summaryrefslogtreecommitdiff
path: root/virt/kvm/arm
AgeCommit message (Collapse)AuthorFilesLines
2018-07-21KVM: arm/arm64: vgic: Return error on incompatible uaccess GICD_IIDR writesChristoffer Dall2-6/+36
If userspace attempts to write a GICD_IIDR that does not match the kernel version, return an error to userspace. The intention is to allow implementation changes inside KVM while avoiding silently breaking migration resulting in guests not running without any clear indication of what went wrong. Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-07-21KVM: arm/arm64: vgic: Permit uaccess writes to return errorsChristoffer Dall3-18/+31
Currently we do not allow any vgic mmio write operations to fail, which makes sense from mmio traps from the guest. However, we should be able to report failures to userspace, if userspace writes incompatible values to read-only registers. Rework the internal interface to allow errors to be returned on the write side for userspace writes. Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-07-21KVM: arm/arm64: vgic: Signal IRQs using their configured groupChristoffer Dall2-5/+4
Now when we have a group configuration on the struct IRQ, use this state when populating the LR and signaling interrupts as either group 0 or group 1 to the VM. Depending on the model of the emulated GIC, and the guest's configuration of the VMCR, interrupts may be signaled as IRQs or FIQs to the VM. Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-07-21KVM: arm/arm64: vgic: Add group field to struct irqChristoffer Dall3-5/+23
In preparation for proper group 0 and group 1 support in the vgic, we add a field in the struct irq to store the group of all interrupts. We initialize the group to group 0 when emulating GICv2 and to group 1 when emulating GICv3, just like we treat them today. LPIs are always group 1. We also continue to ignore writes from the guest, preserving existing functionality, for now. Finally, we also add this field to the vgic debug logic to show the group for all interrupts. Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-07-21KVM: arm/arm64: vgic: GICv2 IGROUPR should read as zeroChristoffer Dall2-2/+8
We currently don't support grouping in the emulated VGIC, which is a known defect on KVM (not hurting any currently used guests as far as we're aware). This is currently handled by treating all interrupts as group 0 interrupts for an emulated GICv2 and always signaling interrupts as group 0 to the virtual CPU interface. However, when reading which group interrupts belongs to in the guest from the emulated VGIC, the VGIC currently reports group 1 instead of group 0, which is misleading. Fix this temporarily before introducing full group support by changing the hander to _raz instead of _rao. Fixes: fb848db39661a "KVM: arm/arm64: vgic-new: Add GICv2 MMIO handling framework" Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-07-21KVM: arm/arm64: vgic: Keep track of implementation revisionChristoffer Dall3-4/+9
As we are about to tweak implementation aspects of the VGIC emulation, while still preserving some level of backwards compatibility support, add a field to keep track of the implementation revision field which is reported to the VM and to userspace. Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-07-21KVM: arm/arm64: vgic: Define GICD_IIDR fields for GICv2 and GIv3Christoffer Dall2-2/+4
Instead of hardcoding the shifts and masks in the GICD_IIDR register emulation, let's add the definition of these fields to the GIC header files and use them. This will make things more obvious when we're going to bump the revision in the IIDR when we'll make guest-visible changes to the implementation. Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-07-21KVM: arm/arm64: vgic-debug: Show LPI statusMarc Zyngier3-16/+39
The vgic debugfs file only knows about SGI/PPI/SPI interrupts, and completely ignores LPIs. Let's fix that. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-07-21KVM: arm64: vgic-its: Remove VLA usageKees Cook1-4/+10
In the quest to remove all stack VLA usage from the kernel[1], this switches to using a maximum size and adds sanity checks. Additionally cleans up some of the int-vs-u32 usage and adds additional bounds checking. As it currently stands, this will always be 8 bytes until the ABI changes. [1] https://lkml.kernel.org/r/CA+55aFzCG-zNmZwX4A2FQpadafLfEzK6CC=qPXydAacU1RqZWA@mail.gmail.com Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: Eric Auger <eric.auger@redhat.com> Cc: Andre Przywara <andre.przywara@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: kvmarm@lists.cs.columbia.edu Signed-off-by: Kees Cook <keescook@chromium.org> [maz: dropped WARN_ONs] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-07-21KVM: arm/arm64: Fix vgic init raceChristoffer Dall1-0/+4
