Age | Commit message (Collapse) | Author | Files | Lines |
|
Merge more updates from Andrew Morton:
- the rest of MM
- procfs updates
- various misc things
- more y2038 fixes
- get_maintainer updates
- lib/ updates
- checkpatch updates
- various epoll updates
- autofs updates
- hfsplus
- some reiserfs work
- fatfs updates
- signal.c cleanups
- ipc/ updates
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (166 commits)
ipc/util.c: update return value of ipc_getref from int to bool
ipc/util.c: further variable name cleanups
ipc: simplify ipc initialization
ipc: get rid of ids->tables_initialized hack
lib/rhashtable: guarantee initial hashtable allocation
lib/rhashtable: simplify bucket_table_alloc()
ipc: drop ipc_lock()
ipc/util.c: correct comment in ipc_obtain_object_check
ipc: rename ipcctl_pre_down_nolock()
ipc/util.c: use ipc_rcu_putref() for failues in ipc_addid()
ipc: reorganize initialization of kern_ipc_perm.seq
ipc: compute kern_ipc_perm.id under the ipc lock
init/Kconfig: remove EXPERT from CHECKPOINT_RESTORE
fs/sysv/inode.c: use ktime_get_real_seconds() for superblock stamp
adfs: use timespec64 for time conversion
kernel/sysctl.c: fix typos in comments
drivers/rapidio/devices/rio_mport_cdev.c: remove redundant pointer md
fork: don't copy inconsistent signal handler state to child
signal: make get_signal() return bool
signal: make sigkill_pending() return bool
...
|
|
There are several blockable mmu notifiers which might sleep in
mmu_notifier_invalidate_range_start and that is a problem for the
oom_reaper because it needs to guarantee a forward progress so it cannot
depend on any sleepable locks.
Currently we simply back off and mark an oom victim with blockable mmu
notifiers as done after a short sleep. That can result in selecting a new
oom victim prematurely because the previous one still hasn't torn its
memory down yet.
We can do much better though. Even if mmu notifiers use sleepable locks
there is no reason to automatically assume those locks are held. Moreover
majority of notifiers only care about a portion of the address space and
there is absolutely zero reason to fail when we are unmapping an unrelated
range. Many notifiers do really block and wait for HW which is harder to
handle and we have to bail out though.
This patch handles the low hanging fruit.
__mmu_notifier_invalidate_range_start gets a blockable flag and callbacks
are not allowed to sleep if the flag is set to false. This is achieved by
using trylock instead of the sleepable lock for most callbacks and
continue as long as we do not block down the call chain.
I think we can improve that even further because there is a common pattern
to do a range lookup first and then do something about that. The first
part can be done without a sleeping lock in most cases AFAICS.
The oom_reaper end then simply retries if there is at least one notifier
which couldn't make any progress in !blockable mode. A retry loop is
already implemented to wait for the mmap_sem and this is basically the
same thing.
The simplest way for driver developers to test this code path is to wrap
userspace code which uses these notifiers into a memcg and set the hard
limit to hit the oom. This can be done e.g. after the test faults in all
the mmu notifier managed memory and set the hard limit to something really
small. Then we are looking for a proper process tear down.
[akpm@linux-foundation.org: coding style fixes]
[akpm@linux-foundation.org: minor code simplification]
Link: http://lkml.kernel.org/r/20180716115058.5559-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Christian König <christian.koenig@amd.com> # AMD notifiers
Acked-by: Leon Romanovsky <leonro@mellanox.com> # mlx and umem_odp
Reported-by: David Rientjes <rientjes@google.com>
Cc: "David (ChunMing) Zhou" <David1.Zhou@amd.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Mike Marciniszyn <mike.marciniszyn@intel.com>
Cc: Dennis Dalessandro <dennis.dalessandro@intel.com>
Cc: Sudeep Dutt <sudeep.dutt@intel.com>
Cc: Ashutosh Dixit <ashutosh.dixit@intel.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Felix Kuehling <felix.kuehling@amd.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull core signal handling updates from Eric Biederman:
"It was observed that a periodic timer in combination with a
sufficiently expensive fork could prevent fork from every completing.
This contains the changes to remove the need for that restart.
This set of changes is split into several parts:
- The first part makes PIDTYPE_TGID a proper pid type instead
something only for very special cases. The part starts using
PIDTYPE_TGID enough so that in __send_signal where signals are
actually delivered we know if the signal is being sent to a a group
of processes or just a single process.
