From 8e080c2e6cadada82a6b520e0c23a1cb974822d5 Mon Sep 17 00:00:00 2001 From: Mauro Carvalho Chehab Date: Sun, 13 Sep 2009 22:16:04 -0300 Subject: V4L/DVB (12761): DocBook: add media API specs The V4L and DVB API's are there for a long time. however, up to now, no efforts were done to merge them to kernel DocBook. This patch adds the current versions of the specs as an unique compendium. Signed-off-by: Mauro Carvalho Chehab --- Documentation/DocBook/v4l/vidioc-g-fbuf.xml | 456 ++++++++++++++++++++++++++++ 1 file changed, 456 insertions(+) create mode 100644 Documentation/DocBook/v4l/vidioc-g-fbuf.xml (limited to 'Documentation/DocBook/v4l/vidioc-g-fbuf.xml') diff --git a/Documentation/DocBook/v4l/vidioc-g-fbuf.xml b/Documentation/DocBook/v4l/vidioc-g-fbuf.xml new file mode 100644 index 000000000000..f7017062656e --- /dev/null +++ b/Documentation/DocBook/v4l/vidioc-g-fbuf.xml @@ -0,0 +1,456 @@ + + + ioctl VIDIOC_G_FBUF, VIDIOC_S_FBUF + &manvol; + + + + VIDIOC_G_FBUF + VIDIOC_S_FBUF + Get or set frame buffer overlay parameters + + + + + + int ioctl + int fd + int request + struct v4l2_framebuffer *argp + + + + + int ioctl + int fd + int request + const struct v4l2_framebuffer *argp + + + + + + Arguments + + + + fd + + &fd; + + + + request + + VIDIOC_G_FBUF, VIDIOC_S_FBUF + + + + argp + + + + + + + + + Description + + Applications can use the VIDIOC_G_FBUF and +VIDIOC_S_FBUF ioctl to get and set the +framebuffer parameters for a Video +Overlay or Video Output Overlay +(OSD). The type of overlay is implied by the device type (capture or +output device) and can be determined with the &VIDIOC-QUERYCAP; ioctl. +One /dev/videoN device must not support both +kinds of overlay. + + The V4L2 API distinguishes destructive and non-destructive +overlays. A destructive overlay copies captured video images into the +video memory of a graphics card. A non-destructive overlay blends +video images into a VGA signal or graphics into a video signal. +Video Output Overlays are always +non-destructive. + + To get the current parameters applications call the +VIDIOC_G_FBUF ioctl with a pointer to a +v4l2_framebuffer structure. The driver fills +all fields of the structure or returns an &EINVAL; when overlays are +not supported. + + To set the parameters for a Video Output +Overlay, applications must initialize the +flags field of a struct +v4l2_framebuffer. Since the framebuffer is +implemented on the TV card all other parameters are determined by the +driver. When an application calls VIDIOC_S_FBUF +with a pointer to this structure, the driver prepares for the overlay +and returns the framebuffer parameters as +VIDIOC_G_FBUF does, or it returns an error +code. + + To set the parameters for a non-destructive +Video Overlay, applications must initialize the +flags field, the +fmt substructure, and call +VIDIOC_S_FBUF. Again the driver prepares for the +overlay and returns the framebuffer parameters as +VIDIOC_G_FBUF does, or it returns an error +code. + + For a destructive Video Overlay +applications must additionally provide a +base address. Setting up a DMA to a +random memory location can jeopardize the system security, its +stability or even damage the hardware, therefore only the superuser +can set the parameters for a destructive video overlay. + + + + + struct <structname>v4l2_framebuffer</structname> + + &cs-ustr; + + + __u32 + capability + + Overlay capability flags set by the driver, see +. + + + __u32 + flags + + Overlay control flags set by application and +driver, see + + + void * + base + + Physical base address of the framebuffer, +that is the address of the pixel in the top left corner of the +framebuffer.A physical base address may not suit all +platforms. GK notes in theory we should pass something like PCI device ++ memory region + offset instead. If you encounter problems please +discuss on the linux-media mailing list: &v4l-ml;. + + + + + + This field is irrelevant to +non-destructive Video Overlays. For +destructive Video Overlays applications must +provide a base address. The driver may accept only base addresses +which are a multiple of two, four or eight bytes. For +Video Output Overlays the driver must return +a valid base address, so applications can find the corresponding Linux +framebuffer device (see ). + + + &v4l2-pix-format; + fmt + + Layout of the frame buffer. The +v4l2_pix_format structure is defined in , for clarification the fields and acceptable values + are listed below: + + + + __u32 + width + Width of the frame buffer in pixels. + + + + __u32 + height + Height of the frame buffer in pixels. + + + + __u32 + pixelformat + The pixel format of the +framebuffer. + + + + + + For non-destructive Video +Overlays this field only defines a format for the +&v4l2-window; chromakey field. + + + + + + For destructive Video +Overlays applications must initialize this field. For +Video Output Overlays the driver must return +a valid format. + + + + + + Usually this is an RGB format (for example +V4L2_PIX_FMT_RGB565) +but YUV formats (only packed YUV formats when chroma keying is used, +not including V4L2_PIX_FMT_YUYV and +V4L2_PIX_FMT_UYVY) and the +V4L2_PIX_FMT_PAL8 format are also permitted. The +behavior of the driver when an application requests a compressed +format is undefined. See for information on +pixel formats. + + + + &v4l2-field; + field + Drivers and applications shall ignore this field. +If applicable, the field order is selected with the &VIDIOC-S-FMT; +ioctl, using the field field of +&v4l2-window;. + + + + __u32 + bytesperline + Distance in bytes between the