The vgic_init function can race with kvm_arch_vcpu_create() which does not hold kvm_lock() and we therefore have no synchronization primitives to ensure we're doing the right thing. As the user is trying to initialize or run the VM while at the same time creating more VCPUs, we just have to refuse to initialize the VGIC in this case rather than silently failing with a broken VCPU. Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-07-09KVM: arm/arm64: Enable adaptative WFE trappingMarc Zyngier1-0/+6
Trapping blocking WFE is extremely beneficial in situations where the system is oversubscribed, as it allows another thread to run while being blocked. In a non-oversubscribed environment, this is the complete opposite, and trapping WFE is just unnecessary overhead. Let's only enable WFE trapping if the CPU has more than a single task to run (that is, more than just the vcpu thread). Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-07-09KVM: arm/arm64: Remove unnecessary CMOs when creating HYP page tablesMarc Zyngier1-4/+0
There is no need to perform cache maintenance operations when creating the HYP page tables if we have the multiprocessing extensions. ARMv7 mandates them with the virtualization support, and ARMv8 just mandates them unconditionally. Let's remove these operations. Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-07-09KVM: arm/arm64: Stop using the kernel's {pmd,pud,pgd}_populate helpersMarc Zyngier1-4/+21
The {pmd,pud,pgd}_populate accessors usage have always been a bit weird in KVM. We don't have a struct mm to pass (and neither does the kernel most of the time, but still...), and the 32bit code has all kind of cache maintenance that doesn't make sense on ARMv7+ when MP extensions are mandatory (which is the case when the VEs are present). Let's bite the bullet and provide our own implementations. The only bit of architectural code left has to do with building the table entry itself (arm64 having up to 52bit PA, arm lacking PUD level). Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-07-09KVM: arm/arm64: Consolidate page-table accessorsMarc Zyngier1-0/+12
The arm and arm64 KVM page tables accessors are pointlessly different between the two architectures, and likely both wrong one way or another: arm64 lacks a dsb(), and arm doesn't use WRITE_ONCE. Let's unify them. Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-07-09arm64: KVM: Add support for Stage-2 control of memory types and cacheabilityMarc Zyngier1-0/+4
Up to ARMv8.3, the combinaison of Stage-1 and Stage-2 attributes results in the strongest attribute of the two stages. This means that the hypervisor has to perform quite a lot of cache maintenance just in case the guest has some non-cacheable mappings around. ARMv8.4 solves this problem by offering a different mode (FWB) where Stage-2 has total control over the memory attribute (this is limited to systems where both I/O and instruction fetches are coherent with the dcache). This is achieved by having a different set of memory attributes in the page tables, and a new bit set in HCR_EL2. On such a system, we can then safely sidestep any form of dcache management. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-06-21KVM: arm/arm64: add WARN_ON if size is not PAGE_SIZE aligned in ↵Jia He1-0/+2
unmap_stage2_range There is a panic in armv8a server(QDF2400) under memory pressure tests (start 20 guests and run memhog in the host). ---------------------------------begin-------------------------------- [35380.800950] BUG: Bad page state in process qemu-kvm pfn:dd0b6 [35380.805825] page:ffff7fe003742d80 count:-4871 mapcount:-2126053375 mapping: (null) index:0x0 [35380.815024] flags: 0x1fffc00000000000() [35380.818845] raw: 1fffc00000000000 0000000000000000 0000000000000000 ffffecf981470000 [35380.826569] raw: dead000000000100 dead000000000200 ffff8017c001c000 0000000000000000 [35380.805825] page:ffff7fe003742d80 count:-4871 mapcount:-2126053375 mapping: (null) index:0x0 [35380.815024] flags: 0x1fffc00000000000() [35380.818845] raw: 1fffc00000000000 0000000000000000 0000000000000000 ffffecf981470000 [35380.826569] raw: dead000000000100 dead000000000200 ffff8017c001c000 0000000000000000 [35380.834294] page dumped because: nonzero _refcount [...] --------------------------------end-------------------------------------- The root cause might be what was fixed at [1]. But from the KVM points of view, it would be better if the issue was caught earlier. If the size is not PAGE_SIZE aligned, unmap_stage2_range might unmap the wrong(more or less) page range. Hence it caused the "BUG: Bad page state" Let's WARN in that case, so that the issue is obvious. [1] https://lkml.org/lkml/2018/5/3/1042 Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: jia.he@hxt-semitech.com [maz: tidied up commit message] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-06-21KVM: arm/arm64: Drop resource size check for GICV windowArd Biesheuvel1-5/+0