- With that prep work out of the way the logic in fork is modified so
that fork logically makes signals received while it is running
appear to be received after the fork completes"
* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (22 commits)
signal: Don't send signals to tasks that don't exist
signal: Don't restart fork when signals come in.
fork: Have new threads join on-going signal group stops
fork: Skip setting TIF_SIGPENDING in ptrace_init_task
signal: Add calculate_sigpending()
fork: Unconditionally exit if a fatal signal is pending
fork: Move and describe why the code examines PIDNS_ADDING
signal: Push pid type down into complete_signal.
signal: Push pid type down into __send_signal
signal: Push pid type down into send_signal
signal: Pass pid type into do_send_sig_info
signal: Pass pid type into send_sigio_to_task & send_sigurg_to_task
signal: Pass pid type into group_send_sig_info
signal: Pass pid and pid type into send_sigqueue
posix-timers: Noralize good_sigevent
signal: Use PIDTYPE_TGID to clearly store where file signals will be sent
pid: Implement PIDTYPE_TGID
pids: Move the pgrp and session pid pointers from task_struct to signal_struct
kvm: Don't open code task_pid in kvm_vcpu_ioctl
pids: Compute task_tgid using signal->leader_pid
...
|
|
Pull first set of KVM updates from Paolo Bonzini:
"PPC:
- minor code cleanups
x86:
- PCID emulation and CR3 caching for shadow page tables
- nested VMX live migration
- nested VMCS shadowing
- optimized IPI hypercall
- some optimizations
ARM will come next week"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (85 commits)
kvm: x86: Set highest physical address bits in non-present/reserved SPTEs
KVM/x86: Use CC_SET()/CC_OUT in arch/x86/kvm/vmx.c
KVM: X86: Implement PV IPIs in linux guest
KVM: X86: Add kvm hypervisor init time platform setup callback
KVM: X86: Implement "send IPI" hypercall
KVM/x86: Move X86_CR4_OSXSAVE check into kvm_valid_sregs()
KVM: x86: Skip pae_root shadow allocation if tdp enabled
KVM/MMU: Combine flushing remote tlb in mmu_set_spte()
KVM: vmx: skip VMWRITE of HOST_{FS,GS}_BASE when possible
KVM: vmx: skip VMWRITE of HOST_{FS,GS}_SEL when possible
KVM: vmx: always initialize HOST_{FS,GS}_BASE to zero during setup
KVM: vmx: move struct host_state usage to struct loaded_vmcs
KVM: vmx: compute need to reload FS/GS/LDT on demand
KVM: nVMX: remove a misleading comment regarding vmcs02 fields
KVM: vmx: rename __vmx_load_host_state() and vmx_save_host_state()
KVM: vmx: add dedicated utility to access guest's kernel_gs_base
KVM: vmx: track host_state.loaded using a loaded_vmcs pointer
KVM: vmx: refactor segmentation code in vmx_save_host_state()
kvm: nVMX: Fix fault priority for VMX operations
kvm: nVMX: Fix fault vector for VMX operation at CPL > 0
...
|
|
We are currently cutting hva_to_pfn_fast short if we do not want an
immediate exit, which is represented by !async && !atomic. However,
this is unnecessary, and __get_user_pages_fast is *much* faster
because the regular get_user_pages takes pmd_lock/pte_lock.
In fact, when many CPUs take a nested vmexit at the same time
the contention on those locks is visible, and this patch removes
about 25% (compared to 4.18) from vmexit.flat on a 16 vCPU
nested guest.
Suggested-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
This patch is to provide a way for platforms to register hv tlb remote
flush callback and this helps to optimize operation of tlb flush
among vcpus for nested virtualization case.
Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Use the fast CR3 switch mechanism to locklessly change the MMU root
page when switching between L1 and L2. The switch from L2 to L1 should
always go through the fast path, while the switch from L1 to L2 should
go through the fast path if L1's CR3/EPTP for L2 hasn't changed
since the last time.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
Introduce a utility function that will be used later on for storage
attributes migration, and use it in kvm_main.c to replace existing code
that does the same thing.
Signed-off-by: Claudio Imbrenda <imbrenda@linux.vnet.ibm.com>
Message-Id: <1525106005-13931-2-git-send-email-imbrenda@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The current behaviour of the compat ioctls is a bit odd.
We provide a compat_ioctl method when KVM_COMPAT is set, and NULL
otherwise. But NULL means that the normal, non-compat ioctl should
be used directly for compat tasks, and there is no way to actually
prevent a compat task from issueing KVM ioctls.
This patch changes this behaviour, by always registering a compat_ioctl
method, even if KVM_COMPAT is not selected. In that case, the callback
will always return -EINVAL.
Fixes: de8e5d744051568c8aad ("KVM: Disable compat ioctl for s390")
Reported-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Since swait basically implemented exclusive waits only, make sure
the API reflects that.
$ git grep -l -e "\<swake_up\>"
-e "\<swait_event[^ (]*"
-e "\<prepare_to_swait\>" | while read file;
do
sed -i -e 's/\<swake_up\>/&_one/g'
-e 's/\<swait_event[^ (]*/&_exclusive/g'
-e 's/\<prepare_to_swait\>/&_exclusive/g' $file;
done
With a few manual touch-ups.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: bigeasy@linutronix.de
Cc: oleg@redhat.com
Cc: paulmck@linux.vnet.ibm.com
Cc: pbonzini@redhat.com
Link: https://lkml.kernel.org/r/20180612083909.261946548@infradead.org
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull more overflow updates from Kees Cook:
"The rest of the overflow changes for v4.18-rc1.
