hyp will crash and burn when it uses any * cpus_have_const_cap() wrapper. */ BUG_ON(!static_branch_likely(&arm64_const_caps_ready)); __kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr); /* * Calculate the raw per-cpu offset without a translation from the * kernel's mapping to the linear mapping, and store it in tpidr_el2 * so that we can use adr_l to access per-cpu variables in EL2. */ tpidr_el2 = (u64)this_cpu_ptr(&kvm_host_cpu_state) - (u64)kvm_ksym_ref(kvm_host_cpu_state); kvm_call_hyp(__kvm_set_tpidr_el2, tpidr_el2); } static inline bool kvm_arch_check_sve_has_vhe(void) { /* * The Arm architecture specifies that implementation of SVE * requires VHE also to be implemented. The KVM code for arm64 * relies on this when SVE is present: */ if (system_supports_sve()) return has_vhe(); else return true; } static inline void kvm_arch_hardware_unsetup(void) {} static inline void kvm_arch_sync_events(struct kvm *kvm) {} static inline void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) {} static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {} static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {} void kvm_arm_init_debug(void); void kvm_arm_setup_debug(struct kvm_vcpu *vcpu); void kvm_arm_clear_debug(struct kvm_vcpu *vcpu); void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu); bool kvm_arm_handle_step_debug(struct kvm_vcpu *vcpu, struct kvm_run *run); int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr); int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr); int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr); static inline void __cpu_init_stage2(void) { u32 parange = kvm_call_hyp(__init_stage2_translation); WARN_ONCE(parange < 40, "PARange is %d bits, unsupported configuration!", parange); } /* Guest/host FPSIMD coordination helpers */ int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu); void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu); void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu); void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu); #ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */ static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) { return kvm_arch_vcpu_run_map_fp(vcpu); } #endif static inline void kvm_arm_vhe_guest_enter(void) { local_daif_mask(); } static inline void kvm_arm_vhe_guest_exit(void) { local_daif_restore(DAIF_PROCCTX_NOIRQ); /* * When we exit from the guest we change a number of CPU configuration * parameters, such as traps. Make sure these changes take effect * before running the host or additional guests. */ isb(); } static inline bool kvm_arm_harden_branch_predictor(void) { return cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR); } #define KVM_SSBD_UNKNOWN -1 #define KVM_SSBD_FORCE_DISABLE 0 #define KVM_SSBD_KERNEL 1 #define KVM_SSBD_FORCE_ENABLE 2 #define KVM_SSBD_MITIGATED 3 static inline int kvm_arm_have_ssbd(void) { switch (arm64_get_ssbd_state()) { case ARM64_SSBD_FORCE_DISABLE: return KVM_SSBD_FORCE_DISABLE; case ARM64_SSBD_KERNEL: return KVM_SSBD_KERNEL; case ARM64_SSBD_FORCE_ENABLE: return KVM_SSBD_FORCE_ENABLE; case ARM64_SSBD_MITIGATED: return KVM_SSBD_MITIGATED; case ARM64_SSBD_UNKNOWN: default: return KVM_SSBD_UNKNOWN; } } void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu); void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu); #define __KVM_HAVE_ARCH_VM_ALLOC struct kvm *kvm_arch_alloc_vm(void); void kvm_arch_free_vm(struct kvm *kvm); #endif /* __ARM64_KVM_HOST_H__ */