When booting a 64 KB pages kernel on a ACPI GICv3 system that implements support for v2 emulation, the following warning is produced GICV size 0x2000 not a multiple of page size 0x10000 and support for v2 emulation is disabled, preventing GICv2 VMs from being able to run on such hosts. The reason is that vgic_v3_probe() performs a sanity check on the size of the window (it should be a multiple of the page size), while the ACPI MADT parsing code hardcodes the size of the window to 8 KB. This makes sense, considering that ACPI does not bother to describe the size in the first place, under the assumption that platforms implementing ACPI will follow the architecture and not put anything else in the same 64 KB window. So let's just drop the sanity check altogether, and assume that the window is at least 64 KB in size. Fixes: 909777324588 ("KVM: arm/arm64: vgic-new: vgic_init: implement kvm_vgic_hyp_init") Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-06-13Merge tag 'overflow-v4.18-rc1-part2' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull more overflow updates from Kees Cook: "The rest of the overflow changes for v4.18-rc1. This includes the explicit overflow fixes from Silvio, further struct_size() conversions from Matthew, and a bug fix from Dan. But the bulk of it is the treewide conversions to use either the 2-factor argument allocators (e.g. kmalloc(a * b, ...) into kmalloc_array(a, b, ...) or the array_size() macros (e.g. vmalloc(a * b) into vmalloc(array_size(a, b)). Coccinelle was fighting me on several fronts, so I've done a bunch of manual whitespace updates in the patches as well. Summary: - Error path bug fix for overflow tests (Dan) - Additional struct_size() conversions (Matthew, Kees) - Explicitly reported overflow fixes (Silvio, Kees) - Add missing kvcalloc() function (Kees) - Treewide conversions of allocators to use either 2-factor argument variant when available, or array_size() and array3_size() as needed (Kees)" * tag 'overflow-v4.18-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (26 commits) treewide: Use array_size in f2fs_kvzalloc() treewide: Use array_size() in f2fs_kzalloc() treewide: Use array_size() in f2fs_kmalloc() treewide: Use array_size() in sock_kmalloc() treewide: Use array_size() in kvzalloc_node() treewide: Use array_size() in vzalloc_node() treewide: Use array_size() in vzalloc() treewide: Use array_size() in vmalloc() treewide: devm_kzalloc() -> devm_kcalloc() treewide: devm_kmalloc() -> devm_kmalloc_array() treewide: kvzalloc() -> kvcalloc() treewide: kvmalloc() -> kvmalloc_array() treewide: kzalloc_node() -> kcalloc_node() treewide: kzalloc() -> kcalloc() treewide: kmalloc() -> kmalloc_array() mm: Introduce kvcalloc() video: uvesafb: Fix integer overflow in allocation UBIFS: Fix potential integer overflow in allocation leds: Use struct_size() in allocation Convert intel uncore to struct_size ...
2018-06-13treewide: kzalloc() -> kcalloc()Kees Cook1-1/+1
The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds7-99/+360
Pull KVM updates from Paolo Bonzini: "Small update for KVM: ARM: - lazy context-switching of FPSIMD registers on arm64 - "split" regions for vGIC redistributor s390: - cleanups for nested - clock handling - crypto - storage keys - control register bits x86: - many bugfixes - implement more Hyper-V super powers - implement lapic_timer_advance_ns even when the LAPIC timer is emulated using the processor's VMX preemption timer. - two security-related bugfixes at the top of the branch" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (79 commits) kvm: fix typo in flag name kvm: x86: use correct privilege level for sgdt/sidt/fxsave/fxrstor access KVM: x86: pass kvm_vcpu to kvm_read_guest_virt and kvm_write_guest_virt_system KVM: x86: introduce linear_{read,write}_system kvm: nVMX: Enforce cpl=0 for VMX instructions kvm: nVMX: Add support for "VMWRITE to any supported field" kvm: nVMX: Restrict VMX capability MSR changes KVM: VMX: Optimize tscdeadline timer latency KVM: docs: nVMX: Remove known limitations as they do not exist now KVM: docs: mmu: KVM support exposing SLAT to guests kvm: no need to check return value of debugfs_create functions kvm: Make VM ioctl do valloc for some archs kvm: Change return type to vm_fault_t KVM: docs: mmu: Fix link to NPT presentation from KVM Forum 2008 kvm: x86: Amend the KVM_GET_SUPPORTED_CPUID API documentation KVM: x86: hyperv: declare KVM_CAP_HYPERV_TLBFLUSH capability KVM: x86: hyperv: simplistic HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE}_EX implementation KVM: x86: hyperv: simplistic HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE} implementation KVM: introduce kvm_make_vcpus_request_mask() API KVM: x86: hyperv: do rep check for each hypercall separately ...