This includes the explicit overflow fixes from Silvio, further
struct_size() conversions from Matthew, and a bug fix from Dan.
But the bulk of it is the treewide conversions to use either the
2-factor argument allocators (e.g. kmalloc(a * b, ...) into
kmalloc_array(a, b, ...) or the array_size() macros (e.g. vmalloc(a *
b) into vmalloc(array_size(a, b)).
Coccinelle was fighting me on several fronts, so I've done a bunch of
manual whitespace updates in the patches as well.
Summary:
- Error path bug fix for overflow tests (Dan)
- Additional struct_size() conversions (Matthew, Kees)
- Explicitly reported overflow fixes (Silvio, Kees)
- Add missing kvcalloc() function (Kees)
- Treewide conversions of allocators to use either 2-factor argument
variant when available, or array_size() and array3_size() as needed
(Kees)"
* tag 'overflow-v4.18-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (26 commits)
treewide: Use array_size in f2fs_kvzalloc()
treewide: Use array_size() in f2fs_kzalloc()
treewide: Use array_size() in f2fs_kmalloc()
treewide: Use array_size() in sock_kmalloc()
treewide: Use array_size() in kvzalloc_node()
treewide: Use array_size() in vzalloc_node()
treewide: Use array_size() in vzalloc()
treewide: Use array_size() in vmalloc()
treewide: devm_kzalloc() -> devm_kcalloc()
treewide: devm_kmalloc() -> devm_kmalloc_array()
treewide: kvzalloc() -> kvcalloc()
treewide: kvmalloc() -> kvmalloc_array()
treewide: kzalloc_node() -> kcalloc_node()
treewide: kzalloc() -> kcalloc()
treewide: kmalloc() -> kmalloc_array()
mm: Introduce kvcalloc()
video: uvesafb: Fix integer overflow in allocation
UBIFS: Fix potential integer overflow in allocation
leds: Use struct_size() in allocation
Convert intel uncore to struct_size
...
|
|
The vmalloc() function has no 2-factor argument form, so multiplication
factors need to be wrapped in array_size(). This patch replaces cases of:
vmalloc(a * b)
with:
vmalloc(array_size(a, b))
as well as handling cases of:
vmalloc(a * b * c)
with:
vmalloc(array3_size(a, b, c))
This does, however, attempt to ignore constant size factors like:
vmalloc(4 * 1024)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
vmalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
vmalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
vmalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
vmalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
vmalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
vmalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
vmalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
vmalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
vmalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
vmalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
vmalloc(
- sizeof(TYPE) * (COUNT_ID)
+ array_size(COUNT_ID, sizeof(TYPE))
, ...)
|
vmalloc(
- sizeof(TYPE) * COUNT_ID
+ array_size(COUNT_ID, sizeof(TYPE))
, ...)
|
vmalloc(
- sizeof(TYPE) * (COUNT_CONST)
+ array_size(COUNT_CONST, sizeof(TYPE))
, ...)
|
vmalloc(
- sizeof(TYPE) * COUNT_CONST
+ array_size(COUNT_CONST, sizeof(TYPE))
, ...)
|
vmalloc(
- sizeof(THING) * (COUNT_ID)
+ array_size(COUNT_ID, sizeof(THING))
, ...)
|
vmalloc(
- sizeof(THING) * COUNT_ID
+ array_size(COUNT_ID, sizeof(THING))
, ...)
|
vmalloc(
- sizeof(THING) * (COUNT_CONST)
+ array_size(COUNT_CONST, sizeof(THING))
, ...)
|
vmalloc(
- sizeof(THING) * COUNT_CONST
+ array_size(COUNT_CONST, sizeof(THING))
, ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
vmalloc(
- SIZE * COUNT
+ array_size(COUNT, SIZE)
, ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
vmalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
vmalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
vmalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
vmalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
vmalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
vmalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
vmalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
vmalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
vmalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
vmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
vmalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
vmalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
vmalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
vmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
vmalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vmalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vmalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vmalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vmalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vmalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vmalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vmalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)
// Any remaining multi-factor products, first at least 3-factor products
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
vmalloc(C1 * C2 * C3, ...)
|
vmalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)
// And then all remaining 2 factors products when they're not all constants.
@@
expression E1, E2;
constant C1, C2;
@@
(
vmalloc(C1 * C2, ...)
|
vmalloc(
- E1 * E2
+ array_size(E1, E2)
, ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
When calling debugfs functions, there is no need to ever check the
return value. The function can work or not, but the code logic should
never do something different based on this.
This cleans up the error handling a lot, as this code will never get
hit.