leftmost pixels in +two adjacent lines. + + + This field is irrelevant to +non-destructive Video +Overlays.For destructive Video +Overlays both applications and drivers can set this field +to request padding bytes at the end of each line. Drivers however may +ignore the requested value, returning width +times bytes-per-pixel or a larger value required by the hardware. That +implies applications can just set this field to zero to get a +reasonable default.For Video Output +Overlays the driver must return a valid +value.Video hardware may access padding bytes, therefore +they must reside in accessible memory. Consider for example the case +where padding bytes after the last line of an image cross a system +page boundary. Capture devices may write padding bytes, the value is +undefined. Output devices ignore the contents of padding +bytes.When the image format is planar the +bytesperline value applies to the largest +plane and is divided by the same factor as the +width field for any smaller planes. For +example the Cb and Cr planes of a YUV 4:2:0 image have half as many +padding bytes following each line as the Y plane. To avoid ambiguities +drivers must return a bytesperline value +rounded up to a multiple of the scale factor. + + + + __u32 + sizeimage + This field is irrelevant to +non-destructive Video Overlays. For +destructive Video Overlays applications must +initialize this field. For Video Output +Overlays the driver must return a valid +format.Together with base it +defines the framebuffer memory accessible by the +driver. + + + + &v4l2-colorspace; + colorspace + This information supplements the +pixelformat and must be set by the driver, +see . + + + + __u32 + priv + Reserved for additional information about custom +(driver defined) formats. When not used drivers and applications must +set this field to zero. + + + +
+ + + Frame Buffer Capability Flags + + &cs-def; + + + V4L2_FBUF_CAP_EXTERNOVERLAY + 0x0001 + The device is capable of non-destructive overlays. +When the driver clears this flag, only destructive overlays are +supported. There are no drivers yet which support both destructive and +non-destructive overlays. + + + V4L2_FBUF_CAP_CHROMAKEY + 0x0002 + The device supports clipping by chroma-keying the +images. That is, image pixels replace pixels in the VGA or video +signal only where the latter assume a certain color. Chroma-keying +makes no sense for destructive overlays. + + + V4L2_FBUF_CAP_LIST_CLIPPING + 0x0004 + The device supports clipping using a list of clip +rectangles. + + + V4L2_FBUF_CAP_BITMAP_CLIPPING + 0x0008 + The device supports clipping using a bit mask. + + + V4L2_FBUF_CAP_LOCAL_ALPHA + 0x0010 + The device supports clipping/blending using the +alpha channel of the framebuffer or VGA signal. Alpha blending makes +no sense for destructive overlays. + + + V4L2_FBUF_CAP_GLOBAL_ALPHA + 0x0020 + The device supports alpha blending using a global +alpha value. Alpha blending makes no sense for destructive overlays. + + + V4L2_FBUF_CAP_LOCAL_INV_ALPHA + 0x0040 + The device supports clipping/blending using the +inverted alpha channel of the framebuffer or VGA signal. Alpha +blending makes no sense for destructive overlays. + + + +
+ + + Frame Buffer Flags + + &cs-def; + + + V4L2_FBUF_FLAG_PRIMARY + 0x0001 + The framebuffer is the primary graphics surface. +In other words, the overlay is destructive. [?] + + + V4L2_FBUF_FLAG_OVERLAY + 0x0002 + The frame buffer is an overlay surface the same +size as the capture. [?] + + + The purpose of +V4L2_FBUF_FLAG_PRIMARY and +V4L2_FBUF_FLAG_OVERLAY was never quite clear. +Most drivers seem to ignore these flags. For compatibility with the +bttv driver applications should set the +V4L2_FBUF_FLAG_OVERLAY flag. + + + V4L2_FBUF_FLAG_CHROMAKEY + 0x0004 + Use chroma-keying. The chroma-key color is +determined by the chromakey field of +&v4l2-window; and negotiated with the &VIDIOC-S-FMT; ioctl, see +and + . + + + There are no flags to enable +clipping using a list of clip rectangles or a bitmap. These methods +are negotiated with the &VIDIOC-S-FMT; ioctl, see and . + + + V4L2_FBUF_FLAG_LOCAL_ALPHA + 0x0008 + Use the alpha channel of the framebuffer to clip or +blend framebuffer pixels with video images. The blend +function is: output = framebuffer pixel * alpha + video pixel * (1 - +alpha). The actual alpha depth depends on the framebuffer pixel +format. + + + V4L2_FBUF_FLAG_GLOBAL_ALPHA + 0x0010 + Use a global alpha value to blend the framebuffer +with video images. The blend function is: output = (framebuffer pixel +* alpha + video pixel * (255 - alpha)) / 255. The alpha value is +determined by the global_alpha field of +&v4l2-window; and negotiated with the &VIDIOC-S-FMT; ioctl, see +and . + + + V4L2_FBUF_FLAG_LOCAL_INV_ALPHA + 0x0020 + Like +V4L2_FBUF_FLAG_LOCAL_ALPHA, use the alpha channel +of the framebuffer to clip or blend framebuffer pixels with video +images, but with an inverted alpha value. The blend function is: +output = framebuffer pixel * (1 - alpha) + video pixel * alpha. The +actual alpha depth depends on the framebuffer pixel format. + + + +
+
+ + + &return-value; + + + + EPERM + + VIDIOC_S_FBUF can only be called +by a privileged user to negotiate the parameters for a destructive +overlay. + + + + EBUSY + + The framebuffer parameters cannot be changed at this +time because overlay is already enabled, or capturing is enabled +and the hardware cannot capture and overlay simultaneously. + + + + EINVAL + + The ioctl is not supported or the +VIDIOC_S_FBUF parameters are unsuitable. + + + + +
+ + -- cgit v1.2.3