2018-06-08Merge tag 'arm64-upstream' of ↵Linus Torvalds2-2/+20
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: "Apart from the core arm64 and perf changes, the Spectre v4 mitigation touches the arm KVM code and the ACPI PPTT support touches drivers/ (acpi and cacheinfo). I should have the maintainers' acks in place. Summary: - Spectre v4 mitigation (Speculative Store Bypass Disable) support for arm64 using SMC firmware call to set a hardware chicken bit - ACPI PPTT (Processor Properties Topology Table) parsing support and enable the feature for arm64 - Report signal frame size to user via auxv (AT_MINSIGSTKSZ). The primary motivation is Scalable Vector Extensions which requires more space on the signal frame than the currently defined MINSIGSTKSZ - ARM perf patches: allow building arm-cci as module, demote dev_warn() to dev_dbg() in arm-ccn event_init(), miscellaneous cleanups - cmpwait() WFE optimisation to avoid some spurious wakeups - L1_CACHE_BYTES reverted back to 64 (for performance reasons that have to do with some network allocations) while keeping ARCH_DMA_MINALIGN to 128. cache_line_size() returns the actual hardware Cache Writeback Granule - Turn LSE atomics on by default in Kconfig - Kernel fault reporting tidying - Some #include and miscellaneous cleanups" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (53 commits) arm64: Fix syscall restarting around signal suppressed by tracer arm64: topology: Avoid checking numa mask for scheduler MC selection ACPI / PPTT: fix build when CONFIG_ACPI_PPTT is not enabled arm64: cpu_errata: include required headers arm64: KVM: Move VCPU_WORKAROUND_2_FLAG macros to the top of the file arm64: signal: Report signal frame size to userspace via auxv arm64/sve: Thin out initialisation sanity-checks for sve_max_vl arm64: KVM: Add ARCH_WORKAROUND_2 discovery through ARCH_FEATURES_FUNC_ID arm64: KVM: Handle guest's ARCH_WORKAROUND_2 requests arm64: KVM: Add ARCH_WORKAROUND_2 support for guests arm64: KVM: Add HYP per-cpu accessors arm64: ssbd: Add prctl interface for per-thread mitigation arm64: ssbd: Introduce thread flag to control userspace mitigation arm64: ssbd: Restore mitigation status on CPU resume arm64: ssbd: Skip apply_ssbd if not using dynamic mitigation arm64: ssbd: Add global mitigation state accessor arm64: Add 'ssbd' command-line option arm64: Add ARCH_WORKAROUND_2 probing arm64: Add per-cpu infrastructure to call ARCH_WORKAROUND_2 arm64: Call ARCH_WORKAROUND_2 on transitions between EL0 and EL1 ...
2018-06-05Merge branch 'siginfo-linus' of ↵Linus Torvalds1-0/+1
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull siginfo updates from Eric Biederman: "This set of changes close the known issues with setting si_code to an invalid value, and with not fully initializing struct siginfo. There remains work to do on nds32, arc, unicore32, powerpc, arm, arm64, ia64 and x86 to get the code that generates siginfo into a simpler and more maintainable state. Most of that work involves refactoring the signal handling code and thus careful code review. Also not included is the work to shrink the in kernel version of struct siginfo. That depends on getting the number of places that directly manipulate struct siginfo under control, as it requires the introduction of struct kernel_siginfo for the in kernel things. Overall this set of changes looks like it is making good progress, and with a little luck I will be wrapping up the siginfo work next development cycle" * 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (46 commits) signal/sh: Stop gcc warning about an impossible case in do_divide_error signal/mips: Report FPE_FLTUNK for undiagnosed floating point exceptions signal/um: More carefully relay signals in relay_signal. signal: Extend siginfo_layout with SIL_FAULT_{MCEERR|BNDERR|PKUERR} signal: Remove unncessary #ifdef SEGV_PKUERR in 32bit compat code signal/signalfd: Add support for SIGSYS signal/signalfd: Remove __put_user from signalfd_copyinfo signal/xtensa: Use force_sig_fault where appropriate signal/xtensa: Consistenly use SIGBUS in do_unaligned_user signal/um: Use force_sig_fault where appropriate signal/sparc: Use force_sig_fault where appropriate signal/sparc: Use send_sig_fault where appropriate signal/sh: Use force_sig_fault where appropriate signal/s390: Use force_sig_fault where appropriate signal/riscv: Replace do_trap_siginfo with force_sig_fault signal/riscv: Use force_sig_fault where appropriate signal/parisc: Use force_sig_fault where appropriate signal/parisc: Use force_sig_mceerr where appropriate signal/openrisc: Use force_sig_fault where appropriate signal/nios2: Use force_sig_fault where appropriate ...