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim KrÄmář" <rkrcmar@redhat.com>
Cc: Arvind Yadav <arvind.yadav.cs@gmail.com>
Cc: Eric Auger <eric.auger@redhat.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: kvm-ppc@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: kvmarm@lists.cs.columbia.edu
Cc: kvm@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Use new return type vm_fault_t for fault handler. For
now, this is just documenting that the function returns
a VM_FAULT value rather than an errno. Once all instances
are converted, vm_fault_t will become a distinct type.
commit 1c8f422059ae ("mm: change return type to vm_fault_t")
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/ARM updates for 4.18
- Lazy context-switching of FPSIMD registers on arm64
- Allow virtual redistributors to be part of two or more MMIO ranges
|
|
Hyper-V style PV TLB flush hypercalls inmplementation will use this API.
To avoid memory allocation in CONFIG_CPUMASK_OFFSTACK case add
cpumask_var_t argument.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
|
|
KVM/ARM differs from other architectures in having to maintain an
additional virtual address space from that of the host and the
guest, because we split the execution of KVM across both EL1 and
EL2.
This results in a need to explicitly map data structures into EL2
(hyp) which are accessed from the hyp code. As we are about to be
more clever with our FPSIMD handling on arm64, which stores data in
the task struct and uses thread_info flags, we will have to map
parts of the currently executing task struct into the EL2 virtual
address space.
However, we don't want to do this on every KVM_RUN, because it is a
fairly expensive operation to walk the page tables, and the common
execution mode is to map a single thread to a VCPU. By introducing
a hook that architectures can select with
HAVE_KVM_VCPU_RUN_PID_CHANGE, we do not introduce overhead for
other architectures, but have a simple way to only map the data we
need when required for arm64.
This patch introduces the framework only, and wires it up in the
arm/arm64 KVM common code.
No functional change.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
The loading time of a VM is quite significant with a CPU usage
reaching 100% when loading a VM that its virtio devices use a
large amount of virt-queues (e.g. a virtio-serial device with
max_ports=511). Most of the time is spend in re-sorting the
kvm_io_bus kvm_io_range array when a new eventfd is registered.
The patch replaces the existing method with an insert sort.
Reviewed-by: Marcel Apfelbaum <marcel@redhat.com>
Reviewed-by: Uri Lublin <ulublin@redhat.com>
Signed-off-by: Gal Hammer <ghammer@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
|
|
Reported by syzkaller:
pte_list_remove: ffff9714eb1f8078 0->BUG
------------[ cut here ]------------
kernel BUG at arch/x86/kvm/mmu.c:1157!
invalid opcode: 0000 [#1] SMP
RIP: 0010:pte_list_remove+0x11b/0x120 [kvm]
Call Trace:
drop_spte+0x83/0xb0 [kvm]
mmu_page_zap_pte+0xcc/0xe0 [kvm]
kvm_mmu_prepare_zap_page+0x81/0x4a0 [kvm]
kvm_mmu_invalidate_zap_all_pages+0x159/0x220 [kvm]
kvm_arch_flush_shadow_all+0xe/0x10 [kvm]
kvm_mmu_notifier_release+0x6c/0xa0 [kvm]
? kvm_mmu_notifier_release+0x5/0xa0 [kvm]
__mmu_notifier_release+0x79/0x110
? __mmu_notifier_release+0x5/0x110
exit_mmap+0x15a/0x170
? do_exit+0x281/0xcb0
mmput+0x66/0x160
do_exit+0x2c9/0xcb0
? __context_tracking_exit.part.5+0x4a/0x150
do_group_exit+0x50/0xd0
SyS_exit_group+0x14/0x20
do_syscall_64+0x73/0x1f0
entry_SYSCALL64_slow_path+0x25/0x25
The reason is that when creates new memslot, there is no guarantee for new
memslot not overlap with private memslots. This can be triggered by the
following program:
#include <fcntl.h>
#include <pthread.h>
#include <setjmp.h>
#include <signal.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>
#include <linux/kvm.h>
long r[16];
int main()
{
void *p = valloc(0x4000);
r[2] = open("/dev/kvm", 0);
r[3] = ioctl(r[2], KVM_CREATE_VM, 0x0ul);
uint64_t addr = 0xf000;
ioctl(r[3], KVM_SET_IDENTITY_MAP_ADDR, &addr);
r[6] = ioctl(r[3], KVM_CREATE_VCPU, 0x0ul);
ioctl(r[3], KVM_SET_TSS_ADDR, 0x0ul);
ioctl(r[6], KVM_RUN, 0);
ioctl(r[6], KVM_RUN, 0);
struct kvm_userspace_memory_region mr = {
.slot = 0,
.flags = KVM_MEM_LOG_DIRTY_PAGES,
.guest_phys_addr = 0xf000,
.memory_size = 0x4000,
.userspace_addr = (uintptr_t) p
};
ioctl(r[3], KVM_SET_USER_MEMORY_REGION, &mr);
return 0;
}
This patch fixes the bug by not adding a new memslot even if it
overlaps with private memslots.
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Biggers <ebiggers3@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
---
virt/kvm/kvm_main.c | 3 +--
1 file changed, 1 insertion(+), 2 deletions(-)
|
|
Pull KVM updates from Radim Krčmář:
"ARM:
- icache invalidation optimizations, improving VM startup time
- support for forwarded level-triggered interrupts, improving
performance for timers and passthrough platform devices
- a small fix for power-management notifiers, and some cosmetic
changes
PPC:
- add MMIO emulation for vector loads and stores
- allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
requiring the complex thread synchronization of older CPU versions
- improve the handling of escalation interrupts with the XIVE
interrupt controller
- support decrement register migration
- various cleanups and bugfixes.
s390:
- Cornelia Huck passed maintainership to Janosch Frank
- exitless interrupts for emulated devices
- cleanup of cpuflag handling
- kvm_stat counter improvements
- VSIE improvements
- mm cleanup
x86:
- hypervisor part of SEV
- UMIP, RDPID, and MSR_SMI_COUNT emulation
- paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit
- allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more
AVX512 features
- show vcpu id in its anonymous inode name
- many fixes and cleanups
- per-VCPU MSR bitmaps (already merged through x86/pti branch)
- stable KVM clock when nesting on Hyper-V (merged through
x86/hyperv)"
* tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (197 commits)
KVM: PPC: Book3S: Add MMIO emulation for VMX instructions
KVM: PPC: Book3S HV: Branch inside feature section
KVM: PPC: Book3S HV: Make HPT resizing work on POWER9
KVM: PPC: Book3S HV: Fix handling of secondary HPTEG in HPT resizing code
KVM: PPC: Book3S PR: Fix broken select due to misspelling
KVM: x86: don't forget vcpu_put() in kvm_arch_vcpu_ioctl_set_sregs()
KVM: PPC: Book3S PR: Fix svcpu copying with preemption enabled
KVM: PPC: Book3S HV: Drop locks before reading guest memory
kvm: x86: remove efer_reload entry in kvm_vcpu_stat
KVM: x86: AMD Processor Topology Information
x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO when running nested
kvm: embed vcpu id to dentry of vcpu anon inode
kvm: Map PFN-type memory regions as writable (if possible)
x86/kvm: Make it compile on 32bit and with HYPYERVISOR_GUEST=n
KVM: arm/arm64: Fixup userspace irqchip static key optimization
KVM: arm/arm64: Fix userspace_irqchip_in_use counting
KVM: arm/arm64: Fix incorrect timer_is_pending logic
MAINTAINERS: update KVM/s390 maintainers
MAINTAINERS: add Halil as additional vfio-ccw maintainer
MAINTAINERS: add David as a reviewer for KVM/s390
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull hardened usercopy whitelisting from Kees Cook:
"Currently, hardened usercopy performs dynamic bounds checking on slab
cache objects. This is good, but still leaves a lot of kernel memory
available to be copied to/from userspace in the face of bugs.
To further restrict what memory is available for copying, this creates
a way to whitelist specific areas of a given slab cache object for
copying to/from userspace, allowing much finer granularity of access
control.
Slab caches that are never exposed to userspace can declare no
whitelist for their objects, thereby keeping them unavailable to
userspace via dynamic copy operations. (Note, an implicit form of
whitelisting is the use of constant sizes in usercopy operations and
get_user()/put_user(); these bypass all hardened usercopy checks since
these sizes cannot change at runtime.)
This new check is WARN-by-default, so any mistakes can be found over
the next several releases without breaking anyone's system.
The series has roughly the following sections:
- remove %p and improve reporting with offset
- prepare infrastructure and whitelist kmalloc
- update VFS subsystem with whitelists
- update SCSI subsystem with whitelists
- update network subsystem with whitelists
- update process memory with whitelists
- update per-architecture thread_struct with whitelists
- update KVM with whitelists and fix ioctl bug
- mark all other allocations as not whitelisted
- update lkdtm for more sensible test overage"
* tag 'usercopy-v4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (38 commits)
lkdtm: Update usercopy tests for whitelisting
usercopy: Restrict non-usercopy caches to size 0
kvm: x86: fix KVM_XEN_HVM_CONFIG ioctl
kvm: whitelist struct kvm_vcpu_arch
arm: Implement thread_struct whitelist for hardened usercopy
arm64: Implement thread_struct whitelist for hardened usercopy
x86: Implement thread_struct whitelist for hardened usercopy
fork: Provide usercopy whitelisting for task_struct
fork: Define usercopy region in thread_stack slab caches
fork: Define usercopy region in mm_struct slab caches
net: Restrict unwhitelisted proto caches to size 0
sctp: Copy struct sctp_sock.autoclose to userspace using put_user()
sctp: Define usercopy region in SCTP proto slab cache
caif: Define usercopy region in caif proto slab cache
ip: Define usercopy region in IP proto slab cache
net: Define usercopy region in struct proto slab cache
scsi: Define usercopy region in scsi_sense_cache slab cache
cifs: Define usercopy region in cifs_request slab cache
vxfs: Define usercopy region in vxfs_inode slab cache
ufs: Define usercopy region in ufs_inode_cache slab cache
...
|
|
Commit 4d4bbd8526a8 ("mm, oom_reaper: skip mm structs with mmu
notifiers") prevented the oom reaper from unmapping private anonymous
memory with the oom reaper when the oom victim mm had mmu notifiers
registered.