2018-06-01kvm: no need to check return value of debugfs_create functionsGreg Kroah-Hartman2-15/+6
When calling debugfs functions, there is no need to ever check the return value. The function can work or not, but the code logic should never do something different based on this. This cleans up the error handling a lot, as this code will never get hit. Cc: Paul Mackerras <paulus@ozlabs.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim KrÄmář" <rkrcmar@redhat.com> Cc: Arvind Yadav <arvind.yadav.cs@gmail.com> Cc: Eric Auger <eric.auger@redhat.com> Cc: Andre Przywara <andre.przywara@arm.com> Cc: kvm-ppc@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Cc: linux-kernel@vger.kernel.org Cc: linux-arm-kernel@lists.infradead.org Cc: kvmarm@lists.cs.columbia.edu Cc: kvm@vger.kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-01kvm: Make VM ioctl do valloc for some archsMarc Orr1-0/+15
The kvm struct has been bloating. For example, it's tens of kilo-bytes for x86, which turns out to be a large amount of memory to allocate contiguously via kzalloc. Thus, this patch does the following: 1. Uses architecture-specific routines to allocate the kvm struct via vzalloc for x86. 2. Switches arm to __KVM_HAVE_ARCH_VM_ALLOC so that it can use vzalloc when has_vhe() is true. Other architectures continue to default to kalloc, as they have a dependency on kalloc or have a small-enough struct kvm. Signed-off-by: Marc Orr <marcorr@google.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-01kvm: Change return type to vm_fault_tSouptick Joarder1-1/+1
Use new return type vm_fault_t for fault handler. For now, this is just documenting that the function returns a VM_FAULT value rather than an errno. Once all instances are converted, vm_fault_t will become a distinct type. commit 1c8f422059ae ("mm: change return type to vm_fault_t") Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com> Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-01Merge tag 'kvmarm-for-v4.18' of ↵Paolo Bonzini6-83/+338
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/ARM updates for 4.18 - Lazy context-switching of FPSIMD registers on arm64 - Allow virtual redistributors to be part of two or more MMIO ranges
2018-05-31arm64: KVM: Add ARCH_WORKAROUND_2 discovery through ARCH_FEATURES_FUNC_IDMarc Zyngier1-2/+16
Now that all our infrastructure is in place, let's expose the availability of ARCH_WORKAROUND_2 to guests. We take this opportunity to tidy up a couple of SMCCC constants. Acked-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-05-31arm64: KVM: Add ARCH_WORKAROUND_2 support for guestsMarc Zyngier1-0/+4
In order to offer ARCH_WORKAROUND_2 support to guests, we need a bit of infrastructure. Let's add a flag indicating whether or not the guest uses SSBD mitigation. Depending on the state of this flag, allow KVM to disable ARCH_WORKAROUND_2 before entering the guest, and enable it when exiting it. Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-05-25KVM: arm/arm64: Implement KVM_VGIC_V3_ADDR_TYPE_REDIST_REGIONEric Auger4-4/+67
Now all the internals are ready to handle multiple redistributor regions, let's allow the userspace to register them. Signed-off-by: Eric Auger <eric.auger@redhat.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-05-25KVM: arm/arm64: Check all vcpu redistributors are set on map_resourcesEric Auger1-5/+14
On vcpu first run, we eventually know the actual number of vcpus. This is a synchronization point to check all redistributors were assigned. On kvm_vgic_map_resources() we check both dist and redist were set, eventually check potential base address inconsistencies. Signed-off-by: Eric Auger <eric.auger@redhat.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-05-25KVM: arm/arm64: Check vcpu redist base before registering an iodevEric Auger2-0/+6
As we are going to register several redist regions, vgic_register_all_redist_iodevs() may be called several times. We need to register a redist_iodev for a given vcpu only once. So let's check if the base address has already been set. Initialize this latter in kvm_vgic_vcpu_init(). Signed-off-by: Eric Auger <eric.auger@redhat.com> Acked-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-05-25KVM: arm/arm64: Remove kvm_vgic_vcpu_early_initEric Auger2-44/+37
kvm_vgic_vcpu_early_init gets called after kvm_vgic_cpu_init which is confusing. The call path is as follows: kvm_vm_ioctl_create_vcpu |_ kvm_arch_cpu_create |_ kvm_vcpu_init |_ kvm_arch_vcpu_init |_ kvm_vgic_vcpu_init |_ kvm_arch_vcpu_postcreate |_ kvm_vgic_vcpu_early_init Static initialization currently done in kvm_vgic_vcpu_early_init() can be moved to kvm_vgic_vcpu_init(). So let's move the code and remove kvm_vgic_vcpu_early_init(). kvm_arch_vcpu_postcreate() does nothing. Signed-off-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-05-25KVM: arm/arm64: Helper to register a new redistributor regionEric Auger2-16/+81