The rationale is that doing mmu_notifier_invalidate_range_{start,end}()
around the unmap_page_range(), which is needed, can block and the oom
killer will stall forever waiting for the victim to exit, which may not
be possible without reaping.
That concern is real, but only true for mmu notifiers that have
blockable invalidate_range_{start,end}() callbacks. This patch adds a
"flags" field to mmu notifier ops that can set a bit to indicate that
these callbacks do not block.
The implementation is steered toward an expensive slowpath, such as
after the oom reaper has grabbed mm->mmap_sem of a still alive oom
victim.
[rientjes@google.com: mmu_notifier_invalidate_range_end() can also call the invalidate_range() must not block, fix comment]
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1801091339570.240101@chino.kir.corp.google.com
[akpm@linux-foundation.org: make mm_has_blockable_invalidate_notifiers() return bool, use rwsem_is_locked()]
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1712141329500.74052@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Christian König <christian.koenig@amd.com>
Acked-by: Dimitri Sivanich <sivanich@hpe.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Mike Marciniszyn <mike.marciniszyn@intel.com>
Cc: Sean Hefty <sean.hefty@intel.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull get_user_pages_fast updates from Al Viro:
"A bit more get_user_pages work"
* 'work.get_user_pages_fast' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
kvm: switch get_user_page_nowait() to get_user_pages_unlocked()
__get_user_pages_locked(): get rid of notify_drop argument
get_user_pages_unlocked(): pass true to __get_user_pages_locked() notify_drop
cris: switch to get_user_pages_fast()
fold __get_user_pages_unlocked() into its sole remaining caller
|
|
All d-entries for vcpu have the same, "anon_inode:kvm-vcpu". That means
it is impossible to know the mapping between fds for vcpu and vcpu
from userland.
# LC_ALL=C ls -l /proc/617/fd | grep vcpu
lrwx------. 1 qemu qemu 64 Jan 7 16:50 18 -> anon_inode:kvm-vcpu
lrwx------. 1 qemu qemu 64 Jan 7 16:50 19 -> anon_inode:kvm-vcpu
It is also impossible to know the mapping between vma for kvm_run
structure and vcpu from userland.
# LC_ALL=C grep vcpu /proc/617/maps
7f9d842d0000-7f9d842d3000 rw-s 00000000 00:0d 20393 anon_inode:kvm-vcpu
7f9d842d3000-7f9d842d6000 rw-s 00000000 00:0d 20393 anon_inode:kvm-vcpu
This change adds vcpu id to d-entries for vcpu. With this change
you can get the following output:
# LC_ALL=C ls -l /proc/617/fd | grep vcpu
lrwx------. 1 qemu qemu 64 Jan 7 16:50 18 -> anon_inode:kvm-vcpu:0
lrwx------. 1 qemu qemu 64 Jan 7 16:50 19 -> anon_inode:kvm-vcpu:1
# LC_ALL=C grep vcpu /proc/617/maps
7f9d842d0000-7f9d842d3000 rw-s 00000000 00:0d 20393 anon_inode:kvm-vcpu:0
7f9d842d3000-7f9d842d6000 rw-s 00000000 00:0d 20393 anon_inode:kvm-vcpu:1
With the mappings known from the output, a tool like strace can report more details
of qemu-kvm process activities. Here is the strace output of my local prototype:
# ./strace -KK -f -p 617 2>&1 | grep 'KVM_RUN\| K'
...
[pid 664] ioctl(18, KVM_RUN, 0) = 0 (KVM_EXIT_MMIO)
K ready_for_interrupt_injection=1, if_flag=0, flags=0, cr8=0000000000000000, apic_base=0x000000fee00d00
K phys_addr=0, len=1634035803, [33, 0, 0, 0, 0, 0, 0, 0], is_write=112
[pid 664] ioctl(18, KVM_RUN, 0) = 0 (KVM_EXIT_MMIO)
K ready_for_interrupt_injection=1, if_flag=1, flags=0, cr8=0000000000000000, apic_base=0x000000fee00d00
K phys_addr=0, len=1634035803, [33, 0, 0, 0, 0, 0, 0, 0], is_write=112
...
Signed-off-by: Masatake YAMATO <yamato@redhat.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
|
|
For EPT-violations that are triggered by a read, the pages are also mapped with
write permissions (if their memory region is also writable). That would avoid
getting yet another fault on the same page when a write occurs.
This optimization only happens when you have a "struct page" backing the memory
region. So also enable it for memory regions that do not have a "struct page".
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
|
|
On x86, ARM and s390, struct kvm_vcpu_arch has a usercopy region
that is read and written by the KVM_GET/SET_CPUID2 ioctls (x86)
or KVM_GET/SET_ONE_REG (ARM/s390). Without whitelisting the area,
KVM is completely broken on those architectures with usercopy hardening
enabled.
For now, allow writing to the entire struct on all architectures.
The KVM tree will not refine this to an architecture-specific
subset of struct kvm_vcpu_arch.
Cc: kernel-hardening@lists.openwall.com
Cc: Kees Cook <keescook@chromium.org>
Cc: Christian Borntraeger <borntraeger@redhat.com>
Cc: Christoffer Dall <cdall@linaro.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
After the vcpu_load/vcpu_put pushdown, the handling of asynchronous VCPU
ioctl is already much clearer in that it is obvious that they bypass
vcpu_load and vcpu_put.
However, it is still not perfect in that the different state of the VCPU
mutex is still hidden in the caller. Separate those ioctls into a new
function kvm_arch_vcpu_async_ioctl that returns -ENOIOCTLCMD for more
"traditional" synchronous ioctls.
Cc: James Hogan <jhogan@kernel.org>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Suggested-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move the calls to vcpu_load() and vcpu_put() in to the architecture
specific implementations of kvm_arch_vcpu_ioctl() which dispatches
further architecture-specific ioctls on to other functions.
Some architectures support asynchronous vcpu ioctls which cannot call
vcpu_load() or take the vcpu->mutex, because that would prevent
concurrent execution with a running VCPU, which is the intended purpose
of these ioctls, for example because they inject interrupts.
We repeat the separate checks for these specifics in the architecture
code for MIPS, S390 and PPC, and avoid taking the vcpu->mutex and
calling vcpu_load for these ioctls.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_set_fpu().
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_get_fpu().
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_set_guest_debug().
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_translate().
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_set_mpstate().
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_get_mpstate().
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_set_sregs().
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_get_sregs().
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_set_regs().
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_get_regs().
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_run().
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> # s390 parts
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
[Rebased. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
In preparation for moving calls to vcpu_load() and vcpu_put() into the
architecture specific implementations of the KVM vcpu ioctls, move the
calls in the main kvm_vcpu_ioctl() dispatcher function to each case
of the ioctl select statement. This allows us to move the vcpu_load()
and vcpu_put() calls into architecture specific implementations of vcpu
ioctls, one by one.
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
As we're about to call vcpu_load() from architecture-specific
implementations of the KVM vcpu ioctls, but yet we access data
structures protected by the vcpu->mutex in the generic code, factor
this logic out from vcpu_load().
x86 is the only architecture which calls vcpu_load() outside of the main
vcpu ioctl function, and these calls will no longer take the vcpu mutex
following this patch. However, with the exception of
kvm_arch_vcpu_postcreate (see below), the callers are either in the
creation or destruction path of the VCPU, which means there cannot be
any concurrent access to the data structure, because the file descriptor
is not yet accessible, or is already gone.
kvm_arch_vcpu_postcreate makes the newly created vcpu potentially
accessible by other in-kernel threads through the kvm->vcpus array, and
we therefore take the vcpu mutex in this case directly.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add a jump target so that a bit of exception handling can be better reused
at the end of this function.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
|
|
Implementation of the unpinned APIC page didn't update the VMCS address
cache when invalidation was done through range mmu notifiers.
This became a problem when the page notifier was removed.
Re-introduce the arch-specific helper and call it from ...range_start.
Reported-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Fixes: 38b9917350cb ("kvm: vmx: Implement set_apic_access_page_addr")
Fixes: 369ea8242c0f ("mm/rmap: update to new mmu_notifier semantic v2")
Cc: <stable@vger.kernel.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: Wanpeng Li <wanpeng.li@hotmail.com>
Tested-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
|
|
... and fold into the sole caller, unifying async and non-async cases
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Pull KVM fixes from Paolo Bonzini:
- x86 bugfixes: APIC, nested virtualization, IOAPIC
- PPC bugfix: HPT guests on a POWER9 radix host
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (26 commits)
KVM: Let KVM_SET_SIGNAL_MASK work as advertised
KVM: VMX: Fix vmx->nested freeing when no SMI handler
KVM: VMX: Fix rflags cache during vCPU reset
KVM: X86: Fix softlockup when get the current kvmclock
KVM: lapic: Fixup LDR on load in x2apic
KVM: lapic: Split out x2apic ldr calculation
KVM: PPC: Book3S HV: Fix migration and HPT resizing of HPT guests on radix hosts
KVM: vmx: use X86_CR4_UMIP and X86_FEATURE_UMIP
KVM: x86: Fix CPUID function for word 6 (80000001_ECX)
KVM: nVMX: Fix vmx_check_nested_events() return value in case an event was reinjected to L2
KVM: x86: ioapic: Preserve read-only values in the redirection table
KVM: x86: ioapic: Clear Remote IRR when entry is switched to edge-triggered
KVM: x86: ioapic: Remove redundant check for Remote IRR in ioapic_set_irq
KVM: x86: ioapic: Don't fire level irq when Remote IRR set
KVM: x86: ioapic: Fix level-triggered EOI and IOAPIC reconfigure race
KVM: x86: inject exceptions produced by x86_decode_insn
KVM: x86: Allow suppressing prints on RDMSR/WRMSR of unhandled MSRs
KVM: x86: fix em_fxstor() sleeping while in atomic
KVM: nVMX: Fix mmu context after VMLAUNCH/VMRESUME failure
KVM: nVMX: Validate the IA32_BNDCFGS on nested VM-entry
...