We introduce a new helper that creates and inserts a new redistributor region into the rdist region list. This helper both handles the case where the redistributor region size is known at registration time and the legacy case where it is not (eventually depending on the number of online vcpus). Depending on pfns, we perform all the possible checks that we can do: - end of memory crossing - incorrect alignment of the base address - collision with distributor region if already defined - collision with already registered rdist regions - check of the new index Rdist regions must be inserted by increasing order of indices. Indices must be contiguous. Signed-off-by: Eric Auger <eric.auger@redhat.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-05-25KVM: arm/arm64: Adapt vgic_v3_check_base to multiple rdist regionsEric Auger2-17/+42
vgic_v3_check_base() currently only handles the case of a unique legacy redistributor region whose size is not explicitly set but inferred, instead, from the number of online vcpus. We adapt it to handle the case of multiple redistributor regions with explicitly defined size. We rely on two new helpers: - vgic_v3_rdist_overlap() is used to detect overlap with the dist region if defined - vgic_v3_rd_region_size computes the size of the redist region, would it be a legacy unique region or a new explicitly sized region. Signed-off-by: Eric Auger <eric.auger@redhat.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-05-25KVM: arm/arm64: Revisit Redistributor TYPER last bit computationEric Auger1-1/+6
The TYPER of an redistributor reflects whether the rdist is the last one of the redistributor region. Let's compare the TYPER GPA against the address of the last occupied slot within the redistributor region. Signed-off-by: Eric Auger <eric.auger@redhat.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-05-25KVM: arm/arm64: Helper to locate free rdist indexEric Auger3-2/+35
We introduce vgic_v3_rdist_free_slot to help identifying where we can place a new 2x64KB redistributor. Signed-off-by: Eric Auger <eric.auger@redhat.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-05-25KVM: arm/arm64: Replace the single rdist region by a listEric Auger4-20/+67
At the moment KVM supports a single rdist region. We want to support several separate rdist regions so let's introduce a list of them. This patch currently only cares about a single entry in this list as the functionality to register several redist regions is not yet there. So this only translates the existing code into something functionally similar using that new data struct. The redistributor region handle is stored in the vgic_cpu structure to allow later computation of the TYPER last bit. Signed-off-by: Eric Auger <eric.auger@redhat.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-05-25KVM: arm/arm64: Set dist->spis to NULL after kfreeEric Auger1-0/+1
in case kvm_vgic_map_resources() fails, typically if the vgic distributor is not defined, __kvm_vgic_destroy will be called several times. Indeed kvm_vgic_map_resources() is called on first vcpu run. As a result dist->spis is freeed more than once and on the second time it causes a "kernel BUG at mm/slub.c:3912!" Set dist->spis to NULL to avoid the crash. Fixes: ad275b8bb1e6 ("KVM: arm/arm64: vgic-new: vgic_init: implement vgic_init") Signed-off-by: Eric Auger <eric.auger@redhat.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-05-25KVM: arm64: Remove eager host SVE state savingDave Martin1-3/+0
Now that the host SVE context can be saved on demand from Hyp, there is no longer any need to save this state in advance before entering the guest. This patch removes the relevant call to kvm_fpsimd_flush_cpu_state(). Since the problem that function was intended to solve now no longer exists, the function and its dependencies are also deleted. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Acked-by: Christoffer Dall <christoffer.dall@arm.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-05-25KVM: arm64: Save host SVE context as appropriateDave Martin1-0/+7
This patch adds SVE context saving to the hyp FPSIMD context switch path. This means that it is no longer necessary to save the host SVE state in advance of entering the guest, when in use. In order to avoid adding pointless complexity to the code, VHE is assumed if SVE is in use. VHE is an architectural prerequisite for SVE, so there is no good reason to turn CONFIG_ARM64_VHE off in kernels that support both SVE and KVM. Historically, software models exist that can expose the architecturally invalid configuration of SVE without VHE, so if this situation is detected at kvm_init() time then KVM will be disabled. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-05-25KVM: arm64: Optimise FPSIMD handling to reduce guest/host thrashingDave Martin1-0/+4