|
|
KVM API says for the signal mask you set via KVM_SET_SIGNAL_MASK, that
"any unblocked signal received [...] will cause KVM_RUN to return with
-EINTR" and that "the signal will only be delivered if not blocked by
the original signal mask".
This, however, is only true, when the calling task has a signal handler
registered for a signal. If not, signal evaluation is short-circuited for
SIG_IGN and SIG_DFL, and the signal is either ignored without KVM_RUN
returning or the whole process is terminated.
Make KVM_SET_SIGNAL_MASK behave as advertised by utilizing logic similar
to that in do_sigtimedwait() to avoid short-circuiting of signals.
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull compat and uaccess updates from Al Viro:
- {get,put}_compat_sigset() series
- assorted compat ioctl stuff
- more set_fs() elimination
- a few more timespec64 conversions
- several removals of pointless access_ok() in places where it was
followed only by non-__ variants of primitives
* 'misc.compat' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (24 commits)
coredump: call do_unlinkat directly instead of sys_unlink
fs: expose do_unlinkat for built-in callers
ext4: take handling of EXT4_IOC_GROUP_ADD into a helper, get rid of set_fs()
ipmi: get rid of pointless access_ok()
pi433: sanitize ioctl
cxlflash: get rid of pointless access_ok()
mtdchar: get rid of pointless access_ok()
r128: switch compat ioctls to drm_ioctl_kernel()
selection: get rid of field-by-field copyin
VT_RESIZEX: get rid of field-by-field copyin
i2c compat ioctls: move to ->compat_ioctl()
sched_rr_get_interval(): move compat to native, get rid of set_fs()
mips: switch to {get,put}_compat_sigset()
sparc: switch to {get,put}_compat_sigset()
s390: switch to {get,put}_compat_sigset()
ppc: switch to {get,put}_compat_sigset()
parisc: switch to {get,put}_compat_sigset()
get_compat_sigset()
get rid of {get,put}_compat_itimerspec()
io_getevents: Use timespec64 to represent timeouts
...
|
|
Pull KVM updates from Radim Krčmář:
"First batch of KVM changes for 4.15
Common:
- Python 3 support in kvm_stat
- Accounting of slabs to kmemcg
ARM:
- Optimized arch timer handling for KVM/ARM
- Improvements to the VGIC ITS code and introduction of an ITS reset
ioctl
- Unification of the 32-bit fault injection logic
- More exact external abort matching logic
PPC:
- Support for running hashed page table (HPT) MMU mode on a host that
is using the radix MMU mode; single threaded mode on POWER 9 is
added as a pre-requisite
- Resolution of merge conflicts with the last second 4.14 HPT fixes
- Fixes and cleanups
s390:
- Some initial preparation patches for exitless interrupts and crypto
- New capability for AIS migration
- Fixes
x86:
- Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs,
and after-reset state
- Refined dependencies for VMX features
- Fixes for nested SMI injection
- A lot of cleanups"
* tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (89 commits)
KVM: s390: provide a capability for AIS state migration
KVM: s390: clear_io_irq() requests are not expected for adapter interrupts
KVM: s390: abstract conversion between isc and enum irq_types
KVM: s390: vsie: use common code functions for pinning
KVM: s390: SIE considerations for AP Queue virtualization
KVM: s390: document memory ordering for kvm_s390_vcpu_wakeup
KVM: PPC: Book3S HV: Cosmetic post-merge cleanups
KVM: arm/arm64: fix the incompatible matching for external abort
KVM: arm/arm64: Unify 32bit fault injection
KVM: arm/arm64: vgic-its: Implement KVM_DEV_ARM_ITS_CTRL_RESET
KVM: arm/arm64: Document KVM_DEV_ARM_ITS_CTRL_RESET
KVM: arm/arm64: vgic-its: Free caches when GITS_BASER Valid bit is cleared
KVM: arm/arm64: vgic-its: New helper functions to free the caches
KVM: arm/arm64: vgic-its: Remove kvm_its_unmap_device
arm/arm64: KVM: Load the timer state when enabling the timer
KVM: arm/arm64: Rework kvm_timer_should_fire
KVM: arm/arm64: Get rid of kvm_timer_flush_hwstate
KVM: arm/arm64: Avoid phys timer emulation in vcpu entry/exit
KVM: arm/arm64: Move phys_timer_emulate function
KVM: arm/arm64: Use kvm_arm_timer_set/get_reg for guest register traps
...
|