This patch refactors KVM to align the host and guest FPSIMD save/restore logic with each other for arm64. This reduces the number of redundant save/restore operations that must occur, and reduces the common-case IRQ blackout time during guest exit storms by saving the host state lazily and optimising away the need to restore the host state before returning to the run loop. Four hooks are defined in order to enable this: * kvm_arch_vcpu_run_map_fp(): Called on PID change to map necessary bits of current to Hyp. * kvm_arch_vcpu_load_fp(): Set up FP/SIMD for entering the KVM run loop (parse as "vcpu_load fp"). * kvm_arch_vcpu_ctxsync_fp(): Get FP/SIMD into a safe state for re-enabling interrupts after a guest exit back to the run loop. For arm64 specifically, this involves updating the host kernel's FPSIMD context tracking metadata so that kernel-mode NEON use will cause the vcpu's FPSIMD state to be saved back correctly into the vcpu struct. This must be done before re-enabling interrupts because kernel-mode NEON may be used by softirqs. * kvm_arch_vcpu_put_fp(): Save guest FP/SIMD state back to memory and dissociate from the CPU ("vcpu_put fp"). Also, the arm64 FPSIMD context switch code is updated to enable it to save back FPSIMD state for a vcpu, not just current. A few helpers drive this: * fpsimd_bind_state_to_cpu(struct user_fpsimd_state *fp): mark this CPU as having context fp (which may belong to a vcpu) currently loaded in its registers. This is the non-task equivalent of the static function fpsimd_bind_to_cpu() in fpsimd.c. * task_fpsimd_save(): exported to allow KVM to save the guest's FPSIMD state back to memory on exit from the run loop. * fpsimd_flush_state(): invalidate any context's FPSIMD state that is currently loaded. Used to disassociate the vcpu from the CPU regs on run loop exit. These changes allow the run loop to enable interrupts (and thus softirqs that may use kernel-mode NEON) without having to save the guest's FPSIMD state eagerly. Some new vcpu_arch fields are added to make all this work. Because host FPSIMD state can now be saved back directly into current's thread_struct as appropriate, host_cpu_context is no longer used for preserving the FPSIMD state. However, it is still needed for preserving other things such as the host's system registers. To avoid ABI churn, the redundant storage space in host_cpu_context is not removed for now. arch/arm is not addressed by this patch and continues to use its current save/restore logic. It could provide implementations of the helpers later if desired. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-05-15KVM: arm/arm64: VGIC/ITS save/restore: protect kvm_read_guest() callsAndre Przywara2-4/+4
kvm_read_guest() will eventually look up in kvm_memslots(), which requires either to hold the kvm->slots_lock or to be inside a kvm->srcu critical section. In contrast to x86 and s390 we don't take the SRCU lock on every guest exit, so we have to do it individually for each kvm_read_guest() call. Use the newly introduced wrapper for that. Cc: Stable <stable@vger.kernel.org> # 4.12+ Reported-by: Jan Glauber <jan.glauber@caviumnetworks.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Acked-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-15KVM: arm/arm64: VGIC/ITS: protect kvm_read_guest() calls with SRCU lockAndre Przywara1-7/+8
kvm_read_guest() will eventually look up in kvm_memslots(), which requires either to hold the kvm->slots_lock or to be inside a kvm->srcu critical section. In contrast to x86 and s390 we don't take the SRCU lock on every guest exit, so we have to do it individually for each kvm_read_guest() call. Provide a wrapper which does that and use that everywhere. Note that ending the SRCU critical section before returning from the kvm_read_guest() wrapper is safe, because the data has been *copied*, so we don't need to rely on valid references to the memslot anymore. Cc: Stable <stable@vger.kernel.org> # 4.8+ Reported-by: Jan Glauber <jan.glauber@caviumnetworks.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Acked-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-15KVM: arm/arm64: VGIC/ITS: Promote irq_lock() in update_affinityAndre Przywara1-2/+3
Apparently the development of update_affinity() overlapped with the promotion of irq_lock to be _irqsave, so the patch didn't convert this lock over. This will make lockdep complain. Fix this by disabling IRQs around the lock. Cc: stable@vger.kernel.org Fixes: 08c9fd042117 ("KVM: arm/arm64: vITS: Add a helper to update the affinity of an LPI") Reported-by: Jan Glauber <jan.glauber@caviumnetworks.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Acked-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-15KVM: arm/arm64: Properly protect VGIC locks from IRQsAndre Przywara3-14/+23
As Jan reported [1], lockdep complains about the VGIC not being bullet proof. This seems to be due to two issues: - When commit 006df0f34930 ("KVM: arm/arm64: Support calling vgic_update_irq_pending from irq context") promoted irq_lock and ap_list_lock to _irqsave, we forgot two instances of irq_lock. lockdeps seems to pick those up. - If a lock is _irqsave, any other locks we take inside them should be _irqsafe as well. So the lpi_list_lock needs to be promoted also. This fixes both issues by simply making the remaining instances of those locks _irqsave. One irq_lock is addressed in a separate patch, to simplify backporting. [1] http://lists.infradead.org/pipermail/linux-arm-kernel/2018-May/575718.html Cc: stable@vger.kernel.org Fixes: 006df0f34930 ("KVM: arm/arm64: Support calling vgic_update_irq_pending from irq context") Reported-by: Jan Glauber <jan.glauber@caviumnetworks.com> Acked-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-06Merge tag 'kvmarm-fixes-for-4.17-2' of ↵Radim Krčmář6-62/+81
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm KVM/arm fixes for 4.17, take #2 - Fix proxying of GICv2 CPU interface accesses - Fix crash when switching to BE - Track source vcpu git GICv2 SGIs - Fix an outdated bit of documentation
2018-05-04KVM: arm/arm64: vgic_init: Cleanup reference to process_maintenanceValentin Schneider1-1/+1
One comment still mentioned process_maintenance operations after commit af0614991ab6 ("KVM: arm/arm64: vgic: Get rid of unnecessary process_maintenance operation") Update the comment to point to vgic_fold_lr_state instead, which is where maintenance interrupts are taken care of. Acked-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-04-28rMerge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds3-5/+78
Pull KVM fixes from Radim Krčmář: "ARM: - PSCI selection API, a leftover from 4.16 (for stable) - Kick vcpu on active interrupt affinity change - Plug a VMID allocation race on oversubscribed systems - Silence debug messages - Update Christoffer's email address (linaro -> arm) x86: - Expose userspace-relevant bits of a newly added feature - Fix TLB flushing on VMX with VPID, but without EPT" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: x86/headers/UAPI: Move DISABLE_EXITS KVM capability bits to the UAPI kvm: apic: Flush TLB after APIC mode/address change if VPIDs are in use arm/arm64: KVM: Add PSCI version selection API KVM: arm/arm64: vgic: Kick new VCPU on interrupt migration arm64: KVM: Demote SVE and LORegion warnings to debug only MAINTAINERS: Update e-mail address for Christoffer Dall KVM: arm/arm64: Close VMID generation race
2018-04-27KVM: arm/arm64: vgic: Fix source vcpu issues for GICv2 SGIMarc Zyngier5-61/+80
Now that we make sure we don't inject multiple instances of the same GICv2 SGI at the same time, we've made another bug more obvious: If we exit with an active SGI, we completely lose track of which vcpu it came from. On the next entry, we restore it with 0 as a source, and if that wasn't the right one, too bad. While this doesn't seem to trouble GIC-400, the architectural model gets offended and doesn't deactivate the interrupt on EOI. Another connected issue is that we will happilly make pending an interrupt from another vcpu, overriding the above zero with something that is just as inconsistent. Don't do that. The final issue is that we signal a maintenance interrupt when no pending interrupts are present in the LR. Assuming we've fixed the two issues above, we end-up in a situation where we keep exiting as soon as we've reached the active state, and not be able to inject the following pending. The fix comes in 3 parts: - GICv2 SGIs have their source vcpu saved if they are active on exit, and restored on entry - Multi-SGIs cannot go via the Pending+Active state, as this would corrupt the source field - Multi-SGIs are converted to using MI on EOI instead of NPIE Fixes: 16ca6a607d84bef0 ("KVM: arm/arm64: vgic: Don't populate multiple LRs with the same vintid") Reported-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-04-26KVM: arm/arm64: vgic: fix possible spectre-v1 in vgic_mmio_read_apr()Mark Rutland1-0/+5
It's possible for userspace to control n. Sanitize n when using it as an array index. Note that while it appears that n must be bound to the interval [0,3] due to the way it is extracted from addr, we cannot guarantee that compiler transformations (and/or future refactoring) will ensure this is the case, and given this is a slow path it's better to always perform the masking. Found by smatch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Christoffer Dall <christoffer.dall@arm.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Cc: kvmarm@lists.cs.columbia.edu Signed-off-by: Will Deacon <will.deacon@arm.com>